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Abstract

Some popular heuristics for combinatorial optimisation start by
constructing a feasible solution to a dual of the problem. We show
that such dual-based heuristics can exhibit highly counter-intuitive be-
haviour. In particular, for some problem classes, solving the dual ex-
actly invariably leads to much worse primal solutions than solving the
dual with a simple greedy heuristic. We provide a tentative explana-
tion for this phenomenon, based on the concept of primal degeneracy.
We use the simple plant location and set covering problems as exam-
ples
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1 Introduction

Many important combinatorial optimisation problems arising in practice
are NP-hard. Although highly effective exact solution methods have been
developed for NP-hard problems (see, e.g., [18, 34]), large-scale instances
can still pose a challenge for exact methods. In such cases, one must resort
to heuristics (see, e.g., [14]).

This paper is concerned with what we call dual-based heuristics. These
heuristics start by constructing a feasible solution to some kind of dual
problem (such as a linear programming dual or a Lagrangian dual). Once a
dual solution is obtained, they then attempt to use information from the dual
solution (such as reduced costs) to guide a primal heuristic. In fact, they
usually generate a sequence of dual solutions, which then yields a sequence
of primal solutions. At the end, one can just pick the best primal solution
found during the course of the procedure.

Dual-based heuristics can be regarded as primitive examples of what
are now called matheuristics, by which is meant heuristics that draw on
concepts from the traditional mathematical programming literature (see,
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e.g., [39]). In comparison with other matheuristics, however, dual-based
heuristics have two very nice features. The first is that their running times
and memory requirements tend to be bounded by a low-order polynomial
in the instance size. As a result, they can easily be applied to large-scale
instances. The second is that they yield both lower and upper bounds on the
optimal objective value. If these bounds are close, one has the reassurance
that the primal solution is of high quality.

Dual-based heuristics have proven to be highly successful on many well-
known problems, including, e.g., the simple plant location [9, 12, 21], set
covering [3, 7, 15], Steiner tree [41, 46], uncapacitated network design [2],
generalised assignment [2] and set partitioning problems [13, 25]. More re-
cently, researchers have begun looking into the possibility of speeding up
dual-based heuristics using parallel processors (e.g., [19]).

A natural question, however, is whether there really is any useful infor-
mation to be extracted from “good” dual solutions, or whether a random
dual solution would do just as well. A partial answer to this question is
that some dual-based heuristics have been shown to be approximation algo-
rithms (see, e.g., [45]). Roughly speaking, this means that there is a bound
on their worst-case error. Another partial answer is given in [47], in the
context of the set covering problem (SCP). They show empirically that, if
a dual solution is optimal, then the variables with zero reduced cost have a
high probability of belonging to an optimal solution.

In this paper, we continue to study this question from an empirical (and
statistical) viewpoint. We use the SCP and the simple plant location prob-
lem (SPLP) as test cases. For each problem, we consider several ways to
construct dual solutions, and conduct extensive computational experiments.
It turns out that dual-based heuristics can exhibit highly counter-intuitive
behaviour. In particular, in the case of the SPLP, solving the dual exactly
invariably leads to much worse primal solutions than solving the dual with
a simple greedy heuristic. We provide a tentative explanation of this phe-
nomenon, based on the presence or absence of primal degeneracy.

The paper has a very simple structure. In Section 2, we review the
relevant literature. Sections 3 and 4 are devoted to the SPLP and SCP,
respectively. Concluding remarks are made in Section 5. Throughout, we
assume that the reader is familiar with basic concepts of linear and integer
programming (see, e.g., [18] for a fine treatment).

2 Literature Review

We now briefly review the relevant literature. We recall the basics of dual-
based heuristics in Subsection 2.1. In Subsections 2.2 and 2.3, we cover
applications of the heuristics to the SPLP and SCP, respectively.
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2.1 Dual-based heuristics

Suppose we have formulated a combinatorial optimisation problem as an
integer linear program (ILP) of the form

min
{
cTx : Ax ≥ b, x ∈ Zn+

}
,

where A ∈ Qm×n and b ∈ Qm. The dual of the LP relaxation of this ILP is

max
{
bTπ : ATπ ≤ c, π ∈ Rm+

}
.

Any feasible solution π to this dual provides a lower bound for the original
problem. Thus, if we wish to obtain a lower bound quickly, we can solve the
dual approximately using some kind of heuristic.

In dual ascent, one starts with all π variables set to small values, and
then iteratively increases the value of a π variable, until no more can be
increased without violating dual feasibility [12, 21]. If desired, one can
attempt to improve the dual solution further by applying local search. This
is called dual adjustment in [21].

Now, for a given primal variable xj and a given dual solution π, consider
the following quantity:

c̄j(π) = cj −
m∑
i=1

πjAij .

We call this the approximate reduced cost. Intuitively speaking, if π is a near-
optimal dual solution, one might expect variables with small approximate
reduced cost to have a high probability of belonging to an optimal solution
of the original ILP. This leads to the idea of an integrated scheme in which
the approximate reduced costs are used to guide a primal heuristic [12, 21].
This is what we mean by a dual-based heuristic.

For some problems, Lagrangian relaxation (LR) can provide an attractive
alternative to dual ascent. Consider an ILP of the form:

min
{
cTx : Ax ≥ b, Cx ≥ d, x ∈ Zn+

}
,

where A ∈ Qm×n and C ∈ Qq×n. Relaxing the constraints Cx ≥ d, with a
vector λ ∈ Rq of Lagrangian multipliers, we obtain

min
{
cTx+ λT (d− Cx) : Ax ≥ b, x ∈ Zn+

}
,

The solution of this relaxed problem yields a lower bound (see, e.g., [24, 27,
30]). Moreover, for a given primal variable xj and a given λ, the quantity

c̄j(λ) = cj −
q∑
i=1

λjCij

can also be viewed as an approximate reduced cost (see, e.g., [15]).
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2.2 Application to the SPLP

In the SPLP (a.k.a. the Uncapacitated Facility Location Problem), there is
a set I of facilities and a set J of clients. For any i ∈ I, it costs fi to open
facility i. For any i ∈ I and j ∈ J , it costs cij to serve client j from facility i.
One must decide which facilities to open, and assign each client to an open
facility, at minimum cost. Balinski [5] formulated the SPLP as the following
0-1 LP:

min
∑

i∈I fiyi +
∑

i∈I
∑

j∈J cijxij (1)

s.t.
∑

i∈I xij = 1 (∀j ∈ J) (2)

yi − xij ≥ 0 (∀i ∈ I, j ∈ J) (3)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J) (4)

yi ∈ {0, 1} (∀i ∈ I). (5)

Here, xij indicates whether client j is assigned to facility i, and yi indicates
whether facility i is opened.

The LP relaxation of this formulation often gives very tight lower bounds
[1, 40]. On the other hand, the constraints (3) cause massive primal degen-
eracy, which makes the LP relaxation hard to solve (see, e.g., [44]).

A dual ascent approach was proposed in [12, 21]. They start by showing
that the dual of the LP relaxation can be written as:

max
∑

j∈J vj

s.t.
∑

j∈J max{0, vj − cij} ≤ fi (∀i ∈ I) (6)

vj ≥ 0 (∀j ∈ J),

where v ∈ R|J | is the vector of dual variables for constraints (2). They then
proceed as follows. First, set each vj to the cost of assigning client j to its
closest facility (i.e., the smallest cij value over all i ∈ I). Then, examine
each client j ∈ J in turn, and increase vj to the next smallest cij value,
or, if this renders the dual solution infeasible, by as much as possible while
maintaining feasibility. Repeat until no more increases are possible.

One can check that, for a given v, the approximate reduced costs of the
facilities are just the slacks of the constraints (6). Moreover, for any pair i, j,
the quantity max{0, vj − cij} can be viewed as an estimate of the dual price
of the constraint (3). This led Erlenkotter to propose a primal heuristic, in
which one iteratively opens facilities whose approximate reduced cost is zero
until, for each client j ∈ J , there is an open facility such that vj − cij = 0.

One can obtain improved dual solutions by applying local search (see,
e.g., [21, 32, 33, 36, 42]). This typically yields improved primal solutions too.
An analogous Lagrangian approach, in which constraints (2) are relaxed, was
studied in [9, 26]. See also [11, 29, 38] for related approaches.
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2.3 Application to the SCP

In the SCP, we are given positive integersm and n, a family of sets S1, . . . , Sn ⊂
{1, . . . ,m}, and a cost cj for j = 1, . . . , n. The task is to find a minimum-
cost collection of sets such that each member of {1, . . . ,m} is contained in
at least one set in the collection. The SCP can be formulated as a 0-1 LP
of the form:

min
{
cTx : Ax ≥ em, x ∈ {0, 1}n

}
, (7)

where xj indicates whether the jth set has been selected, the columns of
A ∈ {0, 1}mn encode the sets, and em is the all-ones vector of order m.

Since the upper bounds of one on the x variables are redundant, the dual
of the LP relaxation can be written in the simple form:

max
{
eTmπ : ATπ ≤ c, π ∈ Rm+

}
.

Balas and Ho [4] were the first to apply dual ascent to the SCP. They
begin with π set to the all-zeroes vector. They then sort the rows of A in
non-decreasing order of density (i.e., number of ‘1’s), and then go through
the sorted list, pushing each π variable up to its maximum possible value. To
construct primal solutions, they set to one all x variables for which c̄j(π) = 0,
and then drop variables, if necessary, to make the cover minimal. Beasley
[6] followed a similar scheme.

Fisher & Kedia [25] improved the scheme in two ways. First, they added
a local search phase to improve the dual solution. Second, they used an
improved primal heuristic, which proceeds as follows. Start with an empty
cover. For j = 1, . . . , n, let κ(j) ⊂ {1, . . . ,m} be the set of currently un-
covered rows that have a 1 in column j, and compute c̃j = cj −

∑
i∈κ(j) πi.

(Note that c̃j lies between the original cost cj and the approximate reduced
cost c̄j(π).) Set to one the x variable that minimises c̃j/|κ(j)|. Recompute
the c̃j , and repeat until a cover is obtained. At the end, the cover is again
made minimal if necessary.

Lagrangian relaxation has been applied to the SCP by many authors
(e.g., [3, 4, 6, 7, 10, 15, 17, 31]). In all of those papers, all of the linear
constraints are relaxed, and the subgradient method is used to get good
multipliers. To construct primal solutions, most of those authors simply set
x variables to one in non-decreasing order of c̄j(λ) until a cover is obtained,
and then make the cover minimal, if necessary, by setting a few variables
back to zero. To date, the best-performing Lagrangian scheme is that of
Caprara et al. [15], who used a clever technique to improve convergence in
the subgradient method, sophisticated rules for fixing primal variables, and
a primal heuristic analogous to that of [25] (mentioned above).

An initial study of the value of dual information for the SCP has been
made in [47]. They give evidence that, when the dual solution is optimal,
variables with zero reduced cost have a high probability of belonging to an
optimal solution.
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3 The Simple Plant Location Problem

This section is concerned with the SPLP. In Subsections 3.1 and 3.2, we
present deterministic and randomised procedures, respectively, for gener-
ating dual and primal solutions. In Subsections 3.3 and 3.4, we present
and analyse computational results obtained with the deterministic and ran-
domised procedures, respectively.

3.1 Deterministic procedures

Dual ascent is fast and simple, but the dual solution obtained is typically
sub-optimal. We found it useful to compute an optimal dual solution as
well. To do this, we simply solve the LP relaxation of (1)–(5). (This is easy
using modern LP solvers, even for quite large instances.)

We also experimented with using Lagrangian relaxation instead of dual
ascent, as in [9]. The idea is to relax the constraints (2), and then use
the subgradient method to generate a near-optimal vector of Lagrangian
multipliers, from which approximate reduced costs can be computed. Un-
fortunately, we did not find the results illuminating, because the multipliers
and primal solutions encountered depended heavily on the starting point,
the step size, the stopping rule, and so on.

To generate a primal solution from a given dual solution, we use the
dual-based drop heuristic that was presented in [38]. This heuristic, which
is a modified version of the classical drop heuristic of Feldman et al. [22],
is described in Algorithm 1. In our experience, the heuristic tends to per-
form slightly better than Erlenkotter’s primal heuristic. Moreover, it is fast.
(Specifically, it can be implemented to run in O(mn logm) time, where m
is the number of facilities and n the number of clients.)

In order to provide a benchmark, we also consider a primal heuristic that
does not exploit dual information. This heuristic is identical to Algorithm
1, except that we sort the facilities in non-increasing order of cost fi rather
than f̄i. We call this latter heuristic the cost-based drop heuristic.

3.2 Randomised procedures

The algorithms presented in the previous subsection yield only a small num-
ber of dual and primal solutions. Since we are interested in exploring poten-
tial correlations between the quality of dual and primal solutions, we really
want many solutions of each type. This led us to devise randomised versions
of the algorithms, which produce many solutions, rather than just one. Af-
ter trying several alternative ways to generate dual solutions, we settled on
the following two methods.

1. Randomized Dual Ascent. As already noted by Erlenkotter [21], the
precise dual vector obtained via dual ascent depends on the order in
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Algorithm 1: Dual-Based Drop Heuristic for SPLP

input : positive integers m, n, cost vectors f ∈ Zm+ , c ∈ Zmn+ ,
dual solution v ∈ Zn+.

Temporarily open all facilities;
Temporarily assign each client to the nearest facility;
Let U be the cost of the initial solution;
for all i ∈ I do

Let f̄i = fi −
∑

j∈J max
{

0, vj − cij
}

;

end
Sort the facilities in non-increasing order of f̄i (breaking ties at
random);
for i = 1 to m do

Let k be the ith facility in the sorted list;
Let ∆ be the increase in total cost that would be incurred by
closing facility k and re-assigning each of its clients to the next
nearest open facility;
if ∆ < 0 then

Close facility k and re-assign its clients;
Set U := U + ∆;

end

end
output: SPLP solution and associated upper bound U .
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which the clients are considered. So we simply run dual ascent a large
number of times, with the clients sorted in a random order in each
major iteration.

2. Perturbed LP. We solve the LP relaxation of (1)–(5), but add a small
random number, uniformly distributed in [−0.25, 0.25], to the right-
hand side of each constraint (2). The effect of the perturbation is to
make some of the vj more “attractive” than others in the dual. For
the instances that we tested, 0.25 was the smallest value that enabled
us to generate a reasonable number of distinct dual solutions. (We
will see in Subsection 3.4 that those dual solutions were all optimal or
near-optimal.)

In order to provide a benchmark, we also designed a randomised version
of the cost-based drop heuristic, that we described in the previous subsec-
tion. Instead of selecting the next facility in the sorted list as the next
candidate to be dropped, we select a facility at random from the next five
facilities in the list. (Five was the smallest value that led to a diversity of
primal solutions.)

3.3 Results with deterministic procedures

An extensive collection of benchmark SPLP instances is available here:

http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

After some experimentation, we selected four families of instances:

• K-median instances, constructed as in Anh et al. [1]. In these in-
stances, the facility and client locations are points in the unit square.
For m = n = 250, we created five instances with large facility costs
(Kmed-L), five with medium facility costs (Kmed-M) and five with small
facility costs (Kmed-S). These instances have small integrality gaps,
and we were able to find the optimal solutions easily using CPLEX.

• The M* instances of Kratica et al. [37]. In these instances, there is a
negative correlation between the facility costs and assignment costs.
They are hard to solve and have fairly large gaps. We consider only
the 15 smallest ones, for which optimal solutions are known (see [42]).
They have m = n ∈ {100, 200, 300}.

• The KG instances. These were created by Ghosh [28] using a similar
scheme to that of Koerkel [36]. They too are hard to solve and have
fairly large gaps. They come in two types, symmetric and asymmetric.
We denote these by KG-S and KG-A, respectively. We selected the
30 smallest ones, for which optimal solutions are known (see, e.g.,
[23, 42]). They have m = n = 250.
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Table 1: SPLP: Average percentage gaps with deterministic procedures.

lower bounds upper bounds

Set m = n ascent LP ascent simplex barrier cost-based

Kmed-L 0.54 0.00 2.09 1.97 0.36 11.8
Kmed-M 250 0.30 0.00 0.72 0.82 0.00 7.17
Kmed-S 0.00 0.00 0.02 0.04 0.00 0.03

MO 100 6.06 2.85 2.07 21.4 0.86 0.83
MP 200 7.27 4.20 2.64 20.7 0.21 1.31
MQ 300 7.21 4.04 1.47 23.7 0.28 1.07

KG-S-A 0.31 0.13 0.14 0.94 0.11 0.47
KG-S-B 250 1.48 0.96 0.64 3.42 0.37 1.35
KG-S-C 4.31 3.29 0.78 7.34 0.49 2.27

KG-A-A 0.30 0.14 0.16 0.86 0.11 0.48
KG-A-B 250 1.50 0.98 0.56 3.34 0.31 1.33
KG-A-C 4.11 3.13 0.79 8.08 0.67 2.32

Gap-C 100 68.8 28.2 43.1 41.0 32.0 40.9

• The instances from Kochetov & Ivanenko [35]. They only have m =
n = 100, but they are designed to have very large integrality gaps
(over 25% in all cases). There are 90 instances in total, and optimal
solutions are now known for all of them. We selected the 30 hardest
ones, called Gap-C instances.

We implemented the lower- and upper-bounding procedures in C, and
we used the CPLEX callable library (v. 12) to solve all LP relaxations. Out of
interest, we computed dual solutions using both simplex and barrier meth-
ods. (In the case of the barrier method, we switched off “crossover”, to
ensure that we found a dual solution that lies near the centre of the optimal
face in the dual.)

For each instance and each procedure, we computed the gap between
the resulting bound and the optimum, expressed as a percentage of the
optimum. Table 1 displays, for each set of instances and each procedure,
the average gap over the instances in the given set.

As expected, the K-median instances are the easiest, and the Gap-c

instances the most challenging. Also as expected, dual ascent consistently
yields worse lower bounds than LP relaxation. As for the four options for
producing upper bounds, we performed sign tests to check whether there
is a significant ordering between the options. The results can be found in
Table 2.

We see that, on average, the best upper bounds are obtained when the
dual-based heuristic is applied to an optimal dual solution obtained via the
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Table 2: SPLP: Results of sign tests on the quality of the upper bounds.

Hypothesis: barrier beats ascent ascent beats cost-based ascent beats simplex
Result: p < 10−11 p < 5× 10−4 p < 5× 10−9

barrier method. Moreover, even when a heuristic dual solution is computed
via dual ascent, the upper bounds obtained are typically better than those
found by the cost-based heuristic. In our view, this provides strong evidence
for the claim that dual information can be useful when driving a primal
heuristic.

The big surprise, however, is that the dual-based heuristic performs
poorly when the simplex method is used to compute the dual solution. This
is so despite the fact that the dual solution is guaranteed to be optimal. A
likely explanation for this unusual behaviour is the following. As mentioned
in Subsection 2.2, the primal LP is massively degenerate. This means that
there are typically a huge number of alternative optimal dual solutions to
the LP. Of those, the simplex method will select just one (more or less ar-
bitrary) basic solution, which will be an extreme point of the optimal face
in the dual. It seems that the “central” dual solution provided by barrier
leads to much more reliable reduced costs than the “extreme” one found by
simplex.

To test this hypothesis, we inspected the LP solutions in detail. It turns
out that, for most of the instances, over 90% of the basic variables took the
value zero in the LP solutions obtained by simplex. Moreover, around 90%
of the facility reduced costs were zero, with the remaining 10% being very
large. When barrier was used instead, both of these phenomena disappeared.

3.4 Results with randomised procedures

Now we turn our attention to the randomised procedures. Table 3 has a
similar interpretation to Table 1, except that each figure is averaged, not only
over the instances in the given set, but also over 100 runs of the randomised
procedures.

By comparing Table 3 with Table 1, we see that randomisation has little
effect on the lower bound obtained with dual ascent. (This is to be expected,
since there is nothing special about the order of the clients in the input
file.) We also see that perturbing the primal LP causes the lower bound
to deteriorate only a little on average, which confirms our belief that the
perturbed LP approach yields near-optimal dual vectors. As for the upper
bounds, randomisation has no noticeable effect in most cases. When barrier
is used, however, the perturbation tends to cause a small worsening. (This
too can be confirmed with a sign test.)

Since randomisation leads to multiple primal and dual solutions, a natu-
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Table 3: SPLP: Average percentage gaps with randomisation.

lower bounds upper bounds

Set m = n ascent LP ascent simplex barrier cost-based

Kmed-L 0.55 0.12 1.19 6.73 0.52 11.0
Kmed-M 250 0.29 0.02 0.67 5.97 0.17 7.25
Kmed-S 0.00 0.00 0.02 0.04 0.00 0.03

MO 100 6.07 3.24 2.47 19.9 0.95 3.56
MP 200 7.29 4.65 2.03 22.0 0.60 2.52
MQ 300 7.21 4.46 1.91 23.2 0.49 2.20

KG-S-A 0.31 0.15 0.13 0.95 0.11 0.48
KG-S-B 250 1.47 1.03 0.69 3.38 0.45 1.37
KG-S-C 4.31 3.49 0.94 6.65 0.57 2.17

KG-A-A 0.30 0.16 0.16 0.91 0.12 0.48
KG-A-B 250 1.50 1.05 0.60 3.37 0.37 1.35
KG-A-C 4.10 3.33 1.04 7.02 0.62 2.27

Gap-c 100 68.8 29.9 42.6 39.9 29.9 41.1

ral strategy is to run the procedures a fixed number of times, and then pick
the best lower and upper bounds obtained. The results for this approach
can be found in Table 4. We see that this leads to vastly improved upper
bounds in almost all cases. Nevertheless, the relative ordering remains much
the same, with barrier performing best and dual ascent coming second in
most cases.

Finally, for each instance and each of three methods (randomised dual
ascent, perturbed simplex and perturbed barrier), we produced scatterplots
to see whether good lower bounds tended to lead to good upper bounds.
Figure 1 shows two such scatterplots for one of the Kmed-S instances. The
horizontal and vertical axes represent the percentage gap for the lower and
upper bound, respectively. The scatterplots indicate that the correlation,
if any, is very weak. The same behaviour was found for other instances
and methods. In general, we found that the correlation coefficient varied
between -0.1 and 0.2, with no discernable pattern.

All things considered, we believe that randomised dual ascent is a very
promising approach for large-scale SPLP instances. It is extremely easy to
implement and, in our experiments, it was about 100 times faster than the
perturbed LP approach. It also has the advantage that one does not need
to use LP software.
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Table 4: SPLP: Average percentage gaps when randomisation applied and
best of 100 bounds taken.

lower bounds upper bounds

Set m = n ascent LP ascent simplex barrier cost-based

Kmed-L 0.49 0.00 0.17 1.71 0.00 7.82
Kmed-M 250 0.13 0.00 0.14 0.82 0.00 6.49
Kmed-S 0.00 0.00 0.00 0.00 0.00 0.03

MO 100 5.93 2.85 0.43 8.29 0.25 0.10
MP 200 7.23 4.20 0.35 10.8 0.12 0.11
MQ 300 7.18 4.04 0.02 12.8 0.23 0.11

KG-S-A 0.29 0.13 0.04 0.66 0.03 0.43
KG-S-B 250 1.45 0.96 0.25 2.01 0.19 0.98
KG-S-C 4.29 3.29 0.10 2.92 0.11 0.75

KG-A-A 0.28 0.14 0.06 0.60 0.05 0.39
KG-A-B 250 1.48 0.98 0.18 2.13 0.10 0.97
KG-A-C 4.09 3.13 0.19 3.04 0.18 0.87

Gap-c 100 56.4 28.2 17.1 21.2 12.9 28.6

Figure 1: SPLP: lower bound gap vs upper bound gap
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4 The Set Covering Problem

Now we move on to the SCP. This section is structured in exactly the same
way as the previous one.

4.1 Deterministic procedures

To obtain our initial dual solutions for the SCP, we use the same three
approaches that we proposed for the SPLP in Subsection 3.1: dual ascent,
LP via simplex and LP via interior-point. The only difference is that, for
dual ascent, we use the procedure of Balas & Ho [4] described in Subsection
2.3. Our implementation of this procedure runs in O

(
m(n + logm)

)
time.

In practice, it is very fast.
To generate a primal solution from a given dual solution, we use the

heuristic of Fisher & Kedia [25], described in Subsection 2.3. Our imple-
mentation runs in O(mn) time and is extremely fast in practice.

Again, in order to provide a benchmark, we also considered a primal
heuristic that does not use dual information. After some experimentation,
we settled on Algorithm 2, which is similar to a heuristic in Balas & Ho [4].
With some care, it can be implemented to run in O(mn) time.

Algorithm 2: Greedy Heuristic for Set Covering

input : positive integers m, n, cost vector c ∈ Zn+.
Set M := {1, . . . ,m}, N := {1, . . . , n}, C := ∅ and U := 0;
repeat

for all j ∈ N do
Let s(j) be the set of rows in M covered by column j;
if s(j) = ∅ then

Set N := N \ {j};
end

end
Let k ∈ N be the column that minimises cj/|s(j)|;
Set M := M \ s(k), N := N \ {k}, C := C ∪ {k} and
U := U + ck;

until M = ∅;
for all j ∈ C do

if C \ {j} is a cover then
set C := C \ {j} and U := U − cj ;

end

end
output: Minimal cover C and associated upper bound U .
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4.2 Randomised procedures

To obtain a large number of good quality dual solutions for the SCP, we
use the same two approaches that we used for the SPLP, i.e., randomised
dual ascent and perturbed LP. In each iteration of randomised dual ascent,
instead of picking the next row in the sorted list, we pick one row at random
from the next five in the list. As for the perturbed LP approach, we simply
solve the LP relaxation of (7), but add a small random number to each
component of em. As in the case of the SPLP, we let these random numbers
be uniformly distributed in [−0.25, 0.25].

Finally, we devised a randomised version of Algorithm 2. In each major
iteration, instead of selecting the column that minimises cj/|s(j)|, we select
a column at random from the five columns with smallest values of cj/|s(j)|.
The running time remains O(mn).

4.3 Results with deterministic procedures

As in the case of the SPLP, we implemented all of our lower- and upper-
bounding procedures in C. We ran our code on the standard collection of
benchmark SCP instances, which are available in the OR-Library [8]. For
these instances, the number of variables n is in {3000, 4000, 5000, 10000},
and the number of constraints m is set to n/10. Another parameter is the
density, which is the expected proportion of non-zero entries in the matrix
A. This parameter takes values in {2%, 5%, 10%, 20%}. There are 8 sets of
instances, labelled ‘A’ to ‘H’, with different parameter settings. In each set,
there are 5 instances, making 40 instances in total. Data on these instances
can be found in the first three columns of Table 5. Optimal values are known
for the sets A to F [16]. For sets G and H, we used the best-known upper
bounds, again taken from [16].

The last six columns in Table 5 have a similar meaning to the corre-
sponding ones in Table 1. The only difference is that, for sets G and H, the
average percentage gaps are with respect to the best-known upper bounds,
rather than the optimum.

The results are very different than the ones for the SPLP. In the first
place, the lower bounds from dual ascent are of very poor quality, and even
the ones from LP relaxation are not great. This is in line with the well-
known result that the cost of an optimal SCP solution can be as much
as lnm times larger than the LP bound (see, e.g., [43] and the references
therein). As for the upper bounds, there is no evidence that any of the
three dual-based heuristics performs better than the cost-based heuristic.
In fact, if anything, they look slightly worse. However, the differences are
not statistically significant (at the 0.05 level).
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Table 5: SCP: average percentage gaps with deterministic procedures

lower bounds upper bounds

Set n density ascent LP ascent simplex barrier cost-based

A 3000 2% 25.1 1.51 6.42 6.52 10.5 6.05
B 3000 5% 39.1 7.69 6.93 9.47 10.0 5.07
C 4000 2% 27.8 2.32 6.35 7.27 7.65 5.21
D 4000 5% 41.0 8.27 5.54 9.96 9.19 9.66
E 5000 10% 62.5 24.7 11.9 14.1 10.6 9.99
F 5000 20% 77.1 36.4 15.8 14.5 17.4 15.8
G 10000 2% 47.3 10.1 8.89 8.78 9.51 7.53
H 10000 5% 62.5 23.5 11.9 11.8 11.5 11.9

Mean 47.8 14.3 9.22 10.3 10.8 8.91

Table 6: SCP: average percentage gaps with randomisation

lower bounds upper bounds

Set n density ascent LP ascent simplex barrier cost-based

A 3000 2% 23.6 2.49 5.76 6.72 7.04 10.4
B 3000 5% 39.6 9.26 7.22 8.29 8.49 13.7
C 4000 2% 28.4 3.44 6.49 6.76 6.89 11.7
D 4000 5% 43.3 9.93 7.45 8.96 9.30 14.1
E 5000 10% 63.8 26.9 9.72 11.4 11.3 15.9
F 5000 20% 75.1 38.8 13.0 15.3 15.5 19.3
G 10000 2% 44.5 11.9 8.10 10.2 10.2 10.7
H 10000 5% 62.5 25.5 12.4 13.8 13.6 16.2

Mean 47.6 16.0 8.74 10.2 10.3 13.9

4.4 Results with randomised procedures

Table 6 presents the gaps obtained with the randomised procedures. By
comparing Table 6 with Table 5, we see that randomisation has little effect
on the lower bounds. For the upper bounds, however, randomisation causes
the cost-based heuristic to perform much worse. Oddly, it also seems to
cause the ascent-based heuristic to perform better. Indeed, there is now a
clear ordering, with dual ascent coming first and cost-based coming last.
This was confirmed by sign tests (Table 7).

Table 7: SCP: Results of sign tests on the quality of the upper bounds.

Hypothesis: ascent beats simplex simplex beats barrier barrier beats cost
Result: p < 10−6 p < 0.01 p < 10−12
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Table 8: SCP: average percentage gaps when randomisation applied and
best of 100 bounds taken.

lower bounds upper bounds

Set n density ascent LP ascent simplex barrier cost-based

A 3000 2% 17.5 1.51 2.07 2.86 2.77 4.16
B 3000 5% 30.5 7.69 0.79 0.79 1.59 3.72
C 4000 2% 21.4 2.32 3.00 2.90 3.08 4.52
D 4000 5% 34.2 8.27 2.13 3.44 2.86 4.35
E 5000 10% 52.1 24.7 1.41 2.07 2.07 3.55
F 5000 20% 65.8 36.4 4.40 4.40 4.40 7.16
G 10000 2% 37.8 10.1 4.09 5.77 5.77 6.50
H 10000 5% 55.2 23.5 7.42 7.39 6.93 10.2

Mean 39.3 14.3 3.16 3.70 3.68 5.52

Table 8 shows the results obtained when randomisation is applied 100
times and the best bounds are retained. As in the case of the SPLP, this
leads to vastly improved upper bounds in almost all cases. Nevertheless, the
relative ordering remains much the same, with dual ascent performing best
and cost-based coming last in most cases. This confirms our belief that dual
information, if used intelligently, can be useful for guiding primal heuristics.
It also makes us more convinced that randomised dual ascent is a promising
technique for producing upper bounds quickly.

Observe that, in the case of the SCP, the choice between simplex and
barrier has little effect on the quality of the resulting upper bounds. This is
very different from what we saw for the SPLP. The reason is probably that
primal degeneracy is less of an issue for the SCP. To confirm this, we check
the LP solutions in detail. In the solutions obtained by the simplex method,
only around 10% of the basic variables were at zero, compared with around
90% in the case of the SPLP.

Finally, Figure 2 shows two typical scatterplots obtained for the SCP.
As in the case of the SPLP, there is no obvious positive correlation between
the quality of the lower and upper bounds. In fact, the scatterplot on
the right suggests a small negative correlation. In general, we found that
the correlation coefficient varied between -0.1 and 0.1, with no discernable
pattern.

5 Conclusion

At the time of writing, dual-based heuristics have been around for about fifty
years. Although more sophisticated heuristics (and indeed meta-heuristics)
exist, dual-based heuristics are easy to code, scale well with problem size,
and tend to give solutions of acceptable quality in practice. We have shown,
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Figure 2: SCP: lower bound gap vs upper bound gap

however, that they can behave in counter-intuitive ways. In particular, if
the primal LP is highly degenerate, then a simple greedy dual heuristic may
lead to better upper bounds than those obtained when the dual is solved to
optimality via the simplex method.

The main lesson from our work is that, when faced with a given com-
binatorial optimisation problem, it is well worth coding and testing several
different heuristics for finding dual solutions, before jumping to conclusions
about the effectiveness of dual-based heuristics. We believe that it is worth
coding and testing more than one primal heuristic as well.
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