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ALEJANDRA PEÑA-ORDIERES† , JAMES R. LUEDTKE‡ , AND ANDREAS WÄCHTER†

Abstract. We introduce a new method for solving nonlinear continuous optimization problems
with chance constraints. Our method is based on a reformulation of the probabilistic constraint
as a quantile function. The quantile function is approximated via a differentiable sample average
approximation. We provide theoretical statistical guarantees of the approximation, and illustrate
empirically that the reformulation can be directly used by standard nonlinear optimization solvers in
the case of single chance constraints. Furthermore, we propose an S`1QP-type trust-region method
to solve instances with joint chance constraints. We demonstrate the performance of the method
on several problems, and show that it scales well with the sample size and that the smoothing
can be used to counteract the bias in the chance constraint approximation induced by the sample
approximation.
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1. Introduction. Consider the following minimization problem subject to a
chance constraint

min
x∈X

f(x)(1.1a)

s.t. P(cj(x, ξ) ≤ 0, j ∈ {1, . . . ,m}) ≥ 1− α,(1.1b)

where X ⊆ Rn represents a closed deterministic feasible region, f : Rn → R represents
the objective function to be minimized, c : Rn×Rs → Rm is a vector-valued function,
ξ is a random vector with support Ξ ⊆ Rs, and α ∈ (0, 1) is a risk parameter given a
priori. This kind of problem is known in the literature as a joint chance-constrained
problem (JCCP), in which all m constraints must be satisfied simultaneously with
probability at least 1 − α. A special case is when m = 1 and only one constraint
needs to be satisfied with probability 1− α; this is called a single chance-constrained
problem (SCCP).

Chance-constrained optimization problems were introduced in [8] and have been
extensively studied ever since; see e.g., [28]. These problems can be found in a plethora
of applications such as water management [20], optimization of chemical processes
[14, 15], and optimal power flow [4, 23], to mention a few.

This formulation gives rise to several difficulties. First, the structural properties of
c(x, ξ) may not be passed to the constraint P(cj(x, ξ) ≤ 0, j ∈ {1, . . . ,m}) ≥ 1−α. For
example, even if c1(x, ξ), . . . , cm(x, ξ) are all linear in x, the probabilistic constraint
may not define a convex feasible region. Second, the distribution of ξ may not be
known. And finally, even if the distribution of ξ is known, there might not be a
tractable analytical function to describe the constraint.
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We focus on problems in which f and c are continuous and differentiable, with
respect to x, and where ξ is such that the random variable defined by c(x, ξ) has a
continuous cumulative density function (cdf) for all x ∈ X. Other than that, we make
no assumptions on the type of constraint c(x, ξ); we do not limit ourselves to linear
or convex functions.

1.1. Literature Review. In this section we review several methods for solving
chance-constrained problems. The first couple of methods make assumptions on the
distribution of ξ, or at least require that some knowledge of the distribution ξ is
available, whereas the latter methods make no such assumptions. Our idea falls into
the latter category, and does not impose restrictions on the form of the constraints or
on the distribution, except that it is a continuous distribution.

Some methods assume a certain distribution over ξ such that, for the constraint of
interest, one can get a closed-form analytic approximation to the probability function.
For example, in [4], if ξ has an elliptical symmetric distribution (e.g., multivariate
normal random variable) and if c(x, ξ) = ξTx− b, then the problem can be expressed
as a second-order cone program, and can be solved in a tractable and efficient manner
using standard solvers. Other cases, e.g. [33], assume ξ has a multivariate Gaussian
distribution, and provide a way to directly compute the cdf and its derivatives.

There are several approaches that avoid making assumptions on ξ by sampling to
approximate the probabilistic constraint. We divide such techniques into those that
use an integer reformulation, and those that are structured as nonlinear programming
problems (NLP).

In the first category, the probabilistic constraint is replaced by the empirical
distribution function and formulated as a mixed-integer nonlinear program (MINLP),
e.g. [21]. This method takes realizations of the random variable ξ and requires that
at least (1 − α)% of the realized constraints are satisfied. This idea has several
advantages; it finds the global optimum of the approximation, and as the sample
size increases, the solution converges to the true solution of (1.1). However, the
complexity of the problem increases with the sample size because the number of binary
variables increases. This issue has been circumvented to some extent for certain types
of constraints c(x, ξ), e.g. linear constraints [22], but this procedure cannot be applied
to general constraints.

To avoid the need for solving MINLPs, a conservative and more tractable approx-
imation can be obtained by using the scenario-based approach, e.g. [5, 6, 25]. These
methods seek to satisfy all of the constraints in a sample of pre-specified size to ensure
that the solution is feasible with high confidence. The reformulation proposed in [5]
allows one to obtain solutions very easily since the structure of the original constraints
c(x, ξ) is preserved. For example, if f is convex, X defines a convex set and c(x, ξi)
define convex functions on x for all i = {1, . . . , N} (where N is the size of the sample),
then the problem that arises is convex. However, the limitation of this method is that
one may obtain highly conservative solutions and that it does not offer direct control
on the probability level of the chance constraint.

Another tractable conservative approximation can be obtained by using condi-
tional value-at-risk, which is based on using a conservative convex approximation
of the indicator function [24]. This approximation typically finds feasible but sub-
optimal solutions. To avoid overly conservative solutions, some authors propose a
difference-of-convex functions approximation to the indicator function [18], while some
others propose outer or inner approximations to the indicator function [7, 13]. The
main drawback of the last two methods mentioned is that the constraint function
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can become very “flat” in the regions of interest. That is, when the probability of
the constraint satisfaction evaluated at a given x is close to one or close to zero, the
information obtained from the gradient may not provide a sufficiently accurate ap-
proximation of the constraints or may even be erroneous. We discuss this issue further
when we motivate our proposed reformulation of (1.1) in section 2.

1.2. Our Approach. In this paper we propose an NLP reformulation of the
problem based on sample average approximation (SAA), in which we rewrite the
probability constraint as a quantile constraint. We first argue that the latter for-
mulation is more suitable for gradient-based optimization methods than the former.
Then, we present a way to approximate the quantile constraint using samples in a way
that provides a smooth constraint. We find in our numerical experiments that the
smoothing helps control the variance of the solutions obtained from different samples.
The approximation we present uses a parameter ε that depends on the scaling of the
problem, which might be difficult to select; thus, we also discuss an algorithm that
finds an appropriate value of ε.

The proposed approach has the following advantages. First, we observe empiri-
cally that the solutions we obtain are very often “more robust” compared to solutions
obtained from solving the traditional (non-smoothed) SAA problem via mixed-integer
programming (MIP) formulations that use the empirical cdf. More specifically, when
we compare the solutions obtained from our method to those returned by the MIP,
we consistently find that our method attains a better objective function value and has
less variability across different samples, while still maintaining out-of-sample feasibil-
ity. We attribute this to the fact that our approach uses information from the entire
sample, whereas the empirical cdf only takes into account whether enough constraints
are satisfied. These numerical experiments suggest that the solutions we attain are
able to “generalize”, i.e., the solutions obtain better performance on out-of-sample
scenarios. Second, our method is scalable; we find that the time to solve an instance
with our approach grows modestly with the sample size. Third, our formulation does
not assume any type of structure from the constraint functions save for continuity
and differentiability with respect to x; therefore, we are able to find local solutions
to non-linear and non-convex problems. Finally, for SCCPs, a standard NLP solver
can be used to find the solution of the problem for the appropriate choice of the pa-
rameters involved in the formulation, and for JCCPs we are able to derive an S`1QP
algorithm that has proven empirically to give fast convergence to the solution after
only a few iterations.

The remainder of this paper is organized as follows. In section 2 we present the
proposed reformulation of the problem. In section 3 we study the convergence and
feasibility of the solutions to the approximate problem to those of the true problem
(1.1). In section 4 we discuss single chance-constrained problems, and in section 5
we extend this approach to solve joint chance-constrained problems. In section 6 we
present numerical results. Finally, we make some concluding remarks in section 7.

2. Reformulation and approximation of the CCP. The quantile of a ran-
dom variable Y at the level 1− α ∈ (0, 1) is defined as

Q1−α(Y ) = inf{y ∈ R | P(Y ≤ y) ≥ 1− α}.

Therefore, P(C(x, ξ) ≤ 0) ≥ 1 − α is equivalent to Q1−α(C(x, ξ)) ≤ 0, where C :
Rn × Rs → R is a real valued function, x ∈ Rn, and ξ is a random vector taking
values in Rs.
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Notice that Q1−α(C(x, ξ)) is only well defined if C(x, ξ) is a scalar random vari-
able, i.e., when C is a scalar-valued function. However, in the case when c is a
vector-valued function, letting C(x, ξ) = maxj=1,...,m cj(x, ξ), we obtain the following
reformulation of problem (1.1),

min
x∈X

f(x),

s.t. Q1−α(C(x, ξ)) ≤ 0.

The advantage of rewriting the constraint as the quantile is that this reduces
the “flatness” encountered when the probability function P(C(x, ξ) ≤ 0) is used as
the constraint, see Figure 1 as an example. Now the feasible region is measured in
the image of C(x, ξ) and not in the bounded space [0, 1], which is the image of the
probability function.
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Fig. 1: Comparison of Q1−α(C(x, ξ))
and (1 − α) − P (C(x, ξ) ≤ 0) where
C(x, ξ) = x2 − 2 + ξ and ξ ∼ N(0, 1).

Figure 1 also shows how the feasible regions coincide for both formulations. Yet,
although the two formulations are equivalent, solvers that depend on gradient infor-
mation are likely to perform better when the quantile function is used, as we will see
in the numerical experiments. This can be attributed to the fact that the linearization
of the quantile function provides an approximation of the constraint that is reasonably
accurate for a wider range than the linearization of the probabilistic constraint. The
consequence of “flatness” is that a non-specialized gradient-based solver that starts
at a point x where P(C(x, ξ) ≤ 0) ≈ 1 takes a big step to decrease the objective,
disregarding the constraint function. Thus, the solver is forced to reject many trial
steps, which can lead to an increased number of iterations.

To illustrate this claim, we compared the numerical performance of the nonlin-
ear programming solver Knitro for each of the two formulations for the constraints
C(x, ξ) = x2 − 2 + ξ. We used Knitro to maximize x using: (1) the probabilistic
constraint P(C(x, ξ) ≤ 0) = Φ(2 − x2) ≥ 1 − α, and (2) the quantile constraint
Q1−α(C(x, ξ)) = x2 − 2 + Φ−1(1 − α) ≤ 0; see Figure 1. We chose x0 = 3 as start-
ing point. Table 1 illustrates the performance in terms of iteration count using the
two types of constraints. Each column shows the number of iterations using different
bounds on x. The results in the table suggest that the quantile function is more
robust since the number of iterations is independent of the bounds and the solver
always returned feasible and optimal solutions.

Motivated by the aforementioned arguments, we propose to work with the quantile
formulation. However, as with the probabilistic formulation, an explicit expression to
compute the quantile is usually not available or can be intractable to compute. To
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Bounds [−1, 1] [−10, 10] [−100, 100] (−∞,∞)

P(C(x, ξ) ≤ 0) ≥ 1− α 6 36 14 5∗

Q(C(x, ξ)) ≤ 0 6 6 6 6

Table 1: Iterations performed by Knitro when maximizing x using two different
formulations to describe the feasible region and different bounds on x. ∗: Knitro gives
the following error message: “Convergence to an infeasible point. Problem appears to
be locally infeasible.”

address this issue, we introduce a sample average approximation of the quantile in
the following section.

2.1. Smooth approximation of the quantile function. A quantile estima-
tor can be obtained by inverting an estimator of the cdf when the distribution is
continuous. Let {ξ1, . . . , ξN} be an independent and identically distributed (i.i.d.)
sample and consider the empirical cdf of {C(x, ξ1), C(x, ξ2), . . . , C(x, ξN )} at a given
point x,

F̃N (t;x) =
1

N

N∑
i=1

1(C(x, ξi) ≤ t).

An estimate of the (1 − α)-quantile (and hence Q1−α(C(x, ξ))) is obtained from a

value t such that F̃N (t;x) ≈ 1− α. The (1− α)-empirical quantile at x is defined as

Q̃1−α(CN (x)) = inf

{
y | 1

N

N∑
i=1

1 (C(x, ξi) ≤ y) ≥ 1− α

}
= C[M ](x),

for M = d(1 − α)Ne. Here, 1 is the indicator function and C[j] denotes the jth
smallest observation of the values {C(x, ξ1), . . . , C(x, ξN )} for a fixed x.

There are two main drawbacks to using the empirical quantile as an approxima-
tion. First, the empirical approximation is not differentiable. The “active scenario”
(the scenario ξi such that C[M ](x) = C(x, ξi)) changes for different values of x. Hence,
even if the constraint C(x, ξ) is smooth for a fixed value of ξ, this does not hold for

Q̃1−α(CN (x)). Second, the aforementioned feature also introduces artificial local min-
ima to the problem, as can be seen in Figure 2. For a particular sample {ξ1, . . . , ξN},
this figure depicts the feasible region{

x ∈ R2 | Q1−α(C(x, ξ)) ≤ 0
}
,

and its approximation based on the empirical quantile function; where C(x, ξ) =
ξTx− 1, ξ ∼ N(µ,Σ), µ = 0 ∈ R2, and Σ is the 2× 2 identity matrix.

Notice that even if the true feasible region is convex and has a smooth boundary
(dotted curve), its approximation (solid curve) is non-smooth and introduces a lot
of “inward kinks”, which break the convexity of the feasible region. These “inward
kinks” can potentially cause a local optimization algorithm to converge to inferior
local minima more easily. Furthermore, as the number of scenarios increases, the
number of non-smooth points increases, leading to more sub-optimal local minima.

In order to avoid the aforementioned problems, a smooth approximation of the
quantile is obtained by estimating the cdf with a smooth function F̂ , and solving the
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Fig. 2: Different quantile approximations (Q̃1−α(CN (x)) as a solid red line, and
Q1−α
ε (CN (x)) as a dashed blue line) vs. true quantile Q1−α(C(x, ξ)).

equation F̂ (t;x) = 1 − α, where t is the approximation of Q1−α(C(x, ξ)). Following
an approach similar to [13, 31], we approximate F at a given point x as

FNε (t;x) =
1

N

N∑
i=1

Γε(C(x, ξi)− t),(2.1)

where ε > 0 is a parameter of the approximation,

Γε(y) =

 1, y ≤ −ε
γε(y), −ε < y < ε
0, y ≥ ε

(2.2)

and γε : [−ε, ε] → [0, 1] is a symmetric and strictly decreasing function such that it
makes Γε differentiable. With this choice of γε, F

N
ε (t;x) is a differentiable approxi-

mation of the empirical cdf, F̃N (t;x).
Assuming that C(x, ξ) is a continuous random variable for a fixed value of x, we

can approximate the (1 − α)-quantile as the inverse of FNε at the 1 − α level. Thus,
we define our ε-approximation to the (1 − α)-quantile at x as the value Q1−α

ε such
that the following equation holds

N∑
i=1

Γε([C
N (x)]i −Q1−α

ε ) = (1− α)N,(2.3)

where CN (x) ∈ RN is a vector with elements [CN (x)]i = C(x, ξi). However, the value
Q1−α
ε is not unique if the equation FNε (t;x) = 1− α has more than one solution. In

order to guarantee the existence of a unique solution for all possible choices of ε > 0,
we need to ensure that [FNε ]′(t;x) 6= 0 when evaluated at the quantile of interest. The
following proposition gives conditions under which Q1−α

ε is uniquely defined.

Proposition 2.1. Let γε : [−ε, ε] → [0, 1] be a strictly decreasing function such
that Γε is differentiable, and let (1 − α)N /∈ Z. Then, equation (2.3) has a unique
solution.
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Proof. Let ψ(Q) =
∑N
i=1 Γε(C(x, ξi) − Q) − (1 − α)N . We have that ψ′(Q) =

−
∑N
i=1 Γ′ε(C(x, ξi) − Q). Given that γε is strictly decreasing and Γ′ε(y) = 0 for all

y ≥ ε and y ≤ −ε, we conclude that ψ′(Q) ≥ 0 for all Q, which means that ψ is an
increasing function. If we prove that ψ′(Q) 6= 0 for all Q such that ψ(Q) = 0, then
we show that there is a unique solution of equation (2.3).

Assume ψ′(Q) = 0, then Q ≤ C(x, ξi) − ε or Q ≥ C(x, ξi) + ε for all scenarios

i ∈ {1, . . . , N}. This means that
∑N
i=1 Γε(C(x, ξi)−Q) ∈ N. Because (1−α)N /∈ N, it

means that ψ(Q) 6= 0, and therefore any Q such that ψ′(Q) = 0 cannot be a solution.

Remark 2.2. The assumption (1− α)N /∈ Z of Proposition 2.1 is mild because if
it is not satisfied one can either increase N , perturb α, or add a constant b ∈ (0, 1)
to the left hand side of (2.3). In fact, if a constant is added to the left-hand side, the
impact will disappear as N →∞.

Proposition 2.1 shows that (2.3) defines a function Q1−α
ε that maps a vector

CN (x) ∈ RN to the root of (2.3). In order to find solutions for (1.1), we focus on
solving the following problem

min
x∈X

f(x)(2.4)

s.t. Q1−α
ε (CN (x)) ≤ 0.

The above formulation is a sample average approximation of the original problem
(1.1). Convergence and feasibility of this approximation are analyzed in section 3.

One could have approximated constraint (1.1b) with FNε (0;x) ≥ 1−α, where FNε
is given by (2.1). However, as mentioned at the beginning of this section and as shown
in the numerical results (section 6.2.2), working with the probabilistic constraint, or
its estimate, instead of the quantile leads to more iterations or failure of the optimiza-
tion algorithm. Therefore, in contrast with previous works that express the chance
constraint using variations of (2.1), we only use FNε to obtain an approximation of
the quantile and work directly with the quantile function.

While other options are possible, our choice of the smoothed indicator function,
Γε, is motivated by a kernel estimation of the cdf. In [1], the authors present the
following estimator

F̂Nε (t;x) =

∫ t

−∞

1

Nε

N∑
i=1

ϕ

(
u− C(x, ξi)

ε

)
du =

1

N

N∑
i=1

Φ

(
t− C(x, ξi)

ε

)
,

where ϕ(·) is a real-valued non-negative function, known as kernel function, that
integrates to one over all of its domain (features that make it a probability density
function) and is symmetric around 0. The function Φ(·) is the cdf of ϕ(·).

If ϕ(·) has a finite support [−1, 1], then Φ
(
t−c(x,ξ)

ε

)
has the structure of the Γε

function in (2.2). Furthermore, according to [2], if ε→ 0 as N →∞, it can be proven
that asymptotically

E
[(
F̂Nε (t;x)− F (t;x)

)2]
∼ β1

1

N
− β2

ε

N
+ β3ε

4,(2.5)

where βi, i = 1, . . . , 3, are non-negative constants that depend on t and x. Azzalini
in [2] also shows that the properties of F̂Nε extend to the quantile estimator, i.e., to
the root of F̂Nε (t;x) = 1 − α. In general, these findings indicate that large values of
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ε help reduce the variance of the estimator but increase its bias, while small values
behave exactly opposite.

These observations regarding the behavior of the quantile approximation coincide
with the findings of our numerical experiments. The solutions returned by the solver
for large values of ε are generally feasible but sub-optimal due to the bias introduced
by ε. Large values of ε usually generate a conservative approximation of the quantile
function; however, the solutions have less variance. We also find that solving the
approximation with larger values of ε tends to require fewer iterations. Thus, there
is a trade-off in the choice of ε; small values of ε reduce bias, whereas larger values
of ε reduce the variance and the computational effort. In section 6.1, we suggest a
method for selecting an appropriate value of ε for an instance.

For the experiments in section 6 we use the quartic kernel [30, p. 353] to define
function Γε. This gives the following γε;

γε(y) =
15

16

(
−1

5

(y
ε

)5
+

2

3

(y
ε

)3
−
(y
ε

)
+

8

15

)
,(2.6)

which makes Γε(·) a twice continuously differentiable function.

Note 2.3. For simplicity of notation, we assume in the following sections that the
quantile of interest is always the (1 − α)-quantile and drop the superscript of the
quantile approximation. Therefore, the (1 − α)-quantile ε-approximation is denoted
just as Qε for now onward.

3. Convergence and feasibility of the approximation. In this section we
study how the solutions obtained by our method approximate those of the real problem
(1.1). Throughout the rest of the paper we make the following assumption.

Assumption 3.1. For each x ∈ X, the random variable C(x, ξ) has a continuous
distribution.

Notice that, if C(x, ξ) is not a continuous random variable, we can make Assump-
tion 3.1 hold by adding a continuous random variable ξ̄ to C(x, ξ) with expectation
zero and small variance. This could be treated as a fixed approximation, or one could
solve a sequence of approximations in which the variance of ξ̄ is decreased to zero.

Let the feasible region of the original problem (1.1) be defined as

Xα = {x ∈ X | F (0;x) ≥ 1− α} ,

where F (t;x) = P(C(x, ξ) ≤ t). Moreover, define Fε(t;x), for ε > 0, as

Fε(t;x) =

∫
Rs

Γε (C(x, ξ)− t) dPξ,(3.1)

where Γε is the smooth approximation of the indicator function given by (2.2).
Now, let {ξi}Ni=1 be a random sample of the variable ξ of size N . As in sec-

tion 2.1, we approximate Fε with FNε , and denote the feasible region defined by the
approximation as follows

XN,t
ε,δ =

{
x ∈ X | FNε (−t;x) ≥ 1− δ

}
, δ ∈ [0, 1], t ∈ R.(3.2)

Notice that if δ = α and t = 0, then XN,0
ε,α corresponds to the feasible region of

(2.4). We consider this approximation more generally with δ ≤ α and t ≥ 0 as we
will show how the parameters t and δ in (3.2) can be chosen to increase the likelihood
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that the solution to the approximate model is feasible to the true model. First, notice
that if t = ε, then FNε (−t;x) ≤ F̃N (0;x). This implies that a point x ∈ XN,ε

ε,α satisfies

F̃N (0;x) ≥ 1−α, so the solutions returned by our method are feasible for the empirical
approximation of the feasible region. Moreover, the δ parameter can be used, as in
[21], to ensure that the solutions obtained are feasible with high probability.

We start the analysis of (2.4) by showing asymptotic convergence of the optimal
value of the approximation to the optimal value of the true problem. In particular, we
analyze convergence of the approximation with respect to both the smoothing param-
eter and the sample size, whereas previous results, to the best of our knowledge, only
consider convergence with respect to the smoothing parameter ([13, 18, 19]) or the
sample size ([21, 27]) separately. Then, we show complementary analysis of the ap-
proximation problem that indicates that, with appropriate choice of parameters, any
feasible solution to the approximation problem will be feasible with high probability
for sufficiently large sample size.

3.1. Asymptotic convergence. In the following theorems we state results
analogous to Proposition 2.1 and 2.2 in [27], thus the proofs we present are simi-
lar to those in that paper. We make the following assumptions.

Assumption 3.2. C(x, ξ) is a Carathéodory function, i.e., C(x, ·) is measurable
for every x ∈ X and C(·, ξ) continuous for a.e. ξ ∈ Ξ.

Assumption 3.3. There exists an optimal solution of (1.1), x̄, such that for any
δ > 0 there is x ∈ X such that ‖x− x̄‖ ≤ δ and F (0;x) > 1− α.

This assumption implies that there exists a sequence {xk}∞k=1 ⊆ X that converges
to an optimal solution x̄ such that F (0;xk) > 1− α for all k ∈ N.

Theorem 3.4. Suppose that Assumptions 3.1 and 3.2 hold. Then, FNε (0;x) con-
verges to F (0;x) uniformly on any compact set U ⊆ X w.p.1, i.e.,

sup
x∈U

∣∣FNε (0;x)− F (0;x)
∣∣→ 0, w.p.1, as N →∞ and ε→ 0.

Proof. We prove uniform convergence of FNε (0;x) to F (0;x) by first showing
uniform convergence of FNε (0;x) to Fε(0;x) over x ∈ U and ε ∈ [0, 1] as N →∞, and
then uniform convergence of Fε(0;x) to F (0;x) over x ∈ U as ε→ 0.

To prove uniform convergence of FNε (0;x) to Fε(0;x) in the compact set U ⊆ X
for all ε ∈ [0, 1], we start by showing that Γε(C(x, ξ)) is continuous w.p.1 for all x ∈ U
and ε ∈ [0, 1]. Notice that Γε(C(x, ξ)) is continuous w.p.1 for all x ∈ U and ε > 0.
This follows because Γε(·) is continuous and C(x, ξ) is a Carathéodory function. It
remains to prove that Γε(C(x, ξ)) is continuous in x and ε at ε = 0 w.p.1. Let x
and ξ be such that C(x, ξ) is continuous and strictly positive. Then, there exists
ε0 > 0 and δ0 > 0 such that C(x, ξ) > ε0 and C(y, ξ) > ε0 for all y ∈ Bδ0(x) (where
Bδ0(x) = {y | ‖x− y‖ ≤ δ0}). Thus, for all ρ > 0, |Γ0(C(x, ξ))− Γε(C(y, ξ))| = 0 < ρ
for all 0 ≤ ε ≤ ε0 and y ∈ Bδ0(x). This shows that Γ0(C(x, ξ)) is continuous when
C(x, ξ) > 0. An analogous proof can be derived if C(x, ξ) is strictly negative. Finally,
because C(x, ξ) 6= 0 w.p.1 for all x ∈ X from Assumption 3.1, we conclude that
Γε(C(x, ξ)) is continuous w.p.1 for all x ∈ U and ε ∈ [0, 1].

Uniform convergence of FNε (0;x) to Fε(0;x) over x ∈ U and ε ∈ [0, 1] is then
a result of applying Theorem 7.53 in [31]. This is because function Γε(C(x, ξ)) is
continuous w.p.1 for all x ∈ U and ε ∈ [0, 1], |Γε(C(x, ξ))| ≤ 1 for all x ∈ X, and the
sample is i.i.d.
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Uniform convergence of Fε(0;x) to F (0;x) in the compact set U ⊆ X as ε→ 0 is
a result of applying Theorem 4.91 in [31]. This comes from Assumptions 3.1 and 3.2.

Combining these two results, for every δ > 0, we can find εδ > 0 and Nδ ∈ N such
that |Fε(0;x) − F (0;x)| < δ/2 and |FNε (0;x) − Fε(0;x)| < δ/2, w.p.1, for all x ∈ U ,
ε ≤ min{1, εδ}, and N ≥ Nδ, which ensures that

sup
x∈U

∣∣FNε (0;x)− F (0;x)
∣∣ < δ.

We can therefore conclude that FNε (0;x) converges to F (0;x) uniformly in the com-
pact set U .

We denote the sets of optimal solutions for problems (1.1) and (2.4) as S and
SNε , respectively. We also denote v∗ and vNε the optimal values of (1.1) and (2.4),
respectively. We show next that, under some assumptions, vNε and SNε converge w.p.1
to their counterparts of the true problem as N increases and ε decreases.

Theorem 3.5. Suppose that X is compact, the function f is continuous, and
Assumptions 3.1 to 3.3 hold. Then, vNε → v∗ and D(SNε , S) → 0 w.p.1 as N → ∞
and ε→ 0.

Proof. Notice that for any given N and ε, a point x in the feasible set of (2.4)
satisfies FNε (0;x) ≥ 1−α. Thus, we can show convergence of the feasible set of (2.4)
to the feasible set of (1.1) by analyzing the function FNε .

Now, by Assumption 3.3, the set S is nonempty and there is x ∈ X such that
F (0;x) > 1−α. Because FNε (0;x) converges to F (0;x), by Theorem 3.4, there exists
ε0 small enough and N0 large enough such that FN0

ε0 (0;x) ≥ 1−α w.p.1. Because FN0
ε0

is continuous in x and X is compact, the feasible set of the approximation problem
(2.4) is compact as well, and hence SNε is nonempty w.p.1 for all N ≥ N0 and ε ≤ ε0.

Let {Nk}∞k=1 ≥ N0 and {εk}∞k=1 ≤ ε0 be two sequences such that Nk → ∞ and
εk → 0. Let x̂k ∈ SNkεk , i.e., x̂k ∈ X, FNkεk (0; x̂k) ≥ 1 − α and vNkεk = f(x̂k). Let
x̂ ∈ X be any limit point of {xk}∞k=1 and {xl}∞l=1 be a subsequence converging to x̂.
Because FNlεl (0;x) is continuous and converges uniformly to F (0;x) on X w.p.1 by
Theorem 3.4, we have that F (0; x̂) = liml→∞ FNlεl (0; x̂l), w.p.1. Hence, F (0; x̂) ≥ 1−α
and x̂ is feasible for the true problem, and therefore f(x̂) ≥ v∗. Also f(x̂l) → f(x̂)
w.p.1 which means that liml→∞ vNlεl ≥ v

∗ w.p.1. Since this is true for any limit point
of {xk}∞k=1 in the compact set X, we have

lim inf
k→∞

vNkεk ≥ v
∗, w.p.1.(3.3)

Now, by Assumption 3.3, there exists an optimal solution x̄ and a sequence {xl}∞l=1

converging to x̄ with F (0;xl) > 1 − α. Since FNkεk (0;xl) converges to F (0;xl) w.p.1,
there exist K(l) such that FNkεk (0;xl) ≥ 1− α for every k ≥ K(l) and every l, w.p.1.
Without loss of generality we can assume that K(l) < K(l+ 1) for every l and define
the sequence {x̄k}∞k=K(1) by setting x̄k = xl for all k and l with K(l) ≤ k < K(l+ 1).

We then have FNkεk (0; x̄k) ≥ 1−α, which implies vNkεk ≤ f(x̄k) for all k ≥ K(1). Since
f is continuous, we have that

lim sup
k→∞

vNkεk ≤ f(x̄) = v∗, w.p.1.(3.4)

It follows from (3.3) and (3.4) that vNkεk → v∗ w.p.1. To show that D(SNε , S) → 0
w.p.1. we defer to Theorem 5.3 in [31] which can easily be adapted to our context.
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3.2. Finite sample feasibility of approximation problem solutions. We
now consider conditions under which an optimal solution for the approximation prob-
lem (2.4), if it exists, is feasible for the true problem (1.1). These results generalize
those presented in Section 2.2 in [21], which considers the empirical cdf instead of a
smooth approximation; therefore, some of our proofs follow from the ones presented
there.

We will make use of Hoeffding’s inequality.

Theorem 3.6 (Hoeffding’s Inequality [17]).
Let Y1, . . . , YN be independent random variables, with P(Yi ∈ [ai, bi]) = 1, where

ai ≤ bi for i = 1, . . . , N . Then if t > 0,

P

{
N∑

1=1

(Yi − E[Yi]) ≥ tN

}
≤ exp

{
− 2N2t2∑N

i=1(bi − ai)2

}
.

Assumption 3.7. Let the scalars t ∈ R and δ ∈ [0, α] be chosen such that M :=
infx∈XMx > 0, where Mx = F (0;x)− Fε(−t;x) + (α− δ).

The above assumption can always be satisfied if we pick t = ε and δ < α. This
claim can easily be observed from the definition of Fε(−t;x) in (3.1), which implies
that Fε(−ε;x) ≤ F (0;x) for all x ∈ X.

Theorem 3.8 (Probabilistic feasibility guarantee).
Let x ∈ X be such that x /∈ Xα, and suppose that Assumption 3.7 holds. Then

P
(
FNε (−t;x) ≥ 1− δ

)
≤ exp

{
−2NM2

x

}
.

Proof. Let Yi = Γε(C(x, ξi) + t) for all i = 1, . . . , N , then P(Yi ∈ [0, 1]) = 1 and
E[Yi] = Fε(−t;x). Given that x is not a feasible solution for the original problem,
F (0;x) < 1− α. We therefore have

P
(
FNε (−t;x) ≥ 1− δ

)
= P

(
FNε (−t;x)− Fε(−t;x) ≥ 1− α+ α− δ − Fε(−t;x)

)
≤ P

(
FNε (−t;x)− Fε(−t;x) > F (0;x)− Fε(−t;x) + (α− δ)

)
= P

(
FNε (−t;x)− Fε(−t;x) > Mx

)
= P

(
N∑
i=1

(Yi − E[Yi]) ≥MxN

)

≤ exp

{
− 2N2M2

x∑N
i=1 (1− 0)

2

}
= exp

{
−2NM2

x

}
,

where the last inequality is obtained from Hoeffding’s Inequality.

Theorem 3.8 shows that if we shift the approximation of the cdf appropriately
and/or decrease the risk level from α to δ ≤ α, then a point x that is feasible for the

original problem (1.1) is also in XN,t
ε,δ with a probability that increases exponentially

with the size of the sample N . Furthermore, under certain conditions, we can set t = 0
and δ = α and still get the results stated above. This can be seen in the following
corollary.

Corollary 3.9. Let x ∈ X be such that Yx = C(x, ξ) is a continuous random
variable with a strictly decreasing probability density function (pdf) hx(y) in the in-
terval (−ε, ε). If F (0;x) < 1− α, then

P
(
FNε (0;x) ≥ 1− α

)
≤ exp

{
−2Nβ2

x

}
,
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where βx = F (0;x)− Fε(0;x) > 0.

Proof. This follows from Theorem 3.8 for t = 0, δ = α, and noticing that βx =
Mx = F (0;x)− Fε(0;x) > 0 because

F (0;x)− Fε(0;x) =

∫
Rs
1 (C(x, ξ)) dPξ −

∫
Rs

Γε (C(x, ξ)) dPξ

=

∫ ∞
−∞

1 (y)hx(y) dy −
∫ ∞
−∞

Γε(y)hx(y) dy

=

∫ 0

−ε
(1− Γε(y))hx(y) dy −

∫ ε

0

Γε(y)hx(y) dy

=

∫ 0

−ε
Γε(−y)hx(y) dy −

∫ ε

0

Γε(y)hx(y) dy

=

∫ ε

0

Γε(y)hx(−y) dy −
∫ ε

0

Γε(y)hx(y) dy

=

∫ ε

0

Γε(y)[hx(−y)− hx(y)] dy > 0.

The second equality is the result of defining Γε as the integral of a symmetric
pdf, which implies that 1 − Γε(y) = Γε(−y). The last inequality is due to the fact
that the pdf of Yx is strictly decreasing in the interval (−ε, ε), which implies that
hx(−y) > hx(y) for y ∈ (0, ε), and due to Γε(y) = γε(y) > 0 for y ∈ [0, ε).

One of the properties that follows from Corollary 3.9 is that, for ε > 0, our
approximation is asymptotically conservative. In other words, for a fixed ε > 0 and
under a monotonicity assumption, a point x that is feasible for the original problem
(1.1) is also feasible for the approximation problem (2.4) with a probability that
increases exponentially with the sample size N . This result holds for the vast majority
of the common continuous distributions such as exponential, normal and Weibull, to
mention a few, when α is small.

Corollary 3.10. Assume that Γε is defined as in (2.2), where γε(·) is given by
(2.6). Let x ∈ X be such that Yx = C(x, ξ) is a continuous random variable with pdf
hx(y). If there exists m1,m2 > 0 such that hx(y) ≥ −m1y + hx(0) for all y ∈ (−ε, 0],
and hx(y) ≤ −m2y + hx(0) for all y ∈ [0, ε). Then, we have that

βx ≥
(m1 +m2)ε2

28
,

and thus, for all x /∈ Xα,

P
(
FNε (0;x) ≥ 1− α

)
≤ exp

{
−N(m1 +m2)2ε4/14

}
.

Proof. From the definition of βx = F (0;x)− Fε(0;x), we get

F (0;x)− Fε(0;x) =

∫ ε

0

Γε(y)[hx(−y)− hx(y)] dy

≥
∫ ε

0

Γε(y)[(m1 +m2)y] dy

=
(m1 +m2)ε2

28
,

where
∫ ε
0

Γε(y)y dy =
∫ ε
0
γε(y)y dy = ε2/28.
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We now consider conditions under which the entire feasible region of the approx-
imation problem is a subset of the feasible region of problem (1.1). For these results
to hold we need to make additional assumptions. We begin with a preliminary result
that holds under the assumption that the feasible region X is finite.

Theorem 3.11. Suppose that X is finite, and that Assumption 3.7 holds. Then

P
(
XN,t
ε,δ ⊆ Xα

)
≥ 1− |X \Xα| exp

{
−2NM2

}
.

Proof. Using the result from Theorem 3.8, we get the following

P
(
XN,t
ε,δ 6⊆ Xα

)
= P

(
∃x ∈ XN,t

ε,δ such that x /∈ Xα

)
≤

∑
x∈X\Xα

P
(
x ∈ XN,t

ε,δ

)
≤

∑
x∈X\Xα

exp
(
−2NM2

x

)
≤ |X \Xα| exp

{
−2NM2

}
.

We now extend this result to the case in which X is not finite. For this result, we
make the following Lipschitz continuity assumption on C.

Assumption 3.12. There exists L > 0 such that

|C(x, ξ)− C(y, ξ)| ≤ L‖x− y‖∞, ∀x, y ∈ X, w.p.1.

This assumption was made in [21]. The proof stated below follows the same ideas
as Theorem 10 in [21].

Theorem 3.13. Assume that X is bounded with diameter D and Assumption 3.12
holds. Also, suppose that Assumption 3.7 holds with t > 0 and δ > 0. Then, for any
β ∈ (0, δ], the following is true:

P
(
XN,2t
ε,(δ−β) ⊆ Xα

)
≥ 1− d1/βe d2LD/ten exp

{
−2NM2

}
.

Proof. Let J = d1/βe. For j = 1, . . . , J − 1, define

Xj =

{
x ∈ X | j − 1

J
≤ F (0;x) <

j

J

}
,

and let XJ = {x ∈ X | (J − 1)/J ≤ F (0;x) ≤ 1}. Following the arguments used to
prove Theorem 10 in [21], we have that for each j there exists a finite set Zj ⊆ Xj

such that |Zj | ≤ d2LD/ten and that for all x ∈ Xj there exists z ∈ Zj such that
‖x− z‖∞ ≤ t/L.

Now define Z = ∪Jj=1Zj , and notice that |Z| ≤ d1/βed2LD/ten. Next, define
Zα−β = {x ∈ Z | F (0;x) ≥ 1− α+ β} and

ZN,tδ−β =
{
x ∈ Z | FNε (−t;x) ≥ 1− δ + β

}
.

Since Z is finite, we can apply Theorem 3.11 to obtain

P
(
ZN,tδ−β ⊆ Zα−β

)
≥ 1− d1/βe d2LD/ten exp

{
−2NM2

}
.(3.5)

Consider now any x ∈ XN,2t
ε,(δ−β). Let j ∈ {1, . . . , J} be such that x ∈ Xj . By

definition of Zj , there exists z ∈ Zj such that ‖x− z‖∞ ≤ t/L. By Assumption 3.12,
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we know that |C(x, ξi) − C(z, ξi)| ≤ t w.p.1. Therefore, C(z, ξi) + t ≤ C(x, ξi) + 2t,
which implies that Γε(C(z, ξi) + t) ≥ Γε(C(x, ξi) + 2t) w.p.1, and thus FNε (−t; z) ≥
FNε (−2t;x) ≥ 1 − δ + β w.p.1. We conclude that if x ∈ XN,2t

ε,(δ−β), then there exists

z ∈ ZN,tδ−β w.p.1. Furthermore, by the definition of Xj and because Zj ⊆ Xj , we have

|F (0;x)−F (0; z)| ≤ β. If ZN,tδ−β ⊆ Zα−β then F (0; z) ≥ 1−α+ β, which implies that
F (0;x) ≥ F (0; z)− β ≥ 1− α, and the result follows.

4. Single Chance-Constrained Problems. A single chance constrained prob-
lem is one in which m = 1, which means that C(x, ξ) = c(x, ξ). Defining CN (x) =
cN (x) = [c(x, ξ1), . . . , c(x, ξN )]T , problem (2.4) then becomes

min
x∈X

f(x)(4.1a)

s.t. q(x) = Qε(c
N (x)) ≤ 0.(4.1b)

The advantage of the single-chance constrained case is that the probabilistic con-
straint can be formulated in such a way that it results in a single smooth constraint
(assuming c is smooth in x) that can be handled by standard nonlinear optimization
solvers and can be added to any nonlinear optimization problem. Furthermore, for a
given x and ε > 0, we can use the implicit function theorem to obtain the gradient of
q (and provide it to the solver) as follows

∇q(x) =

∑N
i=1 Γ′ε(c(x, ξi)−Qε(cN (x)))∇c(x, ξi)∑N

j=1 Γ′ε(c(x, ξj)−Qε(cN (x)))
,(4.2)

which is well defined as shown in Proposition 2.1.
In fact, the following proposition shows that if we define γε as (2.6), then function

Qε(·) has Lipschitz continuous gradients. Using the chain rule, this property can be
extended to q(x) as long as c(x, ξ) has Lipschitz continuous gradients for all instances
ξi.

Proposition 4.1. If γε is defined as (2.6) and (1− α)N /∈ Z, then the function
Qε : RN → R has bounded Lipschitz continuous gradients.

Proof. Let z ∈ RN . It follows from Proposition 2.1 and the implicit function
theorem that

[∇Qε(z)]i =
Γ′ε(zi −Qε(z))∑N
j=1 Γ′ε(zj −Qε(z))

.

We begin by showing that
∑N
j=1 Γ′ε(zj −Qε(z)) is bounded away from zero. We

prove this claim by contradiction. Assume that there exists z ∈ RN such that |zj −
Qε(z)| ≥ ε for all j ∈ {1, . . . , N}. Then, from (2.2), Γε(zj − Qε(z)) ∈ N for all j.

This implies that
∑N
j=1 Γε(zj −Qε(z)) ∈ N, which means that

∑N
j=1 Γε(zj −Qε(z)) 6=

(1 − α)N . Therefore, there must exists i ∈ {1, . . . , N} and 0 < ε0 < ε such that

|zi − Qε(z)| ≤ ε0 and
∑N
j=1 Γ′ε(zj − Qε(z)) ≤ Γ′ε(zi − Qε(z)) ≤ γ′ε(ε0) < 0, for all

z ∈ RN .
The above result shows that 0 ≤ [∇Qε(z)]i ≤ 1 for all i, which means that ∇Qε(z)

is bounded. Furthermore, because Γ′′ε exists and is bounded, then Γ′ε is Lipschitz
continuous. Given that the denominator is bounded away from zero, we can conclude
that Qε(z) has Lipschitz continuous gradients.
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If we also assume that f and c are twice continuously differentiable, then we can
provide the Hessian of constraint (4.1b) to the solver as well. The Hessian is then
computed as

∇2q(x) =

N∑
i=1

[
∇Qε

(
cN (x)

)]
i

[
∇2c(x, ξi)

]
+∇cN (x)

[
∇2Qε

(
cN (x)

)] [
∇cN (x)

]T
,

(4.3)

where [∇Qε(·)]i is the ith entry of the gradient of Qε(·), and ∇2Qε (·) is the Hes-
sian of the smooth approximation of the quantile with respect to each scenario, i.e.,
∇2Qε (·) ∈ RN×N is such that

[
∇2Qε(z)

]
ii

=
w2
iW
′ − 2wiw

′
iW + w′iW

2

W 3
,[

∇2Qε(z)
]
ij

=
wiwjW

′ −W (wiw
′
j + w′iwj)

W 3
, i 6= j,

where w` = Γ′ε(z` −Q(z)), w′` = Γ′′ε (z` −Q(z)), W =
∑N
`=1 w`, and W ′ =

∑N
`=1 w

′
`.

In section 6.2 we discuss the performance of this approximation. We give two
examples in which the nonlinear constraint q(x) and its derivatives are given directly
to Knitro.

5. Joint Chance-Constrained Problems. In this section, we consider prob-
lems where c(x, ξ) is a vector-valued function from Rn × Rs to Rm for m > 1, and
therefore C(x, ξ) = maxj=1,...,m{cj(x, ξ)} is not smooth even when cj(x, ξ) are smooth
for j = 1, . . . ,m.

Assuming that there exists a deterministic differentiable function, g : Rn → Rp,
such that the deterministic feasible set X can be written as X = {x ∈ Rn | g(x) ≤ 0},
we can rewrite the approximation of (2.4) as

min
x∈Rn

f(x)(5.1a)

s.t. g(x) ≤ 0,(5.1b)

Qε(C
N (x)) ≤ 0.(5.1c)

The discussion in this section can be extended to solve problems with deterministic
equality constraints in the definition of the set X, but we consider only inequality
constraints for a succinct exposition.

Notice that, because C(x, ξ) is no longer smooth, the constraint (5.1c) is not
differentiable. To obtain a smooth reformulation of the quantile constraint (5.1c), we
introduce auxiliary variables zi that correspond to maxj{cj(x, ξi)} and consider

min
x∈Rn,z∈RN

f(x)(5.2a)

s.t. g(x) ≤ 0,(5.2b)

c(x, ξi) ≤ zi111m, ∀i = {1, . . . , N}(5.2c)

Qε(z) ≤ 0,(5.2d)

where 111m is a vector of ones of size m.
It is clear that a local minimum of (5.1) is also a local minimum of (5.2) if we

define z∗i = [CN (x∗)]i. However, a local minimum of (5.2) is not necessarily a local
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minimum of (5.1) if z∗i 6= [CN (x∗)]i. Thus, the downside of formulating the JCCP
as the SCCP in (5.2) is that a standard NLP solver might get stuck at a spurious
local minimum. We therefore introduce a tailored algorithm that is designed to solve
JCCPs.

5.1. Exact-penalty formulation. In order to solve problem (5.1), we write an
equivalent unconstrained optimization problem in which the constraints are handled
by an `1-penalty term. Our approach is motivated by the S`1QP method for regular
NLPs [26]. We define the penalty function

φπ(x) = f(x) + π
(∥∥∥[g(x)]

+
∥∥∥
1

+
[
Qε(C

N (x))
]+)

,(5.3)

where π > 0 is a penalty parameter and [x]+i = max{0, xi}. If x∗ is a minimizer of
φπ for π > 0 and ‖[g(x)]+‖1 + [Qε(C

N (x))]+ = 0, then x∗ solves (5.1) [16, p. 299].
The following theorem, stated in [10, Theorem 2.1], considers the converse situation
and shows that there exists π > 0 such that we can use the minimization of (5.3) to
obtain a solution for (5.1).

Theorem 5.1. Suppose f , g, c, and Qε are locally Lipschitz on Rn and let x∗

be a local minimizer of (5.1). Moreover, suppose that the Mangasarian-Fromowitz
condition holds for problem (5.2) at x∗ and z∗ = CN (x∗). Then, there exists π∗ > 0
and δ > 0 such that for all x ∈ Bδ(x∗),

φπ(x) ≥ φπ(x∗) for all π ≥ π∗.

To minimize function (5.3), we propose a trust-region method that generates steps
from the minimization of a piecewise quadratic model of φπ in every iteration. By
making sure that the model approximates φπ to first-order, we can invoke existing
convergence results that show that the trust-region method converges to a stationary
point of φπ. A piecewise quadratic model with such characteristics is defined in the
following proposition.

Proposition 5.2. Let f and g be differentiable with Lipschitz continuous gradi-
ents. Also, given a sample {ξ1, . . . , ξN}, let c(x, ξi) be differentiable with respect to x
for all i ∈ {1, . . . , N} and assume there exists L > 0 and L′ > 0 such that

|c(x, ξi)− c(y, ξi)| ≤ L‖x− y‖, ∀x, y ∈ X, ∀i ∈ {1, . . . , N},(5.4)

|∇c(x, ξi)−∇c(y, ξi)| ≤ L′‖x− y‖, ∀x, y ∈ X, ∀i ∈ {1, . . . , N}.(5.5)

Given a point x ∈ Rn and a direction d ∈ Rn, consider the function

m(x,H; d) = f(x) +∇f(x)T d+
1

2
dTHd

+ π

(∥∥∥[g(x) +∇g(x)T d
]+∥∥∥

1
+
[
Q̃ε,C(x; d)

]+)
,(5.6)

where H ∈ Rn×n is a symmetric matrix, and

Q̃ε,C(x; d) = Q̃ε(C
N (x); C̃N (x; d)− CN (x)),

Q̃ε(z; p) = Qε(z) +∇Qε(z)T p,

[C̃N ]i(x; d) = max
j
{cj(x, ξi) +∇cj(x, ξi)T d}.
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Then, m(x,H; d) is a first-order model of φπ(x+ d) in the sense that

|φπ(x+ d)−m(x,H; d)| = O(‖d‖2),

for all d, x ∈ Rn and all H with ‖H‖ ≤ LH , for fixed LH .

Proof. We only prove that |Qε(CN (x+ d))− Q̃ε,C(x; d)| = O(‖d‖2) since the rest
follows from the Lipschitz continuity of ∇f and ∇g, and boundedness of H.

For brevity in the proof, we will use the following notation Cy = CN (y) and

C̃(x;d) = C̃N (x; d). We have that,∣∣∣Qε(Cx+d)− Q̃ε,C(x; d)
∣∣∣ =

∣∣∣Qε(Cx+d)− Q̃ε(Cx; C̃(x;d) − Cx)
∣∣∣

≤
∣∣∣Qε(Cx+d)− Q̃ε(Cx;Cx+d − Cx)

∣∣∣+
∣∣∣Q̃ε(Cx;Cx+d − Cx)− Q̃ε(Cx; C̃(x;d) − Cx)

∣∣∣ .
Analyzing the first term, we get∣∣∣Qε(Cx+d)− Q̃ε(Cx;Cx+d − Cx)

∣∣∣
=
∣∣Qε(Cx+d)−Qε(Cx)−∇Qε(Cx)T [Cx+d − Cx]

∣∣
= O

(
‖Cx+d − Cx‖2

)
= O(‖d‖2),

where the second and last equalities come from Proposition 4.1 and (5.4).
For the second term we have∣∣∣Q̃ε(Cx;Cx+d − Cx)− Q̃ε(Cx; C̃(x;d) − Cx)

∣∣∣
=
∣∣∣Qε(Cx) +∇Qε(Cx)T [Cx+d − Cx]−Qε(Cx)−∇Qε(Cx)T

[
C̃(x;d) − Cx

]∣∣∣
=
∣∣∣∇Qε(Cx)T

[
Cx+d − C̃(x;d)

]∣∣∣ ≤ ‖∇Qε(Cx)‖
∥∥∥Cx+d − C̃(x;d)

∥∥∥ .
Because ∇Qε by Proposition 4.1 is bounded, it only remains to show that ‖Cx+d −
C̃(x;d)‖ = O(‖d‖2).

To prove this, first notice that

cj(x, ξi) +∇cj(x, ξi)T d ≤ [C̃(x;d)]i, ∀j ∈ {1, . . . ,m}, i ∈ {1, . . . , N},

and therefore

[Cx+d]i − [C̃(x;d)]i = cji1(x+ d, ξi)− [C̃(x;d)]i

≤ cji1(x+ d, ξi)− cji1(x, ξi)−∇cji1(x, ξi)
T d = O(‖d‖2),(5.7)

where ji1 = argmaxj{cj(x+ d, ξi)}. Also,

[C̃(x;d)]i − [Cx+d]i ≤ cji2(x, ξi) +∇cji2(x, ξi)
T d− cji2(x+ d, ξi) = O(‖d‖2),(5.8)

where ji2 = argmaxj{cj(x, ξi) + ∇cj(x, ξi)T d}. It follows from (5.7) and (5.8) that

‖Cx+d − C̃(x;d)‖ = O(‖d‖2).

Now that model (5.6) has been established, we proceed to give an outline of the
algorithm used to minimize φπ.
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5.2. Trust-Region Algorithm. In this section we present an S`1QP-type trust-
region algorithm to minimize (5.3). This algorithm seeks to obtain a first-order sta-
tionary point of φπ by solving a sequence of quadratic programs (QP). At each iter-
ation k, we compute a step dk by minimizing the model m(xk, Hk; d) within a radius
∆k for a given Hk. This problem is equivalent to

min f(xk) +∇f(xk)T d+
1

2
dTHkd+ π

[
tT111p + w

]
s.t. ∇g(xk)T d+ g(xk) ≤ t,

∇c(xk, ξi)T d+ c(xk, ξi) ≤ zi111m, i = {1, . . . , N},(5.9)

∇Qε(CN (xk))T (z − CN (xk)) +Qε(C
N (xk)) ≤ w,

t, w ≥ 0, ‖d‖∞ ≤ ∆k.

We describe the choice of Hk in section 5.3.
A step dk, obtained from (5.9), is accepted if it results in sufficient decrease of φπ,

i.e., the step dk is taken only if the value φπ(xk+dk) is sufficiently smaller than φπ(xk).
We then proceed with iteration k+1, where now xk+1 = xk+dk. Algorithm 5.1 states
the full algorithm.

The following theorem follows from [9, Theorem 11.2.5]. It states that any limit
point x∗ of the sequence {xk} generated by Algorithm 5.1 is a stationary point of
function φπ. Thus, we conclude that x∗ minimizes (5.1) if x∗ is a local minimizer of
φπ, g(x∗) ≤ 0, and Qε

(
CN (x∗)

)
≤ 0.

Theorem 5.3. Suppose that Algorithm 5.1 does not terminate at a stationary
point of φπ in step 3, and that x∗ is a limit point of the sequence {xk} generated by
Algorithm 5.1. Let the assumptions from Proposition 5.2 hold and assume that, at
each iteration, problem (5.9) is solved exactly. Then x∗ is a first-order critical point
of φπ.

The condition that problem (5.9) is solved exactly can be relaxed as long as some
Cauchy decrease condition holds (refer to [9, Theorem 11.2.5]).

5.3. Choice of Hessian. In this section we propose a choice of the Hessian Hk

in (5.9) that aims to attain fast local convergence. The key observation is a close
relationship between the non-smooth formulation (5.1) and the smooth optimization
problem

min
x∈Rn

f(x)

s.t. g(x) ≤ 0,(5.10)

q(x) := Qε(C
N

(x)) ≤ 0,

where C
N

(x) is defined below in Lemma 5.4.
Recall that, if x∗ is a local minimizer of (5.1), then x∗ and z∗ = CN (x∗) is a KKT

point of (5.2) under some constraint qualification (see Theorem 5.1). The following
lemma shows that x∗ is also a KKT point of (5.10).

Lemma 5.4. Let (x∗, z∗, ν∗, µ∗, λ∗) be a KKT point of (5.2) with z∗ = CN (x∗),
where ν∗, µ∗ and λ∗ are the multipliers associated to constraints (5.2b), (5.2c) and
(5.2d), respectively. For each i ∈ {1, . . . , N}, set

[µ̄i]j =
[µ∗i ]j

λ∗ [∇Qε(CN (x∗))]i
, ∀ j ∈ {1, . . . ,m},(5.11)
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Algorithm 5.1 S`1QP trust-region algorithm to solve JCCP

Inputs: π > 0 (penalty parameter); ∆̂ > 0, ∆0 ∈ (0, ∆̂), η ∈ (0, 1), τ1 ∈
(0, 1), and τ2 > 1 such that 1/τ2 ≤ τ1 (trust region parameters); x0 (initial
point)

1: for k = 0, 1, 2, . . . do
2: Set C(xk, ξi) = maxj=1,...,m{cj(xk, ξi)} for all scenarios, compute Qε(C

N (xk))
and ∇Qε(CN (xk)), and choose Hk.

3: Obtain dk by solving (5.9) (if dk = 0 stop, stationary point reached).

4: Compute the ratio ρk = φπ(x
k)−φπ(xk+dk)

m(xk,Hk;0)−m(xk,Hk;dk)
.

5: if ρk < η then
6: ∆k+1 = τ1 min{∆k, ‖dk‖∞}; xk+1 = xk

7: else if ρk ≥ η and ‖dk‖∞ = ∆k then
8: ∆k+1 = min{τ2∆k, ∆̂}; xk+1 = xk + dk

9: else
10: ∆k+1 = ∆k; xk+1 = xk + dk

11: end if
12: k = k + 1
13: end for

if λ∗ 6= 0 and
[
∇Qε(CN (x∗))

]
i
6= 0. Else, select one j such that cj(x

∗, ξi) = C(x∗, ξi)
and define [µ̄i]j = 1 and [µ̄i]` = 0 if ` 6= j. Also, define the following function

[C
N

(x)]i = µ̄Ti c(x, ξi), ∀ i ∈ {1, . . . , N}.(5.12)

Then, (x∗, ν∗, λ∗) is a KKT point of (5.10).

Proof. Because (x∗, z∗, ν∗, µ∗, λ∗) is a KKT point of (5.2), the following conditions
hold

∇f(x∗) +∇g(x∗)ν∗ +

N∑
i=1

∇c(x∗, ξi)µ∗i = 0,(5.13a)

λ∗ [∇Qε(z∗)]i − µ
∗T
i 111m = 0, ∀ i ∈ {1, . . . , N},(5.13b)

c(x∗, ξi)− z∗i 111m ≤ 0, ∀ i ∈ {1, . . . , N},(5.13c)

Qε(z
∗) ≤ 0,(5.13d)

µTi (c(x∗, ξi)− z∗i 111m) = 0, ∀ i ∈ {1, . . . , N},(5.13e)

λ∗Qε(z
∗) = 0, ∀ i ∈ {1, . . . , N},(5.13f)

λ∗ ≥ 0, µ∗i ≥ 0, ∀ i ∈ {1, . . . , N}.(5.13g)

Notice that the KKT conditions of (5.2) associated with g have been left out because
they trivially extend to the KKT conditions of (5.10).

If λ∗ 6= 0 and
[
∇Qε(CN (x∗))

]
i
6= 0, then

[
C
N

(x∗)
]
i

(5.12)
= µ̄Ti c(x

∗, ξi)
(5.11)

=

m∑
j=1

(
[µ∗i ]j

λ∗ [∇Qε(CN (x∗))]i

)
cj(x

∗, ξi)(5.14)

(5.13e)
= z∗i

m∑
j=1

(
[µ∗i ]j

λ∗ [∇Qε(z∗)]i

)
(5.13b)

= z∗i .



20 A. PEÑA-ORDIERES, J. LUEDTKE, AND A. WÄCHTER

If λ∗ = 0 or
[
∇Qε(CN (x∗))

]
i

= 0, it follows from the definition of µ̄i, that [C
N

(x∗)]i =

µ̄Ti c(x
∗, ξi) = z∗i . Thus, feasibility, Qε(C

N
(x∗)) = Qε(z

∗) ≤ 0, and complementarity,

λ∗Qε(z
∗) = λ∗Qε(C

N
(x∗)) = 0, hold.

Now, note that the gradient of the Lagrangian of (5.10) is given by

∇L(x, ν, λ) = ∇f(x) +∇g(x)ν + λ

N∑
i=1

[
∇Qε(C

N
(x))

]
i
∇c(x, ξi)µ̄i.(5.15)

Then,

∇L(x∗, ν∗, λ∗)
(5.14)

=
(5.15)

∇f(x∗) +∇g(x∗)ν∗ + λ∗
N∑
i=1

[
∇Qε(C

N
(x∗))

]
i
∇c(x∗, ξi)µ̄∗i

(5.11)
=

(5.13b)
∇f(x∗) +∇g(x∗)ν∗ +

N∑
i=1

∇c(x∗, ξi)µ∗i
(5.13a)

= 0.

Thus, (x∗, ν∗, λ∗) is a KKT point of (5.10).

Lemma 5.4 shows that we can use the norm of (5.15) in the termination criterion
for our algorithm. Also, from complementary slackness and feasibility, we have that
most of the entries of the vector µ∗i are zero. The reason is that only the jth entries
of µ∗i such that cj(x

∗, ξi) = C(x∗, ξi) can be nonzero. This means that the positive
entries of µ∗i indicate which entries of vector c(x∗, ξi) correspond to the maximum

C(x∗, ξi). Therefore, C
N

(·) can be interpreted as a smooth function that coincides
with the maximum CN (·) at the solution x∗.

Suppose we apply the basic SQP algorithm [26] to (5.10) and compute steps dk

from the solution of the QP

min f(xk) +∇f(xk)T d+
1

2
dTHkd

s.t. ∇g(xk)T d+ g(xk) ≤ 0,(5.16)

∇q(xk)T d+ q(xk) ≤ 0

to update the iterate xk+1 = xk+dk. If Hk is chosen as the Hessian of the Lagrangian
function L of (5.10) at the current iterate (xk, νk, λk), i.e.,

Hk = ∇2f(xk) +

p∑
j=1

νkj∇2gj(x
k) + λk

N∑
i=1

[
∇Qε(C

N
(xk))

]
i

 m∑
j=1

µ̄ij∇2cj(x
k, ξi)


+ λk∇CN (xk)

[
∇2Qε(C

N
(xk))

] [
∇CN (xk)

]T
,(5.17)

where [∇CN (xk)]·i = ∇c(x, ξi)µ̄i for all i ∈ {1, . . . , N}, then this algorithm exhibits
quadratic local convergence, under standard regularity assumptions.

Our goal is to mimic this behavior in Algorithm 5.1. Using arguments similar
to those in the proof of Lemma 5.4 one can show that the steps generated by the
QP (5.9) converge to the SQP steps from (5.16) up to first order as xk → x∗, under
suitable regularity assumptions. This suggests to choose Hk defined by (5.17) for
the step computation (5.9) in Algorithm 5.1, with the hope that the steps used in
Algorithm 5.1 approach the SQP steps for (5.10) and result in fast local convergence.
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However, the definition of (5.10) requires the knowledge of the optimal solution
in (5.11), which is not available. Instead, we approximate the optimal solution with
the current iterate and define

[µ̄ki ]j =
[µki ]j

λk [∇Qε(CN (xk))]i
, ∀ j ∈ {1, . . . ,m}, i ∈ {1, . . . , N}.

Then, the Hessian matrix in the QP (5.9) is chosen as follows:

Hk = ∇2f(xk) +

p∑
j=1

νkj∇2gj(x
k) + λk

N∑
i=1

[
∇Qε(CN (xk))

]
i

 m∑
j=1

µ̄kij∇
2cj(x

k, ξi)


+ λk∇CN (xk)

[
∇2Qε(C

N (xk))
] [
∇CN (xk)

]T
,(5.18)

where [∇CN (xk)]·i = ∇c(x, ξi)µ̄ki for all i ∈ {1, . . . , N}. Note the subtle difference
with (5.17): The argument at which derivatives ofQε are evaluated is based on the true
maximum values given by the non-smooth function CN (xk) instead of the smoothed

version C
N

(xk). With this choice of Hk, we observed superlinear local convergence
of Algorithm 5.1 in our experiments.

6. Numerical results. In this section we report results demonstrating the per-
formance of our proposed approach on two single chance-constrained (SCC) examples
and one joint chance-constrained (JCC) example. The goal is to observe the perfor-
mance of our method from different perspectives such as: solution quality, speed, and
features related to the smoothing parameter ε.

In all the experiments we use the Γε function defined from γε in (2.6), which
defines a twice continuously differentiable function. This allows us to incorporate first-
and second-order derivatives into the algorithms. All computations were executed on
Ubuntu 16.04 with 256GB RAM and a CPU with two Intel Xeon processors with 10
cores each, running at 3.10GHz. The algorithm and all experiments were implemented
in Matlab R2015b.

In these experiments, because our choices of α and N are such that (1−α)N ∈ Z,
we opt to add a constant b = 1/2 to the left-hand side of (2.3) in our implementation
(refer to Remark 2.2).

6.1. Choosing the smoothing parameter. We introduced an approximation
of problem (1.1) that does not need explicit information about the distribution of the
random variables, their mean or their variance, and that only requires a sample to
compute the constraint approximation. However, the quality of the solutions obtained
from the approximation depends on the choice of the parameter ε. As established in
section 3, ε is related to the feasibility of the solutions. Moreover, in our experiments
we observed that large values of ε are associated with fewer iterations and less variabil-
ity in the solutions but at the same time lead to conservativeness, while small values
work in the opposite manner. Therefore, a good choice of ε is of vital importance to
the solution quality.

For a fixed sample, we propose a binary search algorithm to find a value of ε which
yields a solution that is feasible to the chance constraint, but not too conservative. We
begin by setting ` = 0, selecting an initial ε0, and setting εLB = 0 and εUB =∞. Then,
we solve problem (5.1) for ε` and estimate the true probability p` = P(C(x∗` , ξ) ≤ 0),
where x∗` is the optimal solution of problem (5.1) using the parameter ε`. If p` > 1−α,
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then ε`+1 = (ε` + εLB)/2 and εUB = ε`; if p` < 1 − α, then ε`+1 = (εUB + ε`)/2, or
ε`+1 = 2ε0 if εUB = ∞, and εLB = ε`. We now solve the problem again for ε`+1

and compute p`+1. We continue in this fashion until the estimated probability, p`, is
within a threshold of the target probability 1− α.

One way to pick ε0 is as follows. First, compute x∗0 as the optimal solution of the
“robust” formulation of (1.1),

min
x∈X

f(x) s.t. C(x, ξi) ≤ 0 ∀i ∈ {1, . . . , N}.

Then, evaluate the standard deviation of the sample {C(x∗0, ξ1), . . . , C(x∗0, ξN )}, and
set ε0 to be twice the standard deviation. This way of selecting ε0 usually renders
conservative solutions; however, because we have observed that the optimization al-
gorithm converges more quickly for large values of ε, we prefer to start with a large
value of ε that is decreased afterwards. This choice of ε0 is motivated by the attempt
to minimize the mean square error in (2.5), for a fixed x. In [1], the authors show that
the best choice of ε is proportional to its standard deviation if everything is assumed
to be normal. Thus, we define ε0 as a multiple of the standard deviation evaluated at
x∗0.

To estimate the true probability of constraint violation, we obtain an out-of-
sample approximation using a sample with a large number of scenarios N ′ and com-

pute the quantity
∑N ′

i=1 1(C(x, ξi) ≤ 0)/N ′ as an approximation of P(C(x, ξ) ≤ 0).
To speed up the binary search, we use the solution x∗εk , with its multipliers λ∗εk

and µ̄∗εk , to initialize the algorithm for εk+1, i.e., x0 = x∗εk , λ0 = λ∗εk , and µ̄0 = µ̄∗εk to
solve problem (5.2) for εk+1.

For the experiments in the following section, we terminate the binary search if
|P(C(x∗` , ξ)− (1− α)| ≤ 10−4 or the number of bisections exceeds 10.

6.2. Single Chance Constraints. In this section, we present the outcome of
two experiments using a nonlinear solver to solve our reformulation for a SCCP. Both
examples are solved by Knitro 10.1.2. To compute Qε, we use the Matlab function
fzero to find the root of the nonlinear function (2.3) from the initial point C[M ](x).
We also provide Knitro both the gradient and Hessian of Qε as given in (4.2) and
(4.3).

6.2.1. A non-convex example. We first investigate the performance of the
NLP reformulation for the non-convex problem

min
x,y

y s.t. P(c(x) ≤ y) ≥ 0.95,

where c(x) = 0.25x4 − 1/3x3 − x2 + 0.2x − 19.5 + ξ1x + ξ2, and ξ1 ∼ N(0, 3) and
ξ2 ∼ N(0, 144) are independent random variables. This problem is similar to the one
presented in [11].

In this experiment we use a sample of size N = 1, 000 and two different smoothing
parameters: ε = 1 and ε = 0.1. We used 10 different feasible initial points for each
ε, given by x0 = (t, 2.5), for t equally spaced in the interval [−1.5, 2.5]. In Figure 3
we observe the results of all the different runs. In this figure, the solid line represents
the boundary of the empirical feasible region, while the dotted line represents the
boundary of the smooth approximation to the feasible region. All the points above
the solid and dotted line are feasible for the empirical and smooth approximations,
respectively. We see that the smaller value of ε translates into a smooth curve that
follows the empirical quantile more closely, while the larger value renders a “less noisy”
function.
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Fig. 3: Local minima found starting from 10 different points for two values of ε.

Figure 3 shows that our approach is designed to find local minima instead of
global minima, and that the quality of the solution not only depends on the starting
point but on the choice of ε. This can be seen from the points in Figure 3. Notice
that the true problem seems to have only two local minimizers, one around x = 1.8
and another around x = −0.8. However, when ε = 0.1, the solver gets attracted to
spurious local minima for three different starting points.

It is also interesting to notice that the algorithm takes longer to find a solution
the smaller ε is. For ε = 1, the number of iterations ranged between 6 and 10 with an
average of 8.2; however, for ε = 0.1, the number of iterations ranges between 7 and
14 with an average of 11.6. This exemplifies some of the claims made in section 2.1
and emphasizes the importance of choosing ε appropriately.

6.2.2. Reinsurance portfolio example. We consider a Value-at-Risk (VaR)
minimization problem for reinsurance portfolios. The decision variable xj , for j =
1, . . . , n, represents the fraction of the risk contract j that the reinsurer is willing to
take. We would like to choose the optimal fraction of the contracts such that the
portfolio premium satisfies a pre-established minimum value and that the 0.95-VaR
is minimized. Each contract is subject to a stochastic loss. This data is simulated
to represent risk and returns of businesses. The characteristics of these loss matrices
include non-negativity, sparsity, positive skewness, and high kurtosis (this problem
was constructed as in [12]).

Notice that the 0.95-VaR is defined the same way as the 0.95-quantile, so we can
therefore use Q0.95 as the objective function. Thus, the problem can be modeled as

min
x∈[0,1]n

Q0.95(LTx) s.t. cTx ≥ c∗,

where the random variable Lj represents the losses of contract j, cj are the market
premiums of the risk contracts, and c∗ = 0.1

∑n
j=1 cj is the minimum level of portfolio

premium. The chance-constrained reformulation of the problem is

min
x∈[0,1]n,z∈R

z s.t. P(LTx ≤ z) ≥ 1− α, cTx ≥ c∗.

For this example, we considered 25 contracts (n = 25) for different sample sizes N ,
and we ran 10 replications for each N .
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In Table 2, we present the statistics of the Knitro runs using formulation (2.4),
the quantile-constrained NLP approximation of the problem. The times reported
include all NLP solves executed during the bisection search to tune the smoothing
parameter ε described in section 6.1. We see that the solution time grows modestly
with respect to the sample size, and that the number of iterations are roughly the
same even when the sample size increases. The last column displays the average
value of the tuned smoothing parameter. Consistent with our theoretical analysis in
section 3 and the results in [2], we observe that the value of ε that yields a solution
that is “just feasible” decreases as the sample size increases.

N Avg. time (sec) Max. time (sec) Avg. iter (per ε) Avg. ε

200 1.1301 1.8285 13.236 1628.3
500 1.4797 2.6307 14.250 1135.6
2000 10.293 13.643 13.479 700.68
5000 49.943 113.91 14.073 554.47

Table 2: Number of iterations and CPU time needed by Knitro to return a solution.

We compare our approach to the empirical probability formulation F̃N . This
formulation is solved via a mixed-integer linear programming (MIP) formulation [29],
using Gurobi as the MIP solver with a time limit of 10 minutes. For the solutions
obtained by either method, we computed an out-of-sample approximation of the true
quantile, Q0.95(LTx), via the empirical 0.95-quantile using a sample of N ′ =100,000
observations. The results of the experiments are shown in Figure 4. We see that, for
N = 200 and N = 5, 000, the variance of the solutions obtained by the NLP solver
is considerably smaller than the variance of the solutions obtained using the MIP
formulation. The spread observed on the quality of the solutions from the MIP for
N = 5, 000 may be due to the 10 minute limit, since the incumbent returned by the
solver is not proved to be optimal for the sample approximation for this sample size.
We also observe that the solutions obtained by the NLP formulation are consistently
better in all cases and are improving as the sample size grows.
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Fig. 4: Comparison between an MILP approach and our NLP method.

We now compare the performance of the NLP solver when constraint (4.1b) is

substituted by Fε(0;x) = 1
N

∑N
i=1 Γε(c(x, ξi)) ≥ 1 − α. We use this example to

evaluate the advantage of the quantile formulation of the constraint compared to the
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probability formulation. We did these experiments under the same settings as above.
The solutions that the solver found with the probability formulation are the same
as for the quantile formulation (within numerical accuracy), except for two cases for
N = 2, 000 and one for N = 5, 000 in which Knitro’s iterates diverge. The number
of iterations and the time taken by the solver is considerably larger compared to the
quantile formulation as can be seen in Figure 5. Furthermore, while the quantile
formulation requires roughly the same number of iterations for different number of
scenarios, the iteration count for the probabilistic constraint grows with the sample
size. Therefore, although finding the root of (2.3) is more expensive than using Fε(0;x)
directly, working with the quantile is preferable in terms of the performance of the
solver.
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Fig. 5: Performance comparison between the probability and quantile approximations.

6.3. Joint Chance Constraints. The last example we consider is a continuous
probabilistic multi-dimensional knapsack problem

max
x∈[0,1]

n∑
j=1

pjxj(6.1)

s.t. P

 n∑
j=1

Wijxj ≤ wi, i ∈ {1, . . . ,m}

 ≥ 0.95.

The problem consists of a set of n items, each with an associated profit pj , and different
“weights” for each item (for example, both volume and weight, where the volume and
weight of each item are not necessarily related). Here, Wij represents the random
ith “weight” of item j, and wi is the maximum “weight” limit for constraint i (wi
is a deterministic quantity). The decision variable xj ∈ [0, 1] represents the fraction
of an item that is to be included. The goal is to select the optimal fraction each
item in order to maximize the profit, while satisfying all the “weight” constraints
simultaneously at least 95% of the time. The number of items considered for this
experiment was n = 20 with m = 10 constraints. The randomness comes from the
weights Wij , whose distribution is described next.
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We implemented Algorithm 5.1 in Matlab, using CPLEX 12.6.3 to solve the QP
(5.9). We selected the following parameters for the algorithm: π = 10, ∆̂ = 106,
∆0 = 1, η = 10−8, τ1 = 1/2 and τ2 = 2. We defined Hk as (5.18), and terminate
Algorithm 5.1 when ‖∇L(xk, ν, λ)‖∞ ≤ 10−6, g(xk) ≤ 10−6111m, and Qε(C

N (xk)) <
10−6.

We generate data for (6.1) according to the knapsack instance mk-20-10 from
[32], which is based on an available deterministic knapsack instance in [3]. Each
item j is available or not according to a Bernoulli distribution. An item that is not
available has weight zero in all rows. As a result, the item weights in different rows
are not independent. If an item is available, then its weight in each row is normally
distributed with mean equal to its weight in the deterministic instance and standard
deviation equal 0.1 times the mean. For each sample size N , we ran 10 replications.

The results of our proposed algorithm are presented in Table 3 under the column
heading ‘NLP’. The computation times include the total time for the binary search
algorithm to find a tuned value of ε. For the solutions obtained, we computed an
out-of-sample approximation of P(C(x, ξ)) using the empirical cdf with N ′ = 106

scenarios. First, we can see that the time it takes the algorithm to obtain a solution
grows modestly with the sample size N . Second, the best solution obtained from
solving the problem with 10 different samples of size 100 has an objective value nearly
identical to the best solution obtained using samples of size 1,000. This indicates
that solving the approximation with multiple small samples may be more effective at
obtaining good solutions than solving the approximation with a single large sample.
Finally, the last row shows that the average value of the tuned smoothing parameter
decreases with increased sample size, similar to our observation in Table 2

We also compared our solutions to the solutions obtained by solving the empirical
probability formulation F̃N via an MIP formulation. In order to obtain comparable
solutions between the MIP and the NLP formulations, we tuned the risk level α of
the MIP formulation to ensure that the solutions obtained were all feasible. This is
similar to tuning the ε parameter in the NLP formulation. We limited the overall
tuning time for the α parameter in the MIP to ten minutes. For each α trial of
the MIP, we gave Gurobi 0.5, 0.5, 1, 5, and 10 minutes for sample size 100, 500,
1,000, 5,000, and 10,000, respectively. These time limits were chosen to give the MIP
algorithm significantly more time than the NLP approach. The results are given in
Table 3 under the column heading ‘MIP’. It can be seen that the MIP solutions have
generally lower optimal values and larger variability, the same behavior observed in
section 6.2.2. On the other hand, solutions obtained from Algorithm 5.1 consistently
present larger objective function values, less variability, and are solved well under 3
minutes for most sample sizes (except N = 10, 000). It is possible that giving the
MIP algorithm more time could lead to better solutions, but these results clearly
indicate that our NLP approach is more effective at finding good solutions quickly.
Furthermore, the results show that the binary search for ε can attain the desired
risk-level more accurately than changing the α parameter, given the time limit.

7. Summary. In this paper we developed a technique to solve nonlinear prob-
lems with probabilistic constraints. We first presented an approximation for single
chance constraints with the following characteristics: (1) it can be represented as a
single smooth constraint, (2) it does not require information about the distribution
of the random variables or information about the moments, and is solely based on
sampling, (3) it does not restrict the constraints to be convex, (4) it can be handled by
standard continuous nonlinear programming techniques and solvers, and (5) it avoids
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Sample size 100 500 1,000
Method NLP MIP NLP MIP NLP MIP

Min. prob 0.9499 0.9445 0.9499 0.9503 0.9499 0.9502
Avg. prob 0.9504 0.9591 0.9503 0.9520 0.9511 0.9514
Max. prob 0.9521 0.9723 0.9526 0.9549 0.9591 0.9535
Min. obj 5816.6 5771.3 5834.4 5830.3 5827.5 5831.3
Avg. obj 5828.9 5806.0 5839.0 5833.2 5840.2 5836.6
Max. obj 5842.6 5836.1 5842.6 5839.2 5842.7 5841.0

Avg. time (s) 8.7 90 29.3 168 37.4 372
Max. time (s) 24.6 120 49.8 180 80.5 420

Avg. ε 17 - 9.8 - 7.5 -

Sample size 5,000 10,000
Method NLP MIP NLP MIP

Min. prob 0.9499 0.9514 0.9499 0.9506
Avg. prob 0.9500 0.9562 0.9500 0.9606
Max. prob 0.9501 0.9617 0.9503 0.9733
Min. obj 5840.8 5818.1 5841.2 5798.0
Avg. obj 5842.3 5828.7 5842.4 5819.4
Max. obj 5842.9 5839.9 5842.9 5833.8

Avg. time (s) 88.265 330 324.39 600
Max. time (s) 163.96 600 582.53 600

Avg. ε 5.8 - 4.8 -

Table 3: Statistics for the multi-knapsack problem.

the combinatorial complexity of a branch and bound search, and scales well with the
number of variables and samples.

We also presented an extension of the SCC formulation that is able to handle
joint chance constraints. We constructed a specialized trust-region solver for JCCPs
utilizing a Hessian matrix that has proven empirically to give fast local convergence.
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[28] A. Prékopa, Probabilistic programming, Handbooks in Operations Research and Management
Science, 10 (2003), pp. 267–351.
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