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Abstract

In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively
accelerate first-order methods. More in detail, in the framework of unconstrained optimization, Barzilai
and Borwein developed two strategies to select the steplength in gradient descent methods with the aim
of encoding some second-order information of the problem without computing and/or employing the
Hessian matrix of the objective function.

Starting from these ideas, several efficient steplength techniques have been suggested in the last
decades in order to make gradient descent methods more and more appealing also for problems which
handle large-scale data and require real-time solutions. Typically, these new steplength selection rules
have been tuned in the quadratic unconstrained framework for sweeping the spectrum of the inverse of the
Hessian matrix, and then applied also to non-quadratic constrained problems, without any substantial
modification, by showing to be very effective anyway.

In this paper we deeply analyse how, in quadratic and non-quadratic minimization problems, the
presence of a feasible region, expressed by a single linear equality constraint together with lower and
upper bounds, influences the spectral properties of the original Barzilai-Borwein (BB) rules, generalizing
recent results provided for box-constrained quadratic problems. This analysis gives rise to modified BB
approaches able not only to capture second-order information but also to exploit the nature of the feasible
region. We show the benefits gained by the new steplength rules on a set of test problems arising also
from machine learning and image processing applications.

Keywords: Singly Linearly and bound constrained optimization, gradient projection methods,
steplength rules, Hessian spectral properties
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1. Introduction

In this paper, we are interested in solving the following singly linearly equality constrained optimiza-
tion problem subject to lower and upper bounds

min
x∈Rn

f(x) (1)

subject to ` ≤ x ≤ u vTx = e ,
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where `, u and v are vectors of Rn and e is a scalar. We assume that the feasible region Ω = {x ∈ Rn :
` ≤ x ≤ u vTx = e} is not empty and the function f is continuously differentiable. We refer to (1) as the
general SLB problem. The study of this minimization model is quite relevant since it allows to formalize
real-life applications in different areas, such as imaging, signal processing, machine learning and portfolio
optimization (see for example [4, 5, 34, 45, 41]). Since a common feature of these applications lies in their
large-scale, among all the iterative schemes which can be selected to solve the corresponding optimization
problem, the class of gradient projection methods is very attractive thanks to a simple implementation
and a low computational cost per iteration. In this work, we consider the so-called gradient projection
(GP) method along the feasible direction [6, Chapter 2], whose standard iteration can be written as

d(k) = ΠΩ

(
x(k) − αk∇f(x(k))

)
− x(k),

x(k+1) = x(k) + νkd
(k),

(2)

where ΠΩ(·) denotes the Euclidean projection onto the constraints of (1), αk is a positive parameter
controlling the step along the negative gradient and νk ∈ (0, 1] is a linesearch parameter ensuring a
sufficient decrease of the objective function along the direction d(k), e.g. by means of an Armijo rule [6]
or its non-monotone version [30]. Despite the merits previously recalled, the GP method (2) can show
a poor convergence rate especially when high accurate solutions are required. A possibility to overcome
this difficulty consists in properly selecting the steplength αk, which simply needs to belong to a compact
set [αmin, αmax], 0 < αmin ≤ αmax, in order to guarantee the convergence of the iterative scheme [7]. The
literature of the last decades provides many attempts to exploit this freedom of choice for αk with the
aim of accelerating the convergence of the gradient methods. The paper [2] that firstly suggests the key
idea to fully take advantage of the presence of the steplength αk has been published in 1988 by Barzilai
and Borwein (BB), in the framework of unconstrained optimization. In that paper, the authors force
quasi-Newton properties on the diagonal matrix (αkIn)−1, where In is the identity matrix of order n, for
approximating the Hessian matrix ∇2f(x(k)). More in detail, the steplength updating rules developed
by Barzilai and Borwein have to satisfy the following secant conditions

αBB1
k = arg min

α∈R
‖α−1s(k−1) − y(k−1)‖, αBB2

k = arg min
α∈R

‖s(k−1) − αy(k−1)‖, (3)

where s(k−1) = x(k) − x(k−1) and y(k−1) = ∇f(x(k))−∇f(x(k−1)). The resulting values become

αBB1
k =

s(k−1)T s(k−1)

s(k−1)T y(k−1)
; αBB2

k =
s(k−1)T y(k−1)

y(k−1)T y(k−1)
. (4)

We observe that the BB rules (4) are well defined provided that the curvature condition s(k−1)T y(k−1) > 0
is satisfied. For this reason, the assumptions of the lemmas and theorems we prove in the following are
imposed to ensure the validity of the curvature condition and, hence, the well definiteness of the BB
strategies. In particular, when the objective function is strongly convex, the curvature inequality is
satisfied for any given points x(k−1) and x(k) [40]. However, the BB schemes are often employed in
practice even when weaker assumptions hold. In these cases, negative values of αBB1

k and αBB2
k are

properly substituted by an emergency steplength belonging to the interval [αmin, αmax].
We recall that, in the case of quadratic objective function with symmetric and positive definite Hessian

matrix A, the BB rules (4) provide values belonging to the spectrum of the inverse of A, since they obey
to the following property

1

λmax(A)
≤ αBB2

k ≤ αBB1
k ≤ 1

λmin(A)
, (5)

where λmin(A) and λmax(A) denote the minimum and the maximum eigenvalues of A, respectively. We
briefly remark that the second inequality in (5) follows from the definition of αBB1

k and αBB2
k and the

Cauchy-Schwarz inequality [43, Lemma 2.1].
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Starting from the inspiring work of Barzilai and Borwein, many steplength updating strategies have
been devised to realize more and more effective gradient methods for unconstrained minimization prob-
lems (see, for example, [17, 19, 20, 28, 29, 31, 47]). One of the most competitive ideas among the
previously recalled strategies is represented by the approach developed in [47], where the authors sug-
gested gradient methods which adaptively alternate small and large steplengths during the iterations.
This alternation idea has been successfully exploited in both [28] and [10]. We report here the steplength
selection procedure suggested in [10], which alternates the BB rules as follows

αVABBmin

k =

{
min{αBB2

j : j = max{1, k −ma}, . . . , k}, if
αBB2
k

αBB1
k

< τk,

αBB1
k otherwise,

(6)

where ma is a nonnegative integer and τk is updated as

τk+1 =

{
τk/ζ if

αBB2
k

αBB1
k

< τk,

τk · ζ otherwise,

with ζ > 1. By selecting τk = τ > 0 at every iteration in (6), the alternating strategy proposed in [28]
can be recovered and the corresponding steplength will be hereafter denoted by αABBmin

k .
In the unconstrained quadratic case, the efficiency of a steplength rule within a gradient method is

essentially related to its ability to sweep, in a suitable way, the spectrum of the inverse of the underlying
Hessian. This understanding, firstly highlighted in [25], has given rise to interesting spectral analysis
of the BB-type methods [26, 22], for both quadratic and non-quadratic optimization problems, and has
been crucial for devising effective steplength strategies [47, 28, 21], such as the above adaptive rules.

The good results gained in solving unconstrained minimization problems by combining the gradient
methods with the BB-like rules encouraged the researchers to exploit these techniques also in gradient
projection schemes for constrained problems, by obtaining a great success in different fields [7, 3, 37,
43, 48]. Nevertheless, in these gradient projection approaches, the original BB strategies, and the ones
built from them, have been employed without any modification to take into account also the feasible set.
Only very recently [16], a spectral analysis of the BB steplength rules in gradient projection methods for
box-constrained strictly convex quadratic problems has been developed. By still denoting with ` and u
the vectors defining the box constraints, the authors introduced the following set of indices

Ik−1 = N − Jk−1, N = {1, ..., n},

Jk−1 = {i ∈ N : (x
(k−1)
i = `i ∧ x(k)

i = `i) ∨ (x
(k−1)
i = ui ∧ x(k)

i = ui)} ,
(7)

and observed that

αBB1
k =

‖s(k−1)‖2

s(k−1)T y(k−1)
=

‖s(k−1)
Ik−1

‖2

s
(k−1)
Ik−1

T
y

(k−1)
Ik−1

, (8)

where s
(k−1)
Ik−1

and y
(k−1)
Ik−1

represent, respectively, the subvectors of s(k−1) and y(k−1) whose components

are indexed in Ik−1. Moreover, in view of this consideration and since αBB2
k does not share a similar

property, they modified the second BB strategy in the following way

αBOX-BB2
k =

s
(k−1)
Ik−1

T
y

(k−1)
Ik−1

‖y(k−1)
Ik−1

‖2
, (9)

and refined conditions (5) as

1

λmax(AIk−1,Ik−1
)
≤ αBOX-BB2

k ≤ αBB1
k ≤ 1

λmin(AIk−1,Ik−1
)
, (10)

by denoting with AIk−1,Ik−1
the submatrix of the Hessian of the objective function given by the intersec-

tion of the rows and the columns with indices in Ik−1. In other words, 1/αBB1
k and 1/αBOX-BB2

k provide
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some information about the spectrum of the Hessian submatrix whose rows and columns are indexed in
Ik−1.

The goal of this paper is to continue the analysis carried out in [16] and to understand how the
presence of a single linear equality constraint together with lower and upper bounds can modify the
spectral properties of the BB steplength selection rules. Particularly, in the case of quadratic objective
function, we investigate how to generalize inequalities (5) and (10) in order to delineate conditions more
faithful to the special feasible region of problem (1). As a consequence, we suggested a new version of the
BB2 scheme which generalizes (9). Furthermore, in the general non-quadratic case, we study the spectral
properties of the considered BB rules providing their interpretation in terms of the Hessian matrices
evaluated at the iterates of the gradient projection scheme.

The paper is organized as follows. In Section 2, we develop the spectral analysis of the BB approaches
in presence of a strictly convex quadratic SLB problem. The corresponding investigation in the more
general non-quadratic framework can be appreciated in Section 3. In Section 4, a generalization of the
considered steplength rules to the case of variable metric gradient projection methods is proposed. Section
5 is devoted to the results of the numerical experiments performed on several datasets, concerning both
quadratic and non-quadratic problems. The conclusions are drawn in Section 6.

Notation. In the following, we denote by Or,s the r × s null matrix (r, s positive integer scalars), by Ir
the identity matrix of order r and by IC the identity matrix of order ]C. Moreover, xC ∈ R]C stands for
the subvector of x with entries indexed in C.

2. The quadratic case

We start our analysis from the easier case of a quadratic objective function: the optimization problem
we consider in this section has the form

min
x∈Rn

f(x) ≡ 1

2
xTAx− bTx+ c (11)

subject to ` ≤ x ≤ u vTx = e,

where A is a symmetric positive definite matrix of order n, b ∈ Rn and c ∈ R. Let denote g(x) =
∇f(x) = Ax− b and by x∗ the minimizer of the constrained problem (11). Let J ∗ be the set of indices
in N = {1, ..., n} of the active box constraints at x∗, that is x∗i = `i or x∗i = ui, for all i ∈ J ∗, and
I∗ = N\J ∗ be the complement of J ∗ in N , with cardinality m = ]I∗, 0 ≤ m ≤ n. By neglecting the
special cases m = 0 and m = n, we assume that J ∗ 6= ∅, J ∗ 6= N , and that v and the columns of the
identity matrix of order n with indices in J ∗ are linearly independent. Consequently the entries of v
corresponding to I∗ are not all equal to zero. For the sake of simplicity, we assume that the rows/columns
of A and the entries of any vector are reordered so that I∗ is related to the first m indices and J ∗ contains
the last n−m indices.

Moreover, we recall that, in view of the necessary and sufficient Karush-Kuhn-Tucker (KKT) condi-
tions, a feasible x∗ is a minimizer if and only if there exist ψ∗ ∈ R and µ∗, ν∗ ∈ Rn such that

g(x∗)− ψ∗v − µ∗ + ν∗ = 0,

vTx∗ = e,

µ∗ · (x∗ − `) = 0, x∗ − ` ≥ 0, µ∗ ≥ 0,

ν∗ · (u− x∗) = 0, u− x∗ ≥ 0, ν∗ ≥ 0,

(12)

where the products between vectors have to be intended component–wise.
In the following we will show the relation between the BB steplength values and the spectrum of special

matrices obtained as restriction of the matrix A to subspaces depending on the constraints which become
active during the iterative process. To this end, we first introduce the restriction of A to the tangent
space of the active constraints at the solution and then we study the properties of the approximations of
this matrix available in the iterations of the gradient projection schemes.
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2.1. The Hessian matrix restricted to the tangent space of the active constraints at the solution

The tangent space of the active constraints at x∗ is defined as

Ω∗ =

{
x ∈ Rn :

[
On−m,m IJ ∗

vT

]
x = On−m+1,1

}
= range

([
II∗

On−m,m

])
∩ null(vT ).

Taking into account that the dimension of Ω∗ is (m − 1), we introduce the matrix A∗ ∈ R(m−1)×(m−1)

defined as
A∗ = Ũ∗

T
AŨ∗, (13)

where Ũ∗ denotes an n× (m− 1) matrix whose columns are an orthonormal basis of Ω∗. We call A∗ the
Hessian matrix restricted to the tangent space of the active constraints at the solution, hereafter named
restricted Hessian matrix. In order to characterize the symmetric positive definite matrix A∗, we collect
some useful results on projection matrices in Lemma 2.1 (see [33]).

Lemma 2.1. Let u be a non-zero vector in Rm and define the matrices V = uuT

uTu
and P = Im − V . It

holds that

(a) the matrix V is the orthogonal projection onto the subspace V = range(u);
the matrix P is the orthogonal projection onto V⊥ = range(u)⊥ = null(uT );

(b) V = V T = V 2 and P = PT = P 2;

(c) range(V ) = null(P ) = V and null(V ) = range(P ) = V⊥;

(d) the spectral decomposition of V is V = W
[
Om−1,m−1 Om−1,1

O1,m−1 1

]
WT , where W =

[
W̃ w

]
is an

orthogonal matrix of order m, with W̃ ∈ Rm×(m−1), w ∈ Rm; the eigenvalues of V are either 1
or 0; range(V ) = range(w) is the one-dimensional eigenspace associated to the eigenvalue 1 and
null(V ) = range(W̃ ) is the eigenspace of dimension m− 1 associated to the eigenvalue 0;

(e) P = W
[

Im−1 Om−1,1

O1,m−1 0

]
WT is the spectral decomposition of P ; the eigenvalues of P are either 1

or 0; range(P ) = range(W̃ ) is the eigenspace of dimension m−1 associated to the eigenvalue 1 and
null(P ) = range(w) is the one-dimensional eigenspace associated to the eigenvalue 0;

(f) P = W̃W̃T and V = wwT , with W̃T W̃ = Im−1 and wTw = 1, w = u
‖u‖ ; furthermore W̃ is an

orthonormal basis of range(P ) = V⊥ = null(uT ).

By using the notation vT =
[
vTI∗ vTJ ∗

]
and by applying Lemma 2.1 with u = vI∗ it is possible to

construct the matrix Ũ∗ used in the definition of A∗. Indeed, if we denote by P ∗ the orthogonal projection
onto null(vTI∗), thanks to part (f) of Lemma 2.1, there exists a matrix W̃ ∗ ∈ Rm×(m−1) whose columns are

an orthonormal basis for null(vTI∗). Consequently, the matrix Ũ∗ =
[

W̃∗

On−m,m−1

]
provides an orthonormal

basis for Ω∗, since any n-vector x ∈ Ω∗ can be expressed as xT =
[
xTI∗ xTJ ∗

]
with xI∗ ∈ null(vTI∗) and

xJ ∗ = On−m,1.
In the next subsection we will show that, when a gradient projection method is applied for solving

problem (11), the spectrum of A∗ plays a crucial role in the analysis of the steplength rules.

2.2. The spectral properties of the BB rules in terms of the approximated restricted Hessian matrices

Of course, at the beginning of the iterative process generated by a gradient projection method, the
solution x∗ of (11) is not known and, for our study, we need to focus on a sequence of matrices which
approximate A∗ during the iterations. First of all, we provide a way to realize such a sequence of
approximation matrices and we underline the relationship between their spectra and the BB steplength
selection rules. To achieve this goal, we consider the set of indices introduced in (7). Also in this case, for
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the sake of simplicity, we assume that the rows/columns of A and the entries of any vector are reordered
so that Ik−1 is related to the first mk = ]Ik−1 indices and Jk−1 contains the last n−mk indices.

If we consider the orthogonal projection Pk−1 onto null(vTIk−1
),

Pk−1 = IIk−1
− 1

vTIk−1
vIk−1

vIk−1
vTIk−1

, (14)

from part (f) of the Lemma 2.1, we have that there exists a mk×(mk−1) matrix W̃k−1 with orthonormal
columns such that

Pk−1 = W̃k−1W̃
T
k−1, (15)

and the n× (mk − 1) matrix

Ũk−1 =

[
W̃k−1

On−mk,mk−1

]
(16)

is an orthonormal basis for the subspace

Ωk−1 =

{
x ∈ Rn :

[
On−mk,mk IJk−1

vT

]
x = On−mk+1,1

}
. (17)

Therefore, the symmetric positive definite matrix ŨTk−1AŨk−1 represents an approximation of the matrix
(13) at the iteration k.

Now, by using the notation g(k) = g(x(k)), we consider y(k−1) = g(k) − g(k−1) and we introduce the
following vector:

t(k−1) = g(k) − ψkv − (g(k−1) − ψk−1v) = y(k−1) − (ψk − ψk−1)v, (18)

where ψk−1 and ψk are approximations of the equality constraint multiplier ψ∗ computed at the iterations
k − 1 and k, respectively, (see the conditions (12)):

ψk−1 =
vTIk−1

g
(k−1)
Ik−1

vTIk−1
vIk−1

, ψk =
vTIk−1

g
(k)
Ik−1

vTIk−1
vIk−1

. (19)

Note that quantities similar to t(k−1) were considered also in the framework of interior point methods [32].

The vector (18) can be written as t(k−1) =

[
t
(k−1)
Ik−1

t
(k−1)
Jk−1

]
and the following equalities hold:

t
(k−1)
Ik−1

= Pk−1y
(k−1)
Ik−1

= W̃k−1W̃
T
k−1y

(k−1)
Ik−1

. (20)

The next Lemma is useful to understand the role of t
(k−1)
Ik−1

in the definitions of the BB steplength rules.

Lemma 2.2. Given s(k−1) = x(k) − x(k−1) and t(k−1) as in (18), it holds that

(a) s(k−1)T v = 0;

(b) s
(k−1)
Ik−1

T
vIk−1

= 0;

(c) s(k−1)T y(k−1) = s(k−1)T t(k−1) = s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

.

Proof. (a) s(k−1)T v = 0 since both x(k−1) and x(k) satisfy the equality constraint vTx = e.

(b) We show that s
(k−1)
Ik−1

T
vIk−1

= 0. Indeed,

0 = s(k−1)T v =
∑

i∈Ik−1

s
(k−1)
i

T
vi +

∑
i∈Jk−1

s
(k−1)
i

T
vi =

∑
i∈Ik−1

s
(k−1)
i

T
vi,
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where the last equality holds since s
(k−1)
Jk−1

= On−mk,1 from the definition of Jk−1.

(c) From parts (a), we have that

s(k−1)T t(k−1) = s(k−1)T
(
y(k−1) − (ψk − ψk−1)v

)
= s(k−1)T y(k−1), (21)

and, since s
(k−1)
Jk−1

= On−mk,1, the last equality follows easily. �

Lemma 2.2 allows us to state that the classical formulation (4) of the first BB rule provides a steplength
depending only on the indices belonging to the set Ik−1:

αBB1
k =

s(k−1)T s(k−1)

s(k−1)T y(k−1)
=
s

(k−1)
Ik−1

T
s

(k−1)
Ik−1

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

. (22)

In some sense, the rule αBB1
k computes the steplength by capturing information from the current inactive

constraints, discarding the effect of the constraints that remain active in the last two iterations. The
original BB2 rule does not fulfill a similar property, due to the special form of its denominator. This
remark suggests to study the properties of the following modified BB2 rule:

αEQ-BB2
k =

s(k−1)T y(k−1)

t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

. (23)

Theorem 2.1 shows that the reciprocals of αBB1
k and αEQ-BB2

k give spectral information about the matrix

ŨTk−1AŨk−1.

Theorem 2.1. Under the assumption that the matrix A is symmetric and positive definite, we have

λmin(ŨTk−1AŨk−1) ≤ 1/αBB1
k ≤ λmax(ŨTk−1AŨk−1), (24)

λmin(ŨTk−1AŨk−1) ≤ 1/αEQ-BB2
k ≤ λmax(ŨTk−1AŨk−1). (25)

Proof. In the following, we drop for simplicity the iteration counter k − 1 from Ik−1 and Jk−1. In
view of the gradient projection iteration (2), we have that the entries of the iterate x(k) are

x
(k)
i =

{
x

(k−1)
i + νk−1(r

(k−1)
i − x(k−1)

i ) for i ∈ I,
x

(k−1)
i for i ∈ J ,

(26)

where r
(k−1)
i = (ΠΩ(x(k−1) − αk−1g

(k−1)))i, i ∈ I. The vector s(k−1) can be partitioned into two sub-
vectors as follows

s(k−1) =

(
s

(k−1)
I

s
(k−1)
J

)
=

(
νk−1(r(k−1) − x(k−1)

I )

OJ ,1

)
. (27)

Any entry g
(k)
i , i = 1, . . . , n, of the gradient g(k) has the following expression:

g
(k)
i =

n∑
j=1

aijx
(k)
j − bi

=
∑
j∈I

aij(x
(k−1)
j + νk−1(r

(k−1)
j − x(k−1)

j )) +
∑
j∈J

aijx
(k−1)
j − bi

= g
(k−1)
i + νk−1

∑
j∈I

aij(r
(k−1)
j − x(k−1)

j ).
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Consequently, from (27), we can write

y(k−1) =

(
y

(k−1)
I

y
(k−1)
J

)
=

(
AI,Is

(k−1)
I

AJ ,Is
(k−1)
I

)
. (28)

Furthermore, from part (b) of Lemma 2.2, it follows that

Pk−1s
(k−1)
I =

(
II −

1

vTI vI
vIv

T
I

)
s

(k−1)
I = s

(k−1)
I . (29)

Hence, from (29) and (15) we observe that

s(k−1)T s(k−1) = s
(k−1)
I

T
s

(k−1)
I = s

(k−1)
I

T
Pk−1s

(k−1)
I = ‖W̃T

k−1s
(k−1)
I ‖2. (30)

Moreover, from part (c) of Lemma 2.2, (20), (28), (29), (15) and (16), we obtain

s(k−1)T y(k−1) = s
(k−1)
I

T
t
(k−1)
I = s

(k−1)
I

T
Pk−1y

(k−1)
I

= s
(k−1)
I

T
Pk−1AI,Is

(k−1)
I = s

(k−1)
I

T
Pk−1AI,IPk−1s

(k−1)
I

= s
(k−1)
I

T
W̃k−1W̃

T
k−1AI,IW̃k−1W̃

T
k−1s

(k−1)
I

= s
(k−1)
I

T
W̃k−1Ũ

T
k−1AŨk−1W̃

T
k−1s

(k−1)
I .

(31)

From (31) and (30), we conclude that 1/αBB1
k is the Rayleigh quotient of the matrix ŨTk−1AŨk−1 at the

vector W̃T
k−1s

(k−1)
I and the inequality (24) holds.

Furthermore, by proceeding as for the equalities (31), it is immediate to write

t
(k−1)
I = W̃k−1Ũ

T
k−1AŨk−1W̃

T
k−1s

(k−1)
I . (32)

As a consequence, since W̃T
k−1W̃k−1 = Im−1, we obtain

t
(k−1)
I

T
t
(k−1)
I = s

(k−1)
I

T
W̃k−1(ŨTk−1AŨk−1)2W̃T

k−1s
(k−1)
I . (33)

Since ŨTk−1AŨk−1 is a symmetric positive definite matrix, we can introduce the vector

z(k−1) = (ŨTk−1AŨk−1)1/2W̃T
k−1s

(k−1)
I , (34)

so that the scalar product in (33) can be written as

t
(k−1)
I

T
t
(k−1)
I = z(k−1)T ŨTk−1AŨk−1z

(k−1), (35)

and s(k−1)T y(k−1) = z(k−1)T z(k−1); thus, 1/αEQ-BB2
k is the Rayleigh quotient of the matrix ŨTk−1AŨk−1

at the vector z(k−1) and the inequality (25) holds. �

The modified BB2 rule (23) not only exhibits the same spectral properties of the BB1 steplength but it
also allows to recover a relationship between the two rules analogous to (5) and (10), as the next theorem
shows.

Theorem 2.2. The steplengths αBB1
k and αEQ-BB2

k satisfy αEQ-BB2
k ≤ αBB1

k .

Proof. From the Cauchy-Schwarz inequality, it follows that

1

αBB1
k

=
s(k−1)T y(k−1)

s(k−1)T s(k−1)
=
s

(k−1)
Ik−1

T
t
(k−1)
Ik−1

s
(k−1)
Ik−1

T
s

(k−1)
Ik−1

≤
‖s(k−1)
Ik−1

‖‖t(k−1)
Ik−1

‖

‖s(k−1)
Ik−1

‖2

=
‖t(k−1)
Ik−1

‖‖t(k−1)
Ik−1

‖

‖s(k−1)
Ik−1

‖‖t(k−1)
Ik−1

‖
≤
t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

=
t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

s(k−1)T y(k−1)
=

1

αEQ-BB2
k

.

8



�

The spectral properties described in Theorem 2.1 are useful for relating the steplength to the ability

of the gradient projection scheme to annihilate the quantity g
(k−1)
Ik−1

−ψk−1vIk−1
, that is a remarkable skill

since at the solution x∗ we have gI∗(x
∗)− ψ∗vI∗ = 0, as ensured by the KKT conditions (12). In order

to explain this fact, by supposing Ik−1 = Ik, we observe that

g
(k)
Ik − ψkvIk = g

(k)
Ik −

vTIk
g
(k)
Ik

vTIk
vIk

vIk = Pkg
(k)
Ik ,

g
(k−1)
Ik−1

− ψk−1vIk−1
= g

(k−1)
Ik−1

−
vTIk−1

g
(k−1)
Ik−1

vTIk−1
vIk−1

vIk−1
= Pk−1g

(k−1)
Ik−1

,
(36)

and we show in Theorem 2.3 how a gradient projection step affects the vector Pkg
(k)
Ik .

Theorem 2.3. Assume that Ik−1 = Ik and `i <
(
ΠΩ(x(k−1) − αk−1g

(k−1))
)
i
< ui, i ∈ Ik−1. The

following equalities hold:

Pkg
(k)
Ik =

(
Imk − αk−1νk−1Pk−1AIk−1,Ik−1

Pk−1

)
Pk−1g

(k−1)
Ik−1

, (37)

W̃kW̃
T
k g

(k)
Ik = W̃k−1

(
Imk−1 − αk−1νk−1Ũ

T
k−1AŨk−1

)
W̃T
k−1g

(k−1)
Ik−1

, (38)

where W̃k−1 ∈ Rmk×(mk−1) and W̃k ∈ Rmk+1×(mk+1−1) are matrices with orthonormal columns such that
Pk−1 = W̃k−1W̃

T
k−1 and Pk = W̃kW̃

T
k , respectively.

Proof. By using equations (27) and (29) and the hypothesis Ik−1 = Ik, we can write

Pkg
(k)
Ik = Pk−1

(
g

(k−1)
Ik−1

+AIk−1,Ik−1
s

(k−1)
Ik−1

)
= Pk−1g

(k−1)
Ik−1

+νk−1Pk−1AIk−1,Ik−1
Pk−1

(
r(k−1) − x(k−1)

Ik−1

)
,

(39)

where, as before, r(k−1) =
(
ΠΩ(x(k−1) − αk−1g

(k−1))
)
Ik−1

. Since x
(k)
Jk−1

= x
(k−1)
Jk−1

(from the definition of

Jk−1) and `Ik−1
< r(k−1) < uIk−1

, the vector ΠΩ(x(k−1) − αk−1g
(k−1)) can be written as

ΠΩ(x(k−1) − αk−1g
(k−1)) =

(
r(k−1)

x
(k−1)
Jk−1

)
,

where, by using by notation ẽ = e− vTJk−1
x

(k−1)
Jk−1

, r(k−1) solves the following problem

r(k−1) = arg min{
r : vTIk−1

r=ẽ
} 1

2
‖r − (x(k−1) − αk−1g

(k−1))Ik−1
‖2. (40)

From the KKT conditions related to the problem (40), the vector r(k−1) has the following expression

r(k−1) = x
(k−1)
Ik−1

− αk−1g
(k−1)
Ik−1

−
vTIk−1

(x
(k−1)
Ik−1

−αk−1g
(k−1)
Ik−1

)

vTIk−1
vIk−1

vIk−1
+

ẽvIk−1

vTIk−1
vIk−1

=

= x
(k−1)
Ik−1

− αk−1g
(k−1)
Ik−1

−
vTIk−1

x
(k−1)
Ik−1

vIk−1

vTIk−1
vIk−1

+
αk−1v

T
Ik−1

g
(k−1)
Ik−1

vIk−1

vTIk−1
vIk−1

+

+
ẽvIk−1

vTIk−1
vIk−1

= x
(k−1)
Ik−1

− αk−1Pk−1g
(k−1)
Ik−1

.

From equation (39) and the previous one, the first equality of the thesis is proved. The second one follows
easily from the definition of W̃k−1 and W̃k. �
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Thanks to the assumption Ik = Ik−1, we have that W̃k−1 = W̃k and, due to the linear independence
of their columns, from (38) it follows that

W̃T
k g

(k)
Ik =

(
Imk−1 − αk−1νk−1Ũ

T
k−1AŨk−1

)
W̃T
k−1g

(k−1)
Ik−1

. (41)

If we denote by λ1, . . . , λmk−1 and ξ1, . . . , ξmk−1 the eigenvalues and the associated orthonormal eigen-

vectors of ŨTk−1AŨk−1, we may write W̃T
k g

(k)
Ik =

∑mk−1
i=1 γ

(k)
i ξi and W̃T

k−1g
(k−1)
Ik−1

=
∑mk−1
i=1 γ

(k−1)
i ξi. For

the eigencomponents γ
(k)
i the following recurrence formula can be easily derived from (41)

γ
(k)
i = (1− αk−1νk−1λi) γ

(k−1)
i , i = 1, . . . ,mk − 1. (42)

Formula (42) highlights that if αk−1 is an accurate approximation of the inverse of an eigenvalue of

ŨTk−1AŨk−1, since νk ∈ (0, 1], a reduction of
∣∣∣γ(k)
i

∣∣∣ with respect to
∣∣∣γ(k−1)
i

∣∣∣ is obtained. By remembering

that W̃ ∗T gI∗(x
∗) = 0, we conclude that the use of a steplength rule providing good approximations of

the inverse of the eigenvalues of ŨTk−1AŨk−1 can be a fruitful strategy for accelerating gradient projection
methods for problem (11).

In analogy with the box-constrained case [16], the previous theorems suggest that the modified BB2
rule (23) can be exploited within the adaptive strategy (6) in order to design a steplength selection
that better sweeps the spectrum of the inverse of ŨTk−1AŨk−1 with respect to the original rule (6). The
resulting scheme can be written as

α
EQ-VABBmin

k =

{
min{αEQ-BB2

j : j=max{1, k−ma}, . . . , k} if
αEQ-BB2
k

αBB1
k

<τk,

αBB1
k otherwise,

(43)

where ma and τk are defined as in (6). We can guarantee that 1/α
EQ-VABBmin

k belongs to the spectrum of

ŨTk−1AŨk−1 at any iteration only if ma = 0. Indeed, if ma > 0, inequalities (25) do not hold, in general,

for αEQ-BB2
j with j = max{1, k − ma}, . . . , k − 1. However, small values for ma are acceptable since

the final active set stabilizes at some point of the iterative process. In the following we will denote by

α
EQ-ABBmin

k the version of (43) with τk = τ, ∀k, that is the steplength strategy suggested in [28] properly
modified to account for the single linear equality constraint and the lower and upper bounds.

Remark 2.1. Before concluding this section, we mention how to deal with a slight modification of the
feasible set in (11): a single linear inequality constraint instead of a single linear equality one. In case
of an inequality constraint, if in two successive iterations the linear constraint is active then the BB2
strategy has to be defined according to (23), otherwise it must be fixed according to (9) which only takes
into account the presence of the lower and the upper bounds.

3. The non-quadratic case

In this section we come back to the original non-quadratic problem (1) and we define the spectral

properties of αBB1
k and αEQ-BB2

k with respect to the Hessian matrix of the objective function at x(k). The
multidimensional variant of Taylor’s theorem [40, Theorem 11.1] allows to write the following equation:

y(k−1) = ∇f(x(k))−∇f(x(k−1)) =

∫ 1

0

∇2f(x(k−1) + %s(k−1))s(k−1)d%. (44)

From (20) and (44) and by recalling that s
(k−1)
Jk−1

= 0, it holds

t
(k−1)
Ik−1

= [Pk−1 Omk,n−mk ] y(k−1) =

∫ 1

0

Pk−1∇2f(x(k−1) + %s(k−1))Ik−1,Ik−1
s

(k−1)
Ik−1

d%,
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and, from part (c) of Lemma 2.2 and the equality s
(k−1)
Ik−1

= Pk−1s
(k−1)
Ik−1

, we have

s(k−1)T y(k−1) = s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

= s
(k−1)
Ik−1

T
∫ 1

0

W̃k−1W̃
T
k−1∇2f(x(k−1) + %s(k−1))Ik−1,Ik−1

W̃k−1W̃
T
k−1s

(k−1)
Ik−1

d%

= s
(k−1)
Ik−1

T
W̃k−1

∫ 1

0

(
ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1

)
W̃T
k−1s

(k−1)
Ik−1

d%.

Since s
(k−1)
Ik−1

T
W̃k−1W̃

T
k−1s

(k−1)
Ik−1

= s(k−1)T s(k−1), from the last equality we can conclude that 1/αEQ-BB1
k

can be interpreted as a Rayleigh quotient relative to the average matrix ŨTk−1∇2f(x(k−1) +%s(k−1))Ũk−1.

In order to give a similar interpretation for αEQ-BB2
k , we take into account the linear function

φ : Rm−1 → Rm−1 defined as

φ(xW̃ ) = zW̃ = W̃T
k−1Pk−1∇f(xIk−1

, xJk−1
)Ik−1

,

where xW̃ ∈ Rm−1, xIk−1
= W̃k−1xW̃ and xJk−1

is fixed at the iteration k − 1 and k. We have

W̃k−1φ(xW̃ ) = W̃k−1zW̃ = Pk−1∇f(W̃k−1xW̃ , xJk−1
)Ik−1

. We assume that ∇f is a continuously dif-

ferentiable function, locally invertible in the intersection of Ωk−1 with a neighborhood of x(k−1) including
x(k); we define the inverse function φ−1 as φ−1(zW̃ ) = xW̃ ⇔ φ(xW̃ ) = zW̃ , or equivalently

φ−1(zW̃ ) = xW̃ ⇔ W̃T
k−1Pk−1∇f(W̃k−1xW̃ , xJk−1

)Ik−1
=

= W̃T
k−1∇f(W̃k−1xW̃ , xJk−1

)Ik−1
= zW̃ .

The Jacobian matrix of φ−1 at zW̃ is (W̃T
k−1∇2f(W̃k−1xW̃ , xJk−1

)Ik−1,Ik−1
W̃k−1)−1, equal to the inverse

of ŨTk−1∇2f(xIk−1
, xJk−1

)Ũk−1.

Setting φ−1(z
(k−1)

W̃
) = x

(k−1)

W̃
, with x

(k−1)
Ik−1

= W̃k−1x
(k−1)

W̃
and φ−1(z

(k)

W̃
) = x

(k)

W̃
, with x

(k)
Ik−1

= W̃k−1x
(k)

W̃
,

we can write

x
(k)

W̃
− x(k−1)

W̃
=

∫ 1

0

(ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1)−1(z
(k)

W̃
− z(k−1)

W̃
)d%.

By multiplying both the members of the previous equality for y
(k−1)
Ik−1

T
W̃k−1, we have

y
(k−1)
Ik−1

T
s

(k−1)
Ik−1

= y
(k−1)
Ik−1

T
W̃k−1

(
x

(k)

W̃
− x(k−1)

W̃

)
= y

(k−1)
Ik−1

T
W̃k−1

∫ 1

0

(ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1)−1W̃T
k−1y

(k−1)
Ik−1

d%.

Since t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

= y
(k−1)
Ik−1

T
W̃k−1W̃

T
k−1y

(k−1)
Ik−1

, we can conclude that αEQ-BB2
k can be interpreted as a

Rayleigh quotient relative to the average inverse of the matrix ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1.

Remark 3.1. Inspired by the idea at the basis of the classical BB rules, we observe that the steplength
selections (22) and (23) can be interpreted also as solutions of the following modified secant conditions:

αBB1
k = arg min

α∈R
‖α−1s

(k−1)
Ik−1

− t(k−1)
Ik−1

‖, αEQ-BB2
k = arg min

α∈R
‖s(k−1)
Ik−1

− αt(k−1)
Ik−1

‖. (45)

4. Variable metric gradient projection method

In order to improve the convergence rate of algorithm (2), a very popular technique [10, 12, 14, 36]
consists in exploiting a variable metric instead of the standard fixed Euclidean one, by introducing the
variable metric gradient projection method

d(k) = ΠDk
Ω

(
x(k) − αkD−1

k ∇f(x(k))
)
− x(k), x(k+1) = x(k) + νkd

(k), (46)
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where {Dk}k∈N is a sequence of symmetric and positive definite matrices with the eigenvalues belonging

to

[
1

µ
, µ

]
, µ ≥ 1 and ΠDk

Ω represents the projection operator onto Ω with respect to the norm induced

by Dk:

ΠDk
Ω (z) = arg min

x∈Ω

1

2
‖x− z‖2Dk ≡

1

2
(x− z)T Dk (x− z) .

The selection of the sequence {Dk}k∈N usually must aim at two main goals: improving the convergence
rate and adding some local information about the problem without introducing significant computational
costs. Typically, the definition of proper scaling matrices is strictly related to the problem to handle
and, for this reason, their setting criteria will be discussed case by case in the section devoted to the
numerical experiments. However, we point out that, to keep the computational cost unchanged, the
scaling matrices must have a simple structure and therefore, hereafter, we will consider diagonal matrices.
From a theoretical point of view, the convergence of the variable metric gradient projection method (46)
is still ensured for any value of the steplength αk belonging to a compact subset of R+ [9, Theorem
2.1]. This allows to properly modify the steplength selection rule in order to consider the presence of
the variable metric, without being subject to restrictive conditions. A natural way to achieve this goal
consists in asking αk to satisfy generalized secant conditions written in terms of the norm induced by the
matrix (Dk)Ik−1,Ik−1

,

αP-BB1
k = arg min

α∈R
‖α−1s

(k−1)
Ik−1

− (D−1
k )Ik−1,Ik−1

t
(k−1)
Ik−1

‖(Dk)Ik−1,Ik−1

αP-EQ-BB2
k = arg min

α∈R
‖s(k−1)
Ik−1

− α(D−1
k )Ik−1,Ik−1

t
(k−1)
Ik−1

‖(Dk)Ik−1,Ik−1
,

(47)

that provides the following updating rules

αP-BB1
k =

s
(k−1)
Ik−1

T
(Dk)Ik−1,Ik−1

s
(k−1)
Ik−1

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

=
s(k−1)TDks

(k−1)

s(k−1)T y(k−1)
, (48)

αP-EQ-BB2
k =

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

t
(k−1)
Ik−1

T
(D−1

k )Ik−1,Ik−1
t
(k−1)
Ik−1

. (49)

The rule (49) is the modified version of the following strategy

αP-BB2
k =

s(k−1)T y(k−1)

y(k−1)TD−1
k y(k−1)

, (50)

which takes into account the presence of the scaling matrix but does not consider the inactive constraints

of the feasible region at each iteration. It is interesting to observe that, when s(k−1)T y(k−1) > 0, from
the inequality(

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

)2

≤
(
s

(k−1)
Ik−1

T
(Dk)Ik−1,Ik−1

s
(k−1)
Ik−1

)(
t
(k−1)
Ik−1

T
(D−1

k )Ik−1,Ik−1
t
(k−1)
Ik−1

)
,

we easily obtain that αP-EQ-BB2
k ≤ αP-BB1

k . This suggests that the rule (48) and (49) are suitable to be
tested within a strategy generalizing (43) to the variable metric case:

α
P-EQ-VABBmin

k =

{
min{αP-EQ-BB2

j : j=max{1, k −ma}, . . . , k} if
α
P-EQ-BB2
k

αP-BB1
k

< τk,

αP-BB1
k otherwise,

(51)

where ma and τk are defined as in (6).
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Remark 4.1. In the special case of quadratic objective functions and fixed scaling matrices, the steps of the
scheme (46) are clearly related to the steps of a standard gradient method applied to a preconditioned
quadratic problem. Then it would be interesting to investigate possible interpretations of the above
variable metric gradient projection method as a preconditioned scheme and to evaluate its behaviour in
comparison with other preconditioned approaches available in literature (e.g., [29, Section 4] and [39]).
However, these topics deserve a deep analysis and are beyond the aims of this work.

5. Numerical experiments

This section is devoted to evaluate the effects of the BB-like rules previously described on the gradient
projection method (2). The variable metric variant of GP, equipped with the steplength rules proposed
in Section 4, is denoted by SGP. We consider several optimization problems, with both quadratic and
non-quadratic objective functions.

Before presenting the results, we recall some common features shared by all the numerical experiments
performed: for the GP and the SGP methods, we made the following choices.

• The projection onto the set Ω is formulated as a root-finding problem and effectively computed by
the secant-like algorithm developed in [18].

• In order to guarantee the boundedness of the steplengths, we have always requested that αk belongs
to the interval [αmin, αmax] = [10−10, 106].

• The parameter νk has been selected by means of the non-monotone version of the Armijo linesearch
proposed in [30]: for given scalars 0 < β, δ < 1, the parameter νk is set equal to βik and ik is the
first non-negative integer i for which

fmax − f(x(k) + βid(k)) ≥ −δβi∇f(x(k))T d(k) , (52)

where fmax is the maximum value of the objective function in the last M iterations. For all the
experiments we set β = 0.4, δ = 10−4 and M = 10.

We recall that every accumulation point of the sequence {x(k)}k∈N generated by either algorithm (2)
or its variable metric variant (46), equipped with the non-monotone linesearch (52), is a stationary
point of (1), as proved in [10, Theorem 2.1].

All the numerical experiments are performed in the Matlab environment.

5.1. Random SLB problems

In this section, we consider randomly generated test problems. For the quadratic case, we analyze
the behaviour of the BB strategies and their modified versions on some toy problems, in order to show
graphically the validity of inequalities (24) and (25). Furthermore, for the non-quadratic case, we perform
a study on a set of 162 well-known test problems of both small and large dimensions.

5.1.1. Quadratic case

The aim of this section is both to verify the efficiency of the modified BB2 steplength rule employed
alone or in an alternating scheme and to analyze the distribution of the steplengths with respect to the
eigenvalues of the sequence of the restricted Hessian matrices obtained during the iterative process. In
order to reach these goals we randomly generated quadratic SLB problems where the solution, the vector
v, the number of active constraints at the solution and the distribution of the eigenvalues of the Hessian
matrix of the objective function are prefixed. Table 1 summarizes the main features of the three test
problems we considered for the investigation of this section.

We evaluate the behaviour of the gradient projection method (2) equipped with different steplength
selection rules: BB1, BB2, EQ-BB2, ABBmin, EQ-ABBmin and EQ-VABBmin. We recall that ABBmin

and EQ-ABBmin stand for the particular cases of (6) and (43) where τk = τ, ∀k; in our experiments we
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Table 1: Features of the randomly generated quadratic SLB problems.

n λmin(A) λmax(A) Distribution of the eigenvalues of A λmin(A∗) λmax(A∗)
QP1 1000 19 9923 Marchenko-Pastur [38, 46] 41.09 9862.17
QP2 1000 1 1000 Log-spaced 5.29 679.87
QP3 500 0.05 1455.57 Log-spaced 10.03 99.86

set τ = 0.7. On the other hand, for the EQ-VABBmin scheme, we fixed τ1 = 0.7, ma = 2 and ζ = 1.3.
The following stopping criterion was used to stop the GP methods:

‖x(k) − x(k−1)‖∞ ≤ 10−7 . (53)

Figure 1 shows the behaviour of the inverses of the steplengths generated by means of BB1, BB2 and
EQ-BB2 with respect to the eigenvalues of the matrices ŨTk−1AŨk−1. Particularly, in the first three rows
of Figure 1, at the k-th iteration, we plotted, by black dots, 20 eigenvalues of the restricted Hessian matrix
ŨTk−1AŨk−1 with linearly spaced indices (always including the maximum and minimum eigenvalues) and,
by a red cross, the inverse of the steplength αk. Moreover, the blue lines correspond to the maximum and
the minimum eigenvalues of the whole Hessian matrix A and the blue circles denote the 20 eigenvalues of
the restricted Hessian matrix at the prefixed solution x∗, with the same linearly spaced indices considered
for the plot at the single iteration. These plots confirm that the inverses of the steplengths generated by
the BB1 and the EQ-BB2 rules satisfy inequalities (24)-(25), while the inverses of the steplengths obtained
by applying the non-modified BB2 scheme can fall outside the spectrum of the restricted Hessian matrices.
The fourth row of Figure 1 shows the decrease of the following relative distance

|f(x(k))− f∗|
|f∗|

(54)

between the objective function values obtained by considering the different BB-like rules in the GP
method and f∗, namely the objective function value at the solution. The decrease of the objective
function towards the minimum is considerably accelerated by employing the EQ-BB2 strategy instead of
the BB2 one. The alternating steplength selection rules also take advantage of the modified version of
the BB2 scheme, which accounts for the nature of the problem feasible set.

5.1.2. Non-quadratic case

In this section we analyze the practical efficiency of the considered methods on some non-quadratic
SLB test problems.
Based on the technique proposed in [24], the test problems were generated in two possible ways, as follows.
Starting from an unconstrained minimization problem with a twice continuously differentiable objective
function φ(x),

min
x∈Rn

φ(x), (55)

for which a local minimum point x∗ is known, we generated a constrained problem having one of the
following formulations:

min
x∈Rn

f(x) = φ(x) + vT (x− x∗) +
∑
i∈L

hi(xi)−
∑
i∈U

hi(xi) (56)

subject to ` ≤ x ≤ u, vTx = e,

or

min
x∈Rn

f(x) = φ(x)vTx+
∑
i∈L

hi(xi)−
∑
i∈U

hi(xi) (57)

subject to ` ≤ x ≤ u, vTx = e, e > 0,

14



0 50 100 150 200

0

2000

4000

6000

8000

10000

0 50 100 150 200

10 0

10 1

10 2

10 3

0 20 40 60 80

10 0

10 2

0 100 200 300

0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300

10 0

10 1

10 2

10 3

0 50 100 150 200

10 0

10 2

0 50 100

0

2000

4000

6000

8000

10000

0 50 100 150 200

10 0

10 1

10 2

10 3

0 20 40 60

10 0

10 2

0 100 200 300
10 -15

10 -10

10 -5

10 0

0 100 200 300
10 -15

10 -10

10 -5

10 0

0 50 100 150 200 250
10 -15

10 -10

10 -5

10 0

Figure 1: Behaviour of gradient projection method equipped with different steplength rules on QP1 (left column), QP2
(middle column), QP3 (right column). Distribution of αk with respect to the iterations for the BB1 (first row), BB2 (second
row), EQ-BB2 (third row) rules; error on f(x(k)) for the different rules (fourth row).

where v ∈ Rn, e ∈ R, L = {i |x∗i = `i}, U = {i |x∗i = ui} and hi : R → R, i ∈ L ∪ U , are twice
continuously differentiable non-decreasing functions. Note that the constrained problems defined by (56)
and (57) have the same solution x∗ of the unconstrained problem (55); to this end, the scalar e in the
second formulation must be positive. For our tests we selected some well-known non-quadratic functions
φ(x), described below.

(i) Trigonometric function [27]:
φ(x) = ‖b− (Ad̃(x) +Bq̃(x))‖2,

where d̃(x) = (sin(x1), ..., sin(xn))T , q̃(x) = (cos(x1), ..., cos(xn))T , and A and B are square matrices
of order n = 500 with entries generated as random integers in (−100, 100). Given a vector x∗ ∈ Rn
with entries randomly generated from a uniform distribution in (−π, π), the vector b is defined so
that φ(x∗) = 0.
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(ii) Chained Rosenbrock function [44]:

φ(x) =

n∑
i=2

(4ϕi(xi−1 − x2
i )

2 − (1− xi)2),

where n = 500, the values ϕi, i = 1, . . . , 50, are defined as in [44, Table 1] and ϕi+50j = ϕi,
i = 1, ..., 50, j = 1, . . . , 9. In this case, a solution of the problem (55) is x∗ = (1, 1, ..., 1)T .

(iii) Laplace2 function [26]:

φ(x) =
1

2
xTAx− bTx+

1

4
h2
∑
i

x4
i ,

where A is a square matrix of order n = N3, N = 100, arising from the discretization of a 3D
Laplacian on the unit box by a standard seven-point finite difference formula, h = 1

N+1 and b is
chosen so that

x∗i ≡ x(kh, rh, sh) = h3krs(kh− 1)(rh− 1)(sh− 1)e−
1
2 ((kh− d1)2 + (rh− d2)2 + (sh− d3)2),

where the index i is associated with the mesh point (kh, rh, sh), k, r, s = 1, . . . , N in a lexicographic
ordering. Two different settings for the parameters d, d1, d2 and d3 are considered:

a) d = 20, d1 = d2 = d3 = 0.5,

b) d = 50, d1 = 0.4, d2 = 0.7, d3 = 0.5.

We used both the formulations (56) and (57) to build the corresponding constrained versions of test
problems (i) and (ii), whereas for test problems (iii) we used the latter form only. In our tests, v was
randomly generated from a uniform distribution in (0, 1) and for each of the functions φ(x) the following
choices for the functions hi(x) were made, as suggested in [24]:

(1) βi (xi − x∗i ),

(2) αi (xi − x∗i )
3

+ βi (xi − x∗i ),

(3) αi (xi − x∗i )
7/3

+ βi (xi − x∗i ),

where αi are random numbers in (0.001, 0.011) and βi = 10−ηindeg, with ηi random numbers in (0, 1)
and ndeg = 1, 4, 10. In order to retain first-order optimality conditions, the Lagrangian multiplier of
the single linear equality constraint must be equal to 1 up to sign (for the case (56)) or to φ(x∗) up to
sign (for the case (57)), while the Lagrangian multipliers associated to the active constraints are easily
assigned equal to the values βi, and, therefore, the parameter ndeg allows to control the degeneracy of the
problem at x∗. The vectors ` and u were defined in order to have the number of active constraints at the
solution equal to a prefixed value na; in particular, we set na ≈ 0.1 ·n, 0.5 ·n, 0.9 ·n and the same number
of lower and upper active constraints at x∗. The resulting dataset is composed of 162 non-quadratic SLB
test problems. We evaluated the performance obtained by running the GP method equipped with the
steplengths rules: BB1, BB2, ABBmin, EQ-BB2, EQ-ABBmin, EQ-VABBmin. The considered schemes

shared the following parameter setting: α0 = 1, τ = 0.7 and ma = 2 for defining αABBmin

k and α
EQ-ABBmin

k

and τ1 = 0.7, ma = 2 and ζ = 1.3 for α
EQ-VABBmin

k . As for the starting vector, we considered

• x(0) = ΠΩ (x∗ + 0.3 r), where r ∈ Rn has random entries from a uniform distribution in [−π, π],
when φ(x) is the trigonometric function previously defined in (i);

• x(0) = ΠΩ(x∗ + 0.8 r), where r ∈ Rn has random entries from a uniform distribution in [−1, 1],
when φ(x) is the Chained Rosenbrock function previously defined in (ii);

• x(0) = ΠΩ

(
`+u

2

)
, when φ(x) is the Laplace2 function previously defined in (iii).
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Figure 2: Runtime performance profiles of the GP method equipped with different steplength rules on a set of 162 non-
quadratic SLB test problems.

In these tests, we adopted the stopping criterion (53). The results obtained were compared using
the performance profiles proposed in [23]. We assumed as performance measure of interest the execution
time required by each scheme to satisfy the stopping criterion, declaring a failure when it was not fulfilled
within the maximum number of 4000 iterations. Some performance profiles of different GP versions are
reported in Figure 2. In particular, each profile ρ(θ) gives the fraction of the problems that a solver is
able to solve within a factor θ of the best time of all the solvers; thus, ρ(1) represents the fraction of
problems for which the considered solver is the winner, while the performance profile corresponding to
the largest value of θ gives the fraction of problems for which the considered solver is successful.

The performance profiles generated for the random non-quadratic SLB problems confirm the results
obtained in the quadratic framework. By capturing the information about the active set at each iteration,
the EQ-BB2 steplength strategy allows the GP method to improve its behaviour in terms of computational
time with respect to the case in which the original BB2 rule is used. This improvement still holds if we
employ the alternating strategies equipped with the new EQ-BB2 rule in place of the BB2 one.

5.2. SLB problems from real-life applications

In this section we evaluate the performance of the gradient projection method with both standard
and modified BB strategies in solving SLB problems arising from three different real-life applications.

5.2.1. Support Vector Machines

The learning methodology called support vector machines (SVMs) implies to solve a quadratic SLB
problem. In order to delineate the features of such a problem, we briefly recall the SVMs framework (we
refer the reader to [11, 15] for a detailed discussion). If D = {(zi, yi), i = 1, . . . , n, zi ∈ Rm, yi ∈
{−1, 1}} is a training set of labeled examples, the SVM algorithm performs classification of new examples
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z ∈ Rm by using a decision function F : Rm −→ {−1, 1} of the form

F (z) = sign

(
n∑
i=1

x∗i yiK(z, zi) + b∗

)
, (58)

where K : Rm × Rm −→ R denotes a kernel function and x∗ = (x∗1, . . . , x
?
n)T is the solution of

min f(x) =
1

2
xTAx−

n∑
i=1

xi

subject to 0 ≤ x ≤ C,
n∑
i=1

yixi = 0 .

(59)

Once the vector x∗ is computed, the quantity b∗ in (58) is easily derived. The Hessian matrix A of (59)
has entries Aij = yiyjK(zi, zj), i, j = 1, 2, . . . , n and C ∈ Rn is a vector with all entries equal to a

positive parameter. For our test problems we consider a Gaussian kernel, namely K(zi, zj) = e−
‖zi−zj‖

2
2

2σ2 ,
with σ ∈ R. In order to appreciate the validity of the considerations made in Section 2, we compare the
behaviour of the gradient projection method (2) by varying the steplength among αBB1

k , αBB2
k , αVABBmin

k ,

αEQ-BB2
k , α

EQ-VABBmin

k in solving problem (59) for four different datasets with the following features:

MNIST1000 n = 1000, C = 10, σ = 1800, rank(A) = 1000;

MNIST2000 n = 2000, C = 10, σ = 1800, rank(A) = 2000;

ADU n = 1000, C = 1, σ =
√

10, rank(A) = 985;

WEB n = 1000, C = 5, σ =
√

10, rank(A) = 736.

We generated these datasets starting from a learning problems repository, called LIBSVM, available
at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/. We selected some datasets for the binary
classification and we set the dimension by ourselves. For the alternating steplength selection rules we
adopted τ1 = 0.7, ma = 2 and ζ = 1.3. Finally, the GP method (2) has been stopped when either
the relative distance between two successive iterations was lower than 10−8 or 1000 iterations have been
performed. The initial point for all the considered schemes is the null vector.
Given the smallest value f∗ of the objective function among the ones obtained by the different methods
at the end of the iterative process, Table 2 shows the number of iterations and the computational time
needed by the considered schemes to reduce the relative difference (54) below a certain tolerance tol. If a
method does not succeed in realizing this goal in the prefixed maximum number of iterations (1000), the
corresponding entry of the table reports the minus sign. In Figure 3, we can appreciate the decrease of
the relative error (54), with respect to the computational time, for the four datasets. The results reported
in Table 2 and Figure 3 confirm the effectiveness of the modified BB2 selection rule with respect to the
original one, also within the alternating scheme. The benefits gained by employing EQ-BB2 instead of
BB2 are clear in terms of both number of iterations and computational time.

5.2.2. Reconstruction of fiber orientation distribution in diffusion MRI

The aim of this section is to consider the problem of intra-voxel reconstruction of the fiber orientation
distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data.
In [34] the authors clarify that the diffusion signal can be represented as the convolution of a response
function with the FOD function and, as a consequence, the estimation of the intra-voxel structure can
be shaped through a linear model of the form

b = Φx+ η, (60)
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Table 2: Number of iterations required by each algorithm to reduce the difference (54) below given tolerances for the four
SVM test problems. The corresponding computational time (averaged over 20 runs) is also reported.

tol = 10−2 tol = 10−4 tol = 10−6 tol = 10−8

It. Time It. Time It. Time It. Time
MNIST1000

BB1 47 0.016 91 0.046 140 0.061 177 0.072
BB2 88 0.025 223 0.060 297 0.079 389 0.102
EQ-BB2 41 0.014 88 0.027 114 0.035 146 0.056
VABBmin 48 0.017 92 0.029 145 0.043 175 0.064
EQ-VABBmin 36 0.013 81 0.026 121 0.038 142 0.044

MNIST2000
BB1 77 0.136 172 0.299 285 0.500 418 0.732
BB2 171 0.314 458 0.789 917 1.558 - -
EQ-BB2 78 0.138 153 0.272 219 0.381 268 0.460
VABBmin 71 0.114 162 0.255 250 0.398 337 0.538
EQ-VABBmin 57 0.096 130 0.219 186 0.313 233 0.392

ADU
BB1 23 0.009 45 0.017 79 0.028 113 0.040
BB2 30 0.010 73 0.022 163 0.047 322 0.098
EQ-BB2 22 0.008 47 0.016 72 0.024 104 0.034
VABBmin 29 0.010 67 0.023 109 0.035 164 0.051
EQ-VABBmin 23 0.009 60 0.022 85 0.031 111 0.040

WEB
BB1 84 0.027 254 0.082 519 0.163 755 0.234
BB2 315 0.079 1000 0.304 - - - -
EQ-BB2 59 0.020 193 0.062 338 0.107 468 0.155
VABBmin 103 0.030 260 0.075 488 0.141 767 0.223
EQ-VABBmin 60 0.020 162 0.053 343 0.112 407 0.133

where x ∈ Rn represents the FOD function, b ∈ Rm is the vector of measurements, Φ is the linear
measurement operator, and η is the acquisition noise. Since problem (60) is ill-posed, it has been proved
[1] to be convenient finding a meaningful solution by means of a reweighted `1-minimization process which
involves at each step the solution of a convex problem of the form

min
x∈Rn

f(x) ≡ ‖Φx− b‖22

subject to x ≥ 0, ‖Wx‖1 = K,
(61)

where W ∈ Rn×n is a diagonal matrix with positive entries and K is the estimated maximum number
of fibres to be detected in the brain volume. The weighted `1-norm constraint induces sparsity on the
solution and the weighting matrix W forces some anatomical properties of the fiber bundles in neighboring
voxels. A complete overview about the properties of W can be found in [1].

It has been shown in [13] and [8] that the presence of a variable metric in first order methods can
significantly improve the performance in solving problem (61) with respect to their standard non-scaled
versions. For this reason we only report the results obtained by comparing the variable metric gradient
projection method SGP with different choices for the steplength parameter. Particularly, we consider
the P-BB1 and P-BB2 defined in (48) and (50) respectively, the modified version of P-BB2 fixed in (49),
called P-EQ-BB2, and the alternating strategies P-EQ-VABBmin set in (51) and P-VABBmin, which can
be obtained by (51) by considering the P-BB2 rule instead of the P-EQ-BB2. For P-EQ-VABBmin and
P-VABBmin the parameters ma, τ1 and ζ have been chosen equal to 2, 0.5 and 3, respectively. As for the
variable metric, the sequence {Dk}k∈N has been selected by mimicking the split gradient-based scaling
proposed in [3] for quadratic problems: the scaling matrix has the following form

Dk = diag

(
max

(
1

µk
,min

(
µk,

x(k)

ΦTΦx(k)

)))−1

, (62)
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Figure 3: Plots of the relative difference (54) with respect to the computational time for the four SVM test problems

where µk =

√
1 +

1011

(k + 1)2
. Thanks to the parameter µk we force the sequence {Dk}k∈N to asymptotically

approach the identity matrix [14, Lemma 2.3]. This condition ensures the convergence of the sequence
of the iterates generated by the SGP scheme to a solution of the minimization problem, as proved in [9,
Theorem 3.1].

For the numerical comparison we employed the Phantom dataset, which is available at https://github.com/basp-
group/co-dmri and is described in [1]. In particular, for this test problem the parameters m,n,K have the
following values: m = 19200, n = 257280, and K = 3840. Table 3 summarizes the number of iterations
and the computational time needed by the considered scheme to guarantee that the distance (54) is below
certain thresholds tol. If this requirement is not satisfied in the prefixed maximum number of iterations
(4000) the corresponding entry reports the minus sign Figure 4 shows the relative difference (54) between
the objective function values provided by the different methods and the minimum computed value f∗.

By analyzing the results offered in Table 3 and Figure 4, we can reach analogous conclusions to the
ones made for the previous numerical experiments. The modified version of the BB2 rule allows the
SGP algorithm to largely improve its behaviour in terms of number of iterations and computational time
with respect to the performance shown when it is combined with the standard BB2 strategy. Similar
considerations can be done by comparing the alternating schemes: the use of EQ-BB2 instead of BB2
makes P-EQ-VABBmin much more effective than P-VABBmin in finding the solution of the optimization
problem.

5.2.3. Image deblurring with Poisson noise

In order to evaluate the behaviour of the proposed steplength rules for a non-quadratic problem, we
consider the reconstruction of an image b corrupted by Poisson noise by a smooth TV regularization
approach. In a Bayesian framework, an approximation of the original object can be obtained by solv-
ing a constrained problem where the objective function is the sum of a discrepancy function, typically

20



Table 3: Number of iterations and computational time required by each algorithm to reduce the difference (54) below given
tolerances for problem (61). The corresponding computational time is also reported.

tol = 10−3 tol = 10−5 tol = 10−8 tol = 10−10

It. Time It. Time It. Time It. Time
P-BB1 263 2.7 1025 10.6 3541 38.7 - -
P-BB2 620 6.4 - - - - - -
P-EQ-BB2 282 3.1 830 9.4 2552 29.9 - -
P-VABBmin 283 2.9 3175 36.0 - - - -
P-EQ-VABBmin 271 3.1 683 8.1 2169 26.5 3034 37.7
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Figure 4: Test problem (61): plots of the relative difference (54) with respect to the number of iterations (first panel) and
the computational time (second panel) achieved by the SGP methods .

depending on the noise type affecting the data, and a regularization term adding a priori information;
simple constraints, expressing physical requirements, can be considered. In the case of Poisson noise, the
discrepancy function measuring the distance from the data b is the generalized Kullback-Leibler (KL)
divergence, having the form

f0(Ax+ c; b) =

n∑
i=1

bi log
bi

(Ax+ c)i
+ (Ax+ c)i − bi, (63)

where A ∈ Rn×n is a linear operator modeling the distortion due to the image acquisition system and
c ∈ Rn is a known positive background radiation constant. A typical assumption for the matrix A is
that it has nonnegative elements and each row and column has at least one positive entry (see [5] for the
details about the image deblurring problem in presence of Poisson noise). A widely used edge-preserving
regularizer is the discrete smooth Total Variation functional, known also as Hyper-surface regularizer,
that for an image of n = N ×N pixels is defined as

f1(x) =
∑
k,`

√
(xk+1,` − xk,`)2 + (xk,`+1 − xk,`)2 + γ2 − γ, (64)

where γ is a small positive constant and periodic boundary conditions are assumed. In summary, a
maximum a posteriori estimate of the original image is a solution of the following nonlinear programming
problem

min
x∈Rn

f(x) ≡ f0(Ax+ c; b) + ρf1(x) subject to x ≥ 0,

n∑
i=1

xi = K, (65)

where K =
∑n
i=1 bi− n · c is the flux of the image and ρ is a positive parameter balancing the role of the

regularization term and the discrepancy function; the inequality constraints and the single linear equality
constraint express the non-negativity of the pixels and the conservation of the image flux, respectively.
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Table 4: Image deblurring test problem: number of iterations and computational time (averaged over 10 runs) required to
reduce the relative error on the objective function below a prefixed tolerance. The corresponding relative reconstruction
error achieved is also reported.

tol = 5 · 10−2 tol = 10−3 tol = 5 · 10−4

It. Time RRE It. Time RRE It. Time RRE
P-BB1 64 4.8 0.568 884 61 0.447 1000∗ 69∗ 0.447∗

P-BB2 28 2.1 0.531 1000∗ 67∗ 0.446∗ - - -
P-EQ-BB2 27 2.0 0.533 1000∗ 69∗ 0.446∗ - - -
P-VABBmin 26 1.9 0.537 427 29 0.438 1000∗ 68∗ 0.438∗

P-EQ-VABBmin 37 3.0 0.531 264 19 0.438 590 41 0.438

In particular we can consider as test problem a 512 × 512 object representing a micro-tubulin network
inside a cell [42]. In this case, the values of the original object x are in the range [0, 686], whereas those of
the blurred and noisy image b are in [0, 446]; the background was set equal to 1 and the relative distance
between the original object and the blurred noisy data in Euclidean norm is 0.756; ρ was set equal to
4 · 10−4. The value of γ was set equal to 10−6 ·maxi{bi}. A ground-truth solution x∗, i.e., an estimate
of the real minimum point of the problem (65), is obtained by executing an huge number of iterations of
the SGP method in [10]. Indeed, it is well known that the above problem can be efficiently addressed by
the gradient projection method equipped with a variable metric (see for example [35, 10, 12]). Mimicking
the split gradient-based scaling, as in the previous section, the sequence of scaling matrices {Dk}k∈N can
be selected as follows

Bk = diag

(
max

(
1

µk
,min

(
µk,

x(k)

AT1 + ρV (x(k))

)))−1

, (66)

where 1 is a vector with all entries equal to 1, V (x(k)) is the positive part of the splitting of ∇f1(x) =

V (x)− U(x) at x(k) (see [5, Cap. 5]) and µk =
√

1 + 1011

(k+1)2 .

In Table 4 and Figure 5 we report the behaviour of the scaled gradient projection method combined
with the steplength rules P-BB1, P-BB2, P-EQ-BB2, P-VABBmin and P-EQ-VABBmin. For the alter-
nating rules, we have the following setting of parameters: ma = 2, τ1 = 0.5 and ζ = 3.
Table 4 shows the number of iterations and the time, in seconds, required by the considered methods to
reduce the relative error on the objective function (54) below a fixed threshold tol, where, in this case, f∗

represents the value of f at the ground-truth x∗. We report also the relative reconstruction error (RRE)
‖x(It.)−x‖2
‖x‖2 at the iteration It. If one of the approaches is not be able to reduce the relative error on the

objective function under a certain tolerance within 1000 iterations, Table 4 displays the computational
time spent and the RRE achieved after the 1000 iterations performed. We denote the corresponding
results by a star. Figure 5 shows the relative error of the objective function and the relative minimization

error ‖x
(k)−x∗‖2
‖x∗‖2 with respect to the number of iterations and the computational time.

We observe that the rules P-BB2 and P-EQ-BB2 have the same behaviour, very similar to the one
of P-BB1; indeed, for this problem, the variable metric (in particular the term x(k) in (66)) hides the
effects of the rules that take into account the constraints and, at the same time, the equality constraint
plays a minor role, since the assumptions on the matrix A already induce the iterates to satisfy the flux
constraint. Nevertheless, when the alternating rule is adopted, the use of P-EQ-BB2 can still improve the
performance of SGP, achieving in 38 s. (537 iterations) with P-EQ-VABBmin the value of the objective
function obtained with P-VABBmin after 67 s. (1000 iterations).

6. Conclusions

This paper deals with the study of the spectral properties of the well-known Barzilai and Borwein
steplength selection rules, often employed to accelerate classical gradient projection methods. In the
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Figure 5: Image deblurring test problem: numerical results of 1000 iterations of the SGP method combined with different
steplength rules; first row: relative error of the objective function with respect to the iterations (left panel) and the

computational time (right panel); second row: relative minimization error
‖x(k)−x∗‖
‖x∗‖ with respect to the iterations (left

panel) and the computational time (right panel).

literature, several works are devoted to explain how, in presence of unconstrained quadratic minimization
problems, the steplength generated by the BB strategies are related to the eigenvalues of the symmetric
and positive definite Hessian matrix of the objective function. This relation has been identified as the
responsible for the effectiveness of the BB approaches. However the influence of a feasible set on the be-
haviour of the BB rules has been investigated only very recently [16] in the case of box-constrained strictly
convex quadratic optimization problems. Our work represents an extension of the analysis presented in
[16] for two main reasons.

• A more complicated feasible region defined by a linear equality constraint together with lower and
upper bounds has been investigated. All the results developed in [16] can be seen as a particular
case of the ones achieved in this paper.

• A possible interpretation of the BB steplength strategies has been also offered in the more general
non-quadratic framework in terms of a proper average matrix depending on the Hessian matrix of
the objective function at each iteration.

Thanks to the spectral analysis, a redefinition of one of the two BB rules has been suggested in order to
take into account not only the second-order information related to the Hessian matrix of the objective
function, but also the nature of the constraints. Several numerical experiments, carried out on both
quadratic and non-quadratic datasets, showed the effectiveness of this modified BB strategy, also when
employed in selection scheme alternating the new rule with the standard BB steplength.
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