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Abstract In this article, we consider the Krasnosel’skĭı-Mann iteration for ap-

proximating a fixed point of any given non-expansive operator in real Hilbert

spaces, and we study an inertial version proposed by Maingé recently. As a result,

we suggest new conditions on the inertial factors to ensure weak convergence. They

are free of iterates and depend on the original coefficient of the Krasnosel’skĭı-Mann

iteration. In particular, in a special case that corresponds to the Douglas-Rachford

splitting, the upper bound of the sequence of inertial factors is merely required to

strictly less than 1/3. Rudimentary numerical results indicate practical usefulness

of our suggested conditions.

Keywords Non-expansive operator · fixed point · Krasnosel’skĭı-Mann
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1 Introduction

Let H be an infinite-dimensional real Hilbert space, and let C ⊆ H be a nonempty

closed convex subset. If T : C → C is non-expansive, then one of its fixed points (if

at least one fixed point exists) can be approximated by the following Krasnosel’skĭı-

Mann iteration [28, 24]

xk+1 = (1− αk)xk + αkT (xk), k = 0, 1, ...,
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where the coefficient αk ∈ [0, 1] and the series
∑
αk(1−αk) diverges [19]. For any

given starting point x0 ∈ C, the resulting sequence converges weakly to some fixed

point of T . Thanks to the celebrated counter-example [17], one has known that

the Krasnosel’skĭı-Mann iteration may fail to converge strongly in some cases. For

pertinent discussions, we refer to [33, 23, 30, 22] and the references cited therein.

An appealing feature of the Krasnosel’skĭı-Mann iteration is that the proxi-

mal point algorithm (introduced by Martinet [29] and generalized by Rockafel-

lar [35]; also see [3, 20, 9, 10]), together with its generalized form [18], and the

Peaceman/Douglas-Rachford splitting method [34, 14] of Lions and Mercier [25]

may well be interpreted as its special cases.

Recently, inspired by the work on the proximal point algorithm [1], [27] sug-

gested adding an inertial term to the Krasnosel’skĭı-Mann iteration:

yk = xk + tk(xk − xk−1),

xk+1 = (1− αk)yk + αkT (yk), k = 0, 1, ...,

where the inertial factor tk > 0. For any given starting points x−1, x0 in the set

C, the corresponding weak convergence was proved if C is further assumed to be

affine and the following additional condition, which follows the style of [1],

+∞∑
k=0

tk‖xk − xk−1‖2 < +∞ (1)

is satisfied. See [8, 36] for very recent discussions of adding inertial terms to other

iterative schemes.

Although the condition (1) can be verified in practice, it remains desirable to

give its alternative free of iterates. A step toward this direction was taken in a

recent work [5]. The conditions on the inertial sequence include

t0 = 0, 0 ≤ tk ≤ tk+1 ≤ t < 1

and other relations between the coefficient αk and upper bound of the inertial

sequence; also see (3) below.

Unfortunately, as pointed out at the end of Sect. 3 and in the Remark 4.3, these

conditions are too complicated to determine upper bound of the inertial sequence

in a simple way even if the coefficient αk has been known. Moreover, in the case

of αk ≡ 0.5, they are undesirably restrictive.

To circumvent such difficulty, we mainly consider the case αk ∈ [0.5, 1) that

covers the Douglas-Rachford splitting method and give a concise relation between

the coefficient and (upper bound of) the inertial sequence

t0 = 0, 0 ≤ tk ≤ tk+1 ≤
1− (1 + ε)αk

1 + αk
,
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where ε is any given sufficiently small positive number. In contrast to (3), our

suggested conditions above have an appealing property: once the coefficient αk

has been chosen before implementing the algorithm, it becomes very convenient

to determine (upper bound of) the inertial sequence dynamically; we refer to [12]

for further applications in practice.

Interestingly, in the case of αk ≡ 0.5 that corresponds to the Douglas-Rachford

splitting, the conditions become that the inertial sequence is uniformly bounded

by 1/3 (see Corollary 1 below) and it coincides with the counterpart for an inertial

proximal point algorithm suggested in [1, Proposition 2.1].

The rest of this article is organized as follows. In Sect. 2, we give some useful

concepts and preliminary results. In Sect. 3, we formally describe the inertial

Krasnosel’skĭı-Mann iteration, and for comparison, we state the main results in [5].

In Sect. 4, we give our suggested conditions on the inertial sequence and prove weak

convergence of the inertial Krasnosel’skĭı-Mann iteration. Moreover, we compare

them with the existing ones [5]. In Sect. 5, we discuss implications to generalized

proximal point algorithm and the Peaceman/Douglas-Rachford splitting. In Sect.

6, we did rudimentary numerical experiments to confirm practical usefulness of

our suggested conditions, when applied to an inertial Douglas-Rachford splitting.

In Sect. 7, we close this article by some concluding remarks.

2 Preliminary Results

In this section, we first give some basic definitions and then provide some auxiliary

results for later use.

Let H be an infinite-dimensional Hilbert space, in which 〈x, y〉 stands for the

usual inner product and ‖x‖ :=
√
〈x, x〉 for the induced norm for any x, y ∈ H.

Let A : H ⇒ H be an operator, which may be multi-valued. To concisely give

the following definition, we agree on that the notation (x,w) ∈ A and x ∈ H,

w ∈ A(x) have the same meaning. Moreover, w ∈ A(x) if and only if x ∈ A−1w,

where A−1 stands for the inverse of A. domA stands for the effective domain of

A.

Definition 1 Let C ⊆ H be a nonempty subset. An operator T : C → C is called

non-expansive if and only if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ C;

firmly non-expansive if and only if

‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉, ∀x, y ∈ C.
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Definition 2 Let A : H⇒ H be an operator. It is called monotone if and only if

〈x− x′, w − w′〉 ≥ 0, ∀(x,w) ∈ A, ∀(x′, w′) ∈ A;

maximal monotone if and only if it is monotone and for given x̂ ∈ H and ŵ ∈ H
the following implication relation holds

〈x− x̂, w − ŵ〉 ≥ 0, ∀(x,w) ∈ A ⇒ (x̂, ŵ) ∈ A.

Definition 3 Let f : H → [−∞,+∞] be a convex function. Then for any given

x ∈ H the sub-differential of f at x is defined by

∂f(x) := {s ∈ H : f(y)− f(x) ≥ 〈s, y − x〉, ∀y ∈ H}.

Each s is called a sub-gradient of f at x. Moreover, if f is further continuously

differentiable, then ∂f(x) = {∇f(x)}, where ∇f(x) is the gradient of f at x.

As is well known, the sub-differential of any closed proper convex function in

an infinite-dimensional Hilbert space is maximal monotone as well. An important

example is the sub-differential of the indicator function defined by

δC(x) =

{
0, if x ∈ C,

+∞, if x /∈ C,

where C is some nonempty closed convex set inRn. Moreover, for any given positive

number λ > 0, we have PC = (I + λ∂δC)
−1, where PC is usual projection onto C.

For any given maximal monotone operator A : H ⇒ H, it is Minty [31] who

proved that there must exist a unique y ∈ H such that (I + λA)y 3 x for all

x ∈ H and λ > 0, where I stands for the identity operator, i.e., Ix = x for all

x ∈ H. This implies that the corresponding operator JλA := (I + λA)−1, also

called the resolvent operator of A, is single-valued. Be aware that JλA here is

firmly non-expansive, and 2JλA − I is non-expansive (cf. [15]).

For any given maximal monotone operator A : H⇒ H, there are other related

properties. (i) For all x ∈ H, the set A(x) must be either empty or nonempty

closed convex; see [2, Proposition 3, § 6.7]. (ii) The solution set {x : 0 ∈ A(x)}
is either empty or nonempty closed convex [32]. Note that if T is non-expansive,

then I − T is continuous and monotone, thus maximal monotone. Moreover, the

set of its fixed points must be either empty or nonempty closed convex.

3 Inertial Krasnosel’skĭı-Mann iteration

In this section, we restate and further discuss the above-mentioned inertial Kras-

nosel’skĭı-Mann iteration for non-expansive operators on some nonempty, closed

and affine subset C in Hilbert spaces.
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First, we restate the inertial Krasnosel’skĭı-Mann iteration suggested in [27].

For any given starting points x−1, x0 in the set C, it reads

xk+1 = ((1− αk)I + αkT ) (xk + tk(xk − xk−1)), k = 0, 1, .... (2)

Next, we give [5, Theorem 5], which is the basic result there.

Proposition 1 Let C ⊆ H be a nonempty closed affine subset. Assume that T :

C → C is non-expansive and there exists at least one fixed point. Consider the

inertial Krasnosel’skĭı-Mann iteration (2) above. If the inertial sequence satisfies

t0 = 0, 0 ≤ tk ≤ tk+1 ≤ t < 1,

and {αk} satisfies

0 < α ≤ αk ≤
δ(1− t2)− t2 − t3 − tσ
δ[1 + t(1 + t) + tδ + σ]

, with δ >
t2 + t3 + tσ

1− t2 , (3)

where δ > 0 and σ > 0. Then the sequence {xk} converges weakly to a fixed point

of T .

Obviously, these conditions above are complicated. Furthermore, as indicated

in Remark 4.3 below, they are restrictive.

4 Convergence

In this section, we mainly analyze weak convergence of the above-mentioned in-

ertial Krasnosel’skĭı-Mann iteration, and we specially stress that our suggested

conditions on the inertial sequence are new and convenient in practice.

This section begins with a well-known lemma [1], which is used for simplifying

the proof of our main theorem in this article.

Lemma 4.1 Let {ϕk}, {tk} and {δk} be nonnegative sequences. Assume that

ϕk+1 ≤ ϕk + tk(ϕk − ϕk−1) + δk, k = 0, 1, ...,

and 0 ≤ tk ≤ t < 1 and
∑+∞
k=0 δk < +∞. Then limk→+∞ ϕk exists.

The following result can be derived by slightly modifying the proof of [5, The-

orem 5] and its proof is in the Appendix.

Lemma 4.2 Let {xk} be the sequences generated by the inertial Krasnosel’skĭı-

Mann iteration (2). Then, for any given fixed point z, we have

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + tk

(
‖xk − z‖2 − ‖xk−1 − z‖2

)
−
(

1

αk
− 1

)
(1− tk)‖xk+1 − xk‖2 + γk‖xk − xk−1‖2 (4)
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where γk is given by

γk := tk + t2k −
(

1

αk
− 1

)
(tk − 1) tk.

Now we state the main result in this article.

Theorem 4.1 In the setting of Lemma 4.2, we further assume that

αk ∈ [0.5, 1− ε], t0 = 0, 0 ≤ tk ≤ tk+1 ≤
1− (1 + ε)αk

1 + αk
, (5)

where ε is any given sufficiently small positive number. Then the inertial Kras-

nosel’skĭı-Mann iteration (2) has the following properties

(i)
∑+∞
k=0 ‖xk+1 − xk‖2 < +∞.

(ii) The sequence {xk} converges weakly to a fixed point of T .

Proof Denote

ϕk := ‖xk − z‖2, µk := ϕk − tkϕk−1 + γk‖xk − xk−1‖2. (6)

Since the inertial sequence {tk} is non-decreasing, it follows from Lemma 4.2 that

µk+1 − µk
≤ ϕk+1 − (1 + tk)ϕk + tkϕk−1 + γk+1‖xk+1 − xk‖2 − γk‖xk − xk−1‖2

≤ −
((

1

αk
− 1

)
(1− tk)− γk+1

)
‖xk+1 − xk‖2. (7)

Meanwhile, since αk ∈ [0.5, 1) and tk ≤ tk+1 < 1, we have(
1

αk
− 1

)
(1− tk)− γk+1

=

(
1

αk
− 1

)
(1− tk)− tk+1 − t2k+1 +

(
1

αk+1
− 1

)
(tk+1 − 1) tk+1

≥
(

1

αk
− 1

)
(1− tk+1)− tk+1 − t2k+1 +

(
1

αk+1
− 1

)
(tk+1 − 1) tk+1

=
1

αk
− 1−

(
1

αk
+

1

αk+1
− 1

)
tk+1 −

(
2− 1

αk+1

)
t2k+1 (8)

≥ 1

αk
− 1−

(
1

αk
+

1

αk+1
− 1

)
tk+1 −

(
2− 1

αk+1

)
tk+1

=
1

αk
− 1−

(
1

αk
+ 1

)
tk+1

≥ ε,

where the last inequality follows from (5). Combining this with (7) yields that, in

either case, we always have

µk+1 − µk ≤ −ε‖xk+1 − xk‖2, k = 0, 1, ....
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Consequently, the sequence {µk} is non-increasing. Summing up for j ≤ k − 1

yields

ε

k−1∑
j=0

‖xj+1 − xj‖2 ≤ µ0 − µk ≤ µ0 + tkϕk−1,

where the last inequality follows from (6). Below, we need to prove that the se-

quence {ϕk} has an upper bound. In fact, in view of (6) and that {µk} is non-

increasing, we have

ϕk − tkϕk−1 ≤ µk ≤ µ0.

So, we further get

ϕk ≤ tkϕk−1 + µ0

≤ tϕk−1 + µ0

≤ t(tϕk−2 + µ0) + µ0

= t2ϕk−2 + tµ0 + µ0

and eventually

ϕk ≤ tkϕ0 + tk−1µ0 + · · ·+ tµ0 + µ0 ≤ tkϕ0 +
µ0

1− t .

Thus, we can say that
∑k−1
j=0 ‖xj+1−xj‖2 is always bounded for all k and the item

(i) of this theorem is proved.

Finally, we prove weak convergence of the sequence {xk}. In fact, from Lemma

4.2, we can see that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + tk

(
‖xk − z‖2 − ‖xk−1 − z‖2

)
+ γk‖xk − xk−1‖2.

Combining this with the item (i) of this theorem and Lemma 4.1 yields that

limk→+∞ ‖xk − z‖ exists. This indicates that the sequence {xk} is bounded in

norm, thus it has at least one weak cluster point, say z̄, i.e., there exists some

subsequence {xkj
} such that it converges weakly to z̄. Meanwhile, it follows from

(2) that

(I − T )(xk + tk(xk − xk−1)) = (1/αk)(tk(xk − xk−1)− (xk+1 − xk)).

Since the item (i) means that {xk+1 − xk} converges to zero in norm, taking this

into account and taking the limit along kj yield

(I − T )(z̄) = 0 ⇔ T (z̄) = z̄,

where we have made use of the fact that I − T is continuous and monotone. The

proof of uniqueness of weak cluster point is standard [35, 13], thus is omitted. The

proof is complete.
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Remark 4.1 Impressively, as far as the inner product 2〈xk+1 − xk, xk − xk−1〉 in

(25) (see the Appendix A below) is concerned, we adopt the following upper bound

‖xk+1 − xk‖2 + ‖xk − xk−1‖2

and do not follow [5, Theorem 5] to make use of the upper bound

ρk‖xk+1 − xk‖2 + (1/ρk)‖xk − xk−1‖2, ρk > 0.

The reason is that introducing ρk makes analysis much more complicated and

restrictive as mentioned at the end of Sect. 3. Perhaps, ρk ≡ 1 itself has been a

good choice. As to the relation (8), it is better if we require

1

αk
− 1−

(
1

αk
+

1

αk+1
− 1

)
tk+1 −

(
2− 1

αk+1

)
t2k+1 ≥ ε,

which implies

tk+1 ≤
√
p2k + qk − pk, (9)

where pk and qk are given by

pk :=
1

2

1

2− 1
αk+1

(
1

αk
+

1

αk+1
− 1

)
, qk :=

1

2− 1
αk+1

(
1

αk
− 1− ε

)
.

In practice, by assuming αk ∈ [0.5 + ε, 1− ε] in advance, we may make use of this

formula to calculate larger upper bound of the inertial sequence dynamically. Yet,

in theory, we prefer (5) to it for simplicity.

Remark 4.2 In Theorem 4.1, the focus of our analysis is on the case of αk ∈ [0.5, 1−
ε], in which the corresponding Peaceman/Douglas-Rachford splitting method – an

instance of the Krasnosel’skĭı-Mann iteration – typically yields better numerical

results [13]. The reader may analyze other cases similarly.

Remark 4.3 Now let us probe into the intrinsic issue behind the aforementioned

conditions (3). Consider an inequality there, which can be rewritten as

αktδ
2 + (αkt

2 + t2 + αkt+ αk + αkσ − 1)δ + t2 + t3 + tσ ≤ 0,

namely,

bk := αkt
2 + t2 + αkt+ αk + αkσ − 1, (10)

αktδ
2 + bkδ + t2 + t3 + tσ ≤ 0. (11)

Clearly, this corresponds to a quadratic equation involving only one unknown δ.

To guarantee that its roots are positive, we require

0 > bk, (12)

0 ≤ b2k − 4αkt(t
2 + t3 + tσ). (13)
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Table 1: Numerical demonstration of the conditions (3)

αk 0.5 0.6 0.7 0.8 0.9

t 0.30 0.40 0.20 0.30 0.20 0.25 0.10 0.15 0.08 0.09

σ − − − − − − − − − −

Table 2: Numerical demonstration of our suggested conditions

αk 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Condition (5) t < 1/3

Condition (9) t 0.303 0.274 0.245 0.216 0.186 0.154 0.121 0.085

For given αk and t, we first check whether or not there exist some positive number

σ such that (12) and (13) hold. If so, we still need to further check whether or not

the relation

δ+(αk, t, σ) >
t2 + t3 + tσ

1− t2 (14)

in (3) holds as well for these given αk and t, where we have made use of δ+ to

stand for the biggest root of the quadratic equation involved in (11).

For simplicity, we focus on the cases of αk ≡ 0.5, 0.6, 0.7, 0.8, 0.9. So, the con-

dition (12) becomes

0 > 3t2 + t+ σ − 1 ⇒ 0 > 3t2 + t− 1 ⇒ t < 0.435,

0 > 16t2 + 6t+ 6σ − 4 ⇒ 0 > 16t2 + 6t− 4 ⇒ t < 0.346,

0 > 17t2 + 7t+ 7σ − 3 ⇒ 0 > 17t2 + 7t− 3 ⇒ t < 0.261,

0 > 18t2 + 8t+ 8σ − 2 ⇒ 0 > 18t2 + 8t− 2 ⇒ t < 0.178,

0 > 19t2 + 9t+ 9σ − 1 ⇒ 0 > 19t2 + 9t− 1 ⇒ t < 0.093,

respectively, and the corresponding results are listed in the following Table 1,

where the notation − means that, for given αk and t, there is no any positive

number σ such that (12), (13) and (14) hold simultaneously.

For comparison, we also give numerical demonstration of our suggested condi-

tions – either (5) or (9) (with ε = 0.0001) in the following Table 2.

From Table 1 and Table 2, we can see that, for our suggested conditions, (5)

admits the case of αk ≡ 0.5 and t = 0.33 and (9) admits the cases of

αk ≡ 0.6, 0.7, 0.8, 0.9 and t = 0.27, 0.21, 0.15, 0.08,

respectively. In contrast, the conditions (12), (13) and (14) rule out all of them

and thus seem restrictive.
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Remark 4.4 By the way, in the case of αk ∈ (0, 0.5), we make use of (8) to consider

the following equation(
1

αk+1
− 2

)
t2 −

(
1

αk
+

1

αk+1
− 1

)
t+

1

αk
− 1− ε = 0.

Notice that 1
αk+1

− 2 > 0 due to αk+1 < 0.5. Since

(
1

αk
+

1

αk+1
− 1

)2

− 4

(
1

αk+1
− 2

)(
1

αk
− 1

)
> 0,

we set ∆k to be the positive square root of(
1

αk
+

1

αk+1
− 1

)2

− 4

(
1

αk+1
− 2

)(
1

αk
− 1− ε

)
.

Thus, the equation above has two different positive roots

t± :=
1

2

1
1

αk+1
− 2

(
1

αk
+

1

αk+1
− 1±∆k

)
.

If we further assume that
1

αk
− 1

αk+1
+ 3 > 0, (15)

which is equivalent to saying that

1

2

1
1

αk+1
− 2

(
1

αk
+

1

αk+1
− 1

)
> 1,

then it can be easily seen that the positive roots t− < 1 and t+ > 1. So, such

t− can serve as an upper bound of the inertial factors. Note that the assumption

above (15) is mild since it holds automatically for any given constant in the interval

(0, 0.5).

As a direct consequence of Theorem 4.1, we give the following result.

Corollary 1 Let C ⊆ H be a nonempty closed affine subset. Assume that T :

C → C is non-expansive and there exists at least one fixed point. For any given

starting points x−1, x0 in the set C, consider the recursive relation

xk+1 =
1

2
(I + T )(xk + tk(xk − xk−1)), k = 0, 1, ....

If the inertial sequence satisfies

t0 = 0, 0 ≤ tk ≤ tk+1 ≤ t < 1/3,

then the sequence {xk} converges weakly to a fixed point of T .
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5 Implications

In this section, we discuss some implications of our suggested results on inertial

Krasnosel’skĭı-Mann iteration to (generalized) proximal point algorithm and the

Peaceman/Douglas-Rachford splitting method of Lions and Mercier.

First, we consider the problem of solving monotone inclusion 0 ∈ A(x) in

Hilbert spaces, where A is maximal monotone. Since 2JλA − I is non-expansive,

taking T := 2JλA − I in the Krasnosel’skĭı-Mann iteration yields

xk+1 = (I − 2αk(I − JλA)) (xk), k = 0, 1, ...,

where αk ∈ (0, 1). This is a generalized proximal point algorithm, and the case

αk ≡ 0.5 corresponds to the proximal point algorithm. Thus, we can get an inertial

version of this generalized proximal point algorithm

xk+1 = (I − 2αk(I − JλA)) (xk + tk(xk − xk−1)), k = 0, 1, ...,

where αk ∈ (0, 1). If we set αk ≡ 0.5, then the recursive formula above reduces to

xk+1 = JλA(xk + tk(xk − xk−1)), k = 0, 1, ...,

which coincides with the one suggested in [1], with the scaling factor being some

constant number. Interestingly, the conditions on the inertial sequence (5) becomes

0 ≤ tk ≤ tk+1 ≤ t < 1/3,

and thus they also coincide with the ones stated in [1, Proposition 2.1]. For other

discussions in the setting of convex minimization, the reader may consult a recent

work [4]. Notice that that the proximal point algorithm comes from an implicit

discretization of the first-order steepest descent method, while its inertial version is

a discrete form of a second-order dissipative dynamical system alternatively called

”heavy ball with friction” [1].

Next, we consider the problem of solving monotone inclusion 0 ∈ A(x) +B(x)

in Hilbert spaces, where A,B are maximal monotone. For any given starting point

u0 ∈ H, the corresponding Peaceman/Douglas-Rachford splitting method reads

uk+1 = (1− w)(2JλB − I)(2JλA − I)(uk) + w [JλB(2JλA − I) + I − JλA] (uk)

for k = 0, 1, ..., where the co-efficient w ∈ [0, 1] was introduce by Varga; see [25, Sec-

t. 1.3] for more details. When w = 0, 1, it corresponds to the Peaceman-Rachford

splitting method and the Douglas-Rachford splitting method, respectively.
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Denote RλA := 2JλA − I. Then

(1− w)(2JλB − I)(2JλA − I) + w [JλB(2JλA − I) + I − JλA]

= (1− w)RλBRλA + w

[
I +RλB

2
RλA + I − I +RλA

2

]
=
(

1− (1− w

2
)
)
I + (1− w

2
)RλBRλA

= (1− α)I + αRλBRλA,

where α := 1 − w
2 and thus α here belongs to the interval [0.5, 1]. So, we follow

[26] to demonstrate that the Peaceman/Douglas-Rachford splitting method can be

interpreted as a special case of the Krasnosel’skĭı-Mann iteration above, in which

the co-efficient varies in the interval [0.5, 1] as just mentioned.

From these facts, we may add an inertial term to the Peaceman/Douglas-

Rachford splitting method. Thus, we get the following inertial version.

uk+1 = [(1− αk)I + αk(2JλB − I)(2JλA − I)] (uk + tk(uk − uk−1)) (16)

for k = 0, 1, ..., where λ > 0 is any given positive number, and the inertial sequence

satisfies

αk ∈ [0.5, 1− ε], t0 = 0, 0 ≤ tk ≤ tk+1 ≤
1− (1 + ε)αk

1 + αk
, (17)

where ε is any given sufficiently small positive number. Note that, when αk ≡ 0.5,

the conditions above become

t0 = 0, 0 ≤ tk ≤ tk+1 ≤ t < 1/3.

This just corresponds to the inertial Douglas-Rachford splitting. Notice that, in

this case, the corresponding inertial Douglas-Rachford splitting method is also a

special case of the one given in Corollary 1.

As to its convergence behaviours, we have the following results.

Theorem 5.1 Let A,B : H⇒ H be maximal monotone such that

0 ∈ A(x) +B(x) (18)

has at least one solution. Assume that domA ⊇ domB 6= ∅. Then for any given s-

tarting points u−1, u0 ∈ H, the sequence generated by the inertial Peaceman/Douglas-

Rachford splitting method (16) is weakly convergent to some point u in domB such

that

(2JλB − I)(2JλA − I)(u) = u (19)

and x := JλA(u) solves the problem (18) above.
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Proof In fact, since the inertial Peaceman/Douglas-Rachford splitting method (16)

is a special case of the inertial Krasnosel’skĭı-Mann iteration (2), of course the

resulting sequence of iterates converges weakly to a fixed point u of the non-

expansive operator (2JλB − I)(2JλA − I). This shows that (19) holds.

It remains to prove that x := JλA(u) solves (18). In views of (19), we have

(2JλB − I)(2x− u) = u ⇒ JλB(2x− u) = x

which implies

2x− u ∈ x+ λB(x).

Adding this to

x := JλA(u) ⇒ u ∈ x+ λA(x)

yields 0 ∈ A(x) +B(x). The proof is complete.

For further applications of the Peaceman/Douglas-Rachford splitting method,

we refer to [16, 11] for more details.

Be care of that the inertial Peaceman/Douglas-Rachford splitting method (16)

can be implemented as follows. Choose u−1, u0 ∈ H, x−1 ∈ H, λ0 > 0. First

choose tk and calculate

vk := uk + tk(uk − uk−1).

Then, for known λk, solve in order

(I + λkA)(x) 3 vk, (I + λkB)(y) 3 2xk − vk (20)

to get xk, yk, respectively. Finally, choose αk ∈ [0.5, 1) and compute

uk+1 = vk − 2αk(xk − yk)

to return the new iterate. Notice that: (i) The conditions on both αk and the iner-

tial sequence are given by the Table 2. (ii) At k-th iteration, for known xk−1, xk, λk,

we can mimic [13] to self-adaptively get the new scaling factor λk+1; see (21) be-

low. (iii) The subproblems (20) can be solved approximately with summable errors

and it is not difficult to confirm that the method’s weak convergence remains valid.

These conditions (17) above are widely different from counterparts stated in

[5, Theorem 8], which are obtained from (3) directly. In particular, we are able

to require αk ≥ 0.5 in a desirable and natural way. This is because our deriva-

tion is from a convex combination of the Peaceman-Rachford splitting and the

Douglas-Rachford splitting introduced by Varga whereas the authors of [5] did not

exclude the undesirable case of αk ∈ (0, 0.5) because their derivation is only from

the Douglas-Rachford splitting itself. Based on this point, we called (16) inertial

Peaceman/Douglas-Rachford splitting method so that one can distinguish such a

name from inertial Douglas-Rachford splitting method suggested in [5] recently.
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At the end of this section, we shall specially stress that our ultimate goal of

studying an inertial version of the standard Krasnosel’skĭı-Mann iteration is to

provide the theoretical basis for a practical Peaceman/Douglas-Rachford splitting

method with inertial effects, which is being developed. This explains the reason

why our suggested conditions assume αk ≥ 0.5, which well covers the case of

the Peaceman/Douglas-Rachford splitting. For the inertial Krasnosel’skĭı-Mann

iteration with variable non-expansive operators, we refer to [27] for pertinent dis-

cussions. Yet, as far as our ultimate goal is concerned, it does not pay to be

complicated.

6 Rudimentary experiments

In this section, our primary goal is to further check inertial effects when the afore-

mentioned inertial Douglas-Rachford splitting method was applied to solving our

test problems and to confirm that our suggested conditions are practically use-

ful. The reason why we mainly focus on the Douglas-Rachford splitting is that

the corresponding sequence of inertial factors has a relatively large upper bound

so that adding inertial terms might significantly affect the method’s numerical

performance.

All numerical experiments were run in MATLAB R2014a (8.3.0.532) with 64-

bit (win64) on a desktop computer with an Intel(R) Core(TM) i5-7400 CPU 3.00

GHz and 8.00 GB of RAM. The operating system is Windows 10.

For the (inertial) Douglas-Rachford splitting method, which corresponds to the

case of αk = 0.5, we mimicked [13] to update the involved λk in the following way.

At k-th iteration, for known λk, first calculate

φk :=
λk‖A(xk)−A(xk−1)‖

‖xk − xk−1‖
,

where we have further assumed that A is continuous. Then, update λk via

λk+1 =


1.5λk, if φk ≤ 0.5,

0.5λk, if φk ≥ 2,

λk, otherwise.

(21)

In the case of A being further linear, we suggested choosing λ0 ≤ 1 and to be

slightly larger than 1/dmax (if possible), where dmax is the largest entry in the

diagonal of the involved matrix. Here there is no worry about loss of convergence

since it can be merely done for the first N (say, N = 100) iterations.

Henceforth, we made use of DR and iDR to stand for the Douglas-Rachford

splitting method and the inertial version, respectively.

Our first test problem comes from [6, Problem (8.6)] and is about portfolio se-

lection by Markowitz’s mean-variance model. Denote by x1, x2, x3 the proportion
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of the total funds invested in Stocks, Bonds and Money Market, respectively. Con-

sider the problem of minimizing the financial risk (that corresponds to variance):

0.02778x21+2·0.00387x1x2+2·0.00021x1x3+0.01112x22−2·0.00020x2x3+0.00115x23,

where the constraint set C is given by

0.1073x1 + 0.0737x2 + 0.0627x3 ≥ 8%,

x1 + x2 + x3 = 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Roughly speaking, the investors wish to bear as little risk as possible for a given

minimum rate 8% of expected return.

For this test problem, it can be reformulated into

0 ∈ Qx+ ∂δC(x),

where x = (x1, x2, x3)T and

Q = 2

 0.02778 0.00387 0.00021

0.00387 0.01112 −0.00020

0.00021 −0.00020 0.00115

 .

Set

A(x) := Qx, B(x) := ∂δC(x).

Then, we applied iDR to solving this problem. In practical implementations, we

chose

u−1 = zeros(3, 1), u0 = ones(3, 1), x−1 = u−1, λ0 = 1.

Moreover, we adopted (21) as a way of updating λk. At each iteration, we had to

deal with usual projectionPC = (I+λk∂δC)
−1 onto the constraint set and we made

use of Matlab solver quadprog to resolve it. The corresponding numerical results

were reported in Figure 1, where ek := xk − PC[xk −Qxk] stands for residual.

Our second test problem is monotone variational inequality problem, which is

from [7] and is a user-optimized traffic pattern for the simple network with only

two nodes x, y and five links a1, a2, a3, b1, b2, where a1, a2, a3 are directed from

x to y and b1, b2 are the return of a1, a2, respectively.

The travel cost function and the constraint set are given by

F (x) =


10 0 0 5 0

0 15 0 0 5

0 0 20 0 0

2 0 0 20 0

0 1 0 0 25




xa1

xa2

xa3

xb1
xb2

+


1000

950

3000

1000

1300

 ,
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Figure 1. Numerical results on the first test problem
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Figure 2. Numerical results on the second test problem
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and

C := {x ∈ R5 : x ≥ 0, xa1 + xa2 + xa3 = 210, xb1 + xb2 = 120},

respectively. As we know, x∗ = (120, 90, 0, 70, 50)T is its unique solution.

Set

A(x) := F (x), B(x) := ∂δC(x).

Then, we applied iDR to solving this problem. In practical implementations, we

chose

u−1 = zeros(5, 1), u0 = ones(5, 1), x−1 = u−1.

As to λ0, we suggested choosing λ0 ≤ 1 and λ0 to be slightly larger than 1/25,

where 25 is the largest entry in the diagonal of the involved matrix. Thus, we

simply chose λ0 = 0.1. Moreover, we adopted (21) as a way of updating λk. At

each iteration, we had to deal with usual projection PC = (I + λk∂δC)
−1 onto

the constraint set and we made use of Matlab solver quadprog to resolve it. The

corresponding numerical results were reported in Figure 2.

From Figures 1 and 2, we can see that iDR with tk ≡ 0.3 really outperformed

both DR and iDR with t ∈ {0.1, 0.2, 0.4} for our test problems. Specifically speak-

ing, for given numbers of iterations, iDR with tk ≡ 0.3 tends to achieve higher

accuracy. Be aware that, as a good choice of the inertial factors, tk ≡ 0.3 is ruled

out by existing conditions and admissible for our suggested ones.

7 Conclusions

In this article, we have considered the Krasnosel’skĭı-Mann iteration for approxi-

mating a fixed point of any given non-expansive operator in real Hilbert spaces.

For an inertial version proposed by Maingé recently, we have suggested new condi-

tions on the inertial factors to ensure weak convergence. They are free of iterates

and depend on the original coefficient of the Krasnosel’skĭı-Mann iteration. Their
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appealing property is that, at each iteration, one may choose the inertial factors

dynamically. Our analysis of inertial Krasnosel’skĭı-Mann iteration covers that of

an inertial proximal point algorithm, in which case our suggested conditions coin-

cide with the ones in [1, Proposition 2.1] in a desirable way. Furthermore, we have

discussed an implication to the Peaceman/Douglas-Rachford splitting and have

confirmed via rudimentary numerical experiments that our suggested conditions

are practically useful for the inertial Douglas-Rachford splitting.

Very recently, these new techniques of designing inertial factors have been

used by X.H. Yu and X. Zhu for splitting methods for monotone inclusions of

three operators in their individual thesis, Zhengzhou University, and it would be

interesting to report these new findings in the accompanying article.
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20. Güler, O.: On the convergence of the proximal point algorithm for convex

minimization, SIAM J Control Optim. 29, 403-419 (1991)

21. Ishikawa, S.: Fixed points by a new iteration, Proc Amer Math Soc. 44, 147-

150 (1974)

22. Kanzow, C., Shehu, Y.: Generalized Krasnoselskii-Mann-type iterations for

nonexpansive mappings in Hilbert spaces, Comput Optim Appl. 67(3), 595-

620 (2017)

23. Kim, T.H., Xu, H.-K.: Strong convergence of modified Mann iterations, Non-

linear Anal. 61, 51-60 (2005)
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tion, B Austr Math Soc. 96(1), 162-170 (2017)

31. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space, Duke Math J.

29,341-346 (1962)

32. Minty, G.J.: On the monotonicity of the gradient of a convex function, Pac J

Math. 14, 243–247 (1964)

33. Pazy, A.: Asymptotic behavior of contractions in Hilbert space, Israel J Math.

9, 235-240 (1971)

34. Peaceman, D., Rachford, H.H.: The numerical solution of parabolic and elliptic

differential equations, J Soc Indust Appl Math. 3, 28-41 (1955)

35. Rockafellar, R.T.: Monotone operators and the proximal point algorithm,

SIAM J Control Optim. 14, 877–898 (1976)

36. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseu-

domonotone variational inequalities. J. Comput. Appl. Math. 341, 80-98 (2018)

A

Below we give a short proof of Lemma 4.2 for completeness. Note that we no longer follow [5]

to introduce the factor ρk there.

Proof Rewrite (2) as

yk = xk + tk(xk − xk−1), (22)

xk+1 = (1− αk)yk + αkT (yk), k = 0, 1, ..., . (23)

Since z is a fixed point of T , i.e., T (z) = z, it follows from (23) that

xk+1 − z = αk(T (yk)− T (z)) + (1− αk)(yk − z).

Combing this with the following well-known identity [21]

‖αu+ (1− α)v‖2 = α‖u‖2 + (1− α)‖v‖2 − α(1− α)‖u− v‖2, ∀u, v ∈ H

for all real number α yields

‖xk+1 − z‖2

= ‖αk(T (yk)− T (z)) + (1− αk)(yk − z)‖2

= αk‖T (yk)− T (z)‖2 + (1− αk)‖yk − z‖2 − αk(1− αk)‖T (yk)− yk‖2

≤ αk‖yk − z‖2 + (1− αk)‖yk − z‖2 − αk(1− αk)‖T (yk)− yk‖2

= ‖yk − z‖2 − αk(1− αk)‖T (yk)− yk‖2, (24)



20 Yunda Dong

where the inequality follows from that T is non-expansive.

In view of the identity above and (22), we have

‖yk − z‖2 = ‖(1 + tk)(xk − z)− tk(xk−1 − z)‖2

= (1 + tk)‖xk − z‖2 − tk‖xk−1 − z‖2 + (1 + tk)tk‖xk − xk−1‖2.

On the other hand, it is easy to see that

‖T (yk)− yk‖2

=
1

α2
k

‖(xk+1 − xk)− tk(xk − xk−1)‖2

=
1

α2
k

‖xk+1 − xk‖2 +
t2k
α2
k

‖xk − xk−1‖2 − 2
tk

α2
k

〈xk+1 − xk, xk − xk−1〉 (25)

≥
1

α2
k

‖xk+1 − xk‖2 +
t2k
α2
k

‖xk − xk−1‖2 −
tk

α2
k

(
‖xk+1 − xk‖2 + ‖xk − xk−1‖2

)
=

1

α2
k

(1− tk)‖xk+1 − xk‖2 +
1

α2
k

(t2k − tk)‖xk − xk−1‖2.

Finally, making use of these two relations to bound (24) yields the desired results.


