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Abstract

The alternating direction method of multipliers (ADMM) were extensively investigated in
the past decades for solving separable convex optimization problems. Fewer researchers focused
on exploring its convergence properties for the nonconvex case although it performed surpris-
ingly efficient. In this paper, we propose a symmetric ADMM based on different acceleration
techniques for a family of potentially nonsmooth nonconvex programing problems with equality
constraints, where the dual variables are updated twice with different stepsizes. Under proper
assumptions instead of using the so-called Kurdyka-Lojasiewicz inequality, convergence of the
proposed algorithm as well as its pointwise iteration-complexity are analyzed in terms of the
corresponding augmented Lagrangian function and the primal-dual residuals, respectively. Per-
formance of our algorithm is verified by some preliminary numerical examples on applications
in sparse nonconvex/convex regularized minimization signal processing problems.
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1 Introduction

We consider a potentially nonsmooth and nonconvex separable optimization problem subject to
linear equality constraints:

min {f(x) + g(y)| s.t. Ax+By = b,x ∈ Rm,y ∈ Rn} , (1)
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where f : Rm → (−∞,+∞] is a proper lower semicontinuous function, g : Rn → (−∞,+∞)
is a continuous differentiable function with its gradient ∇g being Lg-Lipschitz continuous, A ∈
Rl×m, B ∈ Rl×n, b ∈ Rl are respectively given matrices and vector. Minimization problem in
the form of (1) covers many important applications in science and engineering. For example,
the following l1-regularized least square problem arising in signal processing/statistical learning
[2, 3, 25]:

min
x∈Rm

1

2
∥Ax− c∥2 + µ∥x∥1, (2)

where c ∈ Rl is the vector of observations, A ∈ Rl×m is the data matrix and µ > 0 denotes
the regularization parameter and is often set as µ = 0.1µmax where µmax = ∥ATc∥∞ (see e.g.
[11, 25]). Due to the convexity of the problem (2), it can be handled by a number of standard
methods, to list a few, including the alternating direction method of multipliers (ADMM, [10,
13, 14]), proximal point algorithm [3, 10], interior point method [25] and primal-dual hybrid
gradient method [5, 39]. However, in many cases the l1-regularization has been shown to be
sub-optimal. For instance, it can not recover a signal with the fewest measurements when being
applied in compressed sensing techniques [6]. Therefore, an acceptable improvement is to adopt
the l1/2-regularization term, which results in the following form

min
x∈Rm

1

2
∥Ax− c∥2 + µ∥x∥1/21/2.

Here, ∥x∥1/2 = (
∑n

i=1 |xi|
1
2 )2 is a nonconvex function characterizing sparsity of the variable,

and it has been verified [37] practically to be better than l1-norm. Clearly, by introducing an
auxiliary variable, the problem can be converted to a special case of (1), i.e.,

min

{
µ∥x∥1/21/2 +

1

2
∥y − c∥2| s.t. Ax− y = 0

}
. (3)

Another interesting example is the regularized empirical risk minimization arising from big data
applications, such as many kinds of classification and regression models in machine learning
[34, 36]. And the l1/2-regularized reformulation case is of the form:

min

µ∥x∥1/21/2 +
1

N

N∑
j=1

gj(y)| s.t. x− y = 0

 , (4)

where N is a large number, and gj(y) = log
(
1 + exp(−bia

T
i y)

)
denotes the logistic loss function

on the feature-label pair (aj , bj) with aj ∈ Rl and bj ∈ {−1, 1}.
In the literature, the most standard method for solving the equality constrained problem (1)

is the augmented Lagrangian method (ALM) which firstly solves a joint minimization problem

min
x,y

Lβ(x,y, λ) := f(x) + g(y)− ⟨λ,Ax+By − b⟩+ β

2
∥Ax+By − b∥2, (5)

and then updates the Lagrange multiplier λ by using the newest iteration of other variables. The
penalty factor β > 0, in each iterative loop, can be set as a tuned reasonable value or updated
adaptively according to the ratio of the primal residual to the dual residual of the problem.
However, ALM does not make full use of the separable structure of the objective function of
(1) and hence, could not take advantage of the special properties of each component objective
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function. This would make it very expensive even infeasible for application problems involving
big-data and nonconvex objectives. By contrast, a powerful first-order method, that is ADMM,
aims to split the joint core problem (5) into some relatively simple and smaller-dimensional
subproblems so that variables can be updated separately to make full use of special properties
of each component. Another obvious feature of ADMM is that the resultant subproblems could
admit explicit solution form in special applications, or in a linearized update for the differentiable
objective/quadratic penalty term. We refer to, e.g., [2, 3, 12, 15, 23, 22, 35] for some reviews on
ADMM.

Interestingly, under the existence assumption of a solution to the Karush-Kuhn Tucker con-
dition of the two-block separable convex optimization problem, it was explained [13] that the
original ADMM amounts to the Douglas-Rachford splitting method (DRSM, [9, 26]) when it
was applied to a stationary system to the dual of the problem. Moreover, as elaborated in [13],
if applying the classic Peaceman-Rachford splitting method (PRSM, [26, 32]) to the dual of the
problem, we obtain the following iterative scheme

xk+1 = argmin
x

Lβ (x,yk, λk) ,

λk+ 1
2

= λk − β (Axk+1 +Byk − b) ,

yk+1 = argmin
y

Lβ(xk+1,y, λk+ 1
2
),

λk+1 = λk+ 1
2
− β (Axk+1 +Byk+1 − b) .

(6)

Unfortunately, scheme (6) is not convergent under the standard convexity assumptions as
ADMM [8]. However, it was verified [16] that scheme (6) could perform faster than the ADMM
when its global convergent was ensured. In view of this, He et al. in [21] proposed and studied
the convergence of a strictly contractive Peaceman-Rachford splitting method (also called the
symmetric version of ADMM)

xk+1 = argmin
x

Lβ (x,yk, λk) ,

λk+ 1
2

= λk − αβ (Axk+1 +Byk − b) ,

yk+1 = argmin
y

Lβ(xk+1,y, λk+ 1
2
),

λk+1 = λk+ 1
2
− αβ (Axk+1 +Byk+1 − b) ,

(7)

where α ∈ (0, 1) is the relaxation parameter. Later, He et al. [23] improved the scheme (7)
to the case with larger range of relaxation parameters, which was generalized by Bai et al.
[4] to the multi-block separable convex programming. Besides, Chang, et. al.[7] also shown
a generalization of linearized ADMM for two-block separable convex minimization model by
adding a proper proximal term to each core subproblem.

If the convexity is lose, then the convergence analysis for ADMM (or its variant) is much
more challenging. However, for some special nonconvex optimization problems, one can establish
convergence of ADMM by making full use of special structures of the problems, see e.g. [24] for
the consensus and sharing problems. Another widely used technique to prove convergence of
ADMM for nonconvex optimization problems relies on the assumption that the objective function
of (1) satisfies the so-called Kurdyka-Lojasiewicz (KL) inequality [1], since many important
classes of functions satisfy the KL inequality, see [17, 18, 19, 27, 35, 36, 38]. Without assuming
the KL property and convexity of the objective function, recently, Goncalves et al. in [20]
established convergence rate bounds of the classical ADMM with proximal terms for solving
nonconvex linearly constrained optimization problem (1). In addition, by linearizing the smooth
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part in the objective and quadratic penalty term, Liu, et al. [28] proposed a two-block linearized
ADMM for the problem (1) with b = 0 and extended the method to a multi-block version, but
convergence of their extended method holds with an extra hypothesis on the full column rank
of the matrix B compared to (A1) (see Section 3).

Motivated by the above mentioned work [20, 28] and the empirical validity of the symmetric
ADMM, we would present a Two-stage Accelerated Symmetric ADMM (abbreviated as “TAS-
ADM”) for solving the problem (1), whose framework reads Algorithm 1.1. Our algorithm
combines both the so-called Nesterov’s acceleration technique in (32) and the relaxation scheme
in e.g., [10, 12]. By adding a proper proximal term for the first x-subproblem, this possibly
nonsmooth nonconvex subproblem will turn to a proximal mapping shown in (16), which admits
closed solution form if f is easy. Step 7 actually uses the idea of convex combination for fast
convergence.

We should emphasize that the recent work [36] also considered a symmetric ADMM for
solving the problem (1). The method in [36] actually can be treated as our proposed Algorithm
1.1 barring the acceleration techniques and proximal regularization terms, while convergence
of Algorithm 1.1 is analyzed in a different way. More precisely, their analyses are based on
the Kurdyka-Lojasiewicz property of the augmented Lagrangian function for problem (1) and
other proper assumptions on both the penalty parameter and the objective function. Under
Assumptions (A1-A3) (see Section 3), we show in the sequel section that any accumulation
point of {wk := (xk,yk, λk)} is the stationary point of {Lβ(wk)}, and we also establish the
worst-case O(1/k) convergence rate of the algorithm in terms of the primal-dual residuals.
Although we consider problem (1) with vector variables, the subsequent convergence results of
our proposed algorithm are applicable for the general case with matrix variables, because matrix
can be vectorized as vector.

Algorithm 1.1 [TAS-ADM for Solving Problem (1)]

1 Initialize (x0,y0, λ0) ∈ Rm ×Rn ×Rl and set (x−1,y−1) = (x0,y0).
2 Choose parameters β > 0, γk ∈ [0, 12), G ≽ 0 and

(τ, α) ∈ D := {(τ, α)| 0 < τ + α < 1} . (8)

3 for k = 0, 1, · · · , do
4 xmd

k = xk + γk(xk − xk−1).
5 xk+1 = argmin

{
Lβ(x,yk, λk) +

1
2∥x− xmd

k ∥2G
}
.

6 λk+ 1
2
= λk − τβ (Axk+1 +Byk − b) .

7 xad
k+1 = αAxk+1 + (1− α)(b−Byk).

8 yk+1 = argmin
{
g(y)−

⟨
λk+ 1

2
, By

⟩
+ β

2

∥∥xad
k+1 +By − b

∥∥2} .

9 λk+1 = λk+ 1
2
− β

(
xad
k+1 +Byk+1 − b

)
.

10 end

11 Output (xk+1,yk+1).

The remaining parts of this paper are organized as follows. In Section 2, some preliminaries
are prepared to analyze convergence of Algorithm 1.1. In Section 3, we show its convergence
properties and its pointwise iteration complexity based on the analysis for the augmented La-
grangian sequence {Lβ(wk)}. Section 4 tests some examples about the popular sparse signal
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recovery problem with different regularization terms and compared with the popular CVX tool-
box, which aims to investigate numerical performance of our algorithm. Finally, we conclude
the paper in Section 5.

2 Preliminaries

Throughout this paper, let R,Rn,Rm×n be the sets of real numbers, n dimensional real column
vectors and m × n dimensional real matrices, respectively. The symbol I denotes the identity
matrix with proper dimension and σB denotes the smallest positive eigenvalue of the matrix
BBT. For any symmetric matrices A and B whose dimensions are the same, A ≻ B (A ≽ B)
means A − B is a positive definite (semidefinite) matrix. We slightly denote ∥x∥2G = xTGx for

any symmetric matrix G, and let ∥x∥G =
√
xTGx when G is positive semidefinite, where the

superscript T denotes the transpose of a matrix or vector. We simply use ∥ · ∥ to represent the
standard Euclidean norm equipped with inner product ⟨·, ·⟩. The image space of a matrix A ∈
Rm×n is defined as Im(A) := {Az| z ∈ Rn} and a function f : S → R is lower semicontinuous
at x̄ ∈ S if and only if lim inf

x→x̄
f(x) = f(x̄). The distance from any point z to the set S ⊆ Rn is

defined as d(z,S) := inf{∥z − y∥ |y ∈ S}.

Definition 2.1 [30, 33] Let f : Rm → R be a proper lower semicontinuous function.

(a) For a given x ∈ dom(f), the Frechet subdifferential of f at x, written by ∂̂f(x), is the
set of all vectors s ∈ Rm which satisfy

lim
y ̸=x,

inf
y→x

f(y)− f(x)− ⟨s, y − x⟩
∥y − x∥

≥ 0,

and we let ∂̂f(x) = ∅ when x /∈ dom(f).

(b) The limiting subdifferential, or the subdifferential of f at x ∈ Rm, written by ∂f(x), is

defined by ∂f(x) =
{
s ∈ Rm| ∃xk → x, f(xk) → f(x), ∂̂f(xk) ∋ sk → s as k → ∞

}
.

(c) A point x∗ is called critical point or stationary point of f(x) if it satisfies 0 ∈ ∂f(x∗).

Definition 2.2 A triple w∗ := (x∗,y∗, λ∗) ∈ Rm ×Rn ×Rl is a stationary point of (1) if

ATλ∗ ∈ ∂f(x∗), BTλ∗ = ∇g(y∗) and Ax∗ +By∗ − b = 0.

The following lemmas are provided to simplify convergence analysis in the sequel sections.

Lemma 2.1 [20, Lemma A.2] Let A ∈ Rm×n be a nonzero matrix and PA be the Euclidean
projection onto Im(A). Then, for any u ∈ Rn we have

∥PA(u)∥ ≤ 1
√
σA

∥ATu∥. (9)

Lemma 2.2 For any vectors a, b, c ∈ Rn and symmetric matrix 0 ≼ M ∈ Rn×n, it holds

⟨a− b,M(a− c)⟩ = 1

2

{
∥c− a∥2M − ∥c− b∥2M + ∥a− b∥2M

}
. (10)
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3 Theoretical Results

In this section, by making use of the following primal-dual residuals

△xk = xk − xk−1, △yk = yk − yk−1 and △λk = λk − λk−1, (11)

the proposed algorithm will be demonstrated to be convergent according to a quasi-monotonically
nonincreasing property of the sequence {Lβ(wk)}, and its pointwise iteration-complexity will be
established in detail. Next, we make some assumptions.

• (A1) B ̸= 0, Im(B) ⊃ b ∪ Im(A);

• (A2) The penalty parameter β satisfies

β >
Lg√

1− τ − ασB
, (τ, α) ∈ D with D given in (8);

• (A3) L = inf
(x,y)

{
f(x) + g(y)− 1

2Lg
∥∇g(y)∥2

}
> −∞.

Indeed, we can check that the aforementioned Assumptions (A1)-(A3) hold for the two examples
mentioned in the introduction. Here and hereafter, we denote wk = (xk,yk, λk) and w =
(x,y, λ).

Lemma 3.1 Let {wk} be generated by Algorithm 1.1. Then, under (A2) we have

∥BT△λk+1∥ ≤ Lg∥△yk+1∥. (12)

Proof According to the optimality condition of y-subproblem, it holds

∇g(yk+1)−BTλk+ 1
2
+ βBT

(
xad
k+1 +Byk+1 − b

)
= 0. (13)

So, we have by the update of λk+1 that

BTλk+1 = BT
[
λk+ 1

2
− β

(
xad
k+1 +Byk+1 − b

)]
= ∇g(yk+1), (14)

which further gives
BTλk = ∇g(yk). (15)

Subtracting (15) from (14) and taking norm on both sides, we can obtain by (A2) that

∥BT△λk+1∥ ≤ Lg∥△yk+1∥. �

Note that optimality condition of the following problem is the same as (13):

min

{
g(y) +

β

2
∥By − cy∥2

}
,

where cy = b +
λ
k+1

2
β − xad

k+1. So, this problem is equivalent to the y-subproblem in Algorithm
1.1. Under the case that g is linearized or B has full column rank, the above problem could have
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closed solution form. In addition, by choosing G = σI−βATA with σ ≥ β∥ATA∥, the quadratic
term ∥Ax∥2 will be cancelled in the iteration. As a result, the x-subproblem in Algorithm 1.1
is converted to a proximal mapping as the following

Proxf,σ(cx) := Argmin
{
f(x) +

σ

2
∥x− cx∥2

}
, (16)

where cx = xmd
k − βAT(Axmd

k +Byk−b)−ATλk

σ . Since f is a proper lower semicontinuous function and
bounded from below (in view of Assumptions (A3)), by the proximal behavior in [33] the set
Proxf,σ(cx) is nonempty and compact.

Now, adding the update of λk+ 1
2
to the update of λk+1, we have

1

β
△λk+1 = −τ(Axk+1 +Byk − b)− [αAxk+1 + (1− α)(b−Byk) +Byk+1 − b]

= −(τ + α)(Axk+1 +Byk − b)−B△yk+1,

which by τ + α > 0 gives the following lemma immediately.

Lemma 3.2 Assume τ + α > 0, then the sequence {wk} generated by Algorithm 1.1 satisfies

Axk+1 +Byk − b = − 1

τ + α

(
1

β
△λk+1 +B△yk+1

)
. (17)

Next, we present a fundamental lemma that plays a key role in analyzing convergence and
convergence rate bound of Algorithm 1.1.

Lemma 3.3 Under Assumptions (A1) and (A2), there exist three constants ζ0 ≥ 0 and ζ1, ζ2 >
0 such that

L̃β(wk)− L̃β(wk+1) ≥ ζ1∥△xk+1∥2G + ζ2∥△yk+1∥2, (18)

where L̃β(wk) := Lβ(wk) + ζ0∥△xk∥2G.

Proof The inequality (18) can be proved by the following four steps.

(Step 1) By the update of x-subproblem together with the way of generating xmd
k , we have

Lβ(xk,yk, λk)− Lβ(xk+1,yk, λk)

≥ 1

2

[
∥xk+1 − xmd

k ∥2G − ∥xk − xmd
k ∥2G

]
=

1

2

[
∥xk+1 − xk∥2G + 2

⟨
xk+1 − xk, G(xk − xmd

k )
⟩]

=
1

2

[
∥△xk+1∥2G − 2γk ⟨△xk+1, G△xk⟩

]
≥ 1

2

[
∥△xk+1∥2G − γk

(
∥△xk+1∥2G + ∥△xk∥2G

)]
= ζ0

[
∥△xk+1∥2G − ∥△xk∥2G

]
+ ζ1∥△xk+1∥2G, (19)

where

ζ0 =
γk
2

≥ 0, and ζ1 =
1− 2γk

2
> 0. (20)
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(Step 2) By the update of y-subproblem we obtain

g(yk)−⟨λk+ 1
2
, Byk⟩+

β

2
∥xad

k+1+Byk− b∥2 ≥ g(yk+1)−⟨λk+ 1
2
, Byk+1⟩+

β

2
∥xad

k+1+Byk+1− b∥2,

which, by Lemma 2.2, is equivalently expressed as

g(yk)− g(yk+1) + ⟨λk+ 1
2
, B△yk+1⟩+

β

2
∥B△yk+1∥2 ≥ β⟨B△yk+1,x

ad
k+1 +Byk+1 − b⟩. (21)

Therefore, it can be deduced that

Lβ(xk+1,yk, λk+ 1
2
)− Lβ(xk+1,yk+1, λk+ 1

2
)

= g(yk)− g(yk+1) +
⟨
λk+ 1

2
, B△yk+1

⟩
+

β

2

(
∥Axk+1 +Byk − b∥2 − ∥Axk+1 +Byk+1 − b∥2

)
= g(yk)− g(yk+1) +

⟨
λk+ 1

2
, B△yk+1

⟩
− β⟨B△yk+1, Axk+1 +Byk+1 − b⟩+ β

2
∥B△yk+1∥2

≥ β⟨B△yk+1,x
ad
k+1 +Byk+1 − b⟩ − β⟨B△yk+1, Axk+1 +Byk+1 − b⟩

= β(α− 1)⟨B△yk+1, Axk+1 +Byk − b⟩

=
1− α

τ + α

[
β∥B△yk+1∥2 + ⟨△yk+1, B

T△λk+1⟩
]
, (22)

where the second equality follows Lemma 2.2, the first inequality uses (21), the third equality
uses the update of xad

k+1 and the final equality uses (17).

(Step 3) Note that

Lβ(xk+1,yk, λk)− Lβ(xk+1,yk, λk+ 1
2
) + Lβ(xk+1,yk+1, λk+ 1

2
)− Lβ(xk+1,yk+1, λk+1)

=
⟨
λk+ 1

2
− λk, Axk+1 +Byk − b

⟩
−

⟨
λk+ 1

2
− λk+1, Axk+1 +Byk+1 − b

⟩
=

⟨
λk+ 1

2
− λk, Axk+1 +Byk − b

⟩
−

⟨
λk+ 1

2
−λk + λk︸ ︷︷ ︸−λk+1, Axk+1 +Byk+1 − b

⟩
=

⟨
λk+ 1

2
− λk,−B△yk+1

⟩
+ ⟨△λk+1, Axk+1 +Byk+1 − b⟩

= τβ ⟨Axk+1 +Byk − b,B△yk+1⟩+
⟨
△λk+1, Axk+1 +Byk+1+Byk −Byk︸ ︷︷ ︸−b

⟩
= ⟨Axk+1 +Byk − b,△λk+1 + τβB△yk+1⟩+ ⟨△λk+1, B△yk+1⟩

= − 1

τ + α

⟨
1

β
△λk+1 +B△yk+1,△λk+1 + τβB△yk+1

⟩
+ ⟨△λk+1, B△yk+1⟩

= − τβ

τ + α
∥B△yk+1∥2 −

1

(τ + α)β
∥△λk+1∥2 −

1− α

τ + α
⟨△λk+1, B△yk+1⟩ . (23)

(Step 4) Summing the above inequalities (19), (22) and the equality (23), we get

Lβ(xk,yk, λk)− Lβ(xk+1,yk+1, λk+1)

≥ γk
2

[
∥△xk+1∥2G − ∥△xk∥2G

]
+

1− 2γk
2

∥△xk+1∥2G +R△,
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where

R△ =

(
1

τ + α
− 1

)
β∥B△yk+1∥2 −

1

(τ + α)β
∥△λk+1∥2

≥
(

1

τ + α
− 1

)
β∥B△yk+1∥2 −

1

(τ + α)βσB

∥∥∥BT△λk+1

∥∥∥2
≥

(
1

τ + α
− 1

)
β∥B△yk+1∥2 −

L2
g

(τ + α)βσB
∥△yk+1∥2

≥
(

1

τ + α
− 1

)
βσB∥△yk+1∥2 −

L2
g

(τ + α)βσB
∥△yk+1∥2

= ζ2∥△yk+1∥2

with

ζ2 =
(1− τ − α)β2σ2

B − L2
g

(τ + α)βσB
> 0. [due to (A2)]

Actually, in the first inequality of R△, we use the fact that △λk+1 ∈ Im(B) because of Assump-

tion (A1). So, the whole proof is completed by the notation L̃β(wk). �

Theorem 3.1 Let {wk} be generated by Algorithm 1.1. Then, under (A1)-(A3) we have

• The sequence {Lβ(wk)} is convergent;

• The residuals ∥△xk+1∥G, ∥△yk+1∥ and ∥△λk+1∥ converge to zero as k goes to infinity.

Proof To demonstrate convergence of {Lβ(wk)}, we need to make ensure that the sequence
{wk} is bounded at first. By Assumption (A2), it holds

Lg <
√
1− τ − αβσB < βσB.

Combining the above inequality and Lemma 3.3, we achieve

Lβ(x0,y0, λ0) = Lβ(x0,y0, λ0) + ζ1∥△x0∥2G
≥ Lβ(xk+1,yk+1, λk+1) + ζ1∥△xk+1∥2G ≥ Lβ(xk+1,yk+1, λk+1)

= f(xk+1) + g(yk+1)−
1

2β
∥λk+1∥2 +

β

2

∥∥∥∥Axk+1 +Byk+1 − b− λk+1

β

∥∥∥∥2
≥ f(xk+1) + g(yk+1)−

1

2βσB
∥BTλk+1∥2 +

β

2

∥∥∥∥Axk+1 +Byk+1 − b− λk+1

β

∥∥∥∥2
=

(
f(xk+1) + g(yk+1)−

1

2Lg
∥∇g(yk+1)∥2

)
+

(
1

2Lg
− 1

2βσB

)
∥BTλk+1∥2

+
β

2

∥∥∥∥Axk+1 +Byk+1 − b− λk+1

β

∥∥∥∥2
≥ L+

(
1

2Lg
− 1

2βσB

)
∥BTλk+1∥2 +

β

2

∥∥∥∥Axk+1 +Byk+1 − b− λk+1

β

∥∥∥∥2 , (24)

which implies that the sequences {λk}, {β
2 ∥Axk+1 +Byk+1 − b− λk+1/β∥2} are bounded, and

furthermore both {xk} and {yk} are bounded. So, the sequence {wk} is bounded.
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Since {wk} is bounded, {L̃β(wk)} is also bounded from below and there exists at least one
limit point. Without loss of generality, let w∗ be the limit point of {wk} whose subsequence is
{wkj}. Then, the lower semicontinuity of {L̃β(w)} indicates

L̃β(w∗) ≤ lim inf
j→+∞

L̃β(wkj ).

That is, {L̃β(wkj )} is bounded from below, which further implies convergence of {L̃β(wk)} based
on Lemma 3.3.

Now, summing the inequality (18) over k = 0, 1, · · · ,∞, we have by the convergence of
{L̃β(wk)} that

ζ1

∞∑
k=0

∥△xk+1∥2G + ζ2

∞∑
k=0

∥△yk+1∥2 ≤ Lβ(w0)− L̃β(wk+1) < ∞,

which suggests ∥△xk+1∥G → 0 and ∥△yk+1∥ → 0. So, using Lemma 2.1 and Lemma 3.1 the
following holds clearly

∥△λk+1∥ ≤ 1
√
σB

∥BT△λk+1∥ ≤ Lg√
σB

∥△yk+1∥ → 0. (25)

This completes the proof. �
Theorem 3.1 illustrates that the augmented Lagrange function of the problem (1) is conver-

gent, and the primal and dual residuals converge to zero. In what follows, we would present a key
theorem about pointwise iteration-complexity of the proposed algorithm w.r.t. the primal-dual
residuals. Actually, the following first assertion implies that any accumulation point of {wk} is
a stationary point of {Lβ(wk)} compared to Definition 2.2.

Theorem 3.2 Let {wk} be generated by Algorithm 1.1. Then, under Assumptions (A1)-(A3)

• It holds

lim
k→∞

d(0, ∂Lβ(w
k+1)) = 0. (26)

• The sequence {f(xk+1) + g(yk+1)} is convergent.

• Let C0 := Lβ(w0)−L. Then, for any integer k ≥ 1, there exists j ≤ k and ζi > 0 (i = 1, 2, 3)
such that

∥△xj∥2G ≤ C0

ζ1(k + 1)
, ∥△yj∥2 ≤

C0

ζ2(k + 1)
, ∥△λj∥2 ≤

C0

ζ3(k + 1)
. (27)

Proof Using (17) again, we have

Axk+1 +Byk+1 − b = − 1

τ + α

(
1

β
△λk+1 +B△yk+1

)
+B△yk+1,

which by the third result of Theorem 3.1 suggests

lim
k→∞

Axk+1 +Byk+1 − b = 0. (28)
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Therefore,

lim
k→∞

∇λLβ(wk+1) = lim
k→∞

−(Axk+1 +Byk+1 − b) = 0. (29)

By the first-order optimality condition of y-subproblem, it holds

0 = ∇g(yk+1)−BTλk+ 1
2
+ βBT

(
xad
k+1 +Byk+1 − b

)
= ∇g(yk+1)−BTλk+1 + βBT (Axk+1 +Byk+1 − b)

+BT
(
λk+1 − λk+ 1

2

)
+ βBT(xad

k+1 −Axk+1)

= ∇g(yk+1)−BTλk+1 + βBT (Axk+1 +Byk+1 − b)

−βBT(Axk+1 +Byk+1 − b),

which gives

lim
k→∞

∇yLβ(wk+1) = lim
k→∞

βBT(Axk+1 +Byk+1 − b) = 0. (30)

Analogously, by the update of x-subproblem, there exists dk+1 ∈ ∂f(xk+1) such that

0 = dk+1 −ATλk+1 + βAT (Axk+1 +Byk − b) +G(xk+1 − xmd
k )

= dk+1 −ATλk+1 + βAT (Axk+1 +Byk+1 − b)

+βATB(yk − yk+1) +G(xk+1 − xk − γk△xk)

= dk+1 −ATλk+1 + βAT (Axk+1 +Byk+1 − b)

−βATB△yk+1 −G(γk△xk −△xk+1).

By defining
dk+1 := dk+1 −ATλk+1 + βAT (Axk+1 +Byk+1 − b) ,

we have dk+1 ∈ ∂xLβ(wk+1) and furthermore

lim
k→∞

dk+1 = lim
k→∞

[
βATB△yk+1 +G(γk△xk −△xk+1)

]
= 0. (31)

Thus, it follows from (29), (30) and (31) that (26) holds.

For the second assertion, it holds by (28) that

f(xk+1)+g(yk+1) = Lβ(wk+1)+⟨λ,Axk+1+Byk+1−b⟩+ β

2
∥Axk+1+Byk+1−b∥2 → Lβ(wk+1).

So, the sequence {f(xk+1) + g(yk+1)} is convergent by the first conclusion of Theorem 3.1.

We finally prove the pointwise iteration complexity in (27). Using (24) again, we have

−L̃β(wk+1) ≤ −L−
(

1

2Lg
− 1

2βσB

)
∥BTλk+1∥2 −

β

2

∥∥∥∥Axk+1 +Byk+1 − b− λk+1

β

∥∥∥∥2 ≤ −L.

So, for any k ≥ 0, it follows from Lemma 3.3 that

k∑
j=0

(
ζ1∥△xj∥2G + ζ2∥△yj∥2

)
≤ Lβ(w0) + ζ0∥△x0∥2G − L = C0,
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which shows

∥△xj∥2G ≤ C0

ζ1(k + 1)
and ∥△yj∥2 ≤

C0

ζ2(k + 1)
.

The final convergence rate bound in (27) can be also verified by (25) with ζ3 = L2
g/ζ2. �

In order to reduce error bounds of the primal-dual residuals, the following remark provides an
adaptive way to update the parameter γk related to ζ1 by making use of the so-called Nesterov’s
acceleration (proposed originally in [31]), and it also suggests how to choose reasonable values
of the parameters τ and α.

Remark 3.1 By the above convergence analysis, if G ≻ 0, then convergence of Algorithm 1.1
can be guaranteed by γk ∈ [0, 1/2). In such case we can update γk adaptively by the following

γk =
θk−1 − 1

2θk
, where θk =

1 +
√

1 + 4θ2k−1

2
with θ−1 := 1. (32)

Note that ζ2 = −βσB + 1
τ+α [βσB − L2

g

βσB
] is inversely proportional to (τ + α) since Lg < βσB.

This together with the connection ζ3 = L2
g/ζ2 imply that we could choose (τ + α) → 1 to get

smaller error bound of ∥△λj∥2 in (27). In the next section, related numerical experiments will
show how to determine reasonable values of τ and α in detail.

4 Numerical Experiments

In this section, we apply the proposed algorithm to solve a class of practical examples from
signal processing to investigate its numerical performance. All experiments are performed by
using Windows 10 system and MATLAB R2018a (64-bit) with an Intel Core i7-8700K CPU
(3.70 GHz) and 16GB memory.

Applying Algorithm 1.1 to solve (3), we have by (16) that

xk+1 = Prox∥x∥1/2
1/2

,σ/µ

(
xmd
k −

βAT(Axmd
k − yk − b)−ATλk

σ

)
,

which is the half shrinkage operator [37] defined as Prox∥x∥1/2
1/2

,ν
(x) = (lν(x1), lν(x2), · · · , lν(xm))T

where

lν(xi) =

{
2xi
3

[
1 + cos 2

3(π − ϕ(xi))
]
, if |xi| > 3 3√2

4 ν2/3,
0, otherwise,

and ϕ(xi) = arccos(ν8 (
|xi|
3 )−3/2). Besides, it is easy to obtain yk+1 = (c+βxad

k+1−λk+ 1
2
)/(1+β).

With the purpose of fast convergence and making performance of Algorithm 1.1 less inde-
pendent on an initial guess of the penalty parameter β, as suggested by He et al.[22] we would
adopt the following technique to update it adaptively:

βk+1 =


ηincrβk if ∥rk∥2 > ν∥sk∥2,
βk/η

decr if ∥sk∥2 > ν∥rk∥2,
βk otherwise,

(33)

12



where ν, ηincr and ηdecr are three positive parameters with suggested values larger than 1, for
instance, ν = 10, ηincr = ηdecr = 2. For Algorithm 1.1 to solve (1) we have

∥rk∥ = ∥Axk+1 +Byk+1 − b∥ (34)

and
∥sk∥ =

∥∥∥AT△λk+1 + βAT(Axk+1 +Byk − b) +G(△xk+1 − γk△xk)
∥∥∥ ,

which represent the equality constrained error and the optimality error, respectively. Here, it is
easy to check that 0 ∈ ∂f(xk+1) − ATλk+1 + sk. In order to satisfy Assumption (A2), we need

to update β = min
{
βk+1,

1.01Lg√
1−τ−ασB

}
at each iteration. As for the problem (3), we have Lg = 1

and σB = 1. If not specified, the initial penalty parameter β0 is chosen as 0.04, the starting
points (x0,y0) and λ0 are respectively set as zero and ones vector with proper dimensions, and
the matrix G = σI − βATA with σ = 1.01β∥ATA∥. The parameter γk is updated adaptively
according to (32). Throughout we use the following stopping criterion as mentioned in [27] to
terminate Algorithm 1.1:

IRE(k) :=
max {∥xk − xk−1∥, ∥yk − yk−1∥, ∥λk − λk−1∥}

max {∥xk−1∥, ∥yk−1∥, ∥λk−1∥, 1}
< ϵ, (35)

where ϵ is a given tolerance error. Note that this stopping criterion corresponds to the pointwise
iteration complexity shown in (27), so such stopping criterion is well defined.

As the first experiment, we consider the reformulated sparse signal recovery problem (3) with
an original signal x ∈ R3072 containing 160 spikes with amplitude ±1. The measurement matrix
A ∈ R1024×3072 is drawn firstly from the standard norm distribution N (0, 1) and then each of its
column is normalized. Specifically, we use the following MATLAB codes to generate the original
signal xorig, the data A, c and µ:

randn(’state’, 0); rand(’state’,0);

l = 1024; m = 3072;

T = 160; % number of spikes

x_orig = zeros(m,1); q = randperm(m);

x_orig(q(1:T)) = sign(randn(T,1)); % original signal

A = randn(l,m);

A = A*spdiags(1./sqrt(sum(A.^2))’,0,m,m); % normalize columns

sig = 0.01; % noise standard deviation

c = A*x_orig + sig*randn(l,1); % noisy observations

mu_max = norm( A’*c,’inf’);

mu = 0.1*mu_max; % regularization parameter

Under tolerance ϵ = 10−15, we test the effect of parameters (τ, α) restricted in (8) on the
numerical performance of Algorithm 1.1 (In fact, we choose parameter values around (τ, α) =
(0.3, 0.32), because we find it performs slightly better than some pairs after running a lot of
values restricted in (8) by the aid of two level for loops in MATLAB). We also randomly choose
four pairs of (τ, α) to carry out related experiments.

Table 1 reports some computational results of several quality measurements, including “IT”,
“CPU”, “IRE”, “EQU” which denote respectively the iteration number, the CPU time in sec-
onds, the final relative iterative error IRE(k) defined in (35) and the final feasibility error ∥rk∥
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defined in (34). We use l2-error (defined as
∥xk−xorig∥
∥xorig∥ ) to represent the relative error to measure

recovery quality of a signal. As shown in Table 1, setting (τ, α) = (0.65, 0.32) would be a rea-
sonable choice for Algorithm 1.1 to solve the problem (3), because in such a choice the iteration
number and the CPU time are relatively smaller while reported results in each of the last three
columns are nearly the same when the stopping criterion is satisfied. Hence, in the following
experiments, we use Algorithm 1.1 with default parameters (τ, α) = (0.65, 0.32).

(τ, α) IT CPU IRE EQU l2-error
(0.3, 0.10) 472 22.67 9.47e-16 6.10e-14 6.79e-2
(0.3, 0.15) 443 21.12 9.23e-16 5.18e-14 6.79e-2
(0.3, 0.20) 500 24.11 9.77e-16 4.82e-14 6.79e-2
(0.3, 0.25) 379 18.23 9.79e-16 6.33e-14 6.79e-2
(0.3, 0.30) 350 16.79 9.78e-16 5.88e-14 6.79e-2
(0.3, 0.32) 344 16.66 9.45e-16 6.33e-14 6.79e-2
(0.3, 0.35) 544 26.17 9.79e-16 3.28e-14 6.79e-2
(0.3, 0.40) 510 24.30 8.87e-16 5.11e-14 6.79e-2
(0.3, 0.45) 485 23.28 9.93e-16 3.34e-14 6.79e-2
(0.3, 0.50) 458 21.95 9.34e-16 3.24e-14 6.79e-2
(0.3, 0.55) 433 20.86 9.58e-16 3.29e-14 6.79e-2
(0.3, 0.60) 413 20.30 9.45e-16 3.24e-14 6.79e-2
(0.3, 0.65) 396 19.24 9.33e-16 3.26e-14 6.79e-2
(0.3, 0.68) 387 18.66 8.91e-16 3.37e-14 6.79e-2
(-0.3, 0.32) − − − − −
(-0.2, 0.32) − − − − −
(-0.1, 0.32) 695 33.51 9.95e-16 5.41e-14 6.79e-2
(0, 0.32) 498 23.77 9.99e-16 8.38e-14 6.79e-2
(0.1, 0.32) 697 33.49 9.33e-16 5.68e-14 6.79e-2
(0.2, 0.32) 391 18.93 9.54e-16 7.85e-14 6.79e-2
(0.3, 0.32) 344 16.62 9.45e-16 6.33e-14 6.79e-2
(0.4, 0.32) 502 24.16 8.85e-16 4.01e-14 6.79e-2
(0.5, 0.32) 451 21.61 9.49e-16 2.97e-14 6.79e-2
(0.6, 0.32) 404 19.52 9.64e-16 3.74e-14 6.79e-2
(0.62, 0.32) 397 19.20 9.71e-16 4.34e-14 6.79e-2
(0.65, 0.32) 279 13.52 9.98e-16 3.19e-14 6.79e-2
(0.67, 0.32) 318 15.59 8.43e-16 3.11e-14 6.79e-2
(0.90, 0.05) 396 19.06 9.26e-16 3.27e-14 6.79e-2
(0.80, 0.15) 396 19.02 9.33e-16 3.28e-14 6.79e-2
(0.01, 0.90) 411 19.78 9.63e-16 3.10e-14 6.79e-2
(0.05, 0.70) 485 24.62 9.62e-16 3.10e-14 6.79e-2

Table 1: Results1 of Algorithm 1.1 with different (τ, α) for solving problem (3).

Next, we use the aforementioned codes to investigate the effect of regularization parame-
ter µ on Algorithm 1.1 for solving the problem (3) with a large data A ∈ R2048×5000 and
the same spikes, but the tolerance is set as ϵ = 10−12. Fig. 1 depicts convergence behav-
iors of the equality constraint error ∥rk∥, the iterative error IRE(k) and the recovery signal

quality ek := log10
∥xk−xorig∥

∥xorig∥ along the iteration process after applying Algorithm 1.1 with

µ = 0.1µmax, 0.05µmax, 0.01µmax, respectively. Fig. 2 also presents the results to visualize

1“−” means that the stopping criterion is not satisfied after 800 iterations, and the bold number in that row
indicate the best results obtained by changing (τ, α) belong to (0, 1).
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Fig. 1: Convergence tendency of the equality constraint error ∥rk∥ (left), the iterative error IRE(k) (middle) and
the recovery signal quality ek (right) by Algorithm 1.1 for solving the problem (3) with (l,m) = (2048, 5000) but
with different regularization factors.

the recovery quality of the signal versus the original signal, where the upper-left plot shows the
minimum energy reconstruction signal A†c (which is the point satisfying ATAx = ATc) versus
the original signal. An outstanding observation from Fig. 1 is that the smaller the value of µ is,
the smaller the iteration number is (and the better the recovery quality of the signal is). After
identifying the nonzero positions in the reconstructed signal, it always has the correct number
of spikes for the case with µ = 0.01µmax and is closer to the original noiseless signal.

l1/2 regularizer l1 regularizer
(l,m) IT CPU EQU l2 error IT CPU EQU l2 error

(1024, 3000) 358 16.37 4.60e-14 1.20e-2 501 22.60 1.93e-14 3.70e-2
(1024, 4000) 367 25.93 4.18e-14 1.28e-2 507 35.611 4.78e-14 4.26e-2

(2048, 5000) 215 30.65 2.84e-14 1.08e-2 250 36.01 3.27e-14 2.66e-2
(2048, 6000) 222 41.37 3.98e-14 1.20e-2 266 49.59 3.47e-14 3.07e-2

(3000, 7000) 201 58.08 2.71e-14 1.17e-2 231 66.91 2.93e-14 2.60e-2
(3000, 8000) 205 71.36 3.77e-14 1.10e-2 230 79.55 3.62e-14 2.58e-2

(4000, 9000) 199 97.52 3.29e-14 1.11e-2 231 112.94 2.87e-14 2.69e-2
(4000, 10000) 202 118.62 2.37e-14 1.03e-2 231 135.72 2.91e-14 2.51e-2

Table 2: Results of Algorithm 1.1 for (3) with different regularization terms and dimensions.

In the following, we use the proposed algorithm to solve two different cases of the sparse
signal recovery problem to investigate which regularization term performs better: Case (i) the
convex problem (2)2 with l1 regularization term; Case (ii) the nonconvex problem (3) with
l1/2 regularization term. Table 2 reports some numerical results, where the problem dimension
comes from 3000 to 10000 w.r.t the dimension of the signal, the regularization parameter is
fixed as µ = 0.01µmax and Algorithm 1.1 is terminated under tolerance ϵ = 10−15 with maximal
iteration numbers 1000. Fig. 3 depicts comparison results between the original signal and the
reconstructed signal for the signal dimension m = 10000. First of all, it can be seen from

2Note that this is also a special case of (1) with f(x) = µ∥x∥1, g(y) = 1
2
∥y − c∥2, B = −I and b = 0.
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Fig. 2: Comparison between the original signal and reconstructed signal by Algorithm 1.1 for solving problem (3)
with (l,m) = (2048, 5000) but with different regularization factor µ.

results in Table 2 that the proposed algorithm is feasible for solving both the nonconvex and
convex sparse signal recovery problem, especially for the large-scale problem. Besides, an obvious
observation from Table 2 is that using l1/2 regularizer is significantly better than l1 regularizer
to recover a signal, which could be checked from reported results of the iteration number, the
CPU time and the recovery quality (i.e., l2 error).

Finally, we would apply the proposed algorithm to solve the direction-of-arrival (DOA) estima-
tion problem [29] with a single snapshot. Here we consider a uniformly linear array of M = 100
sensors with half-wavelength elements spacing. Let θ = [θ1, · · · , θL]T denote the L angles of
interest in [−π

2 ,
π
2 ]. Denote x = [x1, · · · , xL]T as the amplitudes of the potential signals from

the L incoming angles. Thus, the received signal at the sensor array is given by: y = Ax + n,
where y = [y1, · · · , yM ]T, n = [n1, · · · , nM ]T, the steering matrix A = [a(θ1), · · · ,a(θL)] and
a(θl) = [1, exp(−jπ sin(θl)), · · · , exp(−jπ(M − 1) sin(θl))]

T.

We consider the narrowband scenario with K = 2 uncorrelated far-field source signals with
normalized DOA parameters−π

6 and π
4 . To run the proposed method, we divide the potential an-

gle region [−π
2 ,

π
2 ] into L = 180 uniformly discrete grid points, i.e., θ = π

180 [−90,−89, · · · , 89, 90]T.
When the signal-to-noise-ratio (SNR) varies from −5dB to 20dB, i.e., {−5, 0, 5, 10, 15, 20}dB, we
implement the proposed method and the well-known CVX3 toolbox for 100 Monte Carlo runs,
and compute their root mean square errors and running time, as plotted in Fig. 4. For visible
comparison, we plot the result from one Monte Carlo in the case of 5dB, as shown in Fig. 5.
From Figs. 4-5, we can see that:

• The accuracy of the two methods increases with the increase of SNR;

3Avaliable at: http://cvxr.com/cvx/.
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Fig. 3: Original signal and reconstructed signal by Algorithm 1.1 for solving the sparse signal recovery problem
with (l,m) = (4000, 10000) but with different regularization terms.
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Fig. 4: The left and right are the errors and average run time versus different SNRs, respectively.
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Fig. 5: DOAs at SNR= 5dB.

• The implementation of the proposed method is faster than that of the CVX method.

• In terms of DOA resolution and the estimation accuracy of the incoming signal power, the
proposed method is better than that of CVX.

5 Conclusion remarks

In this paper, we construct a symmetric alternating direction method of multipliers for solving
a family of possibly nonconvex nonxmooth optimization problems. Two different acceleration
techniques are designed for fast convergence. Under proper assumptions, convergence of the
proposed algorithm as well as its pointwise iteration complexity are analyzed in detail. By
testing the so-called sparse signal recovery problem in signal processing with nonconvex/convex
regularization terms and by using adaptively updating strategy for the penalty parameter, a
number of numerical results demonstrate the feasibility and efficiency of the new algorithm and
further show that the l1/2 regularization term is better than the l1 regularization term in terms of
CPU time, iteration number and recovery error. Our future work will focus on solving stochastic
nonconvex optimization problems by using a similar first-order algorithm to ADMM.
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