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In this paper we consider the Double-Row Facility Layout Problem (DRFLP).
Given a set of departments and pairwise transport weights between them the DRFLP
asks for a non-overlapping arrangement of the departments along both sides of a
common path such that the weighted sum of the center-to-center distances between
the departments is minimized. Despite its broad applicability in factory planning,
only small instances can be solved to optimality in reasonable time. Apart from this
even deriving good lower bounds using existing integer programming formulations
and branch-and-cut methods is a challenging problem. We focus here on deriving
combinatorial lower bounds which can be computed very fast. These bounds generalize
the star inequalities of the Minimum Linear Arrangement Problem. Furthermore we
exploit a connection of the DRFLP to some parallel identical machine scheduling
problem. Our lower bounds can be further improved by combining them with a new
distance-based mixed-integer linear programming model, which is not a formulation
for the DRFLP, but can be solved close to optimality quickly. We compare the
new lower bounds to some heuristically determined upper bounds on medium-sized
and large DRFLP instances. Special consideration is given to the case when all
departments have the same length. Furthermore we show that the lower bounds that
we derive using adapted variants of our approaches for the Parallel Row Ordering
Problem, a DRFLP variant where the row assignment of the departments is given
in advance and spaces between neighboring departments are not allowed, are even
better with respect to the gaps.

Keywords. Facilities planning and design; Integer programming; Row layout problem; Lower
bounds

1 Introduction

In this paper we consider special facility layout problems which have several applications, in
particular in factory planning. For recent surveys on facility layout problems in general we refer,
e.g., to [1l, 14} [16], 26, 37, 47]. An instance of the Multi-Row Facility Layout Problem (MRFLP)

*TU Dortmund University, Faculty of Business and Economics, Vogelpothsweg 87, D-44227 Dortmund; Georg-
August-Universitdt Gottingen, Institute for Numerical and Applied Mathematics, m.dahlbeck@math.uni;
goettingen.de

TTU Dortmund University, Faculty of Business and Economics, Vogelpothsweg 87, D-44227 Dortmund,
anja2.fischer@tu-dortmund.de

#Johannes Gutenberg University Mainz, Institute of Computer Science, Staudingerweg 9, D-55128 Mainz,
frank.fischer@uni-mainz.de


mailto:m.dahlbeck@math.uni-goettingen.de
mailto:m.dahlbeck@math.uni-goettingen.de
mailto:anja2.fischer@tu-dortmund.de
mailto:frank.fischer@uni-mainz.de

consists of n one-dimensional departments [n] := {1,...,n} with given positive lengths ¢;, i € [n],
pairwise non-negative weights w;; = wj; € Ry, 4,5 € [n], i < j, which usually correspond to
the amount of transport between the departments, and a set R := [m], m € N, of rows. The
objective is to find an assignment r: [n] — R of departments to rows and horizontal positions for
the centers of the departments such that departments in the same row do not overlap and such
that the total weighted sum of the center-to-center distances, measured in horizontal direction,
between all pairs of departments is minimized. So we look for a vector ¢ € R™ of positions
and a vector r € R" of the assignment of the departments to the m rows solving the following
optimization problem

min Z Wii|lg — qj
reR™ geR™ ilgi = gil

i,j€[n]
1<J
b+ L, . .
s.t. g —qj| > 12 L i,j € [n],i < j, if r; =7j.

The special case of the MRFLP with m = 2 is called Double-Row Facility Layout Problem (DRFLP),
see, e. g., [11,[29]. The DRFLP is in particular relevant for real-world applications because material
handling and thus real factory layouts most often reduce to double-row layouts and variants
thereof. Indeed, it was noted by several authors that in factory planning the costs of the
production are highly influenced by the layout of the departments, see, e.g., [18 36} 65]. Besides
its applications in factory planning, the DRFLP can be used to find an arrangement of rooms in
hospitals [19] 28] 32], office centers or schools [7]. Further applications include setting books on
a shelf [§], balancing hydraulic turbine runners and optimal data memory layout generation for
digital signal processors [16]. We refer to [42] for further applications.

In the following, we denote the center-to-center distance between two departments ¢,j €
[n],i < j, by dij = dj;. To illustrate the structure of double-row layouts and the corresponding
distance calculation we give an example. Note that in an optimal double-row layout there might
be free space between two neighboring departments in the same row.

Example 1 We consider four departments with lengths ¢; =4, 1 =1,2,3, 4 = 1 and pairwise
non-zero weights wis = woz = 1, woq = 2. Figure (1] illustrates an optimal double-row layout with
solution value 1-2 = 2.

Figure 1: An optimal double-row layout for an instance with ¢; = i, i = 1,2,3, ¢4 = 1, and
non-zero weights wi3 = wog = 1, wey = 2. Note that there is some free space between
the neighboring departments 1 and 2 in row 1.

1.1 Literature Review

A well-studied special case of the MRFLP is the Single-Row Facility Layout Problem (SRFLP) with
m = 1, i.e., all departments are assigned to the same row. Exact optimization approaches
for the SRFLP are based on relaxations of integer linear programming (ILP) and semidefinite
programming (SDP) formulations, see, e. g., |3, 4[5, [10] as well as [I3], 15, 17, 43],[44]. The strongest
ILP approach is an linear programming based cutting plane algorithm using betweenness variables
that can solve instances with up to 35 departments within a few hours [5]. The strongest SDP
approach to date, using products of ordering variables, is even stronger and allows to solve
instances with up to 42 departments within one hour and to obtain small gaps for instances with



up to 81 departments within 51 hours [43], [44]. Additionally, several heuristic algorithms have
been suggested that are able to obtain good layouts [22] 25 49] 50, 58| [60]. One of the leading
heuristics was presented in [60], where a multi-start simulated annealing heuristic obtains the
best known solutions or small gaps for instances from the literature with 60 to 80 departments.
Furthermore this heuristic is tested on instances with up to 1000 departments. A recent survey
on the SRFLP is given in [47].

In contrast to the SRFLP, the DRFLP has received much less attention in the literature. From a
practical point of view the DRFLP seems much harder than the SRFLP. The ILP-based approach
in [2I] (see also the corresponding corrections by [68]) can handle instances with up to 10
departments whereas the exact ILP approach of [8] can solve instances with up to 12 departments
to optimality. The latter model was improved in [63] such that one is able to solve a DRFLP
instance with 15 departments in at most 11 hours. Recently, [29] presented an algorithm which
can solve DRFLP instances with up to 16 departments in less than 12 hours.

To the best of our knowledge there has not been research on computing non-trivial lower
bounds for the DRFLP. The enumeration scheme of [29] cannot be used to obtain lower bounds for
larger instances because one would have to calculate a lower bound for each of the exponentially
many row assignments, which is out of scope for n large. The mixed-integer programming models,
see, e.g., [8, [63], are based on big-M-type constraints to couple continuous position variables
with binary ordering variables. Thus, their linear relaxations are rather weak. So using them in
a branch-and-cut approach leads to weak lower bounds and so to large gaps for medium-sized
and large DRFLP instances, even after a longer time limit because the root node gaps are hardly
improved. For detailed computational results we refer to Section [

For the DRFLP only few problem-specific heuristics were presented in the literature [21], [3T), 506,
69], partially handling some extended versions that include, e. g., clearance conditions between
departments in the same row. But without the knowledge of good lower bounds it is hard to
evaluate the quality of these heuristics.

Because the MRFLP and the DRFLP are very challenging problems in practice, several special
cases have been studied in the literature. There are two main classes of simplifications. First
one reduces the freedom in the arrangement of the departments. In the Space-Free MRFLP and
DRFLP (SF-MRFLP and SF-DRFLP) one restricts to a common left border of the rows and spaces
between neighboring departments in the same row are not allowed. For the SF-DRFLP, which
is also known as Corridor Allocation Problem, heuristics and exact approaches were presented
in [2, 48] and [7), 29, [41]. Similar to the general DRFLP the enumeration approach of [29] can
solve space-free double-row instances with up to 16 departments in less than 12 hours. If one
additionally fixes the row assignment of each of the departments we derive the k-Parallel Row
Ordering Problem (kPROP) (in our notation k equals the number of rows m) and the Parallel Row
Ordering Problem (PROP) for m = 2 [9, 38, 55, [66]. The best approach for these problems in [29]
is the basis for the enumerative approach for the DRFLP. Instances with up to 25 departments
are solved to optimality. For larger n one can derive lower bounds via the SDP approach in [38].

The second area of simplifications for the DRFLP considers the departments and not their
arrangement. The Multi-Row Equidistant Facility Layout Problem (MREFLP) is a special case
of the MRFLP with all departments equal in shape [6] and the DRFLP with departments of equal
length is called (DREFLP). Recently, in [I2] it is shown that in the MREFLP the departments
can be arranged on an integer grid and an ILP and an SDP model are presented. As a result,
equidistant double-row and equidistant multi-row instances with up to 25 departments were
solved to optimality for 2 < m < 5 and gaps with less than 4 % were obtained for instances with
up to 50 departments and 2 < m < 5. Due to the grid structure of optimal solutions the MREFLP
can be seen as a special case of the Quadratic Assignment Problem (QAP), see, e.g., [54]. In [39]
it is shown that the best method for the SRFLP is better than methods especially tailored to the
equidistant SRFLP, see, e. g., [57, [59].

If we restrict the SRFLP with departments of equal length to binary weights w;; € {0,1},4,j €



[n],i < j, we obtain the well-studied Minimum Linear Arrangement Problem (LA), see, e.g.,
[34, B35]. Given a graph G = (V, E) with, w.l.o.g., V. ={1,...,n}, the LA looks for a bijection
q: V — V such that

> e — g

ijel

is minimized. The LA is already an NP-hard problem [30] and hence all other row layout problems
mentioned above are also NP-hard. For the LA combinatorial lower bounds were presented
in [20]. These results were the starting point for our investigations together with a research
question in [40]. In [40] the so called Checkpoint Ordering Problem (CPOP) was introduced. Given
a set of n departments with lengths ¢; and weights w;, 7 € [n], the CPOP asks for a space-free
non-overlapping arrangement of the departments in one row such that the sum of the weighted
distances of the centers of the departments to a checkpoint whose position is given in advance
is minimized. The CPOP is closely related to the SRFLP and it was asked in [40] whether some
partial relation of the SRFLP and certain scheduling problems can be exploited further in the row
layout setting.

1.2 Our Contribution

The main contributions of this paper are the following:

e We indicate a relation between some special DRFLP, where we only explicitly measure the
(weighted) distance of some specific department to the others, to the parallel identical
machine scheduling problem with minimum (weighted) completion time.

o We develop the first non-trivial combinatorial lower bounds for the DRFLP, the DREFLP and
the PROP. These bounds can also be extended to the multi-row case, i.e., to the MRFLP, the
MREFLP and the kPROP.

e We show how to combine these lower bounds with a new mixed-integer linear programming
model to compute even stronger lower bounds for the DRFLP, the DREFLP and the PROP via
some branch-and-cut algorithm within a given time limit of a few minutes.

e We present a corrected and short proof of a result of Samarghandi and Eshghi [61] which
states that the SRFLP with weights w;; = 1,4,j € [n],i < j, can be solved to optimality in
polynomial time by using some specific order of the departments. We use this result to
further strengthen our lower bounding model for the PROP.

e In a computational study we compare our lower bounds for DRFLP instances from the
literature as well as for medium-sized and large randomly generated instances with lower
bounds received via some branch-and-cut algorithm within a time limit of one hour for a
well-known DRFLP formulation [§]. Furthermore we compare them to some heuristically
determined upper bounds. Apart from this we investigate the strength of our DREFLP and
PROP lower bounds.

This paper is structured as follows. In Section [2| we present combinatorial lower bounds for
the DRFLP and prove their correctness. In Section [3| we introduce a distance-based ILP model to
further improve these bounds. Furthermore we shortly explain in both sections which adaptations
are needed for deriving lower bounds for the PROP (and partially the kPROP). In Section 4| we
computationally investigate the strength of our newly derived lower bounds for medium-sized
and large DRFLP, DREFLP as well as PROP instances by comparing them to some bounds from the
literature and heuristically determined upper bounds. We conclude this paper in Section [5| and
present directions for future work.



2 Combinatorial Lower Bounds

To the best of our knowledge combinatorial lower bounds specialized to the DRFLP are not known
in the literature and lower bounds received via some branch-and-cut algorithm within a given
time limit of one hour for some DRFLP formulation from the literature [8] are rather weak as
we will see in Section [4] In this section we present three possibilities to compute combinatorial
lower bounds for the DRFLP. To simplify the presentation we concentrate on lower bounds for the
DRFLP and show at the end of this section how to extend these lower bounds to the MRFLP and
to the kPROP and the PROP as well. Apart from this we will have a closer look at the equidistant
case of the DRFLP.

In the following we generalize the so called star inequalities of the LA, see, e.g., [20], and we
indicate a connection of a special DRFLP to the parallel identical machine scheduling problem
with minimum weighted completion time with four machines (an exact definition is given below).
With these results we partially answer a research question in [40] whether one can use ideas from
the scheduling literature for row layout problems.

2.1 Weighted Star Lower Bound

We start with a description of the star inequalities, which are used for determining lower bounds
for the optimal solution value of the LA in [20] given some graph G = (V, E). Let ¢ be a solution
of the LA. Then the star inequalities for a fixed node i € V and a set S C V' \ {i} read as follows

> lai— gl > [ WL (1)

JjeS

see, e.g., [20]. One can derive this formula by arranging all nodes in S as close as possible to
node i. With S; = {j € V:ij € E} a lower bound for the optimal solution value of the LA is
given by

%Z {(ISJZWJ :

eV

because we count the minimal contribution of each node (each pairwise absolute difference is
counted twice and so we have to divide the sum by two).

In the following we present three different ways to measure the contribution of each department
to the sum of the weighted distances in the DRFLP. These three approaches are related to the
Parallel Identical Machine Scheduling Problem with minimum weighted completion time, see, e. g.,
[33, 146, B3], 64], often called P|| > wiC) where C, denotes the completion time of some job k.

Definition 2 Given a set of jobs J with processing times pr, € Ry and weights wi € Ry, k € J,
one looks for an assignment of start times ty € Ry of the jobs J to w € IN parallel identical
machines such that no two jobs overlap on one machine and such that the sum of the weighted
completion times ) ,c; wpCy with C = ty + py is minimized. For constant u we denote this
problem by P,|| > wiCk and for u part of the input by P|| > wiCl.

The scheduling problem P,|| >" wiCy is weakly NP-hard, see, e. g., [52], and P|| > wiCy is NP-
hard in the strong sense [52]. For u = 1, this problem is a single machine scheduling problem
and can be solved in polynomial time by the so called Smith rule [64]. The Smith rule states
that in an optimal solution the jobs are ordered non-increasingly by their relative weights % for
k € J. In the literature the Smith rule has also been extended to the parallel machine case, i. e.,
the jobs are ordered non-increasingly by their relative weights % for k € J and we assign each
of the jobs using this order to the next machine that gets idle. As we will see below, in general
optimality might be lost for a schedule determined like this. Further, it is well known that the
unweighted case, i.e., P|| > Cy with wy = 1 for k € J, can be solved to optimality in polynomial



time by the Shortest Processing Time rule (SPT), where one processes the jobs in increasing order
of their processing time. We will show next how to use these rules for deriving combinatorial
lower bounds for the optimal value of some DRFLP instance. For this we will frequently use the
following notation.

Definition 3 Let (n,w,?) be a DRFLP instance. We denote by
Q(n,w,?) ={(r,q): r,q is a feasible solution for the DRFLP instance (n,w,{)}

the set of feasible solutions. For a fized department i € [n], a set S C [n]\ {i} and some
(r,q) € Q(n,w, ) we denote the sum of the weighted distances from all departments in S to i by

)= wijlgi — g5

JjES
The best possible value of W;(-,S) for some fized set S over all feasible solutions is denoted by

Wi S) = i WZ 7S )
( ) (r,q)gilll(g,w,f) (q )

and the optimal value of the DRFLP is then

o~

W::%( min Y Wi(q, [n] \ {i}).

r,q)€Q(n,w,?) i)

Note that in the calculation of W we have to divide the sum of the Wi(.,.) by two because each
pairwise distance is counted twice.

__The common idea for our combinatorial bounding procedure is to find lower bounds for
Wi([n]\{i}), which will give rise to lower bounds for W: for each feasible solution (r, q) € Q(n, w, ¢)
we have

32 Wil \{i) =53  min  Wg[n]\{i}) < %( min - Wig, [n] \ {i}) =

icm e (r,9)€9(n,w,l) r,q)€Q(n,w,f) i)

The following proposition is essential for our considerations. It reduces the set of possibly
optimal solutions.

Proposition 4 Let (n,w,{) be a DRFLP instance and let i € [n],S C [n]\ {i}. Then there exists
a solution (r,q) € Q(n,w,l) for which W;(S) is attained such that there is some j € S with
qi = qj, 1. e., j lies directly opposite i.

Proof. Let i € [n], S C [n] \ {i} and let (r,¢q) € Q(n,w,?) be a solution minimizing W;(-,S).
Assume, w.l.0.g., that r; = 1 and that {j € S: r; = 2} # (), otherwise we can easily place one
department 7 opposite to ¢ and reduce the distance of ¢ and 7. We get

S) =Y wijlai—qil+ Y wila —aq)+ Y. wij(g;— @)+ > wij(e;— a)-

jES jES jes jes
rj=1 q;<qi i <q; qi=q;
r;=2 ri=2

=0

If there does not exist a j € S with ¢; = ¢;, then by the optimality of (7, ¢) shifting all departments
J € 8 with 7; = 2 to the left or to the right by some small ¢ > 0 does not change the objective
value. So we can shift all departments in row 2, w.l.0.g., to the left until one department lies
opposite 7. O

This result shows that in order to determine a lower bound for WZ(S ) for i € [n],S C [n]\ {i} it
suffices to determine a lower bound for varying j € S opposite i. This motivates the following
definition.
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Figure 2: Visualization of the connection of the DRFLP and parallel machine scheduling on four
machines. Here departments ¢ and j lie opposite and we have to arrange departments
{s1,...,56}. In the lower bound calculations we will partially adjust the start of the
jobs (departments) at a machine by half the length of i (see gray area) or half the
length of j. Furthermore we have to keep in mind that in scheduling one considers the
completion times of the jobs but in the DRFLP we measure the distances between the
centers of the departments.

Definition 5 Let (n,w,{) be a DRFLP instance, and let i € [n], S C [n]\ {i} and j € S. Denote
W) (8) = min {Wi(g, ): (r.9) € Qn, w, 1), 4i = 45} - (2
An immediate consequence of Proposition [4] is the following corollary.

Corollary 6 Let (n,w,) be a DRFLP instance and let i € [n],S C [n]\ {i}. Then Wi(S) =
minjes W(l,_])(s)

Thus, in order to compute lower bounds for I//I\/, it suffices to determine lower bounds for W(i’j)(S )
for all valid choices of i, j and S. In the following we determine three different lower bounds for
I//[\/(m)(S ) given some DRFLP instance. In all three variants we interpret the optimization problem
for computing W(M)(S ) as a scheduling problem Py|| > wiC) with weights wy = w;;. The
departments correspond to the jobs in the Py||Y" wiC) and the lengths of the departments to
the processing times, i.e., pp = {x, k € S\ {j}. Given a feasible solution of the optimization
problem , then, as illustrated in Figure [2, machine 1 and machine 2 of the scheduling problem
correspond to row 1 in this solution and machine 3 and machine 4 to row 2.

Thus we are able to use methods from the scheduling literature to compute lower bounds
for the DRFLP. All lower bound calculations have in common that we sort the jobs in S\ {j}
by some given order. Respecting some machine-dependent non-availability times from zero to
a=(a1,...,as) € RL U{oc} (i.e., no job on machine k may start before ay, k = 1,...,4), the
jobs are assigned in a greedy manner. Whenever a machine becomes idle and is available one
assigns the next unscheduled job in the list non-preemptively. Our basic algorithm is summarized
in Algorithm [T
Definition 7 Let S = (s1,...,5|g)) be an ordered sequence of jobs (departments) with processing
times (lengths) £% € IRLS‘ and let a € Ri denote four non-availability times. Then we denote by
Ctasie(S 05, a) the greedy solution returned by Algorithm when scheduling the jobs in this order.

For the first lower bound we use the SPT rule, i. e., we order the jobs (departments) by increasing
length. Furthermore, machine 1 and machine 2 are non-available from 0 to % and machine 3 and

machine 4 from 0 to %
Definition 8 Let (n,w,f) be a DRFLP instance. Let i € [n], S C [n]\ {i}, j € S with S;pt =

spt
(81,5 8|5)-1) @ sequence of departments in S\ {j} with length 057" = (lsys ... ,Esm_l) ordered
by increasing lengths and let

t, (] basic/ aspt pSPt 0 0 4
CFEI(S, ) 1= CPE(ST 0007 (5, 5, 5

oS>

))-



Algorithm 1: Basic(S = (s, .. .,s|5|),ﬁs,a)
Input :parallel machine scheduling problem with ordered jobs S = (s1,...,s|g/),

processing times ¢ € IR‘ | , non-availability times from zero to a = (ai,...,a4)
on the 4 machines
Output : completion times C, , s € S, as CcPhasic(§ 05 ).
1 Initialize (Zl, 22, Zg, 24) — (al, ey (14).
2 for k=1,...,|5| do
Choose m € argmin{/,: o € {1,2,3,4}}.
T T 165,
Cs, < b
3 return C,, s, € S.

Furthermore, let w,y = (w}y, ..., wg(\S\—l)) be the weights w;, of k € S\ {j}, ordered decreasingly.
Then the SPT-lower-bound is
1811 - i
W (S) = 3 wie (Cet(s, ) - 2 ).
k=1

In the special case of all weights being equal to one the SPT-distance-bound is

[S]-1
Wi (S) = 3 (Ch(s e - ).

k=1
The SPT-distance-bound cannot be used to derive bounds for the optimal value of the DRFLP.
However, it can be used to derive lower bounds for the (geometric) distances between the
departments themselves without regarding the amount of transports. We will make use of them
later in the lower bound ILP model presented in Section (3| In W(S pt)(S ) we assign the highest
weights to the earliest jobs (the departments closest to department i) in order to get a lower
bound for W(ivj)(S ). For an illustration we refer to F igure

Proposition 9 Let (n,w,?) be a DRFLP instance, and let i € [n], S C [n]\ {i}, 7 € S and

W(”ff;)(S) and Wép \(S) as defined above. Then

|S|—1
W(Cfsjt HllIl{ Z ‘qz qsk’ ) € Q(n7w7€)7 qi = Q_]}7 (3)
W(ipj)(S) < W(i,j)(S). (4)

Proof. Let i € [n], S C [n]\ {i},7 € S. The correctness of (3] follows directly by the correctness
of the SPT rule for the problem P4|| > Ck. Note that in comparison to the scheduling problem in
the DRFLP the distances are measured between the centers of the departments, i. e., we obtain
diy. =C *%,kGS\{j}, anddijzo.

The only difference in is that we additionally assign the highest weights to the departments
closest to ¢ which maintains correctness. O

Example 10 Consider a double-row instance with n =8, ¢, = k, k € [6], {7 =4, g =1, and
non-zero weights wig = %, wog = 1, wgg = 3, wag = 3, wsg = 1, wgs = 7, wrg = 5. Our aim is to
compute W(dgsg)([ﬂ) and W(Sg” ;)([7]) Therefore we consider the problem Py|| ;6] wksCl Where
the non-availability times range from zero to f3/2 = 0.5 on machines 1 and 2 and to ¢7/2 = 2

on machines 3 and 4. We apply the SPT rule for the jobs (departments) [6] and obtain the



schedule illustrated in Figure Then we arrange the departments on machine 1 and machine 2
space-free to row 1 in the double-row layout by respecting their order and the departments in
machine 3 and machine 4 space-free to row 2 such that department 8 lies directly opposite 7 as
illustrated in Figure So we get W&%([?}) =14+15+3+4+4.5+5.5=19.5. Next, we
assign the highest weights to departments closest to department 8. For instance, wgg is assigned
to department 1 and wsg to department 2. In total, we obtain

WP (7)) =7-14+3-15+3-3+1-44+1-454+0.5-5.5=31.75.

(8.7)
&l 0 l3
S ¢ ls
¥ b
¥ t

(a) A schedule obtained by the SPT rule for set of jobs [6] where & and £ are fixed.

6 2 811 3

5 7 4

(b) Double-row layout obtained by arranging the departments from Figure [3al to row 1 and row
2 such that department 8 lies directly opposite department 7.

Figure 3: Consider an instance with n =8, ¢ = k, k € [6], {7 = 4, fg = 1, and non-zero weights
wig = 3, wos = 1, wyg = 3, was = 3, wsg = 1, wgs = 7, wrs = 5. Then we obtain
WL ([7]) = 19.5 and W ([7]) = 31.75.
Note that in general the value minjcg W(C}S;.)(S ) (and thus the value minjcg W(Sip]t.)(S )) is not
obtained by arranging i € [n] directly opposite a shortest department of S C [n] \ {i}.

Example 11 Consider a DRFLP instance with ¢; = ... = /¢4 = 1, {5 = 5 and non-zero weights
wij =1, 4,7 € [5],i < j. Then Wl () =5 for j = 2,3,4 and S = {2,...,5}, but W} (S) =

W(Slpg)(S) =1+2+1=4. So it is the best to assign the largest department directly opposite

department 7 in this example. The corresponding layout is illustrated in Figure

Figure 4: Consider a double-row instance with /1 = ... = {;, = 1, {5 = 5 and weights w;; = 1,
i,j € [5],i < j. The sum of the (weighted) distances of department 1 to the remaining
departments is minimized by arranging it directly opposite department 5, which is the
largest department in this instance.

2.2 Scheduling Lower Bound

In this section we suggest two further possibilities to bound I//I\/(L 5(8) withi € [n], S C [n]\{i},j €
S from below. Our main tool is the approximation algorithm in [46] for the P|| > w;C). The



associated algorithm determines a schedule by applying the Smith rule in the parallel machine
case. The jobs are ordered non-increasingly by and the corresponding schedule is determined
by Algorithm [

Theorem 12 ([}6]) We consider the problem P||% wiCy with jobs J. Then using the Smith

H‘[ -approximation algorithm for the P|| Y wyCy with the

14+v2
2

rule for sorting the jobs leads to a

running time O(|J| - log(|J])). Moreover, in the case with at least two machines, the bound
is tight.

We will write o* % := 1+72\/§ ~ 1.207. In order to determine a lower bound for W(i,j)(‘s’) for 7 €
[n], S C [n]\{i},j € S, we again interpret the departments S\ {j} as jobs of Py|| > e\ 53 wirCh
and apply the approximation algorithm of Kawaguchi and Kyan [46]. However, in the lower
bound calculation we have to take care of two facts. First, the distance calculations for the DRFLP
are center-to-center whereas the algorithm by Kawaguchi and Kyan is based on completion times.
Second, because the Py|| > wyC} solution is not exact but only approximate, we must respect
the approximation factor a® %,

Definition 13 Let (n,w,?) be a DRFLP instance, and let i € [n], S C [n]\ {i} and j € S. We
denote by S;¢ = (s1,...,s)5-1) a sequence of departments S\ {j} with length vector 055" ordered
according to the szth rule, i. e., non-increasingly by w”“ Denote by

Csc,(i,j)(57 g) — Cb‘ZSiC(S;C, ESJS'C7 (07 0,0, 0))

the completion times returned by Algorithm/[1] for this ordering. Then the SCHED1-lower-bound is

1S|-1 1S|-1
Wsz?j = aKK Z wZSk CSS,S 1,] 76) + Z wisk : mln{glaf }_ esﬁk) (5)

Proposition 14 Let (n,w,{) be a DRFLP instance and i € [n],j € S C [n]\{i}. Then W;)(5) <

Proof. Let i € [n],j7 € S C[n]\ {i} be given. Here i lies opposite j and we want to bound the
sum of the weighted distances of ¢ to all other departments. We want to interpret this as a variant
of Paf| Y opes\(j3 wikCk- Let (r.q) € Q(n,w, () be an optimal solution of ( . A corresponding

solution of Py Zkes\{]} w;ikC is then Cy = |qx — ¢ + L — 2k ke S\{j}, where iy =1 if k
is in the same row as ¢ and 7 = j otherwise. The completlon tlmes of the scheduling problem
are formed by taking into account that the DRFLP measures center-to-center distances. Let v*
denote the optimal value of the scheduling problem Py||>";.c s\{;} WikCl, then

Wan($) = Y wilar—ail = Y. waCr+3 Y wi(min{l;, 6} — )
keS\{j} keS\{s} keS\{s}
>0 4 Y wi(min{l, 4} — )
kesS\{j}
151-1 S1-1

QI%K Z wi8k0227(i7j)(sv E) +% Z Wisy, (min{givej} - Zsk) szc,])(s)
k=1 k=1

v

where the last inequality follows by Theorem (I

The following Example [T5] illustrates the differences to the calculation of the star lower bounds.
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Example 15 We consider again Example [10|and our aim is to compute W(Sg 7)( [7]). We sort the
departments by decreasing relative weights, i.e., S7¢ = (6,3,4,2,1,5), and compute C(-7) (S, ¢).
The obtained schedule is illustrated in Figure |5a) and the corresponding double-row layout is
illustrated in Figure[5b] where we do not show department 7 because it overlaps with departments 2
and 4 while the distance calculation is done as illustrated here. Then we obtain

1
W(8 7)([ ]) = OzKiK (w18(€1 + 52) + wogly + wsgls + wagly + w58(€5 + 53) + w68€6)

+ 3 % (minflr, s} — £4) & 34.2 > 31.75 = Wk (([7)).
ke(6]

g

Lo 4

(a) Schedule on four machines obtained using the Smith rule.

1 2 4

(b) Double-row layout deduced from the schedule above where 8 lies directly opposite 7. Note
that department 7 is not drawn because it is larger than department 8 and would overlap
with departments 2 and 4.

Figure 5: Consider an instance with n = 8, ¢, = k, k € [6], {7 = 4, fs = 1, and non-zero
Weights w18 — %, waog — 1, w3s — 3, Wy — 3, Ws8 — 1, Wes — 7, wrg = 5. We get
W(sgj)([?]) ~ 34.2.

By Proposition we obtain a lower bound for W(i7j)(S),i € [n],S C[n]\{i},j € S. But, as
shown in Example [15| and Figure we do not receive a valid double-row layout. The reason
for this is that we only use % and neglect that one of the two departments might be
longer For calculating the next bound we introduce two artificial jobs (departments) with length

1+ (max{¢;, ¢;} — min{¢;, {;}) = [ty K | and weights such that they are chosen first by the Smith
rule In order to get a best poss1ble lower bound afterwards the weight is chosen minimal with

respect to the desired property.

Definition 16 Let (n,w,?) be a DRFLP instance, and let i € [n], S C [n]\{i} and j € S. Define
B = max{E: k € S\ {j}}. We add two dummy departments n + 1 and n + 2 with lengths

6—0; . 06—t
loi1 = bnpz = | 5 261 and weights Wint1) = Wint2) = 5‘ L Le tS5% = (s1,--.,85141) be
a sequence of departments S U {n + 1,n + 2} \ {j} ordered accordmg to the Smith rule with

s1 =n+41,s9 =n+ 2 and with length vector 05 and denote by
.. . gsc2
Ce2h)(8,0) 1= CPe(S3°%, 4%, (0,0,0,0))
the completion times returned by Algorithm [1] for this ordering. Then the SCHED2-lower-bound is
[S]+1 |S|+1

sc sc2,(i,5 . Ls
WER(S) o= —r Y Wi, - CPD(S,0) + > wig, - (3min{l, €5} — =
k=1 k=3

11



Proposition 17 Let (n,w,{) be a DRFLP instance and i € [n|,j € S C [n]\{i}. Then W(“;CJ%(S) <

Proof. Let i € [n],j € S C [n]\{i} be given. The proof of this result is similar to the proof of
Proposition In contrast to this proof we introduce two dummy departments n + 1,n + 2
here to level different lengths of 7 and j. In the associated scheduling problem we then also
count the completion times of the dummy departments. So we have to subtract this value
afterwards. Let all objects be as defined in Definition [16{and let (r,q) € Q(n,w, ) be an optimal
solution of . The corresponding scheduling solution is Cs, = |¢s, — ¢i| + %(Esk — min{¢;, ¢;})
for k =3,...,|55¢|. Let v* be the optimal solution value of P|| Zkes;?°‘2 w;C, then

—

Win(S) = > wirlak — ¢l

keS\{j}
|S|+1 |S|+1
> Z wis, Cs;, + % Z wis, (min{l;, €;} — Ly, ) — wz‘(n+1)€n+1 - wi(n+2)£(n+2)
k=1 k=3
|S|+1 ,
> vt + % Z Wi, (min{l;, 0} — £s,) — ﬁ(éi_;j)
k=3
|S]+1 N |S]+1 iy
> S Y wis, C3E (S 0) + § Y wis, (min{l, £} — £y,) — BEFE-
k=1 k=3
= Wi (9),

where the last inequality follows by Theorem Furthermore note that by the choice of
By lnt1 = lny2, Wi(ni1) = Wi(ny2) Using the Smith rule it is possible to set s1 =n+1, 52 = n+2.0

The combination of the previous results leads to one of our main results — a first combinatorial
lower bound for the optimal value of the DRFLP.

Theorem 18 Let (n,w,{) be a DRFLP instance. Let V; := {k € [n]\ {i}: wy > 0} for i € [n].
Then

1 : spt - sc - sc2 (Y7
2 ‘Ez[:} ?611‘2 max{W(i’j) (Vi) W(i,j) (Vi) W(i,j) (Vi)} (7)

is a lower bound for the optimal value w of the DRFLP. The bound @ can be computed in
O (n? - log(n)).

Proof. The correctness follows from propositions EI, and [L7 and the definition of W. The run-
ning time for fixed i € [n],j € Vj, is O (n - log(n)) because one has to sort the jobs (departments)
in order to apply Algorithm [I| Since there are O (n?) such summands the total running time is
O (n? - log(n)). O

2.3 Extensions

In this section we discuss extensions of the combinatorial lower bounds to the general MRFLP, the
DREFLP and the PROP.

2.3.1 MRFLP

In general, all the lower bounds presented above for the DRFLP can be extended to lower bounds
for the MRFLP. Indeed, for the bounds in Proposition [9] we can use the same approach but we
have to check all (nlil1) (with S C [n]\ {i}) choices for departments directly opposite the fixed

12



department ¢ € [n]. The same is true for the scheduling bounds SCHED1 and SCHED2. For the
MRFLP we have to slightly extend Algorithm [I] to handle scheduling problems on 2m parallel
machines. However, the running time for the calculation of is increased significantly in
comparison to the double-row case, but remains polynomial if m is fixed.

2.3.2 DREFLP

In the calculation of the SPT-lower-bound we assign high weights to small departments. So
the question arises if we can simplify the calculation of the combinatorial lower bounds in the
equidistant case, because there we do not need Algorithm [I] to determine an optimal arrangement
of the departments depending on their lengths. We start with the special case of all weights
being equal to one. Note that we assume as done in the literature, see, e.g., [0, [12], that the
department lengths are equal to one.

Proposition 19 Let (n,w,1) be a DREFLP instance. Let i € [n] and S C [n]\ {i}, then for all
j € S\ {i} and all solutions (r,q) € Q(n,w,1) we get

$W+1)2 QIS|214J+1)2 <> i — axl-

4 kesS

WEH(S) = { +

Proof. For i € [n] we arrange one department of S C [n] \ {i} directly opposite i and we assign

the remaining P‘SY'T_lW departments to row 1 and USIT_lJ departments to row 2. The result follows

from the star inequalities for the LA. O

Consequently, we can also simplify the calculation of the SPT-lower bound. For i € [n] we sort
the departments in S C [n] \ {i¢} by decreasing weights w;, k& € S, and assign the departments in
that order as close as possible to i, i.e., a department with highest weight w;i, k € S, lies directly
opposite i. We denote this lower bound by WF°rt(S).

If we know that two departments ¢, € [n],i < j, overlap and so lie exactly opposite due to
the grid structure [12], we can determine a lower bound for the weighted distances of i and j to
the departments S C [n] \ {7,j}. For this we order the departments in S by decreasing weight

wik + wjg, k € S, and get a sequence SZF;-Spt = (81,---,5|5)). With
E-spt,(,7 __ basic/ gE-spt
CHFsph(id) (§) = CPasie(§7P (1,...,1),(0,0,0,0))
we get
WETH(S) = D (wigy + wjs, ) (CPH(S)). (8)
k=1

Proposition 20 Let (n,w,1) be a DREFLP instance. Let i,j € [n],i < j, and S C [n]\ {i,7},
then for all DREFLP solutions (r,q) € Q(n,w, 1) with ¢; = q; we have

W PHS) < 7 (win + wje) g — il
keS

Proof. The result follows directly by Proposition [9] and its proof. O

2.3.3 PROP

Finally we have a look at row layout problems where the assignment of the departments to the
rows is already known like the SRFLP, the PROP and the kPROP. We concentrate on the PROP in
the description, but the other cases follow analogously.

13



For the PROP the lower bound calculation of W(ds.) and W( ) i,7 € [nl],i # j, can be adapted
as follows. Because the row assignment is fixed, we can split the calculation of the distances in
inner-row and inter-row distances. Let i € [n] and S C [n] \ {i}. We first order the departments
S1:={j€S:r;=r;} CS which are in the same row as i increasingly by their lengths and get
S — (g1, .. ,8|s;|) with length vector 5" Applying Algorithm [1| we get the completion times

Cinn,i(s’ f) — CbasiC(Sinn’ESi“n (62,’ @2 , 00, OO))

and with (wly, ... ,wz’.‘sﬂ) being a decreasingly sorted list of the weights w;, k € S1, the bounds

|51 . [S1]
VVidSt_inn(S) — Z(Clnn Z(S €) )’ Wispt—lnn Z wzk’ Cmn K S E)
k=1

5,

For the inter-row distances we have to consider all possible departments lying opposite 7. So
let j € S with r; # r; be fixed. Now order the remaining departments in the other row, i.e.
Soj =1k € S:j#k,r #r} CS, by increasing length and get S}nt = (5,17~-'=S\,52j|) with

length vector 57 Applying Algorithm |1| we get the completion times

Cint,(i,j)(57 E) _ CbaSiC(S}Ht’ES}“t’ (007 0, %’ %))
As before, with (w}), ... ,w2’|52|) being a decreasingly sorted list of the weights w;, k € Sa 5, we
get the bounds
dst-int & int, (é,7) £
W(i,j) (S) = kz_:l (CYS;c (Sv ﬁ) - 7)7
192,41 o :
W () = 3 wh(O S0 - )

Combining the inner-row and inter-row bounds leads to W(P d)St(S) and W(P: Js)p *(S). Similar

adaptions are possible for improving W(w)(S) (W(SZCJZ)(S) for the PROP is then the same as
W@Cj)(S)) in the case of fixed row assignments. We denote the improved PROP bounds by
prepending “P-” to the name.

In order to compute a lower bound for the PROP we can sum up the lower bounds for inner-row
distances of each of the departments to the others and divide this sum by two. To obtain a global
lower bound for the inter-row distances in the PROP we sum up the weighted distances of each
department in row 1 to row 2, i. e., for each ¢ € [n] with r; = 1 we compute Minje ] ;=2 W(Szp;)mt(S)
and vice versa and we take the maximum value of these. By this method we do not have to
divide the obtained value by two.

3 A Distance-Based Lower Bounding ILP Model

For the SRFLP a distance-based model was introduced in [10] to compute a lower bound for the
optimal solution value. The lower bound calculation was combined with some branch-and-cut
algorithm. These results were based on investigations of the LA in [20] where the authors combined
a distance model with combinatorial bounds. In Section we introduce an ILP model consisting
of distance variables and so called overlap variables, which is not a formulation for the DRFLP.
The optimal solution value of that model is a lower bound for the optimal value of the DRFLP.
Our model is based on our combinatorial lower bounds presented in the previous section. In the
equidistant case of the DRFLP the model can be strengthened and we will also mention which
adaptions are possible in the case of PROP or kPROP. We want to use the newly derived cutting
planes in a branch-and-cut algorithm. So we describe in Section [3.2] appropriate separators.
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3.1 The Lower Bounding Model

In the description of our ILP model we start with the variables. We use distance variables
dij = dj; > 0,1,5 € [n],i < j. In contrast to the literature, see, e.g., [29, [63], where left-right
ordering variables were used, we use binary overlap variables z;; = z;; € {0,1},4,j € [n],i < j.

zz+1z]

Two departments ¢ and j overlap if their positions satisfy |¢; — ¢;| < . The associated

variables have the following interpretation

1, departments 7 and j lie in different rows and overlap,
i —
Y 0, otherwise.

We want to note that the model does not contain position variables for the departments.

It was proven in [29] that there always exists an optimal double-row layout where the distance
from the left border of the leftmost department to the right border of the rightmost department
is at most M := ZZL—L”—“ £; where the departments are sorted in ascending order according

3 |+1
to their length. Apart from this we define a parameter ¢ € {0, 1} which is one if and only if all
department lengths are integral. This is the case in almost all test instances in the literature.
Our lower bounding model for the DRFLP reads as follows.

min Z wijdij

i,j€[n]
1<j

i,j€ES
1<J
Z $ij§’5’+1, ZE[TL],SC[TL]\{’L} with Z@Z&,
JeESUT JjES
T:={j €]\ (SU{i}): {; > max e}, (10)

d'Lj + (éi;€j> Tij > %a 7’3] € [n]vl < ja (11)
dig+ (M = ;= 4+ 50) wiy <M =555 i j e [n]i <, (12)
dij + djr, — dig > 0, l]vke[ I 1{i, 4, k} = 3,1 <k, (13)
> dij > man( "H(S), € [n], 5 C [n] \ {i}, (14)
JjeSs
Wi (),

Zwmdzg > Hélélmax W(Slc,])(s)? ) 1€ [TL],S c Vi (15)
s<8 W5 ()

ZdUJFO,Z xij > o, C [n],|S| =3, O—ZE —i—IrélnEZ, (16)
i,jE€S i,jES i€S

1<j 1<j

Z dz‘j-i-O Z Tij = 0, SC[n],]S]:ZI, (17)
1,JES 1,j€S

1<j i<j

3
;E +2- min (6, + L),
¢ 11742

Z flgjdl] “+ o0 Z Tij > o, S C [n], |S| >3, (18)
1,JES 1,jES

1<J 1<J

(5 -5e).
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Figure 6: Visualization of the forest associated to the overlap variables of a double-row layout.
Each node represents a department and there exists an edge between two different
departments if and only if both overlap.

Tij = Tj; € {0, 1}, i,J € [n]vZ <J <19)
dij = dj; >0, i,J € [n],i <.

The overlap variables in a double-row layout have to build a forest if we interpret them as edges
in a graph where each department represents a single node of the associated graph and two nodes
(departments) are connected by an edge if both overlap in the layout, see Figure @ We ensure
this by the well-known subtour elimination constraints @D, see, e.g., [24], 27], for the complete
description of the forest polytope. But the forest also has to satisfy further properties concerning
the degree of certain nodes. Let i € [n] be fixed and let S C [n]\ {i} with >>;cq¢; > £;, i.e., the
departments in S are in total at least as long as department 4, then at most |S| + 1 departments
of the set SU{k € [n]\ (SU{i}): ) > maxjecg{;} can overlap with 4. This results in (10]. So,
for instance, a department ¢ can overlap with at most two departments that are at least as long
as ¢ itself.

The distance and the overlap variables are coupled via and . On the one hand, if two
departments do not overlap, then the distance between the centers of both is at least the sum of
half the lengths of the departments. On the other hand the distance of two departments that
overlap cannot be larger than the sum of half the lengths of both departments. Assuming integral
department length we can even enforce that this value is % less because the overlap is then at least
one half (the departments are arranged on the half grid according to [42]). As used in previous
layout models, see, e. g., [L0], the distance variables have to satisfy the triangle inequalities .
Furthermore, we use our combinatorial bounds to bound the sum of the (weighted) distances
between all departments of some set S C [n], see (14)—(L5).

If we know that certain departments do not overlap pairwise, then we can treat them as
departments in an SRFLP instance and use constraints known to be valid for the SRFLP, see
and . For the validity of these inequalities and especially for the calculation of the right-hand
side o one compares all different orderings of the associated departments and counts how often
the length of each single department appears. Inequalities are an adapted version of the so
called clique inequalities presented in [I0] for the SRFLP. Note, inequalities f are trivially
satisfied if one of the associated z-variables equals one. Finally, we have the integrality of the

overlap variables .

3.1.1 Adaptations of Our Lower Bounding Model for the DREFLP

For the DREFLP there always exists an optimal solution on the grid [I2]. Therefore we can restrict
to solutions where two departments overlap if and only if they lie directly opposite each other.
So the interpretation of our overlap variables changes to

. . {1, if 4 and j lie directly opposite each other,
ij Ji

0, otherwise,

i,j € [n],7 < j. Our model specialized to the DREFLP reads as follows.

min Z wijdi]’
i,j€[n]
1<j
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(13),

> <1, i € [n], (20)
J€ln]
J#i
e n
PEEE )
1,j€[n]
1<)
. 2n
> xijzn—[?)%rl, n>09, (22)
i,j€[n]
<]
dij + x5; > 1, i,j € [n],i < j, (23)
dij+foj§M, i,7 € [n],i <7, (24)
(n+1)n(n—1) dd
> diy > {(n+2)1712(n—2)’ "o (25)
i 1, neven,
1<J
(SR NEEED)
Z dijZ T + f ) Z'G[Tl}, (26)
Jen\{i}
Z widi; > W™(S), i€, ScV, (27)
jes
> (windiy, + wipdsy) — ;Wi (5)) = 0, i,j € [nl,i <, Cn]\{i,j}, (28)
kes
S dy+o Y a4 >0 SISl >3,0="1L (s~ 15]),
1,JES 1,JES
i<j i<j
(29)
vy = x5 € {0,1}, i,j € [n],i <. (30)

There always exists an optimal solution to the DREFLP on the grid [I2]. So each department may

overlap with at most one department, see . Additionally, we can bound the total sum of the

overlap variables by [5]. We can also generalize t0 32, jesicj T < {@J for sets S C [n].

Constraints and can be seen as a strengthened version of inequalities @ and .

For n > 9 there always exists an optimal equidistant double-row layout which uses at most
2n 2n

[?W — 1 columns of the grid [12]. It follows that at least n — [7W + 1 columns contain two

departments, see . If two departments overlap, then their distance is zero, see , and
at least one otherwise, see . In the unweighted case of the DREFLP, i.e., if all weights are
equal to one, an optimal solution can be determined directly [23] and this value is a lower bound
for the sum of the distances in the DREFLP, see . Note that we are not aware of a similar
result for the DRFLP. So we take advantage of the DREFLP structure here. Apart from this we
can bound the sum of the weighted distances of some i € [n] to all departments S C V; from
below using our combinatorial bounds, see . If two departments i, j € [n],i < j, overlap, we
can use Wg:js)p t(S ) defined in @i as a lower bound for the weighted distances of ¢ and j to the
departments S C [n] \ {4,;}, see (28). If i and j do not overlap, inequality is redundant.
Inequalities are the clique inequalities used before with ¢; = 1,4 € [n].

3.1.2 Adaptations of Our Model for the PROP

For the PROP further improvements of our lower bounding model @f are possible because
the row assignment of the departments is given. So one can hope to achieve smaller gaps for the
PROP in comparison to the DRFLP, especially if the rows are balanced, i. e., the sum of the lengths
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n 5 3 11 2 4 n—1 n odd

n—1 5 3 1] 2 4 n n even

Figure 7: Visualization of optimal solutions (and permutations 7* of [n]) for SRFLP instances
with weights w;; = 1,4,j € [n],i < j, and ¢; < {;4q for i € [n — 1] for the different
parities of n.

of the departments in row 1 is close to the corresponding sum in row 2. Balanced layouts are
of special interest in practice because in factory planning the size of the factory influences the
production costs [51].

For the departments in some row r € R we can use results from the SRFLP literature because
the departments are arranged without spaces. For bounding the sum of the distances of the
departments we use the fact that the SRFLP with w;; = 1,4,j € [n],7 < j, can easily be solved in
polynomial time.

Theorem 21 ([61]) Let (n,w,?) with w;; =1, 4,j € [n],i < j, be an SRFLP instance. Let a
stngle-row layout with associated permutation ©* be derived by sorting the departments in an
ascending order according to their lengths and placing the first department in the middle and the
remaining ones right and left in an alternating manner to the ones already assigned, see Figure[7
Then this layout is optimal with objective value "5 S0 €; 4+ 3725 (k — 1)(n — k)l “(k)-

This result was stated in [61] but not proven correctly. So we present a new proof here.

Proof. Let an arbitrary permutation m: [n] — [n] of the departments be given where (k)
denotes the kth department from the left border. The distance d ( ) ( of two departments

7)
w(1),7(5),%,4 € [n],7(i) < 7(j), equals dr(yr(;) = M + zk z—i—l <(k)- Then with C' :=

Li+0;
Picticj —xt = 5L S 4 we get
n n—1
S widy = Y dy = 3 duyey = C+ 3 Z lagey = C + Y _(k = 1)(n = B)lrgry. (31)
1,j=1 3,j=1 4,j=1 i,j=1k=i+1 k=2
i<j i<j i<j 1<j

For proving the optimality of 7* we consider the quadratic function f: [2,n — 1] — R with
f(k) = (k—1)(n — k). The function f is strongly concave with its unique maximum point at
k* = 2 € [2,n — 1] and is symmetric to k*. Then is minimized by 7* and the result
follows. O

Let Ry, k € R, denote the indices of the departments which are assigned to row k. Then we
can use the following constraints for PROP.

> titdiy = ( L) =Y e?) , keR, (32)

1,JER i€Ry I€ERy,
1<J
2 +£ el 1
SNoody> Y S+ S (2= D(Rkl = 2)lpeniy,  kER, (33)
1,J€ER 1,JERy z2=2
1<J 1<J
Ui+ 4
di; > ;7, keRij€ Ryi<j, (34)
+4; .. .
ZE 7, ke R, i,j€ Rg,i<j, (35)
zERy,
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i+ 45
dij <max{ Y £, Y L} - %, i € Ri,j € Rs. (36)
z2€ER1 2€ER>

Treating the departments in the same row as a SRFLP we can use the clique equation as
shown to be valid for the SRFLP in [I0] (we can still use (18))). As already mentioned the sum of
the distances between departments in the same row can be bounded using Theorem [21| where in
an optimal layout of departments Ry of the unweighted SRFLP according to Theorem [21|is
denoted by 7**.

Of course, two departments in the same row satisfy a minimal distance condition, see (34]).
So we do not need for departments in the same row. Note that in the PROP one can bound
distances between two departments in the same row and also in different rows because
the departments are arranged without spaces and with a fixed left border. So we do not need
for departments lying in the same row. Apart from this we can use the improved combinatorial
lower bounds in and . For a summary of the complete PROP model we refer to the

appendix.

3.2 Separation

In this section we describe a branch-and-cut algorithm which is based on the inequalities @f
and we explain for which subsets S C [n] the constraints are indeed used in the calculation of
the lower bounds. We include inequalities from the beginning as well as inequalities @D for
S = [n] and for S = V;. Inequalities are included for S = V; and S = [n]. Furthermore,
we add all triangle inequalities .

The remaining constraints are separated in the following way. We separate inequalities by
complete enumeration. It is well-known that the problem to decide whether the vector of the
x-variables is contained in the forest polytope, i.e., the convex hull over all incidence vectors
of forests of a complete undirected graph with n nodes, can be solved in polynomial time, see,
e.g., [62] pp. 880-881. Indeed, assuming non-negativity of the z-variables, one can determine a
maximally violated subtour elimination constraint @ solving special minimum cut problems on
an associated directed graph.

There are potentially exponentially many inequalities of type , so we use the following
heuristic approach. First we sort the departments according to their lengths in ascending order,
ie., 01 <ly<...<t; <...</{y Foreachi € [n] we determine the set S; := {j € [n]\ {i}: ¢; >
¢;} and separate constraints

Z]IijSQ

j€S;

explicitly. These inequalities imply all inequalities of with [S| = 1. For 2 < |S| < 3 we add
an inequality if S satisfies } ;e fp > £; and 3 ¢ S\{k} l; < {; for all k € S, because the inequality
is redundant otherwise.

We separate inequalities and by brute-force enumeration. In [10] it is conjectured
that the separation problem of the general clique inequalities of the SRFLP is NP-hard. For this
reason we restrict to sets S of size three and four in and check all these inequalities by
complete enumeration.

It remains the usage of our combinatorial lower bounds in and . Given a relaxation z, d,
we construct two sets for fixed i € [n]. At first, we consider all departments which are according to
the distance variables d close to i, i.e., S} = {j € [n]\ {i}: di; < ei;ej} and previous tests, which
are not included in this paper, show that it is worth to check S = {j € [n] \ {i}: d;j < €; + £;}
as well.

For the PROP similar separation strategies were used. Testing our DREFLP model with a branch-

and-cut algorithm we include inequalities , 7, and from the beginning
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as well as inequalities for S = V;. We separate inequalities (24)) and by brute force
enumeration and as done in our DRFLP lower bounding model we restrict inequalities (29) to sets
|S| = 3 and |S| = 4 and check all these inequalities by complete enumeration.

4 Computational Results

In this section we present our computational experiments implemented in C++. We used Cplex
12.8 [45] as an ILP solver. All results were conducted on a 2.30GHz dual-core computer running
on Debian GNU /Linux 8 in single processor mode.

We compare our combinatorial lower bounds (7)) as well as our branch-and-cut algorithm,
described in Section interrupted after a time limit of a few minutes on instances from the
literature as well as on randomly generated medium-sized and large double-row instances. All
instances are available from the authors. Because the use of the enumerative approach of [29] for
computing lower bounds is out of scope due to the exponential number of subproblems that have
to be solved (approximately), we compare our lower bounds to the lower bounds that can be
achieved via branch-and-cut on the model presented in [8] within a given time limit of one hour.
We decided to use the weaker model presented in [§] and not to use the model in [63] because
this contains a huge number of variables and constraints for larger n and so even the calculation
of the root node value was rather time-consuming in our tests. Further note that we do not test
instances from [21], 56] because there only double-row instances with clearance conditions were
considered.

Since only smaller instances were solved to optimality in the literature (see Table , we
generate random instances with n € {20, 30,40,50}. To obtain a wide set of random instances
we set the transport density to 10 %, 50 % and 100 % and we choose integer transport weights
randomly between 1 and 10. The integral lengths of the departments are chosen randomly
between 1 and 15 (see Table [2)) as well as between 5 and 10 (see Table [3). For each type we
created ten instances. We denote these instances by nj where n is the number of departments
and k is the transport density. The first column “Instance” of the tables displays the instance
name. The lower bound value obtained by applying a branch-and-cut algorithm with a given time
limit of one hour for the DRFLP formulation in [§] is given in column “Amaral”. Our combinatorial
bound is presented as well as the lower bounds derived via branch-and-cut within a given
time limit of three resp. ten minutes, see columns “ILPs;,;,” and “ILPigm:,”. In order to show
that our combinatorial lower bounds significantly strengthen our ILP model we tested our ILP
without using the lower bounds. The results can be found in column ILPY°. The best known
upper bound is given in column “heuristic” (or “optimal” in Table (1)) and the time spent for the
heuristic in seconds is given in column “time heur.”. For the convenience of the reader we also
calculate the average gaps. The gaps are calculated via

upper bound — lower bound

Gap = 100,

upper bound

and are given in percent. “Gapam,.”~ refers to the average gaps of the model in [§] after a

time limit of one hour and “Gap”, “Gaprrprere” and “Gaprrp” to the average gaps of our
combinatorial lower bound and of our lower bounding model without and with the use of the
combinatorial lower bounds, respectively.

In order to obtain upper bounds we use a heuristic approach similar to the one in [2I]. Note
that, given the row assignment and the order of the departments in each row, we only need to
solve a small linear program to obtain the exact position of the departments and hence possible
spaces between neighboring departments, see, e.g., [56]. In [2I] five ways for determining a
DRFLP start solution were presented. For each instance we test all five variants and afterwards
apply a 1-OPT and a 2-OPT heuristic to a best start layout, combined with determining the
best positions via the associated linear program.
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Instance | Amaral (7) ILP3min | optimal | heuristic | Gapama. | Gapgy | Gaprrp
HK15 9059.0 | 7900.0 | 11777.0 | 16570.0 | 16740.0 45.33 | 52.32 28.93
Amlda 1757.0 | 1483.5 2082.0 | 2904.0 2920.0 39.50 | 48.92 28.31
Aml4db 1451.5 | 1386.0 1893.5 | 2736.0 2736.0 46.95 | 49.34 30.79
Aml1by 1554.5 | 1543.0 2209.0 | 3195.0 3272.0 51.35 | 51.71 30.86
P16, 2247.5 | 3676.5 4937.0 | 7365.5 7466.5 69.49 | 50.08 32.97
P16, 1598.5 | 2968.0 4053.0 | 5870.5 6306.0 72.77 | 49.44 30.96

Table 1: Results for instances from the literature where the optimal solution values are known
[29]. The gaps are given in percent.

Instance | Amaral (7 ILP ILPsnin | ILPiomin heuristic || Gapama. | Gapg | Gaprpprwre | Gaprrp || time heur.
2010 338.79 289.86 468.14 500.60 505.45 617.35 38.13 51.29 19.11 14.21 3.15
2050 1527.12 3202.19 3626.43 5469.71 5495.22 8506.05 81.89 62.45 57.23 35.39 5.21
20100 3310.24 10431.77 8529.66 13986.62 14058.16 20943.10 83.95 50.29 59.15 32.84 7.09
3010 331.84 802.17 1018.18 1514.81 1520.63 2544.90 86.45 68.37 58.93 39.48 15.30
3050 2101.71 9839.95 8233.34 17484.33 17498.97 30996.05 93.22 68.33 73.41 43.56 30.81
30100 4291.18 34059.95 | 18287.52 43916.72 43931.98 69736.45 93.85 51.20 73.75 37.03 58.69
4010 432.03 1796.76 1904.74 3801.49 3973.69 8007.10 94.42 77.08 75.90 49.43 55.09
4050 3043.79 22713.90 | 13841.45 42319.98 42332.02 76055.40 95.99 70.16 81.78 44.39 142.88
40100 6090.44 80325.81 | 29964.70 | 102936.41 | 102974.79 | 167635.30 96.36 52.06 82.11 38.56 280.10
5010 17.82 3184.06 3053.28 6667.47 8725.34 18006.80 99.89 82.23 82.89 51.39 159.35
5050 52.36 42486.84 | 22313.42 79545.26 79550.13 || 149788.90 99.97 71.61 85.08 46.84 427.47
50100 63.18 | 156449.80 | 48166.27 | 199949.20 | 199949.20 || 328566.70 99.98 52.37 85.32 39.13 1009.80

Table 2: Results for randomly generated double-row instances with integral department lengths
between 1 and 15. We display the average values over ten instances each. The average
gaps are given in percent. Note that for six instances with n = 50 and density 10 % we
had to enlarge the time limit to five minutes for 1L PP“"¢,

4.1 Results for the DRFLP

In Table [1) we show results for some DRFLP instances from the literature, see, e.g., [29], where
optimal solutions are known. Since the instances are rather small, the heuristic needs less than
20 seconds for each instance. The gap of our combinatorial lower bounds are close to 50 %
and by our branch-and-cut algorithm we reduce the gap to 28 % to 33%. The heuristically
determined solutions are rather good, but even for these small instances the heuristic could only
determine one optimal solution.

Tables [2| and [3| show that our combinatorial lower bounds, which were computed in less than
one second, clearly outperform the lower bounds obtained via branch-and-cut algorithm within
a time limit of one hour for the DRFLP formulation in [8] on the randomly generated instances.
These lower bounds are rather weak and so the gaps are close to 100 % for large n. Using
branch-and-cut to improve our bounds allows a significant strengthening to final gaps between
14 and 55%. For the ILP variant that does not use the combinatorial bounds the gaps are
much higher. For instances with at least 40 departments the average gaps are higher than 70 %.
Regarding and our ILP the gaps are smaller for dense instances. Enlarging the time limit
for our ILP approach from 3 to 10 minutes usually has only a very small effect on the bound.
So three minutes seem to be a good value (for the larger instances this is even faster than our
heuristic). Comparing the gaps in Tables [2] and [3| the instance type does not seem to have a large
impact on the quality of our lower bounding approach, especially for the non-sparse instances.

4.2 Results for the DREFLP

We consider the results of our lower bounding model and — specialized to the DREFLP.
In Table ] we compare our lower bounding model with a time limit of three minutes with an
ILP model for the DREFLP (denoted by “Gapanjos rrp 31”) and an SDP approach for the DREFLP
[12] (denoted by “Gapspp 31”) with a time limit of three hours. The upper bounds (“best ub”)
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Instance | Amaral (7] ILPY | ILPsmin | ILPiomin || heuristic | Gapama. | Gapg | Gaproprure | Gappp || time heur.
2019 251.69 334.18 402.79 502.13 502.13 674.85 54.01 47.03 33.92 21.12 2.80
2050 1276.73 4015.68 3428.96 6047.42 6054.10 8832.65 85.52 54.61 61.15 31.52 5.08
20100 2424.67 13225.15 8506.21 15833.20 15842.39 22573.75 89.24 41.45 62.31 29.85 7.20
3010 310.58 950.50 890.62 1723.57 1729.66 2905.65 88.49 65.80 67.78 39.01 15.73
3050 1838.96 12560.22 7744.96 21068.41 21070.50 32132.35 94.27 60.95 75.88 34.42 31.74
30100 3663.20 43408.32 | 18239.38 53278.66 53278.66 78339.90 95.32 44.57 76.71 31.98 50.78
4019 446.25 2072.82 1628.15 4171.48 4176.62 8168.50 94.32 74.07 79.66 50.86 54.25
4050 3039.25 28568.01 | 13403.33 50194.18 50194.18 79917.90 96.20 64.26 83.22 37.15 135.46
40100 5760.78 | 101189.12 | 29338.09 | 125597.20 | 125597.20 || 187431.80 96.93 46.00 84.35 32.98 242.43
5010 11.56 3652.35 2802.76 7695.32 7943.25 17620.70 99.94 79.24 84.04 54.58 176.94
5050 21.36 53907.31 | 21815.19 96871.04 96871.04 || 160570.10 99.99 66.42 86.41 39.64 383.10
50100 51.45 | 194844.10 | 47001.25 | 243675.60 | 243675.60 | 368747.80 99.99 47.15 87.25 33.90 886.15

Table 3: Results for randomly generated double-row instances with integral department lengths
between 5 and 10. We display the average values over ten instances each. The average
gaps are given in percent.

Instances for DREFLP | ILPs,,;, | best ub Gap Gaprrp | Gapanjos 1LpP 3n | Gapspp 3n
Yoo 4301 5821 6046 | 28.86 3.72 0.00 0.00
Yos 7032 9887 10170 | 30.86 2.78 1.22 0.36
Y30 9237 13315 13790 | 33.02 3.44 2.78 0.14
Y35 12607 18595 19087 | 33.95 2.58 21.27 0.26
Yo 15332 22809 23739 | 35.41 3.92 23.88 0.37
Yis 19952 29639 31442 | 36.54 5.73 26.35 0.65
Y50 25839 39450 41517 | 37.76 4.98 28.35 0.62

Table 4: Results for equidistant instances from the literature [I2] 67]. The upper bounds “best
ub” are taken from [12]. We compared our lower bounding model with the ILP and the
SDP from [I2] with a given time limit of three hours. The value of ([7]) and ILPs,,;, are
rounded to integers.

in Table {4 are taken from [12]. For benchmark instances from the literature, see, e.g., [39, [67],
with 20 to 50 departments the gaps of our combinatorial bounds are around 35 % and the gaps
of our lower bounding model are between 2.58 % and 5.73 %. While our lower bounding model
outperforms the ILP approach of [12] for n > 35, the SDP approach provides the best lower
bounds, but with a higher running time.

Additionally we test the equidistant so called “sko” benchmark instances of [17] with up to 81
departments. As n is rather large we increase the time limit of our lower bounding model to
15 minutes and 60 minutes, respectively. In order to simplify a comparison with the results in
Table 4] we used the program and the computer of [I2] for the SDP and ILP lower bounds of [12].
The results are shown in Tables[5]and [6] One can see that even for such large instances all gaps of
our lower bounding model are less than 13.14 % and usually smaller. Our combinatorial bounds
(7)), which lie between 53.21 % and 58.06 %, are significantly improved by our ILP. Similarly to
the Y-instances the SDP bounds are better.

Instances for DREFLP | ILP;5.m, | best ub Gap Gaprrp | Gapspp 3n
sko42-1 5957 11717 12731 53.21 7.96 0.72
sko49-1 9142 18736 20512 | 55.43 8.66 1.91
skob56-1 13942 29201 31988 | 56.41 8.71 1.95
sko64-1 20705 43408 48574 | 57.37 10.64 4.27

Table 5: Results for equidistant instances from the literature [I7]. We compare to the best upper
bounds, gaps and SDP lower bounds that are derived using the approach presented in
[12] with a time limit of three hours.
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Instances for DREFLP | ILPyy, | best ub | Gapm | Gapip | Gapspp 3
sko72-1 29912 | 61905 69621 | 57.04 11.08 4.87
sko81-1 43114 | 89288 | 102793 | 58.06 13.14 8.78

Table 6: Results for equidistant instances from the literature [I7]. We compare to the best upper
bounds, gaps and SDP lower bounds that are derived using the approach presented in
[12] with a time limit of three hours. Because of the large n we use a time limit of one
hour for our ILP lower bounding approach.

Comparing the results of the standard DRFLP and the DREFLP, one can see that the gaps of
our lower bounding model are much better in the equidistant case. One reason for this behavior
is that in the equidistant case we have a lower bound for the sum of the distances ([25]).

4.3 Results for the PROP

For the PROP we test the same instances as in [29]. The optimal solution values of all the instances
are given in [29]. Looking at the strength of our lower bounding approach adapted to the PROP
one sees in Table [7] that the average gaps are even better than for the DRFLP. Most often they
are less than 30 % and for the balanced instances with (approximately) half of the departments
in each row the average gaps are at most 16 %. So the approach seems to work well for balanced
instances. One reason for the worse performance on unbalanced instances is that the lower
bound calculation cannot take into account that some of the departments in a longer row will
not overlap with some of the departments in the other row at all. For this remember that the left
border of the layout is fixed and free spaces are not allowed between departments in the same
rOw.

5 Conclusion

The Double-Row Facility Layout Problem (DRFLP) is a very challenging problem with various
application areas, including factory planning. Despite its broad applicability it can only be
solved to optimality in reasonable time for rather small instances. Apart from this, using the
integer-programming based solution approaches from the literature one derives even with high
running times very large gaps for large instances. So heuristics are currently the only way
to determine solutions for larger instances. In order to evaluate the quality of heuristically
determined solutions, we developed in this paper combinatorial lower bounds for the optimal
solution value of the DRFLP. Indeed, interpreting some subproblem of the DRFLP as a parallel
identical machine scheduling problem we computed the first known non-trivial combinatorial
lower bounds for the DRFLP. Furthermore we combined these bounds with a new mixed-integer
linear programming model, which is indeed not a formulation for the DRFLP, to obtain even
better lower bounds. Only few heuristics are present in the literature for the standard DRFLP.
We compare our lower bounds to upper bounds derived by some construction heuristic presented
in [21] which is combined with a 1-opt and a 2-opt improvement heuristic. Our computational
results show that we were able to obtain non-trivial lower bounds for large double-row instances.
We received average gaps of 32 % to 46 % for large dense instances and of about 50 to 55 % for
large sparse instances using our lower bounding approach. Note that the pure combinatorial
bounds, which can be determined very fast, could usually be strengthened significantly, but with
average gaps from 40 % to 80 % they are still much better than the model [§] from the literature
after a time limit of one hour for larger instances. Additionally, we showed how our bounds can
be specialized to the equidistant DRFLP and can be extended to the (k-) parallel row ordering
problem. In both cases the gaps are better than for the DRFLP.

As already mentioned, only few heuristic approaches are known for the DRFLP in the literature.
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Instance | i for PROP | ILPjgsec | optimal | Gaprrp
P16 2 3756.80 6554.99 6934.75 5.46
P16 3 4598.28 7298.76 9452.25 22.99
P16 4 5028.68 8103.06 | 10522.75 23.33
P16 5 5350.14 8797.24 | 11767.75 25.44
P20 2 6587.88 | 11322.10 | 12772.75 11.36
P20 3 8455.90 | 12799.60 | 17520.75 26.69
P20 4 9184.90 | 14052.45 | 20493.25 31.12
P20 5 9815.33 | 15375.70 | 22558.75 31.76
P21 2 5722.76 9870.59 | 11109.40 10.98
P21 3 6792.91 | 11066.58 | 13297.20 16.64
P21 4 7887.36 | 13195.82 | 17310.80 23.63
P21 5 8203.20 | 13665.52 | 19159.40 28.33
P22 2 7203.15 | 12479.41 | 14090.30 11.48
P22 3 8729.44 | 14212.50 | 18295.50 22.24
P22 4 9941.98 | 16823.44 | 22567.10 25.48
P22 5 10232.11 | 17523.40 | 24132.10 27.25
P23 2 7590.92 | 13483.86 | 15048.40 10.52
P23 3 9604.89 | 15550.08 | 20248.40 23.19
P23 4 10777.65 | 18001.96 | 25070.60 28.11
P23 5 11171.86 | 19012.92 | 27313.80 30.13
P24 2 8604.50 | 15281.90 | 17563.20 13.03
P24 3 9808.99 | 16746.94 | 20632.00 18.59
P24 4 11445.04 | 19266.70 | 25632.40 24.58
P24 5 12543.23 | 21904.52 | 30316.80 27.45
P25 2 9507.26 | 17015.60 | 19393.30 12.40
P25 3 11746.93 | 19965.92 | 25477.90 21.32
P25 4 13478.91 | 23248.80 | 31095.10 25.13
P25 5 14043.55 | 24771.06 | 33228.50 25.34
AV25 2 6227.73 | 11166.12 | 13394.00 15.44
AV25 3 7635.86 | 13241.86 | 17278.20 22.94
AV25 4 8223.55 | 14455.58 | 19577.80 25.60
AV25 5 8868.04 | 15681.86 | 21808.00 27.26

Table 7: Results for PROP instances from the literature [9} [29]: The instance name includes the
number of departments n. The first |% | departments of an instance are assigned to
row 1. The table shows the average values of our lower bounds using the variant of
([7]) adapted for the PROP and using our lower bounding approach (ILPjosec), average
optimal solution values (“optimal”) and average gaps (“Gaprrp”) over five instances

each (and over two instances for n = 16 and n = 20). The gaps are given in percent.

24



Now, with this new possibility for evaluation, it remains for future work to construct new heuristic
approaches. Another interesting research question is to exploit which is the best way to extend
our lower bounding model to a DRFLP formulation. For good solution times the development of
sophisticated branching strategies in a branch-and-cut algorithm might be important.

From a practical point of view, it is important to extend the Single-Row Facility Layout Problem
and the DRFLP in order to handle more characteristics important in practice. For instance, the
standard models do not allow for individual input and output positions of the departments and
certain clearance conditions. Additionally, it remains for future work to investigate more complex
path structures in the shape of a U, a T or an X. Here the lower-bounding approaches developed
in the current paper might help in determining non-trivial lower bounds as well.
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Appendix

For the PROP with given row assignment r and sets R; = {j € [n]: r; = i},i = 1,2, we use the
following lower bounding model with M = max{}__ cp, £-,> .cp, {-
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