
Benders Cut Classification via Support Vector Machines for Solving

Two-stage Stochastic Programs

Huiwen Jia∗ Siqian Shen†

Abstract

We consider Benders decomposition for solving two-stage stochastic programs with complete

recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding

at the final optimal solution or the ones significantly improving bounds over iterations as valuable

cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds

a cut classification step in each iteration to selectively generate cuts that are more likely to be

valuable cuts. The LearnBD algorithm includes two phases: (i) sampling cuts and collecting

information from training problems and (ii) solving testing problems with a support vector

machines (SVM) cut classifier. We run the LearnBD algorithm on instances of capacitated

facility location and multi-commodity network design under uncertain demand. Our results

show that SVM cut classifier works effectively for identifying valuable cuts, and the LearnBD

algorithm reduces the total solving time of all instances for different problems with various sizes

and complexities.

Keywords: Benders decomposition, two-stage stochastic (integer) programming, support vec-

tor machine (SVM), cut classification

1 Introduction

In this paper, we focus on the Benders decomposition (Benders, 1962) and its implementation for

solving a broad class of two-stage stochastic programming models. In the first stage, the value of

decision variable x ∈ Rn1 or x ∈ Zn1 is chosen from a feasible region X before the realization of

the uncertainty given the cost vector c ∈ Rn1 . In the second stage, decision variable y ∈ Rn2 is

a continuous recourse decision. The matrix W ∈ Rm2×n2 , vector h ∈ Rm2 , matrix T ∈ Rm2×n1

and cost vector q ∈ Rn2 are subject to uncertainty. We denote the overall uncertain parameter as

ξ = [W,h, T, q]. A two-stage stochastic programming model is given by

min
x∈X

cTx+ Eξ[Q(x, ξ)] (1)
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where Eξ[·] takes expectation of · based on the probability distribution of ξ and

Q(x, ξ)
def
= min

y
qT y

s.t. Wy = h− Tx.
(2)

We consider a finite number of realizations of the uncertain parameter ξ, called “scenarios” or

“samples” in the stochastic programming literature (see, e.g., Birge and Louveaux, 2011). Let Ω

be the sample space that contains all the scenarios and each scenario ω ∈ Ω is associated with

a specific realization ξω = [Wω, hω, Tω, qω] of the uncertain parameter ξ. Denote the occurrence

probability of scenario ω as pω, and thus
∑

ω∈Ω pω = 1. Model (1) can be reformulated as

min
x∈X

cTx+
∑
ω∈Ω

pωQω(x), (3)

where

Qω(x)
def
= Q(x, ξω) = min

y
qTω y

s.t. Wωy = hω − Tωx.
(4)

Note that the assumption of having finite scenarios is made without loss of generality. If the un-

certain parameter ξ = [W,h, T, q] follows a continuous distribution, one can apply the Monte Carlo

sampling approach to generate Ns i.i.d. samples {ω1, . . . , ωNs} of the uncertain parameters. The

second-stage objective function Eξ[Q(x, ξ)] can be replaced by the sample average approximation

(SAA) 1
Ns

∑Ns
i=1Qωi(x) (Kleywegt et al., 2002).

1.1 An Overview of Benders Decomposition

With large |Ω|, Model (3) is in general computationally intractable when it involves integer variable

x. The Benders decomposition, which takes advantage of the decomposable structure of two-stage

stochastic programs, is applied widely to optimize variants of Model (3) formulated for a wide range

of applications (see, e.g., Magnanti and Wong, 1981). Creating new variables θω ∈ R, ∀ω ∈ Ω in the

first-stage problem, one can formulate a relaxation of the original problem, called relaxed master

problem (RMP), which has an initial form:

(RMP0) min
x∈X ,θ

cTx+
∑
ω∈Ω

pωθω. (5)

Subproblems (SPs) are defined as the linear programming dual of the second-stage problems (4)

with dual variable πω ∈ Rm2 , ∀ω ∈ Ω. We refer to SPω as the SP for scenario ω, formulated as

(SPω) QDω (x) = max
πω

(hω − Tωx)Tπω

s.t. W T
ω πω ≤ qω.

(6)
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Let V ω,t be the set of identified extreme points of the feasible region of SPω in iteration t, and we

have V ω,0 = ∅. Similarly, let Rω,t be the set of identified extreme rays of the feasible region of SPω

in iteration t, and Rω,0 = ∅. The two sets are respectively associated with Benders optimality cuts

and feasibility cuts generated during iterations 1, . . . , t − 1, and we will explain the cuts in detail

later. In iteration t, the corresponding RMP is given by:

(RMPt) min
x∈X , θ

cTx+
∑
ω∈Ω

pωθω

s.t. θω ≥ (hω − Tωx)T νω ω ∈ Ω, νω ∈ V ω,t;

(hω − Tωx)Tρω ≤ 0 ω ∈ Ω, ρω ∈ Rω,t.

(7)

After solving RMPt, we obtain an optimal solution (x̂t, θ̂t). Then for each scenario ω ∈ Ω and its

subproblem SPω, we first check whether the current RMPt solution leads to a feasible second-stage

problem by solving a corresponding subproblem with decision variable σω ∈ Rm2 , modeled as

(SPω-F) max
σω

(hω − Tωx̂t)Tσω

s.t. W T
ω σω ≤ 0;

‖σω‖ ≤ 1.

(8)

If SPω-F has a positive optimal objective value with an optimal solution σ̄ω, then from any feasible

solution to SPω, we can move along the direction σ̄ω to stay feasible (due to the first constraint of

model (8)) but increase the objective value of SPω. This implies that SPω is unbounded and the

second-stage problem is infeasible for given x̂t. To cut off the infeasible first-stage solution x̂t, we

generate a Benders feasibility cut:

(hω − Tωx)T σ̄ω ≤ 0 (9)

to RMPt+1, which is equivalent to letting Rω,t+1 = Rω,t∪{σ̄ω}. In this paper, we only focus on the

case having complete recourse, under which any feasible first-stage solution will result in a feasible

second-stage problem. Therefore, our RMPt (i.e., Model (7)) for each iteration t only contains the

first set of optimality cuts, whose derivation is given as follows. If the subproblem is feasible, then

in iteration t we check the optimality of (x̂t, θ̂t). We solve SPω with x = x̂t to obtain an optimal

solution π̄ω and the optimal objective value QDω (x) = π̄Tω (hω − Tωx̂t). By strong duality, for any

value of x, QDω (x) = Qω(x). The solution to RMPt will reach the same objective value as the

original problem when θ̂tω ≥ Qω(x̂t), ∀ω ∈ Ω. Therefore, θ̂tω < QDω (x) indicates that the current

solution (x̂t, θ̂t) is not optimal for the original problem. Thus, we add a Benders optimality cut

θω ≥ (π̄ω)T (hω − Tωx) (10)

to RMPt+1, which is equivalent to letting V ω,t+1 = V ω,t ∪ {π̄ω}. We refer to the cuts being added

and the corresponding dual extreme points being identified interchangeably in this paper.

In iteration t, the objective value of RMPt provides a valid lower bound to the origin problem
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because it is a relaxation. If all SPs have finite optimal objective values, x̂t and all recourse solutions

together form a feasible solution to the original two-stage problem, and thus

cT x̂t +
∑
ω∈Ω

pωQω(x̂t) (11)

provides a valid upper bound. The algorithm terminates when the upper and lower bounds are

equal or their gap is within a pre-specified tolerance δ. In this paper, we define the gap as

optimality gap =
upper bound− lower bound

lower bound
× 100%. (12)

The Benders decomposition converges in a finite number of iterations due to the finite number of

dual extreme rays and extreme points of the finitely many SPs.

1.2 Challenges and Research Overview

While the Benders decomposition method helps to solve two-stage stochastic programs efficiently,

it could suffer from slow convergence. One reason is that the size of RMPs becomes too large due

to the quickly increased number of newly added cuts over iterations. Geoffrion and Graves (1974)

are among the first to notice and emphasize on the computational difficulty of solving RMPs for

stochastic binary integer programs. Magnanti and Wong (1981) report that over 90% of the total

time of implementing the Benders decomposition is spent on solving RMPs. Minoux (1986) points

out that not all extreme points of the feasible region of SPs equally contribute to restricting the

optimal solution to RMPs. Therefore, a larger number of Benders cuts are not tight at the final

optimal solution, but can increase the size of RMPs, which are then extremely hard to solve as

large-scale integer programs.

We propose a two-phase learning-enhanced Benders decomposition (LearnBD) algorithm to

solve two-stage stochastic integer programs with finite samples of the uncertain parameter and

complete recourse, where the second-stage subproblems are linear programs (LPs). We define cuts

as valuable cuts when they can either cut the feasible region in the current iteration significantly,

or be tight at the final optimal solution (see Holmberg, 1990, for a similar definition in the latter

case). Our goal is to only add valuable cuts to the corresponding RMP in each iteration. Up

to date, there is no practical and systematic way to perform cut classification and to accelerate

the iterative process for Benders decomposition for large-scale optimization problems, according to

Rahmaniani et al. (2017). We propose to integrate machine learning techniques into the traditional

Benders decomposition framework to learn cut characteristics and selectively generate subsets of

Benders cuts iteratively.

1.3 Contributions of the Paper

We summarize the main contributions of this paper as follows.

• Firstly, we identify a set of characteristics and quantify performance measures of Benders cuts.
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We construct a cut classifier using support vector machines (SVM), a widely used supervised

machine learning method that takes history observations and their labels as input, to identify

valuable cuts in each iteration.

• Secondly, we develop the LearnBD algorithm with SVM cut classifier, to limit the size of RMPs

and reduce total solving time. We also provide guidelines for choosing hyperparameters for

enhancing the effectiveness of the LearnBD algorithm.

• Thirdly, we test instances of capacitated facility location and multi-commodity network de-

sign under uncertain demand, to demonstrate the computational advantages of LearnBD in

different problem settings. Our results show that the LearnBD algorithm leads to smaller

sizes of RMPs with fewer accumulated cuts, and therefore shorter time for solving RMPs.

1.4 Structure of the Paper

The remainder of this paper is organized as follows. In Section 2, we review the literature on

the effort of improving Benders decomposition for solving large-scale optimization problems. In

Section 3, we develop the LearnBD algorithm and use SVM for constructing the cut classifier. In

Section 4, we present the computational results of the LearnBD algorithm benchmarked with the

traditional Benders approach. In Section 5, we conclude the paper and describe future research.

2 Literature Review

The Benders decomposition was initially proposed by Benders (1962) and was then widely used for

solving problems of scheduling and planning (Cordeau et al., 2001; Hooker, 2007), network opti-

mization and transportation (Laporte et al., 1994; Costa, 2005; Binato et al., 2001), and inventory

control and management (Federgruen and Zipkin, 1984; Cai et al., 2001). Magnanti and Wong

(1981) and Naoum-Sawaya and Elhedhli (2013) note that directly applying the traditional Benders

decomposition may require excessive computational effort. It is mainly due to the poor convergence

of RMPs that has been computationally demonstrated in Orchard-Hays et al. (1968) and Wolfe

(1970). Several researchers have proposed enhancement strategies depending on different problem

structures to accelerate the algorithm accordingly, of which we describe the details below.

In the traditional Benders approach detailed in Section 1.1, RMPs and SPs are solved iteratively,

and thus the first stream of studies concentrates on problem-solving techniques, and particularly

techniques for efficiently computing RMPs or SPs. Geoffrion and Graves (1974) propose to only

sub-optimally solve RMPs in each iteration to enable cut generation, without seeking tight cuts at

the beginning of the Benders approach. Similarly, Raidl (2015) solves RMPs using heuristics to

save computational time. Zakeri et al. (2000) show that sub-optimal solutions to the SPs can still

generate valid cuts in RMPs, and thus effective heuristic approaches are designed for solving the

SPs approximately.

The second stream of studies focuses on decomposition strategies, to guide the process of par-

titioning variables to remain in RMPs or in SPs. Crainic et al. (2014) propose a partial Benders
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decomposition algorithm to reduce the number of feasibility and optimality cuts, while adding infor-

mation of SPs into RMPs by retaining or creating scenarios. They develop different decomposition

strategies for choosing the retaining scenarios when solving two-stage mixed-integer programming

(MIP) models with continuous recourse. In addition, Gendron et al. (2016) propose a non-standard

decomposition strategy, which retains the second-stage variables in RMPs, and the authors test the

results using instances of network design problems.

Machine learning techniques have been applied to general-purpose optimization algorithms for

urging quick convergence to optimal or sub-optimal solutions (see, e.g., He et al., 2014; Khalil et al.,

2017). Khalil et al. (2016) introduce a novel data-driven framework for variable selection to solve

MIP models via branch-and-bound algorithm efficiently. Kruber et al. (2017) develop a supervised

learning approach to distinguish a stronger reformulation of a given MIP model and to determine

which decomposition to implement in order to improve the speed of MIP solvers. Misra et al. (2018)

directly construct a model for seeking the optimal solution as a function of the input parameter, by

learning relevant sets of active constraints given computationally expensive large-scale parametric

models.

Recently, several papers apply machine learning to improve algorithmic efficiency of decom-

position approaches, especially focusing on cut classification. Among them, Tang et al. (2019)

model the cut selection in integer programming as a reinforcement learning (RL) problem. They

define the corresponding concepts in RL and implement an offline training phase. Baltean-Lugojan

et al. (2019) develop linear outer-approximations of semi-definite constraints that can be effec-

tively integrated into global solvers. They construct a neural network for predicting the objective

improvement of each cut, which is similar to the performance measure proposed in our paper.

3 Learning-enhanced Benders Decomposition

We develop a Learning-enhanced Benders Decomposition (LearnBD) for solving two-stage stochas-

tic programs with complete and continuous recourse in the second stage. The algorithm aims to

solve a set of two-stage problems that share similar problem structures (i.e., dimensions of decision

variables, constraint matrices, and cost parameters in the objective function) but could have dif-

ferent realizations of the uncertain parameter. As a result, LearnBD constructs a training problem

that shares the same problem structures as the original problem(s), while the distributions of the

uncertain parameter can be different. LearnBD samples cut and collects information from the

training problem. Then, it uses the collected cut information to train an SVM cut classifier and

then optimizes the original problem(s).

To find potential applications of LearnBD, consider some industries where we need to periodi-

cally solve similar optimization problems with the same system structures and decision frameworks,

but with different input data representing the current environment and status of the system. For

example, the unit commitment problem in the power system is solved every hour to determine

the operational schedule of the generating units under random renewable generation and electric-

ity loads (see, e.g., Saravanan et al., 2013; Dashti et al., 2016). A grid operator needs to solve a
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stochastic program in the form of (3) every hour with different ξω-values. If one can solve these

similar problems in an efficient way, it can significantly improve the operational efficiency of power

grids. The proposed LearnBD can be applied in this case, where one can sample cuts from training

problems using previous days’ data , and re-use the cut classifier for the stochastic programs to be

solved in future hours. Moreover, even for the problems that we only solve once, LearnBD could

be useful. For instance, consider solving stochastic programming models using SAA, where we can

solve a number of SAA-based reformulations with different i.i.d. samples repeatedly, by using cut

information collected from solving one such reformulation as a training problem.

LearnBD includes two phases: Offline cut sampling (Phase 1) and solving a given problem using

cut classification (Phase 2). The collected cut information can be used to solve any testing problem

of the same variable-and-constraint size. Therefore, the time spent on Phase 1 does not affect the

total solving time. In Phase 1, we solve training problems under the estimation of the uncertainty

and collect training data for cut classification. In Phase 2, for a given testing problem, which is

viewed as an unseen testing instance, we train cut classifiers using the training data from Phase 1

and apply cut classification steps throughout the Benders iterations.

We provide an overview of LearnBD in Figure 1, in which related to Phase 1, K is the number

of sampling paths, N is the length of each sampling path, and RMPnk , n = 1, . . . , N, k = 1, . . . ,K is

the RMP of the training problem corresponding to iteration n in sampling path k. Related to Phase

2, RMPt, t = 0, . . . , T is the RMP of the testing problem corresponding to iteration t and t = T

denotes the last iteration. In Phase 1, we perform cut sampling to generate training data, including

cut characteristics and performance measures (see Section 3.1). In Phase 2, we utilize the classifier

to distinguish valuable cuts from all generated cuts in each iteration and solve RMPs iteratively

by only adding valuable cuts (see Section 3.3). As a sub-procedure in Phase 2, we train an SVM

classifier with the training data generated in Phase 1, which takes cut characteristics as input and

{1,−1} valued label as output to classify whether or not a cut is valuable (see Section 3.2).

3.1 Phase 1: Cut Sampling

In Phase 1, we conduct cut sampling from some training problem to collect the information of

valuable cuts, which will then be used to train the classifier in Phase 2. The training data set D

can be viewed as a Drow ×Dcol matrix, where each row is the information of a specific sample cut,

the first Dcol − 1 columns are cut characteristics, and the last column is a {−1, 1} valued label.

Characteristics. Cut characteristics are features of a cut that can help us predict the perfor-

mance of the cut in future iterations if it is added to the current RMP. We consider the following

two characteristics. The first is cut violation at the current solution (x̂t, θ̂t) of RMPt, denoted by

VL and it can be computed as πTω (hω − Tωx̂t)− θ̂tω, according to (10). This characteristic reflects

how large the feasible region of RMPt can be cut off if adding the cut. The second characteristic

is related to the scenario where a cut is generated from. We denote the number of cuts gener-

ated by the same scenario in previous iterations as NC. This characteristic reflects the trade-off

between exploration and exploitation, two typical learning strategies. A preference to a cut whose
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Figure 1: An overview of LearnBD procedures. In Phase 1, we collect cuts from training problems
and label them as valuable cuts (green points) and non-valuable cuts (blue points). Then, we train
an SVM classifier and use it to classify the new cuts we meet in Phase 2 when solving the testing
problem. In Phase 2, we only include the valuable cuts identified by the SVM classifier in each
iteration.
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associated scenario generates more cuts in previous iterations, links to an exploitation strategy,

while the opposite preference leads to an exploration strategy. On the one hand, a large number of

cuts generated from the same scenario shows that this scenario is crucial for identifying an optimal

solution. However, it could be the case where the majority of valuable cuts in this scenario have

already been generated. Thus, the change of the objective value of RMP brought by a new cut from

the same scenario can be small. Therefore, the relationship between NC and future performance of

a cut is highly possible to be nonlinear. A collection of characteristics of one specific cut is referred

to as an observation o, with o = (VL,NC).

Performance index. In the training data set, each observation also needs to be assigned a

label l, where 1 is assigned to valuable cuts and −1 is assigned to non-valuable cuts. Therefore,

we define a performance index of each cut and then transform it into {−1, 1} valued label. We

choose the change amount of the objective value of RMPt before and after adding a cut as the

performance index of the cut, denoted by PI. We add exactly one cut to RMPt each time to

recognize the change of objective value brought by the cut. In practice, users can customize the

characteristics and performance index according to specific applications. The rule for transforming

the performance index will be discussed after we introduce sampling paths next.

Sampling path. We construct sampling paths to guide the cut sampling process to record the

cut characteristics and performance index. The number of sampling paths K and the length of

sampling path N are pre-determined hyperparameters. In each sampling path k, k = 1, . . . ,K,

we start with RMP0
k, which is initialized by RMP0. In iteration n of a sampling path k, for

n = 0, . . . , N − 1, k = 1, . . . ,K, we solve RMPnk and obtain an optimal solution (x̂nk , θ̂
n
k ). Then

we follow the Monte Carlo sampling approach to randomly sample one scenario ω ∈ Ω and solve

the corresponding SPω by plugging in (x̂nk , θ̂
n
k ): (i) if no optimality cut is generated, then we

continue sampling another scenario and solving the corresponding SP; (ii) if an optimality cut is

generated, we record the two characteristics, instantly add the cut to RMPn+1
k , and then record

the performance index. Similar to Section 1.1, we use V ω,n
k to denote the set of identified extreme

points of the feasible region of SPω in iteration n of sampling path k, and RMPnk is defined in the

following form:

(RMPnk) min
x∈X , θ

cTx+
∑
ω∈Ω

pωθω

s.t. θω ≥ (hω − Tωx)T νω ω ∈ Ω, νω ∈ V ω,n
k .

(13)

Once a new cut is generated, we move one step forward in one sampling path and therefore the

iterative process stops after reaching RMPNk in sampling path k, k = 1, . . . ,K.

Through cut sampling, we collect Γ = N ×K number of training data. A larger set of training

data in general leads to a more precise classifier. Larger N means that we can collect information

of more representative cuts because we solve RMPs in a wider range of problem sizes. Different

independent sampling paths can be conducted in parallel, and therefore, larger K will not signifi-

9



cantly increase the time of Phase 1. However, the cuts generated by RMPs with similar sizes can

share similar characteristics. These similar inputs can also lead to over-fitting and can eventually

weaken the power of the classifier. In our later computational studies, we choose N = 2× |Ω| and

K = 2.

Remark 1. The cut sampling process is independent across all sample paths, and thus the cut

information collected in different sampling paths is independent of one another.

Remark 2. These sampled cut information can be re-used in Phase 2 when solving different testing

problems and thus the time of Phase 1 does not affect the total solving time of testing problems.

Algorithm 1 Phase 1 of the LearnBD algorithm.

1: Input: a two-stage stochastic program with a set Ω of scenarios; values of N , K, ∆.
2: Initialize: RMP0 and SPω, ∀ω ∈ Ω of the training problem, D ← ∅.
3: for k = 1, . . . ,K do
4: Initialize: V ω,0

k ← ∅, ∀ω ∈ Ω, NCω = 0, ∀ω ∈ Ω, RMP0
k ← RMP0 , Dtemp ← ∅.

5: Solve RMP0
k, obtain an optimal solution {x̂0

k, θ̂
0
k} with optimal objective value ẑ0

k.
6: for n = 0, . . . , N − 1 do
7: Randomly select ω′ ∈ Ω, solve SPω′ , obtain an optimal solution πω′ and its objective value

ζω′ .
8: if (θ̂nk )ω′ < ζω′ then

9: V ω,n+1
k ← V ω,n

k ∪ {πω′} , NCω′ ← NCω′ + 1, VL← ζω′ − (θ̂nk )ω;
10: else
11: Go to Step 7.
12: end if
13: Solve RMPn+1

k , obtain an optimal solution {x̂n+1
k , θ̂n+1

k } with optimal objective value ẑn+1
k ,

PI← |ẑn+1
k − ẑnk |,

14: (Dtemp)n+1,. ← (VL,NCω′ ,PI) .
15: end for
16: D ← D ∪ ((Dtemp)N,1, (Dtemp)N,2, 1)
17: for n = N − 1, . . . , 1 do

18: if
(Dtemp)n,3

(Dtemp)n+1,3
< ∆ then

19: D ← D ∪ ((Dtemp)n,1, (Dtemp)n,2,−1)
20: else
21: D ← D ∪ ((Dtemp)n,1, (Dtemp)n,2, 1)
22: end if
23: end for
24: end for
25: return D

3.2 Subroutine in Phase 2: Classifier Construction

We introduce a subroutine in Phase 2, i.e., constructing SVM classifiers with training data D, to

predict the potential performance of cuts and identify valuable cuts. As mentioned in Section 3.1, D

can be presented as a collection of observations and labels of sample cuts, where D = {(od, ld), d =
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1, . . . ,Γ} and more specifically each cut observation o = (VL,NC). In Section 3.2.1, we show how

SVM works and how to estimate the parameters with training data. In Section 3.2.2, we discuss

the advantages of SVM as a cut classifier.

3.2.1 Building Cut Classifier Using Support Vector Machines (SVM).

SVM is a well-known supervised machine learning approach (see Cortes and Vapnik, 1995; Vapnik,

1998, 1999, 2013) and has been used for analyzing data in many applications. Given a training

data set D = {(od, ld), d = 1, . . . ,Γ} from Phase 1, where od ∈ RΣ is an observation (in our

problem Σ = 2), a subset of training data are identified as support vectors after the training

process. Parameterized by a coefficient vector a ∈ RΓ, and an intercept b ∈ R, the SVM classifier

fSVM (·) : RΣ → {−1, 1} for a new observation o′ ∈ RΣ (i.e., the collected information of a specific

cut in our problem), is given by

fSVM (o′) = sign

[ Γ∑
d=1

ldadK(o′,od) + b

]
, (14)

where K(·, ·) : RΣ × RΣ → R is a predetermined kernel function. Here we use one of the most

popular kernel functions, the Radial Basis Function (RBF), in which K(o1,o2) = exp(−γ‖o1 ·o2‖2).

Label transformation. We define a label transformation function to transform continuous per-

formance index into {−1, 1} label, where 1 indicates a valuable cut. The nature of the convergence

of Benders decomposition is accompanied by the fact that the change of the objective value of

RMPs is decreasing over iterations. Therefore, we treat the cuts that can bring a large enough

proportion of PI of the next cut in the same sampling path as valuable cuts. We directly assign

label 1 to the last cut of each cut sampling path. For other cuts, we calculate the ratio of its PI and

the PI of the next cut in the same sampling path and then compare the ratio with a pre-determined

threshold ∆ ∈ [0, 2]. The label transformation function is defined as:

lnk =


− 1, if

PInk
PIn+1

k

< ∆

1, otherwise,

n = 0, . . . , N − 1, k = 1, . . . ,K (15)

Larger ∆ shows a more strict rule for recognizing a cut as a valuable cut. With this label transfor-

mation function, one can calculate all labels using current performance indices and use these labels

to train an SVM classifier. We present the algorithmic details in Algorithm 1.

Remark 3. Label transformation function eliminates a degree of dependency across cuts generated

in the same sampling path. Together with Remark 1, all training data are independent with each

other.

The label prediction function fSVM (·) can be interpreted as follows. We can treat the coefficient

ad as a significance-magnitude of the corresponding data point d = 1, . . . ,Γ, because the label ld is
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always shown in ad× ld in the predicting process and ad× ld as a whole indicates the power of data

point d for classifying new cuts. The kernel function K(o′,od) presents the similarity between the

characteristics of a new cut o′ and cut od. Then the label of o′ is the sign of a sum of magnitude-

adjusted label of all training data points plus an intercept b. Then by eliminating the training

data with zero estimated coefficients ad, the remaining training data form the support vector set

S, which is a subset of D, and function (14) can be simplified as

fSVM (o′) = sign

[∑
s∈S

lsasK(o′,os) + b

]
. (16)

The parameters {S,a, b} can be trained by minimizing the prediction loss function among

training data as well as maximizing the flatness of the boundary between valuable and non-valuable

cuts. The prediction loss is computed by the hinge loss function to improve the model sparsity.

Given the estimated result u =
∑Γ

d=1 ldadK(o′,od) + b from Equation (14) and the ground truth

label l, the loss is calculated by:

Loss(u, l) = max(0, 1− l · u). (17)

It can be seen that when l and u have the same sign and |u| ≥ 1, the loss = 0; otherwise the loss

= |u− l|. For brevity, we elaborate on the training process of SVM in Appendix A.

Remark 4. The penalty hyperparameter C balances the explanatory and predictive power of the

classifier. In general, a larger C shows a smaller tolerance of prediction error within the training

dataset and hence results in a classifier with higher explanatory power while too large C will destroy

the predictive power. The discount rate γ in RBF kernel determines the magnitude of similarity

between observations, which is related to the model sensitivity and convergence property. Proper

(γ,C) will generate a relatively small number of support vectors with an accepted classification

accuracy. The classification accuracy is defined as the percentage of the given cuts whose predicted

labels are the same as the input labels. In our later computational studies, the classification

accuracy of classifiers on the training data is almost 100%. Those two hyperparameters are generally

selected together via cross-validation and grid search to reach the best empirical performance.

Typically, the larger C we use, the more support vectors can be identified by the classifier, and

thus the classification effort will increase. The classification accuracy on the training data can be

improved, while the accuracy on unseen testing data can be impaired.

3.2.2 Reasons for Choosing SVM.

The advantage of using support vector type of methods for cut classification is threefold. Firstly,

with the help of the hinge loss function, SVM only selects representative observations from the

training data. Those observations are referred to as support vectors and are stored for future

classification. This sparse nature increases the computational speed for evaluating new cuts. Sec-

ondly, the mechanism of SVM can be explained by using the similarity between a new cut and
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all support vectors to predict future performance, which is consistent with our assumptions and

motivation that valuable cuts share similarities. Furthermore, the kernel-based method can flexibly

help capture the nonlinear relationship between cut performance and characteristics. Thirdly, the

solving process of SVM is a convex optimization problem (see model (SVM-P) in (A-2)) which is

computationally tractable.

Another support vector type of learning method is support vector regression (SVR) (see, e.g.,

Smola, 2004). The main idea of those two approaches is similar. SVM classifies cuts by {1,−1}
labels and works as a classifier. SVR evaluates continuous scores of cuts and works as a regressor,

which is more informative than a classifier because it can distinguish more rank levels and also allows

any fractional rank between levels. We choose SVM over SVR following concerns listed as follows.

Indeed, cuts have different levels of effectiveness for improving RMP solutions. However, we choose

not to spend time and effort to fully distinguish between those levels. Recall that the geometric

explanation of Benders decomposition is to cut off the feasible region of RMPt in each iteration t.

The cuts generated in one iteration can be linearly independent with each other, and thus they cut

the feasible region from different directions. Therefore, it is better to include several valuable cuts

rather than only one cut in each iteration. On the other hand, since we do not select the cuts with

relatively low effectiveness, we do not even need to distinguish among those non-valuable cuts. A

similar reason is also mentioned in the learning approach used for a branch-and-bound algorithm

by Khalil et al. (2016).

Tang et al. (2019) employ a neural network for selecting cuts for solving integer programming

models. One advantage of utilizing a neural network is the complex and high-dimensional data it

can handle and process. The information we use contains coefficients of the current cut and those

of all added cuts. If we use a neutral network, it can evaluate each cut adaptively to the solving

process. In LearnBD, we achieve this iteration-adaptive property by allowing retraining of the cut

classifier (see Remark 5). The training time of SVM classifier is much shorter than that of neural

networks, and the classifier can be trained before solving the testing problems (see Remark 2 and

Remark 7).

3.3 Phase 2: Cut Classification

Iteration rule. In Phase 2, we solve a given two-stage model in the form of (3), which is also

referred to as the testing problem. In iteration t, we solve RMPt of the testing problem and obtain

an optimal solution (x̂t, θ̂t); by plugging in (x̂t, θ̂t), we solve all SPω, ∀ω ∈ Ω of the testing problem

and record the two characteristics of each generated cut. Using the characteristic information,

the SVM classifier assigns label 1 to valuable cuts and −1 to non-valuable cuts (see Section 3.2).

Then we add all valuable cuts with label = 1 to RMPt+1. We use V
ω,t

to denote the identified

extreme points of the feasible region of SPω in iteration t in Phase 2. We repeat adding cuts until

the optimality gap between upper bound and lower bound, which is defined in (12), is less than

a pre-specified tolerance δ. If no cut is labeled 1 by SVM classifier, but we have not reached the

optimal tolerance, then we retrain the cut classifier with a smaller ∆ and continue iterating. We

define a decreasing list L∆ as potential values of ∆, and retrain the SVM classifier by plugging in
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∆ = L∆(l) in the lth retraining. The algorithmic details of Phase 2 are presented in Algorithm 2.

Remark 5. As mentioned in Section 3.2.2, we allow retraining to achieve the iteration-adaptive

property of Benders decomposition. If we define the state of the two-stage optimization problem

as the set of added cuts to RMP, then the number of possible states is extremely large because the

new cuts are also directly affected by the previous solving trajectory. Thus, it is highly likely that

the state we see during the solving process may not have been encountered during the training data

collection process and consequently, the relationship between the cut features and valuable labels

may not reflect the true relationship. In the context of machine learning, this problem, induced

by encountering unseen data points, is also defined as distribution shift. When distribution shift

happens, the previous classifier does not work anymore for predicting the labels of cuts generated

in an unseen state. Actually, distribution shift may happen in several machine learning algorithms

while solving sequential decision-making problems, such as algorithms based on behavioral cloning

in Imitation Learning (see, e.g., Pomerleau, 1991), and thus several studies focus on remedying

distribution shift (see, e.g., Ross et al., 2011; Reddy et al., 2019). In this paper, we propose to

mitigate distribution shift by retraining the SVM classifier with decreasing ∆ in (15), or equivalently,

we enforce a less strict standard for valuable cuts in later iterations.

Remark 6. In algorithmic steps, the SVM classifier is retrained several times in Phase 2. In

practical implementation, one can train classifiers with different values of ∆ before starting Phase

2 and call classifiers with the specific ∆-value when solving a problem. Thus, these classifiers can be

re-used and the training time of classifiers does not affect the total solving time of testing problems.

We summarize the numerical performance of retraining in Remark 7 in Section 4.3.2.

4 Numerical Studies

We evaluate LearnBD on two classes of stochastic programs: (i) Capacitated facility location

problem (CFLP) and (ii) fixed charge multi-commodity network design problem (CMND). CFLP

contains binary first-stage variables and continuous second-stage variables with complete recourse.

CMND contains binary first-stage variables and continuous second-stage variables. The traditional

formulation of CMND (see, e.g., Crainic et al., 2014) also involves feasibility cuts in the Benders

decomposition. We introduce auxiliary variables in the formulation so that the complete recourse

assumption holds. These problems naturally appear in many applications (see, e.g., Melkote and

Daskin, 2001; Klibi et al., 2010; Klibi and Martel, 2012), and they are notoriously hard to solve

(see, e.g., Geoffrion and Graves, 1974; Birge and Louveaux, 2011; Crainic et al., 2001, 2011).

Section 4.1 describes our experimental design and computational settings. Section 4.2 shows

prediction accuracy of the SVM Classifier over different validation sets. Section 4.3 presents the

overall results of diverse-sized instances and Section 4.4 presents detailed computational results

over iterations. Section 4.5 presents the time spent on Phase 1 and on training SVM classifiers.

Section 4.6 provides results of LearnBD using a classifier trained with cut information collected

14



Algorithm 2 Phase 2 of the LearnBD algorithm.

1: Input: RMP0 and SPω,∀ω = 1, . . . ,Ω of the testing problem, value of δ.

2: Initialize: set of generated cuts V
ω,0 ← ∅ and number of cuts NCω ← ∅, ∀ω ∈ Ω, list L∆,

l = 1, train an SVM classifier with ∆ = L∆(l).
3: Solve RMP0, obtain an optimal solution {x̂0, θ̂0} and optimal objective ẑ0, t← 0, UB← +∞,

LB← ẑ0.
4: while UB−LB

LB > δ do
5: ncut ← 0.
6: for ω ∈ Ω do
7: Solve SPω, obtain an optimal solution πω and its optimal objective value ζω.
8: if (θ̂t)ω < ζω then
9: VL← ζω − (θ̂t)ω.

10: Input {VL,NCω} into SVM classifier.
11: if Predicted label is 1 then
12: V

ω,t+1 ← V
ω,t ∪ {πω}; ncut ← ncut + 1; NCω ← NCω + 1.

13: end if
14: end if
15: end for
16: if ncut = 0 then
17: l = l + 1, train an SVM classifier with ∆ = L∆(l); Continue.
18: end if
19: UB ← min{ẑt +

∑
ω∈Ω ζω}.

20: t← t+ 1, re-solve RMPt, obtain an optimal solution {x̂t, θ̂t}, optimal objective ẑt.
21: LB← max{LB, ẑt}.
22: end while
23: return Optimal solution {x̂t, θ̂t}, optimal objective value ẑt.
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from another instance. All the tests are performed on a computer with an Intel Core E5-2630 v4

CPU 2.20 GHz and 128 GB of RAM.

4.1 Experimental Setup and Test Instances

4.1.1 Capacitated Facility Location Problem (CFLP).

Consider a set W of production plants (facilities) and a set F of factories which have uncertain

demand d̃. The setup cost of facility i, ∀i ∈ W is ki and the production capacity limit is ui. The

demand of factory j,∀j ∈ F is uncertain and can be satisfied by products produced in facility

i, ∀i ∈ W if it is open with a unit transportation cost cij , and the unmet demand will generate

lost-sale with a unit penalty cost ρj . One needs to decide a subset of facilities to open before the

realization of the demand to minimize the expected total cost. We provide the details about RMP

and SP formulations in Appendix B.1.

For our studies, we use problem sets IV and VI in Beasley (1988), which are originally from

Akinc and Khumawala (1977) and Christofides and Beasley (1983). Each problem set uses the

same network and identical capacity among facilities. Table 1 summarizes the attributes of the

instances, which are originally proposed for the deterministic capacitated facility location problem,

and we apply the techniques in Song et al. (2014) for sampling scenarios. The demand d̃j of factory

j in each scenario ω follows a Normal distribution with mean equal to the demand used in the

original deterministic instances and standard deviation equal to 0.1− 0.2 times the mean.

Table 1: Instance Attributes of CFLP

Problem Set |W | |F | Capacity u Setup Cost k

IV 16 50 5000 7.5 / 12.5 / 17.5 / 25
VI 16 50 15000 12.5

4.1.2 Multi-commodity Network Design Problem (CMND).

Consider a directed network with node set N , arc set A, and commodity set K. An uncertain ṽk

amount of commodity k, ∀k ∈ K must be routed from an origin node, ok ∈ N , to a destination node,

dk ∈ N . The installation cost and arc capacity of arc (i, j), ∀(i, j) ∈ A are fij and uij , respectively.

The cost for transporting one unit of commodity k, ∀k ∈ K on installed arc (i, j), ∀(i, j) ∈ A is

ckij . One needs to decide a subset of arcs to install before the realization of the demand to minimize

the expected total cost. We provide details about the RMP and SP formulations in Appendix B.2.

We use the problem sets in Crainic et al. (2014), i.e., five problem sets (IV–VIII) from the set

of R instances in Crainic et al. (2011). Each problem set uses the same network, with parameters

of each network shown in Table 2. The instances were originally proposed for the deterministic

fixed charge multi-commodity network design problem (Crainic et al., 2001). We apply techniques

in Song et al. (2014) to generate random samples. The demand ṽk of commodity k in each scenario
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ω follows a Normal distribution with mean equal to the demand in the deterministic instances and

standard deviation equal to 0.1–0.2 times the mean.

Table 2: Instance Attributes of CMND

Problem Set |N | |A| |K|

IV 10 60 10
V 10 60 25
VI 10 60 50
VII 10 82 10
VIII 10 83 25

4.2 Performance of the SVM Classifier

We first take Instance cap41 of CFLP and Instance r082 of CMND as examples to demonstrate the

performance of the SVM classifier. We present the prediction accuracy for cuts in each data set in

Table 3. For each instance, we present the accuracy of five sets. The first set is the training data

set, which contains the cuts sampled in Phase 1. We create four validation data sets consisting

of unseen cuts. To compute the prediction accuracy, we need to compute the “true labels” of

cuts in the validation set by the label transformation function (15). Therefore, all the cuts in

validation sets are collected in the same way as that of Phase 1 (see Algorithm 1), but using

different parameters (as shown in Table 3). The validation data set 1 shares the same parameter as

those of the training data set. The validation data set 2 uses the twice standard deviation as that

of the training data set to generate realizations of the uncertain parameters for the optimization

model in different scenarios. The validation data set 3 doubles the number of sampling paths, which

can be equivalently viewed as a set sharing the same property with validation data set 1 but with

a twice larger size. The validation data set 4 uses a larger length of the sampling path, which can

be viewed as a set containing more types of cuts, i.e., the validation data set 4 also includes cuts

generated in later iterations in addition to the cuts in the training data set.

Table 3: Prediction Accuracy of the SVM Classifier

Inst.

Prediction Accuracy (%)

Training Data Validation Data 1 Validation Data 2 Validation Data 3 Validation Data 4
Std = 0.1 Std = 0.1 Std = 0.2 Std = 0.1 Std = 0.1

K = 2 K = 2 K = 2 K = 2 K = 2 K = 2 K = 4 N = 200 K = 2 N = 300

cap41 99.78 78.25 67.50 75.00 78.33
r082 98.15 82.95 74.90 83.57 82.10

The results in Table 3 show that the in-sample prediction accuracy is higher than 98% while the

out-of-sample prediction accuracy of the validation data sets is relatively lower. The out-of-sample

prediction accuracy of validation data sets 1, 2, and 4 is at similar levels higher than 75% for both

instances, and the prediction accuracy of Instance r082 is higher. The out-of-sample prediction
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accuracy of validation data set 2 is the lowest among the validation sets. This is because the

uncertain model parameters across scenarios of the validation data set 2 are different from that

of the training data set, and thus the generalization power is weaker than other validation sets.

Please note that the “true labels” of the validation data sets are computed by (15), which are our

belief but not the exact classification of valuable or non-valuable cuts.

4.3 Results of Comparing LearnBD with Benders Decomposition

As mentioned in Section 1.2, the main obstacle of the traditional Benders is the large size of RMPs

and, consequently, the long CPU time spent on solving RMPs in each iteration. SPs have smaller

sizes and linear programming structures, and they can be efficiently solved in parallel. Thus, the

total time for solving a testing problem with Bender’s approach is almost the cumulative time for

solving RMPs. Therefore, we refer to algorithm efficiency as the RMP solving time in the rest of

the paper. In this section, we present the computational results for solving the CFLP and CMND

instances with traditional Benders decomposition (BD) and LearnBD. Specifically, we show the

number of iterations, optimality gap, number of cuts, and cumulative time of solving RMPs (i.e.,

the last four columns in Table 4, Table 6, and Table 7). For LearnBD, we create a training problem

for collecting cut information and we re-use this information when solving the testing problems.

For all instances, we set the initial value of ∆ as 1.2 and decrease it by 0.01 for each retraining

conducted, i.e., L∆ = [1.2− 0.01i] for i = 0, . . . , 50.

4.3.1 Results of CFLP.

We compare the results of solving CFLP instances using LearnBD and BD in Table 4. Based on the

problem size and the computational difficulty, we set the precision parameter δ = 0.01% and the

time limit as one hour. The solving process terminates when UB-LB
LB < δ (see Step 4 in Algorithm 2)

or the cumulative solving time of the RMP reaches the time limit.

In Table 4, (i) all instances in problem set IV can be optimized within the one-hour time limit.

For these instances, the cuts generated by LearnBD are fewer than those of BD; the time of solving

RMPs in LearnBD is shorter, and the total time reduction ranges from 6% (for cap43-0.2) to 47.5%

(for cap41-0.1). (ii) Instance cap62 is much more difficult to solve compared with other instances in

problem set IV. Both BD and LearnBD exceed the one-hour time limit and LearnBD has a smaller

optimality gap within one-hour time limit. The number of iterations and cuts of LearnBD are more

than those of BD. It happens that LearnBD executes more iterations because it adds fewer cuts

than BD during each iteration. For the second testing problem of the Instance cap62, LearnBD

can solve RMPs with more cuts, which implies that the RMPs of LearnBD is easier to solve than

the ones in BD. In Table 5, we present the time and the number of cuts needed by LearnBD

to reach the same or smaller optimality gap of BD shown in Table 4 for solving Instance cap62.

Demonstrated in Table 5, LearnBD adds fewer cuts and takes much shorter time to achieve similar

optimality gap as BD for the hard instance. (iii) For each instance, by comparing testing problems

with two different standard deviations used for generating demand scenarios, we conclude that

18



Table 4: Results of CFLP Instances Solved by LearnBD and BD

Problem Instance Std Training |Ω| Std Testing Method Number Opt Gap Number Total Time
Set (× mean) (× mean) of Iter. (%) of Cuts of RMPs (s)

IV

cap41 0.1 100

0.1
BD 40 – 4000 183.48

LearnBD 38 – 3790 96.31

0.2
BD 47 – 4700 187.05

LearnBD 45 – 4467 141.30

cap42 0.1 200

0.1
BD 30 – 6000 111.96

LearnBD 32 – 4304 84.28

0.2
BD 30 – 6000 93.93

LearnBD 29 – 5796 86.72

cap43 0.1 400

0.1
BD 27 – 10800 243.57

LearnBD 26 – 10378 220.18

0.2
BD 26 – 10400 228.66

LearnBD 26 – 10369 215.07

cap44 0.1 400

0.1
BD 24 – 9600 235.34

LearnBD 25 – 9938 156.52

0.2
BD 22 – 8800 172.99

LearnBD 22 – 8764 134.11

VI cap62 0.1 50

0.1
BD 258 3.26 12900 LIMIT

LearnBD 215 2.54 10701 LIMIT

0.2
BD 206 3.06 10300 LIMIT

LearnBD 216 2.53 10786 LIMIT

the improvement of LearnBD is more significant for testing problems having similar uncertainty

distribution as the training problem. One reason is that, for testing problems with larger standard

deviation, the collected cuts in the training data in Phase 1 can be viewed as a subset of the total

cut population that LearnBD encounters in Phase 2.

Table 5: Comparing LearnBD with BD for Solving Instance cap62 to Similar Accuracy

Problem Instance Std Training |Ω| Std Testing Method Number Opt Gap Number Total Time
Set (× mean) (× mean) of Iter. (%) of Cuts of RMPs (s)

VI cap62 0.1 50

0.1
BD 258 3.26 12900 >3600

LearnBD 168 3.12 8357 1851.10

0.2
BD 206 3.06 10300 >3600

LearnBD 194 3.05 9686 2674.99

4.3.2 Results of CMND.

We present the results of LearnBD and BD for solving CMND instances in Table 6, where the

optimality tolerance δ = 1% and the time limit is set as two hours.

In Table 6, most CMND instances take longer time than CFLP instances. We have similar

observations as in Table 4: (i) Instances r046, r054, and r076 can be optimized within the two-hour

time limit and the cumulative solving time of RMPs of LearnBD is significantly less than that
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Table 6: Results of CMND Instances Solved by LearnBD and BD

Problem Instance Std Training |Ω| Std Testing Method Number Opt Gap Number Total Time
Set (× mean) (× mean) of Iter. (%) of Cuts of RMPs (s)

IV

r041 0.1 80

0.1
BD 269 42.19 21520 LIMIT

LearnBD 248 22.88 19761 LIMIT

0.2
BD 275 20.44 22000 LIMIT

LearnBD 244 18.18 19283 LIMIT

r046 0.1 80

0.1
BD 32 – 2560 62.30

LearnBD 28 – 1708 41.70

0.2
BD 28 – 2240 111.53

LearnBD 35 – 2094 80.81

V

r051 0.1 100

0.1
BD 185 9.79 18500 LIMIT

LearnBD 155 3.66 15210 LIMIT

0.2
BD 193 10.37 19300 LIMIT

LearnBD 190 8.69 18803 LIMIT

r054 0.1 100

0.1
BD 64 – 6400 585.944

LearnBD 56 – 5398 385.89

0.2
BD 85 – 8500 1172.40

LearnBD 78 – 7041 984.71

VI r061 0.1 100

0.1
BD 121 10.54 12100 LIMIT

LearnBD 125 9.01 12288 LIMIT

0.2
BD 137 10.28 13700 LIMIT

LearnBD 135 9.69 13602 LIMIT

VII

r071 0.1 80

0.1
BD 159 958.69 12720 LIMIT

LearnBD 170 884.19 13194 LIMIT

0.2
BD 154 967.37 12320 LIMIT

LearnBD 167 885.94 13215 LIMIT

r075 0.1 80

0.1
BD 121 10.89 9680 LIMIT

LearnBD 150 9.24 9621 LIMIT

0.2
BD 119 11.23 9520 LIMIT

LearnBD 126 10.07 9350 LIMIT

r076 0.1 80

0.1
BD 38 – 3040 360.93

LearnBD 52 – 3026 276.91

0.2
BD 38 – 3040 374.81

LearnBD 48 – 3080 305.71

VIII r082 0.1 80

0.1
BD 106 9.77 8480 LIMIT

LearnBD 113 9.27 8873 LIMIT

0.2
BD 104 9.91 8320 LIMIT

LearnBD 106 7.13 8156 LIMIT
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of BD. The cuts in LearnBD are fewer than cuts generated by BD for Instances r046 and r076.

(ii) The rest of instances are hard to solve and both LearnBD and BD reach the two-hour time

limit before converging. Instance r071 is extremely hard to solve and the optimality gaps of the

two testing problems are greater than 100% when reaching time limit. For all of these instances,

LearnBD obtains a smaller optimality gap. In Table 7, we further show the computational time

and number of cuts needed by LearnBD to achieve similar optimality gap as BD for the instances

that were not solved to optimality either by BD or LearnBD in Table 6.

Table 7: Comparing LearnBD with BD for Solving CMND instances to Similar Accuracy

Problem Instance Std Training |Ω| Std Testing Method Number Opt Gap Number Total Time
Set (× mean) (× mean) of Iter. (%) of Cuts of RMPs (s)

IV r041 0.1 80

0.1
BD 269 42.19 21520 > 7200

LearnBD 204 27.41 13241 4140.49

0.2
BD 275 20.44 22000 > 7200

LearnBD 158 20.39 12403 2505.91

V r051 0.1 100

0.1
BD 185 9.79 18500 > 7200

LearnBD 63 7.67 6010 249.52

0.2
BD 193 10.37 19300 > 7200

LearnBD 119 10.36 11764 2197.31

VI r061 0.1 100

0.1
BD 121 10.54 12100 > 7200

LearnBD 71 10.45 6902 1129.37

0.2
BD 137 10.28 13700 > 7200

LearnBD 70 10.26 6835 1030.30

VII

r071 0.1 80

0.1
BD 159 958.69 12720 > 7200

LearnBD 143 937.63 11034 4868.40

0.2
BD 154 967.37 12320 > 7200

LearnBD 139 966.31 10975 4816.33

r075 0.1 80

0.1
BD 121 10.89 9680 > 7200

LearnBD 115 10.86 6821 2416.36

0.2
BD 119 11.23 9520 > 7200

LearnBD 103 11.19 7510 3641.27

VIII r082 0.1 80

0.1
BD 106 9.77 8480 > 7200

LearnBD 55 9.75 4233 590.09

0.2
BD 104 9.91 8320 > 7200

LearnBD 54 8.72 4158 658.68

In Table 7, LearnBD uses much shorter time to obtain a similar (slightly tighter) gap as the gap

that BD achieves under the two-hour time limit for all instances. And similarly, LearnBD performs

better in testing problems which have similar uncertainty distribution as the training problems.

For instances r051 and r082, LearnBD achieves a similar optimality gap within 10% of the time

spent by BD. Comparing the optimality gap results and the solving time of LearnBD versus BD

in Tables 6 and 7, we notice that BD takes longer to attain solutions with similar optimality gaps

as the ones of LearnBD for the very hard instances that cannot be optimized within the 2-hour

time limit by either method in Table 6. Therefore, we conclude that for instances which are hard
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to solve: (i) when we allow a relatively large optimality gap, for example, 10% for Instance r051,

LearnBD can achieve this gap in significantly shorter time compared to BD; and (ii) when we

allow a relatively small gap, both LearnBD and BD need several iterations and thus long solving

time. Note that LearnBD only takes 249 seconds while BD takes more than 7200 seconds to solve

Instance r051 to a less than 10% gap.

Remark 7. Based on our computational results, retraining almost happens in every instance and

∆ may decrease consecutively over iterations before the classifier can identify valuable cuts, i.e.,

we may consecutively perform retraining. As mentioned in Remark 6, the retraining can be done

before the solving process and thus does not affect the total solving time. The label predicting

process of cuts is extremely fast and can be implemented in parallel. Therefore, the time consumed

by retraining, or consecutive retraining, is also negligible when considering the total solving time.

In our computational tests, LearnBD decreases the values of ∆ relatively more frequently in the

first several iterations and then keeps using a fixed ∆ until the termination. For readers’ interest,

we present the values of ∆ during iterations of five CMND instances in Table 8.

Table 8: ∆-values Throughout Computational Iterations of Five CMND Instances

r041
Iteration 1–3 3–248

∆ 1.20 1.13

r051
Iteration 1–2 3 4–155

∆ 1.07 1.06 1.01

r071
Iteration 1–5 6–170

∆ 1.20 1.12

r075
Iteration 1 2 3 4–5 6–7 8–15 16–150

∆ 1.20 1.19 1.18 1.13 1.07 1.06 1.00

r076
Iteration 1 2 3 4 5 6–7 8–10 11–15 16–52

∆ 1.20 1.11 1.06 1.05 1.02 1.01 1.00 0.99 0.98

4.3.3 Results of Replicates for CFLP Instance.

In this section, we provide additional computational results for five replicates of each instance in

the CFLP problem set IV to show the performance consistency of comparing LearnBD and BD

across randomly sampled scenarios. The demand scenarios of five replicates of each instance are

generated independently with the same standard deviation as the training problem. We present

the minimum, maximum, mean, and median values of (i) the number of generated cuts and (i) the

total solution time of RMPs in Table 9. The observations are consistent with those in Section 4.3.1

and Section 4.3.2 that LearnBD can save more time than BD for optimizing the testing problems.

22



Table 9: Results of Multiple Runs for CFLP Instance from Problem Set IV

Instance Method
Number of Cuts Total Time of RMPs (s)

Min Max Mean Median Min Max Mean Median

cap41
BD 3000 4000 3740 3900 124.38 209.68 161.89 154.11

LearnBD 2499 3790 3366.2 3446 81.08 173.07 106.55 96.31

cap42
BD 5800 6000 5920 6000 71.70 124.95 99.95 104.79

LearnBD 4304 5798 5123.2 5177 63.10 100.56 78.61 81.39

cap43
BD 10400 10800 10640 10800 147.02 263.42 211.64 221.44

LearnBD 10254 10486 10374 10378 145.02 246.86 200.44 214.07

cap44
BD 8000 9600 8720 8800 171.10 249.28 213.06 217.24

LearnBD 8374 9938 8927.6 8774 135.97 174.92 159.06 156.52

4.4 Performance Comparison Over Iterations

To track the performance of BD and LearnBD over iterations to show their convergence, we depict

and analyze the results of two specific instances in Section 4.4.1 and Section 4.4.2. For each instance,

we solve it with both BD and LearnBD separately to the same optimality gap. For each approach,

we record the following values after each iteration:

• the optimality gap after the current iteration, which helps track the algorithm convergence;

• the cumulative time for solving RMPs;

• the total number of cuts added to RMPs in the previous iterations, which reflects the size of

RMPs and power of the classifier;

• the cumulative time for solving SPs, which can be performed in parallel in each iteration, and

therefore this value will not affect the total solving time of the algorithm.

4.4.1 CFLP: Problem IV, cap41.

The results over the iterations are shown in Figure 2. The instance has 100 scenarios and the ter-

mination criterion is reaching δ = 0.01% optimality gap. BD requires 40 iterations while LearnBD

takes 38 iterations. LearnBD adds fewer cuts but achieves a similar optimality gap, which indicates

the power of our SVM cuts classifier. Due to the smaller sizes of RMPs, the cumulative time for

solving RMPs in LearnBD is significantly shorter than that in BD.

4.4.2 CMND: Problem Set VII, r075.

The results over the iterations for both BD and LearnBD are shown in Figure 3. The instance has

80 scenarios and the termination criterion is reaching δ = 10.89% optimality gap (the result that
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Figure 2: CFLP: Problem set IV, cap41 instance solved by BD and LearnBD. The horizontal axis
is the iteration number.
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BD achieves within the two-hour time limit). We observe similar performance of LearnBD as in

the case of solving the CFLP instance. In Figure 3a, in the first 40 iterations, the gap of LearnBD

convergences slower than BD because it adds fewer cuts. After 100 iterations, both algorithms

achieve similar gaps. In Figure 3c, in the later iterations, the number of added cuts per iteration is

quite similar to that added by BD. Thus, we can conclude that the first few iterations are important

for reducing the total solving time.
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Figure 3: CMND: Problem set VII, r075 instance solved by BD and LearnBD. The horizontal axis
is the iteration number.

4.5 Sampling and Training Time

As we mentioned in Remark 2 and Remark 6, the cut sampling and classifier training processes can

be done before starting solving the testing problems. The outcomes of these two processes can be

repeatedly used for solving different testing problems. Therefore, the time of these two processes

does not affect the total solving time of LearnBD. Here, we record and present the time of Phase 1

and the time of classifier training in Phase 2 in Table 10. Column K shows the number of sampling

paths and Column N shows the length of the sampling paths, i.e., the number of iterations in each

sampling path, in Phase 1. We include the following four columns showing the results of solving
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one testing problem of each instance: Method, Opt Gap, Number of Cuts, and Testing-Time. Note

that the testing problems are different from the training problem and for each instance, we only

include results of one testing problem with the same standard deviation as the training problem.

The last two columns in Table 10 are: “Phase-1-Time” showing the total time of cut sampling and

collecting information from training problems in Phase 1 and “SVM-Training-Time” showing the

total time used for training and retraining SVM classifiers.

Table 10: Sampling and Training Time

Instance K N Method Opt Gap Number Testing- Phase-1- SVM-Training-
(%) of Cuts Time (s) Time (s) Time (s)

r041 2 80
BD 42.19 21520 > 7200 - -

LearnBD 22.88 19761 > 7200 37.63 0.01

r046 2 80
BD 1 2560 62.30 - -

LearnBD 1 1708 41.70 15.29 0.01

r051 2 100
BD 9.79 18500 > 7200 - -

LearnBD 3.66 15210 > 7200 22.39 0.01

r054 2 100
BD 1 6400 585.94 - -

LearnBD 1 5398 385.89 24.41 0.38

r061 2 100
BD 10.54 12100 > 7200 - -

LearnBD 9.01 12288 > 7200 28.59 0.40

r071 2 80
BD 958.69 12720 > 7200 - -

LearnBD 884.19 13194 > 7200 186.77 0.30

r075 2 80
BD 10.89 9680 > 7200 - -

LearnBD 9.24 9621 > 7200 58.94 0.22

r076 2 80
BD 1 3040 360.93 - -

LearnBD 1 3026 276.91 51.93 0.21

r082 2 80
BD 9.77 8480 > 7200 - -

LearnBD 9.27 8873 > 7200 45.26 0.30

From Table 10, the time of Phase 1 is highly dependent on N , while the time of each sampling

path is the cumulative time for solving N number of RMPs with n cuts in iteration n for n =

1, . . . , N . In our computational studies, we use N = 2× |Ω|, i.e., proportional to |Ω|, and thus the

time in Phase 1 is highly related to |Ω|. In most of the instances, the time in Phase 1 and the

training time of SVM classifiers are relatively short as compared to the total solving time. Together

with the results in Table 7, for Instances r051, r061, and r082, LearnBD reduces the total solving

time by 80% to reach a 10% optimality gap even if LearnBD conducts Phase 1 for solving only one

testing problem (if we also consider the time in sampling cuts and training classifiers).
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4.6 Classifier Transfer Between Instances

Previously, we propose to solve a given two-stage stochastic optimization problem with cuts sam-

pled from a similar training problem, where the only difference between the training problem and

the original problem is the underlying distribution of the uncertain parameter. Intuitively, if the

problem can be solved with training data collected from another training problem in a different

size, e.g., the different number of variables and constraints, then the algorithmic efficiency can

be further improved because we can use the same training data, or equivalently speaking, we can

transfer the classifiers to solve other problems.

In this section, we present the results where the training problem is different from the original

problem as an extension. We consider two instances cap42 and cap62 of CFLP. We normalize

the two cut characteristics, cut violation and number of cuts generated by the same scenario, to

eliminate the incompatible effects of the difference between the training and testing problems.

Instead of using the absolute value of cut violation, we scale the cut violation by
∑

j∈F d̄j c̄

k̄
, where

d̄j is the nominal value of the uncertain demand of factory j, c̄ =
∑

i∈W,j∈F cij
|W |·|F | is the average

transportation cost, and k̄ =
∑

i∈W ki/|W | is the average warehouse setup cost. The scalar
∑

j∈F d̄j c̄

k̄

can be reviewed as the relative total transportation cost, which reflects the magnitude of the optimal

objective function value of the CFLP problem. The second cut characteristic, the number of cuts

generated by the same scenario, is related to the required number of iterations if using the traditional

Benders. This characteristic is hard to estimate before solving the problem. Thus, we propose to

use the size of the transportation network, i.e., |W | · |F |, to scale it.

The results are presented in Table 11, for which we set the precision δ as 0.01% and the time limit

as one hour. In the first two rows, we solve cap42 with traditional BD and the proposed LearnBD

where the training data is collected from a training problem with the same model parameters (the

results are the same as that of cap42 in Table 4). In the third row, we construct a training problem

from cap62 and then use the training data to train an SVM classifier and solve cap42.

Table 11: Results with Transferred Classifier

Inst. |Ω| Std.Testing Method Training Std. Training Number Opt Gap Number Total Time
(× mean) Instance (× mean) of Iter. (%) of Cuts of RMPS (s)

cap42 100 0.1

BD - - 30 0.01 6000 111.96

LearnBD cap42 0.1 32 0.01 4304 84.28

LearnBD cap62 0.1 29 0.01 5794 97.96

In Table 11, LearnBD with a transferred SVM classifier, i.e., the third row, also reduces the

cumulative time of RMPs as compared to BD. Via comparing the second and the third rows,

LearnBD trained with the same instance adds fewer cuts and takes short time to solve RMPs.

Therefore, we can conclude that with a proper scaling rule of the two cut features, the training

data can also be re-used for solving other instances to improve the solving efficiency.
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5 Conclusions

In this paper, we developed a learning-enhanced Benders decomposition algorithm to accelerate the

solving process of Benders decomposition, one of the most useful algorithms for solving two-stage

stochastic programs. The bottleneck for traditional Benders decomposition is the increasing sizes

and the long solving time of RMPs. We restricted RMP sizes over iterations by distinguishing valu-

able cuts. The computational studies based on capacitated facility location and multi-commodity

network design instances demonstrated the power of SVM cut classifier. With a proper selection of

hyperparameters, the LearnBD algorithm worked efficiently with smaller sizes and shorter solving

time of RMPs compared to traditional Benders decomposition.

Our numerical results of diverse instances showed that LearBD can achieve better computa-

tional performance than BD for solving different types of benchmark two-stage stochastic programs

considered in the literature. We consider the following future research directions to improve our al-

gorithm. First, we can extend the characteristics and performance indices for the current LearnBD

algorithm to capture multiple types of information of cuts. The second direction is to explore the

possibility of constructing an online learning algorithm using reinforcement learning, which requires

decomposing the effects of multiple cuts added simultaneously into the same RMP. We are also

interested in improving LearnBD for solving a broader range of large-scale problems with special

structural properties.
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APPENDIX

A Preliminaries of SVM

We start with

fSVM (o′) = sign

[
wTφ(o′) + b

]
(A-1)

and u = wTφ(o′)+b, where φ(·) is a unique mapping function such that K(o1,o2) = 〈φ(o1), φ(o2)〉.
By the kernel trick (see, e.g., Schölkopf et al., 2002), we do not have to know the exact form of φ(·)
and we can employ the SVM model only with kernel function K(·, ·). In Proposition 4, we show this

formulation is equivalent to (16). With a penalty hyperparameter C ≥ 0 assigned to the prediction

error, the objective function for solving the parameters is defined as 1
2wTw + C

∑Γ
d=1 ξd, where

the first term representing the flatness and ξd, d = 1, . . . ,Γ is an auxiliary variable for representing

loss amount of training data (od, ld). The parameters can be solved by an optimization problem:

(SVM-P) min
w,ξ,b

1

2
wTw + C

Γ∑
d=1

ξd (A-2a)

s.t. ld ·
(
wTφ(od) + b

)
≥ 1− ξd d = 1, . . . ,Γ; (A-2b)

ξd ≥ 0 d = 1, . . . ,Γ, (A-2c)

where (A-2b) are used to calculate the hinge loss and (A-2c) are sign restrictions of ξ. (SVM-P) is a

convex optimization problem with convex inequality constraints and a quadratic objective function,

and thus it is easy to solve by taking Lagrangian Dual and applying Krash-Kuhn-Tucker (KKT)

conditions (see, e.g., Chang and Lin, 2011).

Proposition 1. The optimal objective value of

min
w,ξ,b

1

2
wTw + C

Γ∑
d=1

ξd −
Γ∑
d=1

ad
{
ld ·
(
wTφ(od) + b

)
− 1 + ξd

}
−

Γ∑
d=1

vdξd (A-3)

with any a,v ≥ 0 is a valid lower bound of (SVM-P).

Proof. Assume that (w1, ξ1, b1) is an optimal solution to (SVM-P), and therefore it is feasible to

the relaxation (A-3). Given the constraints in (SVM-P), we have ld ·
(
wT

1 φ(od) + b1
)
− 1 + ξ1d ≥ 0

and ξ1d ≥ 0 for all d. Therefore, for any a,v ≥ 0, the objective value of (A-3) based on solution

(w1, ξ1, b1) is no larger than 1
2wT

1 w1 + C
∑Γ

d=1 ξ1d. Moreover, as the optimal objective value of

(A-3) is smaller than or equal to the objective value of any feasible solution, we can conclude that

the objective value of (A-3) evaluated at the feasible solution (w1, ξ1, b1) is always smaller than or

equal to 1
2wT

1 w1 +C
∑Γ

d=1 ξ1d, which is the optimal objective value of (SVM-P) and thus provides

a valid lower bound of (SVM-P). This completes the proof.

By associating dual variables a ≥ 0 with inequality constraints (A-2b) and dual variables v ≥ 0

with inequality constraints (A-2c), we can relax those two sets of constraints and then obtain the
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corresponding Lagrangian function for any feasible solution (w, ξ, b) as

L(w, ξ, b; a,v) =
1

2
wTw + C

Γ∑
d=1

ξd −
Γ∑
d=1

ad
{
ld ·
(
wTφ(od) + b

)
− 1 + ξd

}
−

Γ∑
d=1

vdξd.

By weak duality, the Lagrangian problem

min
w,ξ,b

L(w, ξ, b; a,v)

yields a valid lower bound of (SVM-P). Moreover,

max
a≥0,v≥0

min
w,ξ,b

L(w, ξ, b; a,v)

is the dual problem that seeks the best lower bound.

Definition 1. Krash-Kuhn-Tucker (KKT) is a set of conditions including: Primal feasibility, dual

feasibility, complementary slackness, and the first derivative of Lagrangian function L(·) being zero.

If the primal problem is

min
x

f0(x)

subject to fi(x) ≤ 0 ∀i ∈ I

hi(x) = 0 ∀i ∈ I ′

and the associated dual multipliers are λ ≥ 0 and µ, then the KKT conditions are:

• fi(x
∗) ≤ 0 ∀i ∈ I and hi(x

∗) = 0 ∀i ∈ I ′ (primal feasibility),

• λ∗ ≥ 0 (dual feasibility),

• fi(x
∗)λ∗i = 0 (complementary slackness),

• ∇f0(x∗) +
∑

i∈I λ
∗
i∇fi(x∗) +

∑
i∈I′ µ

∗
i∇hi(x∗) = 0 (first derivative of L(·) is zero).

Proposition 2. The strong duality holds for (SVM-P) and KKT conditions are satisfied at the

optimal primal and dual solution pair.

Proof. (SVM-P) has a quadratic objective and affine inequality constraints, and therefore by Slater’s

condition strong duality holds. Because (SVM-P) is differentiable, KKT conditions hold at the

global optimum. This completes the proof.

Theorem A.1. The optimal objective value of the optimization problem

max
a≥0,v≥0

min
w,ξ,b

1

2
wTw + C

Γ∑
d=1

ξd −
Γ∑
d=1

ad
{
ld ·
(
wTφ(od) + b

)
− 1 + ξd

}
−

Γ∑
d=1

vdξd (A-4)

equals to the optimal objective value of (SVM-P).
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Proof. Recall the Lagrangian dual problem

max
a≥0,v≥0

min
w,ξ,b

L(w, ξ, b; a,v).

By Proposition 2, strong duality holds and thus the optimal objective value of the dual problem

and primal problem are equal.

Proposition 3. The Lagrangian dual function (A-3) in Proposition 1 can be reformulated as

1

2

Γ∑
d=1

Γ∑
d′=1

ldld′adad′K(od,od′) +

Γ∑
d=1

ad −
Γ∑
d=1

vdξd (A-5a)

with

Γ∑
d=1

adld = 0; (A-5b)

C − ad − vd = 0 d = 1, . . . ,Γ. (A-5c)

Proof. The Lagrangian dual function (A-3) is differentiable, and therefore the derivatives associated

with (w, ξ, b) at the minimum are equal to zero, i.e.,

∂L

w
= 0 → w =

Γ∑
d=1

adldφd (A-6a)

∂L

b
= 0 →

Γ∑
d=1

adld = 0 (A-6b)

∂L

ξ
= 0 → C − ad − vd = 0, d = 1, . . . ,Γ → ad ≤ c, d = 1, . . . ,Γ. (A-6c)

Plugging in the results in (A-6), we can obtain the reformulation of (A-3) in (A-5). This completes

our proof.

Theorem A.2. The Lagrangian dual problem (A-4) is equivalent to solving a convex quadratic

program:

max
a

1

2

Γ∑
d=1

Γ∑
d′=1

ldld′adad′K(od,od′) +

Γ∑
d=1

ad (A-7a)

s.t.

Γ∑
d=1

adld = 0; (A-7b)

0 ≤ ad ≤ C d = 1, . . . ,Γ. (A-7c)

Proof. By Proposition 3, we obtain an equivalent formulation of (A-4) as follows.

max
a,v≥0

1

2

Γ∑
d=1

Γ∑
d′=1

ldld′adad′K(od,od′) +
Γ∑
d=1

ad −
Γ∑
d=1

vdξd (A-8a)
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with

Γ∑
d=1

adld = 0; (A-8b)

C − ad − vd = 0 d = 1, . . . ,Γ; (A-8c)

In the third term in the objective function (A-8a), all vdξd, ∀d = 1, . . . ,Γ are zero at the

optimum because of the complementary slackness by Proposition 2. Therefore, we can discard the

third term without loss of optimality. Moreover, because vd ≥ 0, ∀d = 1, . . . ,Γ, we can combine

(A-8c) with v ≥ 0 and derive valid constraints ad ≤ C, ∀d = 1, . . . ,Γ, which helps to eliminate

variables vd, ∀d = 1, . . . ,Γ. Finally, we can rewrite model (A-8) as shown in (A-7) (see, e.g., Chang

and Lin, 2011). This completes our proof.

Proposition 4. The parameter of the classifier in (A-1) are w∗ =
∑Γ

d=1 a
∗
dldφd and b∗ = 1 −∑Γ

d′=1 ld′(a
∗
d′K(od,od′)) for any d = 1, . . . ,Γ associated with a∗d ∈ (0, C). The three prediction

functions (14), (16) and (A-1) are equivalent to each other, where the support vector set S in (16)

contains all (od, ld), d = 1, . . . ,Γ such that a∗d > 0.

Proof. The value of w∗ is obtained by (A-6a) and it shows the equivalence between (14) and

(A-1). Assume that we solve and obtain an optimal solution a∗ to (A-7). Then following the

complementary slackness:

ad
[
ld ·
(
wTφ(od) + b

)
− 1 + ξd

]
= 0, vdξd = 0, ∀d = 1, . . . ,Γ,

we have:

• If a∗d = C > 0, then ld ·
(
w∗Tφ(od) + b

)
= 1 − ξ∗d. By a∗d = C − v∗d we have v∗d = 0 and thus

ξ∗d ≥ 0. The observation d is called non-margin support vector.

• If 0 < a∗d < C, then ld ·
(
w∗Tφ(od) + b

)
= 1 − ξ∗d. Similarly, we have v∗d > 0 and thus

ξ∗d = 0. The observation d is called margin support vector. Therefore, we can compute

b∗ = 1−
∑Γ

d′=1 ld′(a
∗
d′K(od,od′)) with any d = 1, . . . ,Γ associated with a∗d ∈ (0, C),

• If a∗d = 0, then this type of observation d does not affect the value of the second prediction

function. Therefore, we can build a support vector set S of (od, ld), d = 1, . . . ,Γ with a∗d 6= 0

and thus simplify (14) as (16).

B Detailed Formulations of Problems for Computational Studies

B.1 CFLP

Consider a set W of production plants (facilities) and a set F of factories which have uncertain

demand d̃. The setup cost of facility i, ∀i ∈ W is ki and the production capacity limit is ui. The

35



demand of factory j,∀j ∈ F is uncertain and can be satisfied by products produced in facility

i, ∀i ∈ W if it is open with a unit transportation cost cij , and the unmet demand will generate

lost-sale with a unit penalty cost ρj . One needs to decide a subset of facilities to open before the

realization of the demand to minimize the expected total cost.

The two-stage stochastic programming model consists of two types of decisions. We define

first-stage binary decision variables xi, ∀i ∈ W such that xi = 1 if we open facility i and xi = 0

otherwise. In the second stage, we obtain the demand value from each factory and define continuous

decision variables yij ≥ 0, ∀i ∈ W, j ∈ F , which represent transportation units from facility i to

factory j. The model aims to find the best decisions to minimize the facility setup cost, expected

transportation cost, and expected lost-sale cost. The first-stage formulation is:

(CFLP) min
x

∑
i∈W

kixi +
∑
ω∈Ω

pωQω(x)

s.t. xi ∈ {0, 1} i ∈W.
(B-9)

The second-stage problem for each scenario ω is defined using variables yij , i ∈ W, j ∈ F and

auxiliary variables αj , j ∈ F that denote the amount of unmet demand. We have

Qω(x) = min
y,α

∑
i∈W

∑
j∈F

cijyij +
∑
j∈F

ρjαj

s.t.
∑
j∈F

yij ≤ uixi i ∈W ;

d̃ω,j −
∑
i∈W

yij ≤ αj j ∈ F ;

yij ≥ 0 i ∈W, j ∈ F ;

αj ≥ 0 j ∈ F.

(B-10)

By allowing unmet demand, the problem always has a feasible solution and Benders decomposition

only generates optimality cuts. Then, we derive the dual of second-stage problems and formulate

SPs as shown in Section 1.1. By defining dual variables hi, ∀i ∈ W and πj , ∀j ∈ F , respectively

associated with the first and second constraints in model (B-10), we formulate the subproblem in

scenario ω as
(SPω) max

h,π
−
∑
i∈W

uixihi +
∑
j∈F

d̃ω,jπj

s.t. − hi − πj ≤ cij i ∈W, j ∈ F ;

0 ≤ πj ≤ ρ j ∈ F ;

hi ≥ 0 i ∈W.

(B-11)

Letting V ω,t be a collection of extreme points of SPω that have been identified when reaching
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iteration t, we formulate

(RMPt) min
x,θ

∑
i∈W

kixi +
∑
ω∈Ω

pωθω

s.t. θω ≥ −
∑
i∈W

uixiĥi +
∑
j∈F

d̃ω,j π̂j (ĥi, π̂j) ∈ V ω,t, ω ∈ Ω;

xi ∈ {0, 1} i ∈W.

(B-12)

B.2 CMND

Consider a directed network with node set N , arc set A, and commodity set K. An uncertain ṽk

amount of commodity k, ∀k ∈ K must be routed from an origin node, ok ∈ N , to a destination node,

dk ∈ N . The installation cost and arc capacity of arc (i, j), ∀(i, j) ∈ A are fij and uij , respectively.

The cost for transporting one unit of commodity k, ∀k ∈ K on installed arc (i, j), ∀(i, j) ∈ A is ckij .

One needs to decide a subset of arcs to install before the realization of the demand to minimize the

expected total cost. In the first stage, we make binary decisions xij , ∀(i, j) ∈ A such that xij = 1 if

we install arc (i, j). In the second stage, we obtain the demand of each commodity and then solve

non-negative continuous decisions ykij , ∀(i, j) ∈ A, k ∈ K, which represents transportation units of

commodity k on arc (i, j).

The first-stage formulation is:

(CMND) min
x

∑
(i,j)∈A

fijxij +
∑
ω∈Ω

pωQω(x)

s.t. xij ∈ {0, 1} (i, j) ∈ A.
(B-13)

The second-stage problem for each scenario ω is defined with decision variables ykij , ∀(i, j) ∈ A, k ∈
K and auxiliary variables αki , ∀i ∈ N, k ∈ K for denoting unmet demand:

Qω(x) = min
y,α

∑
(i,j)∈A

[∑
k∈K

ckijy
k
ij +Bαki

]

s.t.
∑

j:(j,i)∈A

ykji −
∑

j:(i,j)∈A

ykij ≤ d̃ki + αki i ∈ N, k ∈ K;

∑
k∈K

ykij ≤ uijxij (i, j) ∈ A;

ykij ≥ 0 (i, j) ∈ A, k ∈ K;

αki ≥ 0 i ∈ N, k ∈ K.

(B-14)

Define an auxiliary demand unmet cost B. The parameter d̃ki is set to ṽk if node i is the origin of

the commodity k, −ṽk is node i is the destination of the commodity k, or 0 otherwise.

By allowing unmet demand, the problem always has a feasible solution and Benders decompo-

sition only generates optimality cuts. We derive the dual of second-stage problems and formulate

SPs as shown in Section 1.1. By defining dual variables hki , ∀i ∈ N, k ∈ K and πij , ∀(i, j) ∈ A,
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respectively associated with the first and second constraints in model (B-14), we formulate the

subproblem in scenario ω as

(SPω) max
h,π

∑
i∈N,k∈K

−d̃ki hki −
∑

(i,j)∈A

uijxijπij

s.t. hki − hkj − πij ≤ ckij (i, j) ∈ A, k ∈ K;

0 ≤ πij (i, j) ∈ A.

0 ≤ hki ≤ B i ∈ N, k ∈ K.

(B-15)

Letting V ω,t be a collection of extreme points of SPω that have been identified when reaching

iteration t, we formulate

(RMPt) min
x,θ

∑
(i,j)∈A

fijxij +
∑
ω∈Ω

pωθω

s.t. θω ≥
∑

i∈N,k∈K
d̃ki ĥ

k
i −

∑
(i,j)∈A

uijxij π̂ij (ĥi, π̂ij) ∈ V ω,t, ω ∈ Ω;

xij ∈ {0, 1} (i, j) ∈ A.

(B-16)
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