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Abstract This paper continues the study of ‘good arrangements’ of collections of sets
near a point in their intersection. We clarify quantitative relations between several geo-
metric and metric characterizations of the transversality properties of collections of sets
and the corresponding regularity properties of set-valued mappings. We expose all the pa-
rameters involved in the definitions and characterizations and establish relations between
them. This allows us to classify the quantitative geometric and metric characterizations
of transversality and regularity, and subdivide them into two groups with complete exact
equivalences between the parameters within each group and clear relations between the
values of the parameters in different groups.
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1 Introduction

We continue studying ‘good arrangements’ of collections of sets in normed vector spaces
near a point in their intersection, known as transversality (regularity) properties and play-
ing an important role in optimization and variational analysis, e.g., as constraint quali-
fications in optimality conditions, and qualification conditions in subdifferential, normal
cone and coderivative calculus, and convergence analysis of computational algorithms
[2–6, 9, 10, 12, 13, 15, 17, 19–32, 34–38, 40, 41].

Our aim in this paper is to clarify relations between several quantitative geometric and
metric characterizations of the transversality properties of collections of sets and the cor-
responding regularity properties of set-valued mappings. We study here three typical prop-
erties of collections of sets: α−semitransversality, α−subtransversality and α−transver-
sality and the corresponding three properties of set-valued mappings: α−semiregularity,
α−subregularity and α−regularity; see Definitions 1 and 2.

The first two properties in each group admit unique quantitative metric characteriza-
tions; see Theorems 2 and 3. The situation with the remaining pair of properties is more
complicated: they admit several metric characterizations, which are not entirely equivalent
quantitatively: they differ in the values of certain auxiliary parameters. This has been a
source of some confusion in the recent literature and added unnecessary complications,
e.g., in the statements and proofs of the quantitative relations between transversality and
regularity properties; cf. [29, Theorem 5.1].
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In this paper, we expose all the parameters involved in the definitions and character-
izations and establish relations between them. This allows us to classify all quantitative
geometric and metric characterizations of α−transversality properties and subdivide them
into two groups with complete exact equivalencies between the parameters within each
group and clear relations between the values of the parameters in different groups; cf.
Propositions 5 and 9. As a by-product, we establish straightforward two-way quantitative
relations between the transversality properties of collections of sets and the corresponding
regularity properties of set-valued mappings, improving and streamlining the correspond-
ing results from [29].

To simplify the presentation, only ‘linear’ transversality and regularity properties are
considered here. For some recent nonlinear extensions we refer the readers to [11–13]. The
convex case is given a special attention.

The rest of the paper is organized as follows. In Section 2, we recall conventional def-
initions of the transversality properties of a collection of arbitrary subsets of a normed
vector space, having a common point, and discuss basic relations between them. In Sec-
tion 3, we establish equivalent geometric characterizations of α−subtransversality and
α−transversality. Section 4 is dedicated to metric characterizations of the transversality
properties. In Section 5, we clarify quantitative relations between the transversality prop-
erties of collections of sets and the corresponding regularity properties of set-valued map-
pings.

Our basic notation is standard, see, e.g., [14, 33, 39]. The open unit balls in normed
vector spaces X and Y are denoted by BX and BY , respectively. When it does not cause
confusion, we simply write B. The open ball with center x and radius δ > 0 is denoted
by Bδ (x). If not explicitly stated otherwise, products of normed spaces are assumed to be
equipped with the maximum norm ‖(x,y)‖ := max{‖x‖,‖y‖}, (x,y) ∈ X×Y .

For a set Ω ⊂ X , its interior and boundary are denoted by intΩ and bdΩ , respectively.
The distance from a point x ∈ X to a set Ω ⊂ X is defined by d(x,Ω) := infu∈Ω ‖u− x‖,
and we use the convention d(x, /0) = +∞.

A set-valued mapping F : X ⇒ Y between two sets X and Y is a mapping, which
assigns to every x ∈ X a subset (possibly empty) F(x) of Y . We use the notations gphF :=
{(x,y)∈ X×Y : y∈ F(x)} and dom F := {x∈ X : F(x) 6= /0} for the graph and the domain
of F , respectively, and F−1 : Y ⇒ X for the inverse of F . This inverse (which always exists
with possibly empty values at some y) is defined by F−1(y) := {x ∈ X : y ∈ F(x)}, y ∈ Y .
Obviously domF−1 = F(X).

2 Definitions and Basic Relations

In this section, we recall conventional definitions of the transversality properties of a col-
lection of n≥ 2 arbitrary subsets Ω1, . . . ,Ωn of a normed vector space, having a common
point, and discuss basic relations between them. We write {Ω1, . . . ,Ωn} to denote the col-
lection of sets as a single object.

The next definition is a modification of [29, Definition 3.1].

Definition 1 Let Ω1, . . . ,Ωn be subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and α > 0. The

collection {Ω1, . . . ,Ωn} is

(i) α−semitransversal at x̄ if there exists a δ > 0 such that
n⋂

i=1

(Ωi− xi)∩Bρ(x̄) 6= /0 (1)

for all ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αρ;
(ii) α−subtransversal at x̄ if there exist δ1 > 0 and δ2 > 0 such that

n⋂
i=1

Ωi∩Bρ(x) 6= /0 (2)

for all ρ ∈]0,δ1[ and x ∈ Bδ2(x̄) with max1≤i≤n d(x,Ωi)< αρ;
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(iii) α−transversal at x̄ if there exist δ1 > 0 and δ2 > 0 such that

n⋂
i=1

(Ωi−ωi− xi)∩ (ρB) 6= /0 (3)

for all ρ ∈]0,δ1[, ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αρ.

The definition of α−subtransversality in part (ii) differs from the corresponding one
in [29, Definition 3.1]. In view of Theorem 1, the two representations are equivalent.

Each of the properties in Definition 1 is determined by a number α > 0, playing the role
of a rate of the respective property, and either a number δ > 0 in item (i) or two numbers
δ1 > 0 and δ2 > 0 in items (ii) and (iii). The exact upper bound of all α > 0 such that the
property holds with some δ > 0, or δ1 > 0 and δ2 > 0, is called the modulus of this property.
We use the notations setr[Ω1, . . . ,Ωn](x̄), str[Ω1, . . . ,Ωn](x̄) and tr[Ω1, . . . ,Ωn](x̄) for the
moduli of the respective properties. If the property does not hold, then by convention the
respective modulus equals 0.

If {Ω1, . . . ,Ωn} is α−semitransversal (respectively, α−subtransversal or α−transver-
sal) at x̄ with some α > 0 and δ > 0 (respectively, δ1 > 0 and δ2 > 0), we often simply say
that {Ω1, . . . ,Ωn} is semitransversal (respectively, subtransversal or transversal) at x̄.

The role of the δ ’s in the definitions is more technical: they control the size of the
interval for the values of ρ and, in the case of subtransversality and transversality in parts
(ii) and (iii), the size of the neighbourhoods of x̄ involved in the respective definitions. Of
course, if a property is satisfied with some δ1 > 0 and δ2 > 0, it is also satisfied with the
single δ := min{δ1,δ2} in place of both δ1 and δ2. We use here two different parameters to
emphasise their different roles in the definitions and the corresponding characterizations.
Moreover, we are going to provide quantitative estimates for the values of these parameters,
which can be important in applications.

If all the sets coincide, the subtransversality property is satisfied trivially.

Proposition 1 Let Ω be a subset of a normed space X, x̄∈Ω , and α ∈]0,1]. The collection
{Ω , . . . ,Ω} of n≥ 2 copies of Ω is α−subtransversal at x̄.

Proof Observe that condition (2) in the current setting takes the form Ω ∩Bρ(x) 6= /0, and
is trivially satisfied if d(x,Ω)< αρ . ut

The next result shows that α−transversality is the strongest of the three properties in
Definition 1.

Proposition 2 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, and α > 0.

If {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then it is α−semi-
transversal at x̄ with δ := δ1 and α−subtransversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0
such that αδ ′1 +δ ′2 ≤ δ2.

As a consequence, setr[Ω1, . . . ,Ωn](x̄) ≥ tr[Ω1, . . . ,Ωn](x̄) and str[Ω1, . . . ,Ωn](x̄) ≥
tr[Ω1, . . . ,Ωn](x̄).

Proof Suppose {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0. Since
condition (1) is a particular case of condition (3) with ωi = x̄ (i = 1, . . . ,n), we conclude
that {Ω1, . . . ,Ωn} is α−semitransversal at x̄ with δ := δ1. Let δ ′1 ∈]0,δ1] and δ ′2 > 0 be
such that αδ ′1 + δ ′2 ≤ δ2, and let ρ ∈]0,δ ′1[ and x ∈ Bδ ′2

(x̄) with max1≤i≤n d(x,Ωi) < αρ .
Choose ωi ∈Ωi (i = 1, . . . ,n) such that max1≤i≤n ‖x−ωi‖< αρ . Then

‖ωi− x̄‖ ≤ ‖x−ωi‖+‖x‖< αρ +δ
′
2 < δ2 (i = 1, . . . ,n).

Set xi := x−ωi (i = 1, . . . ,n). We have ρ ∈]0,δ1[, ωi ∈ Ωi ∩ Bδ2(x̄) (i = 1, . . . ,n) and
max1≤i≤n ‖xi‖ < αρ . By Definition 1(iii), condition (3) is satisfied. This is equivalent to
condition (2). In view of Definition 1(ii), {Ω1, . . . ,Ωn} is α−subtransversal at x̄ with δ ′1
and δ ′2. ut
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Remark 1 Note that α−semitransversality and α−subtransversality are in general incom-
parable; cf. [29, Section 3.2].

The three transversality properties in Definition 1 are only meaningful when
x̄ ∈ bd ∩n

i=1 Ωi.

Proposition 3 Let Ω1, . . . ,Ωn be subsets of a normed space X. If x̄ ∈ int ∩n
i=1 Ωi, then, for

any α > 0, all three properties in Definition 1 hold true.

Proof Let x̄ ∈ int ∩n
i=1 Ωi and α > 0. In view of Proposition 2, we only need to prove

that {Ω1, . . . ,Ωn} is α−transversal at x̄. Choose numbers δ1 > 0 and δ2 > 0 such that,
with δ := αδ1 +δ2, it holds Bδ (x̄) ⊂ ∩n

i=1Ωi. Then, for all ωi ∈ Ωi ∩Bδ2(x̄) and xi ∈ X
(i = 1, . . . ,n) with max1≤i≤n ‖xi‖ < αδ1, it holds 0 ∈ ∩n

i=1(Ωi − ωi − xi), and conse-
quently, condition (3) is satisfied with any ρ > 0. By Definition 1(iii), {Ω1, . . . ,Ωn} is
α−transversal at x̄ with δ1 and δ2. ut

If∩n
i=1Ωn is closed and x̄∈ bd∩n

i=1 Ωi, then α−subtransversality and α−transversality
can only hold with α ≤ 1.

Proposition 4 Let Ω1, . . . ,Ωn be subsets of a normed space X, ∩n
i=1Ωn be closed,

x̄ ∈ bd∩n
i=1Ωi, and α > 0. If {Ω1, . . . ,Ωn} is α−subtransversal (in particular, α−trans-

versal) at x̄, then α ≤ 1.

Proof Let {Ω1, . . . ,Ωn} be α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0. Choose a
point x ∈ Bmin{αδ1,δ2}(x̄)\∩

n
i=1Ωi. Then

0 < max
1≤i≤n

d(x,Ωi)≤ d(x,∩n
i=1Ωi)< αδ1,

and by Definition 1(ii), ∩n
i=1Ωi∩Bρ(x) 6= /0, i.e. d(x,∩n

i=1Ωi)< ρ , for all ρ ∈]0,δ1[ satis-
fying d(x,∩n

i=1Ωi)< αρ , which is only possible when α ≤ 1. ut

Remark 2 With the exception of Proposition 4, we usually do not need the closedness of
the sets when formulating equivalent geometric and metric characterizations of the three
transversality properties as well as establishing their relations with the regularity properties
of set-valued mappings. This assumption is essential when establishing primal (slope) and
dual sufficient conditions for the properties; cf. [11, 28, 29].

3 Geometric Characterizations

The next statement provides two equivalent geometric characterizations of α−sub-
transversality, which can serve as equivalent definitions of the property.

Theorem 1 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, and α > 0. The

collection {Ω1, . . . ,Ωn} is α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only
if the following equivalent conditions hold:

(i) for all ρ ∈]0,δ1[, it holds

n⋂
i=1

(Ωi +(αρ)B)∩Bδ2(x̄)⊂
n⋂

i=1

Ωi +ρB; (4)

(ii) condition (3) is satisfied for all ρ ∈]0,δ1[, ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) with
max1≤i≤n ‖xi‖< αρ and ω1 + x1 = . . .= ωn + xn ∈ Bδ2(x̄).
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Proof Observe that condition (4) is equivalent to the inclusion x ∈ ∩n
i=1Ωi +ρB holding

for all x ∈ Bδ2(x̄) with max1≤i≤n d(x,Ωi) < αρ . In its turn, this inclusion is equivalent
to condition (2). This observation proves the equivalent characterization of α−subtrans-
versality in (a).

To prove the second equivalence, it is sufficient to notice that condition (2) can be
rewritten as ∩n

i=1(Ωi− x)∩ (ρB) 6= /0, while the inequalities max1≤i≤n d(x,Ωi) < αρ are
equivalent to the representations x = ω1 +x1 = . . .= ωn +xn, where ωi ∈Ωi (i = 1, . . . ,n)
and max1≤i≤n ‖xi‖< αρ . With such xi and ωi (i = 1, . . . ,n), the above condition is equiv-
alent to condition (3). ut

The transversality property in part (iii) of Definition 1 admits several alternative repre-
sentations. The three equivalent representations in the next proposition are of independent
interest. They differ from the one in Definition 1(iii) by values of the parameters δ1 and δ2.
The relations between the values of parameters in the two groups of representations can be
estimated.

Proposition 5 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, α > 0, δ1 > 0

and δ2 > 0. The following conditions are equivalent:

(i) condition (3) holds for all ρ ∈]0,δ1[, ωi ∈ Ωi and xi ∈ X with ωi + xi ∈ Bδ2(x̄)
(i = 1, . . . ,n) and max1≤i≤n ‖xi‖< αρ;

(ii) condition (1) holds for all ρ ∈]0,δ1[ and xi ∈ δ2B (i= 1, . . . ,n) with max1≤i≤n d(x̄,Ωi−
xi)< αρ;

(iii) for all ρ ∈]0,δ1[ and x,xi ∈ X with x + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
max1≤i≤n d(x,Ωi− xi)< αρ , it holds

n⋂
i=1

(Ωi− xi)∩Bρ(x) 6= /0. (5)

Moreover, if {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then
conditions (i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying αδ ′1 +δ ′2 ≤ δ2 in place
of δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . ,Ωn}
is α−transversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying αδ ′1 +δ ′2 ≤ δ2.

Proof We first prove the equivalence of conditions (i)–(iii).
(iii)⇒ (ii). This implication is trivial.
(ii) ⇒ (i). Let ρ ∈]0,δ1[, ωi ∈ Ωi, xi ∈ X with ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and

max1≤i≤n‖xi‖< αρ . Set x′i := xi +ωi− x̄ (i = 1, . . . ,n). Then x′i ∈ δ2B and d(x̄,Ωi−x′i)≤
‖x̄−ωi + x′i‖= ‖xi‖< αρ (i = 1, . . . ,n). By (ii), condition (1) is satisfied with x′i in place
of xi (i = 1, . . . ,n). This is equivalent to condition (3).

(i) ⇒ (iii). Let ρ ∈]0,δ1[, x,xi ∈ X with x + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
max1≤i≤nd(x,Ωi − xi) < αρ . Choose ωi ∈ Ωi such that ‖x−ωi + xi‖ < αρ and set
x′i := x−ωi + xi (i = 1, . . . ,n). We have ωi + x′i = x + xi ∈ Bδ2(x̄) and ‖x′i‖ < αρ

(i = 1, . . . ,n). In view of (i), condition (3) is satisfied with x′i in place of xi (i = 1, . . . ,n).
This is equivalent to condition (5).

Suppose {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, and
let δ ′1 ∈]0,δ1] and δ ′2 > 0 be such that αδ ′1 +δ ′2 ≤ δ2. Then, for all ρ ∈]0,δ ′1[,
ωi ∈Ωi, xi ∈ X with ωi + xi ∈ Bδ ′2

(x̄) (i = 1, . . . ,n) and max1≤i≤n‖xi‖ < αρ , we have
‖ωi− x̄‖ ≤ ‖xi‖+‖ωi + xi− x̄‖< αδ ′1 +δ ′2 ≤ δ2 (i = 1, . . . ,n). By Definition 1(iii), con-
dition (3) is satisfied, and consequently, condition (i) (as well as conditions (ii) and (iii))
holds with δ ′1 and δ ′2.

Conversely, suppose conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, and let δ ′1 ∈
]0,δ1] and δ ′2 > 0 be such that αδ ′1 +δ ′2 ≤ δ2. Then, for all ρ ∈]0,δ ′1[, ωi ∈Ωi∩Bδ ′2

(x̄) and
xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αρ , we have ‖ωi + xi− x̄‖ ≤ ‖xi‖+‖ωi− x̄‖<
αδ ′1 +δ ′2 ≤ δ2, or ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n). By (i), condition (3) is satisfied, and
consequently, {Ω1, . . . ,Ωn} is α−transversal at x̄ with δ ′1 and δ ′2. ut



6 Hoa T. Bui et al.

Remark 3 (i) The inequality αδ ′1 +δ ′2 ≤ δ2 in the last part of Proposition 5 and some
statements below can be replaced by the equality αδ ′1 +δ ′2 = δ2 providing in a sense
the best estimate for the values of the parameters δ ′1 and δ ′2.

(ii) Each of the conditions (i)–(iii) in Proposition 5 can serve as an equivalent definition of
the α−transversality property. For the estimates derived in the subsequent statements
in this paper, such equivalent definitions can have some advantages compared to the
original one in Definition 1(iii). In particular, they allow to reduce some conventional
proofs to a few lines.

In the convex setting, the requirements that the relations in parts (i) and (iii) of Defini-
tion 1 must hold for all small ρ > 0 can be significantly relaxed .

Proposition 6 Let Ω1, . . . ,Ωn be convex subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, and

α > 0. The collection {Ω1, . . . ,Ωn} is

(i) α−semitransversal at x̄ with some δ > 0 if and only if

n⋂
i=1

(Ωi− xi)∩Bδ (x̄) 6= /0 (6)

for all xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ .
(ii) α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

n⋂
i=1

(Ωi−ωi− xi)∩ (δ1B) 6= /0 (7)

for all ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ1.

Proof (i) If {Ω1, . . . ,Ωn} is α−semitransversal at x̄ with some δ > 0, then, by Defini-
tion 1(i), for all xi ∈ X (i = 1, . . . ,n) with max1≤i≤n‖xi‖ < αδ , and any number ρ

satisfying α−1 max1≤i≤n ‖xi‖< ρ < δ , condition (1) holds. The latter condition obvi-
ously implies condition (6).

Conversely, suppose that, for some δ > 0, condition (6) is satisfied for all
xi ∈ X (i = 1, . . . ,n) with max1≤i≤n‖xi‖ < αδ . Let ρ ∈]0,δ [ and xi ∈ X (i =
1, . . . ,n) with max1≤i≤n‖xi‖ < αρ . Set t := ρ/δ and x′i := xi/t (i = 1, . . . ,n). Then
0 < t < 1 and ‖x′i‖ = ‖xi‖/t < αδ (i = 1, . . . ,n), and consequently, there exists an
x′ ∈ ∩n

i=1(Ωi− x′i)∩Bδ (x̄), i.e. x′ ∈ Bδ (x̄) and x′ = ωi− x′i for some ωi ∈Ωi, or equiv-
alently, xi = t(ωi− x′) (i = 1, . . . ,n). In view of the convexity of the sets, we have
tωi +(1− t)x̄ ∈Ωi (i = 1, . . . ,n). Set x := x̄+ t(x′− x̄). We have x = tωi +(1− t)x̄−
t(ωi−x′)∈Ωi−xi (i = 1, . . . ,n). Moreover, ‖x− x̄‖= t‖x′− x̄‖< ρ . Hence, condition
(1) is satisfied. By Definition 1(i), {Ω1, . . . ,Ωn} is α−semitransversal at x̄ with δ .

(ii) If {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then, by Defini-
tion 1(iii), for any ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖<αδ1,
and any number ρ satisfying α−1 max1≤i≤n ‖xi‖< ρ < δ1, condition (3) holds. The lat-
ter condition obviously implies condition (7).

Conversely, suppose that, for some δ1 > 0 and δ2 > 0, condition (7) is satisfied for
all ωi ∈ Ωi ∩ Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n‖xi‖ < αδ1. Then the
collection of convex sets Ωi−ωi (i = 1, . . . ,n), considered near their common point
0, satisfies the conditions in part (i) and is consequently α−semitransversal at 0 with
δ1 uniformly over ωi ∈ Ωi ∩Bδ2(x̄) (i = 1, . . . ,n). This means that {Ω1, . . . ,Ωn} is
α−transversal at x̄ with δ1 and δ2. ut

Remark 4 We have not succeeded to identify a meaningful relaxation of the α−sub-
transversality property in the convex setting.

Employing the same arguments as in the proof of Proposition 6, it is easy to show that
in the convex case the alternative representations of α−transversality in Proposition 5 can
also be simplified.
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Proposition 7 Let Ω1, . . . ,Ωn be convex subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, α > 0,

δ1 > 0 and δ2 > 0. Conditions (i)–(iii) in Proposition 5 are satisfied if and only if the
following equivalent conditions hold:

(i) condition (7) is satisfied for all ωi ∈Ωi, xi ∈ X with ωi +xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
max1≤i≤n ‖xi‖< αδ1;

(ii) ∩n
i=1(Ωi−xi)∩Bδ1(x̄) 6= /0 for all xi ∈ δ2B (i = 1, . . . ,n) with max1≤i≤n d(x̄,Ωi−xi)<

αδ1;
(iii) ∩n

i=1(Ωi − xi)∩ Bδ1(x) 6= /0 for all x,xi ∈ X with x + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
max1≤i≤n d(x,Ωi− xi)< αδ1.

When the sets are convex, the semitransversality and transversality properties are
equivalent.

Proposition 8 Let Ω1, . . . ,Ωn be convex subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, and

α > 0. If {Ω1, . . . ,Ωn} is α−semitransversal at x̄ with some δ > 0, then, for any α ′ ∈]0,α[,
it is α ′−transversal at x̄ with δ1 := δ and δ2 := (α−α ′)δ .

As a consequence, {Ω1, . . . ,Ωn} is semitransversal at x̄ if and only if it is transversal
at x̄, and setr[Ω1, . . . ,Ωn](x̄) = tr[Ω1, . . . ,Ωn](x̄).

Proof Let {Ω1, . . . ,Ωn} be α−semitransversal at x̄ with some δ > 0, and let α ′ ∈]0,α[,
δ1 := δ and δ2 := (α − α ′)δ . Let ωi ∈ Ωi ∩ Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with
max1≤i≤n‖xi‖ < α ′δ . Set x′i := ωi + xi− x̄ (i = 1, . . . ,n). Then ‖x′i‖ ≤ ‖ωi− x̄‖+ ‖xi‖ <
δ2 +α ′δ = αδ (i = 1, . . . ,n), and by Proposition 6(i), ∩n

i=1(Ωi−x′i)∩Bδ (x̄) 6= /0, which is
equivalent to condition (7). By Proposition 6(ii), {Ω1, . . . ,Ωn} is α ′−transversal at x̄ with
δ1 and δ2. Since α ′ can be chosen arbitrarily close to α , we have setr[Ω1, . . . ,Ωn](x̄) ≤
tr[Ω1, . . . ,Ωn](x̄). In view of Proposition 2, this inequality actually holds as equality. ut

Remark 5 (i) Proposition 8 strengthens [19, Proposition 13(iv)].
(ii) In view of Propositions 2 and 8, in the convex case, semitransversality is in general

stronger than subtransversality.

4 Metric Characterizations

The transversality properties of collections of sets in Definition 1 admit equivalent charac-
terizations in metric terms.

Theorem 2 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, and α > 0. The

collection {Ω1, . . . ,Ωn} is

(i) α−semitransversal at x̄ with some δ > 0 if and only if

αd

(
x̄,

n⋂
i=1

(Ωi− xi)

)
≤ max

1≤i≤n
‖xi‖ (8)

for all xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ ;
(ii) α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if the following equiv-

alent conditions hold:
(a) for all x ∈ Bδ2(x̄) with max1≤i≤n d(x,Ωi)< αδ1, it holds

αd

(
x,

n⋂
i=1

Ωi

)
≤ max

1≤i≤n
d(x,Ωi); (9)

(b) for all ωi ∈Ωi and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ1 and ω1 + x1 =
. . .= ωn + xn ∈ Bδ2(x̄), it holds

αd

(
0,

n⋂
i=1

(Ωi−ωi− xi)

)
≤ max

1≤i≤n
‖xi‖; (10)
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(iii) α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if inequality (10) is satisfied
for all ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ1.

Proof (i) By Definition 1(i), {Ω1, . . . ,Ωn} is α−semitransversal at x̄ with some
δ > 0 if and only if d(x̄,∩n

i=1(Ωi − xi)) < ρ for all xi ∈ X (i = 1, . . . ,n) with
max1≤i≤n ‖xi‖< αδ and all numbers ρ > α−1 max1≤i≤n ‖xi‖. The conclusion follows.

(ii) We first prove the equivalence between (a) and (b). Suppose condition (a) is satisfied.
Let ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖ < αδ1 and x := ω1 + x1 =
. . .= ωn + xn ∈ Bδ2(x̄). Then

d(x,Ωi) = d(ωi + xi,Ωi)≤ ‖xi‖< αδ1 (i = 1, . . . ,n),

and consequently, inequality (9) is satisfied. Hence,

αd

(
0,

n⋂
i=1

(Ωi−ωi− xi)

)
= αd

(
x,

n⋂
i=1

Ωi

)
≤ max

1≤i≤n
d(x,Ωi)≤ max

1≤i≤n
‖xi‖.

Suppose condition (b) is satisfied. Let x ∈ Bδ2(x̄) with max1≤i≤n d(x,Ωi) < αδ1. Let
ωi ∈ Ωi (i = 1, . . . ,n) with max1≤i≤n ‖x−ωi‖ < αδ1. Set x′i := x−ωi (i = 1, . . . ,n).
Then x= x′i+ωi ∈Bδ2(x̄) (i= 1, . . . ,n) and max1≤i≤n ‖x′i‖<αδ1. In view of inequality
(10) with x′i in place of xi (i = 1, . . . ,n), we obtain

αd

(
x,

n⋂
i=1

Ωi

)
≤ max

1≤i≤n
‖x−ωi‖.

Taking infimum in the right-hand side over ωi ∈Ωi (i = 1, . . . ,n), we arrive at inequal-
ity (9).
We now show that α−subtransversality is equivalent to condition (a). By Defini-
tion 1(ii), {Ω1, . . . ,Ωn} is α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and
only if d(x,∩n

i=1Ωi)< ρ for all x ∈ Bδ2(x̄) with max1≤i≤n d(x,Ωi)< αδ1 and all num-
bers ρ > α−1 max1≤i≤n d(x,Ωi). The conclusion follows.

(iii) By the Definition 1(iii), {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and
δ2 > 0 if and only if d(0,∩n

i=1(Ωi−ωi− xi)) < ρ for all ωi ∈ Ωi ∩Bδ2(x̄) and xi ∈ X
(i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ1, and all numbers ρ > α−1 max1≤i≤n ‖xi‖. The
conclusion follows. ut

The alternative metric characterizations of α−transversality in the next statement cor-
respond to the respective geometric properties in Proposition 5.

Proposition 9 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, α > 0, δ1 > 0

and δ2 > 0. The following conditions are equivalent:

(i) inequality (10) holds for all ωi ∈ Ωi, xi ∈ X with ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
max1≤i≤n ‖xi‖< αδ1;

(ii) for all xi ∈ δ2B (i = 1, . . . ,n) with max1≤i≤n d(x̄,Ωi− xi)< αδ1, it holds

αd

(
x̄,

n⋂
i=1

(Ωi− xi)

)
≤ max

1≤i≤n
d(x̄,Ωi− xi); (11)

(iii) for all x,xi ∈ X with x+xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and max1≤i≤n d(x,Ωi−xi)< αδ1, it
holds

αd

(
x,

n⋂
i=1

(Ωi− xi)

)
≤ max

1≤i≤n
d(x,Ωi− xi). (12)

Moreover, if {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then
conditions (i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying αδ ′1 +δ ′2 ≤ δ2 in place
of δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . ,Ωn}
is α−transversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying αδ ′1 +δ ′2 ≤ δ2.
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Proof The statement is a consequence of Proposition 5. It suffices to notice that inequality
(10) is equivalent to condition (3) satisfied for any ρ > α−1 max1≤i≤n ‖xi‖; inequality (11)
is equivalent to condition (1) satisfied for any ρ >α−1 max1≤i≤n d(x̄,Ωi−xi), and inequal-
ity (12) is equivalent to condition (5) satisfied for any ρ > α−1 max1≤i≤n d(x,Ωi−xi). ut

Remark 6 Condition (12) served as the main metric characterization of transversality in
[19, 20] and subsequent publications. Condition (11) has been picked up recently in [7].
This condition seems an important advancement as it replaces an arbitrary point x with the
given reference point x̄. Condition (10) seems new. In accordance with Theorem 2(iii), it
is the most straightforward metric counterpart of the original geometric property (3).

In the convex case, the estimates in parts (i) and (iii) of Theorem 2 can be simplified.
The next statement is a direct consequence of Proposition 6.

Proposition 10 Let Ω1, . . . ,Ωn be convex subsets of a normed vector space X, x̄∈∩n
i=1Ωi,

and α > 0. The collection {Ω1, . . . ,Ωn} is

(i) α−semitransversal at x̄ with some δ > 0 if and only if d
(
x̄,∩n

i=1(Ωi− xi)
)
< δ for all

xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ ;
(ii) α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

d
(
0,∩n

i=1(Ωi−ωi− xi)
)
< δ1 for all ωi ∈ Ωi ∩ Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n)

with max1≤i≤n ‖xi‖< αδ1.

Remark 7 The alternative metric characterizations of α−transversality in Proposition 9
admit similar simplifications.

5 Transversality and Regularity

In this section, we clarify quantitative relations between transversality properties of collec-
tions of sets and the corresponding regularity properties of set-valued mappings.

The next definition is a modification of [29, Definition 5.1].

Definition 2 Let X and Y be metric spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , and α > 0. The
mapping F is

(i) α−semiregular at (x̄, ȳ) if there exists a δ > 0 such that

αd(x̄,F−1(y))≤ d(y, ȳ)

for all y ∈ Bαδ (ȳ);
(ii) α−subregular at (x̄, ȳ) if there exist δ1 > 0 and δ2 > 0 such that

αd(x,F−1(ȳ))≤ d(ȳ,F(x))

for all x ∈ Bδ2(x̄) with d(ȳ,F(x))< αδ1;
(iii) α−regular at (x̄, ȳ) if there exist δ1 > 0 and δ2 > 0 such that

αd(x,F−1(y))≤ d(y,F(x)) (13)

for all x ∈ X and y ∈ Y with d(x, x̄)+d(y, ȳ)< δ2 and d(y,F(x))< αδ1.

The number α > 0 in each of the properties in Definition 2 plays the role of a rate of the
respective property. The exact upper bound of all α > 0 such that the property holds with
some δ > 0, or δ1 > 0 and δ2 > 0, is called the modulus of this property. We use notations
serg[F ](x̄, ȳ), srg[F ](x̄, ȳ) and rg[F ](x̄, ȳ) for the moduli of the respective properties. If a
property does not hold, then by convention the respective modulus equals 0.

If F is α−semiregular (respectively, α−subregular or α−regular) at (x̄, ȳ) with some
α > 0 and δ > 0 (respectively, δ1 > 0 and δ2 > 0), we often simply say that F is semiregular
(respectively, subregular or regular) at (x̄, ȳ).
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The last two regularity properties in Definition 2 have been very well studied for
decades due to their numerous important applications; see, e.g., monographs [14, 17, 18,
33]. Note the notations subreg(F ; x̄ | ȳ) and reg(F ; x̄ | ȳ) often used for the respective mod-
uli (cf. [14]), as well as an important difference in their definitions which is reflected in the
relations:

srg[F ](x̄, ȳ) =
1

subreg(F ; x̄ | ȳ)
, rg[F ](x̄, ȳ) =

1
reg(F ; x̄ | ȳ)

.

In fact, rg[F ](x̄, ȳ) coincides with the modulus of surjection [17]. Unlike its more famous
siblings, the first property in Definition 2 has only recently started attracting attention of
researchers; see [1, 8, 21].

As in the case of Definition 1 of the transversality properties, the role of the δ ’s in
the above definitions is more technical: they control the size of the neighbourhoods in-
volved in the respective definitions. Of course, if a property in part (ii) or (iii) is satis-
fied with some δ1 > 0 and δ2 > 0, it is also satisfied with the single δ := min{δ1,δ2}
in place of both δ1 and δ2. Moreover, in this case (or more generally, when δ1 ≥ δ2) the
inequality d(ȳ,F(x))< αδ1 in part (ii) and the inequality d(y,F(x)) < αδ1 in part (iii)
can be dropped. We use here two different parameters to emphasise their different roles in
the definitions and the corresponding characterizations, and expose connections with the
transversality properties in Definition 1.

It is immediate from the definition that, if a mapping is α−regular at a point in its
graph, it is also α−semiregular and α−subregular at this point; hence, serg[F ](x̄, ȳ) ≥
rg[F ](x̄, ȳ) and srg[F ](x̄, ȳ)≥ rg[F ](x̄, ȳ) for any (x̄, ȳ) ∈ gphF .

Note the combined inequality d(x, x̄)+ d(y, ȳ) < δ2 employed in (13) instead of the
more traditional separate conditions x ∈ Bδ2(x̄) and y ∈ Bδ2(ȳ). This replacement does not
affect the property of metric α−regularity itself, but can have an effect on the value of δ2
which ensures the property. Employing this inequality in (13) is convenient for establishing
relations between the regularity and transversality properties.

Now we return to our main setting of a collection of n ≥ 2 subsets Ω1, . . . ,Ωn of a
normed space X , having a common point x̄ ∈ ∩n

i=1Ωi, and consider a set-valued mapping
F : X ⇒ Xn given by

F(x) := (Ω1− x)× . . .× (Ωn− x), x ∈ X , (14)

which is going to play the key role in establishing relations between the regularity and
transversality properties. It was most likely first used by Ioffe in [16]. Observe that
ȳ := (0, . . . ,0) ∈ F(x̄) and

F−1(x1, . . . ,xn) = (Ω1− x1)∩ . . .∩ (Ωn− xn), x1, . . . ,xn ∈ X .

Recall that the space Y := Xn is equipped with the maximum norm.
The next statement is a reformulation of Theorem 2.

Theorem 3 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, α > 0,

F : X ⇒ Xn be defined by (14), and ȳ := (0, . . . ,0) ∈ Xn. The collection {Ω1, . . . ,Ωn} is

(i) α−semitransversal at x̄ with some δ > 0 if and only if F is α−semiregular at (x̄, ȳ)
with δ ;

(ii) α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if F is α−subregular
at (x̄, ȳ) with δ1 and δ2;

(iii) α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

αd(0,F−1(ω1 + x1, . . . ,ωn + xn))≤ ‖y‖ (15)

for all ωi ∈Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and y := (x1, . . . ,xn) ∈ Xn with ‖y‖< αδ1.

Thanks to parts (i) and (ii) of Theorem 3, we have the exact equivalences between
the α−semitransversality and α−subtransversality of the collection {Ω1, . . . ,Ωn} on one
hand, and the respective α−semiregularity and α−subregularity of the mapping F on the
other hand. However, we do not seem to have the exact equivalence between the remaining
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two properties, at least quantitatively, as condition (15) is not exactly of the form (13). For-
tunately, Proposition 9 resolves the issue. The next proposition shows that the conventional
α−regularity property in Definition 2(iii) is not a direct counterpart of the conventional
α−transversality property in Definition 1(iii), but rather of its alternative representation in
Proposition 9(iii).

Proposition 11 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, α > 0,

F : X ⇒ Xn be defined by (14), ȳ := (0, . . . ,0) ∈ Xn, δ1 > 0 and δ2 > 0. The following
conditions are equivalent:

(i) inequality (15) holds for all ωi ∈ Ωi (i = 1, . . . ,n), y := (x1, . . . ,xn) ∈ Xn with
ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and ‖y‖< αδ1;

(ii) for all y ∈ δ2BXn with d(y,F(x̄))< αδ1, it holds

αd(x̄,F−1(y))≤ d(y,F(x̄));

(iii) inequality (13) holds for all x ∈ X, y := (x1, . . . ,xn) ∈ Xn with x + xi ∈ Bδ2(x̄)
(i = 1, . . . ,n) and d(y,F(x))< αδ1;

(iv) the mapping F is α−regular at (x̄, ȳ) with δ1 and δ2.

Moreover, if {Ω1, . . . ,Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then
conditions (i)–(iv) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying αδ ′1 +δ ′2 ≤ δ2 in place
of δ1 and δ2.

Conversely, if conditions (i)–(iv) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . ,Ωn}
is α−transversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying αδ ′1 +δ ′2 ≤ δ2.

Proof With the exception of item (iv), the statement is a reformulation of Proposition 9 in
terms of the mapping F . It is easy to see that conditions (iii) and (iv) are equivalent.

(iii)⇒ (iv). It suffices to notice that condition ‖x− x̄‖+‖y− ȳ‖ < δ2 with x ∈ X and
y := (x1, . . . ,xn) ∈ Xn implies x+ xi ∈ Bδ2(x̄) (i = 1, . . . ,n).

(iv)⇒ (iii). If x+ xi ∈ Bδ2(x̄) (i = 1, . . . ,n) for some x ∈ X and y := (x1, . . . ,xn) ∈ Xn,
we can set x′i := x+xi− x̄ (i= 1, . . . ,n) and y′ := (x′1, . . . ,x

′
n). Then obviously d(y′,F(x̄)) =

d(y,F(x)), d(x̄,F−1(y′)) = d(x,F−1(y)), and ‖y′ − ȳ‖ < δ2. Condition (iii) is a conse-
quence of the one in Definition 2(iii) with x̄ and y′ in place of x and y, respectively. ut

Remark 8 Thanks to Proposition 11, we have equivalence between the α−transversality
property of {Ω1, . . . ,Ωn} and the α−regularity property of F , although not necessarily
with the same δ1 and δ2. The three conditions in Proposition 11 together with condition
(iii) in Theorem 3 provide a series of metric characterizations of both equivalent properties
in terms of the set-valued mapping F . Observe also that, thanks to Proposition 11, the
set-valued mapping F given by (14) provides an important case when the point x in the
inequality (13) defining metric α−regularity can be replaced by the fixed reference point x̄.

The next corollary of Theorem 3 and Proposition 11 collects ‘δ -free’ versions of the
discussed equivalences. It recaptures [29, Proposition 5.1].

Corollary 1 Let Ω1, . . . ,Ωn be subsets of a normed space X, x̄ ∈ ∩n
i=1Ωi, α > 0, F : X ⇒

Xn be defined by (14), and ȳ := (0, . . . ,0) ∈ Xn.

(i) {Ω1, . . . ,Ωn} α−semitransversal at x̄ if and only if F is α−semiregular at (x̄, ȳ). More-
over, setr[Ω1, . . . ,Ωn](x̄) = serg[F ](x̄, ȳ).

(ii) {Ω1, . . . ,Ωn} is α−subtransversal at x̄ if and only if F is α−subregular at (x̄, ȳ).
Moreover, str[Ω1, . . . ,Ωn](x̄) = srg[F ](x̄, ȳ).

(iii) {Ω1, . . . ,Ωn} is α−transversal at x̄ if and only if F is α−regular at (x̄, ȳ). Moreover,
tr[Ω1, . . . ,Ωn](x̄) = rg[F ](x̄, ȳ).

Remark 9 In view of Proposition 8, it follows from the above corollary that, when the
sets Ω1, . . . ,Ωn are convex, the semiregularity and regularity properties of the set-valued
mapping F defined by (14) are equivalent, and serg[F ](x̄, ȳ) =rg[F ](x̄, ȳ).
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In view of Theorem 3 and Proposition 11, the α−transversality properties of collec-
tions of sets can be viewed as particular cases of the corresponding α−regularity properties
of set-valued mappings. Now we are going to show that the two popular models are in a
sense equivalent.

Given an arbitrary set-valued mapping F : X ⇒ Y between metric spaces and a point
(x̄, ȳ) ∈ gphF , we can construct the two sets:

Ω1 := gphF, Ω2 := X×{ȳ} (16)

in the product space X ×Y . Note that (x̄, ȳ) ∈ Ω1∩Ω2. To establish relations between the
regularity properties of F and the transversality properties of the collection of two sets
(16), we have to assume that X and Y are normed vector spaces.

The next theorem translates the metric characterizations of the transversality prop-
erties of collection of sets in Theorem 1 into certain metric properties of the set-valued
mapping F .

Theorem 4 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF, Ω1 and Ω2 be
defined by (16), and α > 0.

(i) If {Ω1,Ω2} is α−semitransversal at (x̄, ȳ) with some δ > 0, then

αd(x̄+u,F−1(ȳ+ v))≤max
{
‖u‖ , 1

2
‖v‖
}

(17)

for all u ∈ (αδ )BX and v ∈ (2αδ )BY .
(ii) If {Ω1,Ω2} is α−subtransversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then

αd(x,F−1(ȳ))≤max{d((x,y),gphF),‖y− ȳ‖} (18)

for all x ∈ Bδ2(x̄) and y ∈ Bmin{αδ1,δ2}(ȳ) with d((x,y),gphF)< αδ1.
(iii) If {Ω1,Ω2} is α−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then

αd(x+u,F−1(y+ v))≤max
{
‖u‖ , 1

2
‖v‖
}

(19)

for all (x,y) ∈ gphF ∩Bδ2(x̄, ȳ), u ∈ (αδ1)BX and v ∈ (2αδ1)BY .

Moreover, if α ≤ 1, then the implications in (i)–(iii) hold as equivalences.

Proof (i) Given x1 := (u1,v1) and x2 := (u2,v2) ∈ X×Y , we have

(Ω1− x1)∩ (Ω2− x2) = (F−1(ȳ+ v1− v2)−u1)×{ȳ− v2}, (20)

d ((x̄, ȳ),(Ω1− x1)∩ (Ω2− x2)) = max{d(x̄+u1,F−1(ȳ+ v1− v2)),‖v2‖}.

Thus, inequality

αd ((x̄, ȳ),(Ω1− x1)∩ (Ω2− x2))≤max{‖x1‖ ,‖x2‖} (21)

implies

αd(x̄+u1,F−1(ȳ+ v1− v2))≤max{‖u1‖ ,‖u2‖ ,‖v1‖ ,‖v2‖}, (22)

and the converse implication is true if α ≤ 1.
We claim that the following conditions are equivalent:
(a) inequality (17) holds for all u ∈ (αδ )BX and v ∈ (2αδ )BY ;
(b) inequality (22) holds for all u1,u2 ∈ (αδ )BX and v1,v2 ∈ (αδ )BY .
(a)⇒ (b). Given u1,u2 ∈ (αδ )BX and v1,v2 ∈ (αδ )BY , inequality (17) is satisfied with
u1 and v1− v2 in place of u and v, i.e.

αd(x̄+u1,F−1(ȳ+ v1− v2))≤max{‖u1‖,
1
2
‖v1− v2‖},

and consequently, inequality (22) is satisfied.
(b) ⇒ (a). Given u ∈ (αδ )BX and v ∈ (2αδ )BY , inequality (22) is satisfied with
u1 := u, u2 := 0, v1 := v/2 and v2 :=−v/2, which is equivalent to inequality (17).
Hence, (a)⇔ (b), which, in view of Theorem 2(i), proves the assertion.
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(ii) Given an (x,y) ∈ X×Y , thanks to (16), we have

d((x,y),Ω2) = ‖y− ȳ‖, d((x,y),Ω1∩Ω2) = max{d(x,F−1(ȳ)),‖y− ȳ‖}.

Thus, inequality

αd ((x,y),Ω1∩Ω2)≤max{d((x,y),Ω1),d((x,y),Ω2)}

implies inequality (18), and the converse implication is true if α ≤ 1. In view of The-
orem 2(ii), this proves the assertion.

(iii) Given x1 := (u1,v1), x2 := (u2,v2), (x,y) ∈ X×Y and z ∈ X , we have

(Ω1− (x,y)− x1)∩ (Ω2− (z, ȳ)− x2)

= (F−1(y+ v1− v2)− x−u1)×{−v2},
d ((0,0),(Ω1− (x,y)− x1)∩ (Ω2− (z, ȳ)− x2))

= max{d(x+u1,F−1(y+ v1− v2)),‖v2‖}.

Thus, inequality

αd ((0,0),(Ω1− (x,y)− x1)∩ (Ω2− (z, ȳ)− x2))≤max{‖x1‖ ,‖x2‖} (23)

implies

αd(x+u1,F−1(y+ v1− v2))≤max{‖u1‖ ,‖u2‖ ,‖v1‖ ,‖v2‖}, (24)

and the converse implication is true if α ≤ 1. The same arguments as in the proof of (i)
show that the last inequality holds for all (x,y) ∈Ω1∩Bδ2(x̄, ȳ), u1,u2 ∈ (αδ1)BX and
v1,v2 ∈ (αδ1)BY if and only if inequality (19) holds for all (x,y) ∈ gphF ∩Bδ2(x̄, ȳ),
u ∈ (αδ1)BX and v ∈ (2αδ1)BY . In view of Theorem 2(iii), this proves the assertion.

ut

Remark 10 If gphF is closed and (x̄, ȳ) ∈ bdgphF , then, in view of Proposition 4, we
automatically have α ≤ 1 in parts (ii) and (iii) of Theorem 4.

Employing the estimates established in the proof of Theorem 4, we can also trans-
late the metric characterizations of α−transversality in Proposition 9 into corresponding
properties of the set-valued mapping F .

Proposition 12 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF, Ω1 and Ω2 be
defined by (16), α > 0, δ1 > 0 and δ2 > 0. The following conditions are equivalent:

(i) for all (x,y) ∈ gphF, (u,v1) ∈ (αδ1)B, v2 ∈ min{αδ1,δ2}B with (x,y) + (u,v1) ∈
Bδ2(x̄, ȳ), it holds

αd(x+u,F−1(y+ v1− v2))≤max{‖u‖ ,‖v1‖ ,‖v2‖}; (25)

(ii) for all (u,v1) ∈ δ2B and v2 ∈ min{αδ1,δ2}B with d((x̄, ȳ)+ (u,v1),gphF) < αδ1, it
holds

αd(x̄+u,F−1(ȳ+ v1− v2))≤max{d((x̄, ȳ)+(u,v1),gphF),‖v2‖}; (26)

(iii) for all (x,y), (u,v1) ∈ X × Y and v2 ∈ Y with (x,y) + (u,v1) ∈ Bδ2(x̄, ȳ),
d ((x,y)+(u,v1),gphF)< αδ1 and ‖y+ v2− ȳ‖< min{αδ1,δ2}, it holds

αd(x+u,F−1(y+ v1− v2))≤max{d ((x,y)+(u,v1),gphF) ,‖y+ v2− ȳ‖} . (27)

Moreover, if {Ω1,Ω2} is α−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then
conditions (i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying αδ ′1 +δ ′2 ≤ δ2 in
place of δ1 and δ2.
Conversely, if α ≤ 1 and conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0,
then {Ω1,Ω2} is α−transversal at (x̄, ȳ) with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying
αδ ′1 +δ ′2 ≤ δ2.
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Proof (i) Given x1 := (u1,v1), x2 := (u2,v2), (x,y) ∈ X ×Y and z ∈ X , inequality (23)
implies (24), and the conditions are equivalent if α ≤ 1. Moreover, given x,u ∈ X and
y,v1,v2 ∈ Y , inequality (24) holds with u1 := u for all u2 ∈ X with ‖u2‖ < αδ1 if and
only if inequality (25) is satisfied. Hence, condition (i) is equivalent to Proposition 9(i).

(ii) Given x1 := (u1,v1) and x2 := (u2,v2), inequality

αd ((x̄, ȳ),(Ω1− x1)∩ (Ω2− x2))≤max{d((x̄, ȳ),Ω1− x1),d((x̄, ȳ),Ω2− x2)}

implies

αd(x̄+u1,F−1(ȳ+ v1− v2))≤max{d((x̄, ȳ)+(u1,v1),gphF),‖v2‖}, (28)

and the converse implication is true if α ≤ 1. Moreover, given u ∈ X and v1,v2 ∈ Y ,
inequality (28) holds with u1 := u if and only if inequality (26) is satisfied. Hence,
condition (ii) is equivalent to Proposition 9(ii).

(iii) Given x1 := (u1,v1), x2 := (u2,v2) and (x,y)∈ X×Y , we have representation (20), and
consequently,

d ((x,y),(Ω1− x1)∩ (Ω2− x2))

= max
{

d(x+u1,F−1(y+ v1− v2)),‖y+ v2− ȳ‖
}
.

Thus, inequality

αd ((x,y),(Ω1− x1)∩ (Ω2− x2))≤max{d ((x,y),Ω1− x1) ,d ((x,y),Ω2− x2)}

implies inequality (27), and the converse implication is true if α ≤ 1. Hence, condition
(iii) is equivalent to Proposition 9(iii).
The conclusions follow from Proposition 9. ut

Next we apply the metric estimates in Theorem 4 to establish relations between regular-
ity properties of set-valued mappings in Definition 2 and the corresponding transversality
properties of the collection of two sets (16).

Theorem 5 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF, Ω1 and Ω2 be
defined by (16), α > 0, α1 := (2α−1 +1)−1 and α2 := α/2.

(i) If F is α−semiregular at (x̄, ȳ) with some δ > 0, then {Ω1,Ω2} is α1−semitransversal
at (x̄, ȳ) with δ ′ := (1+α/2)δ .

Conversely, F is α−semiregular at (x̄, ȳ) with some δ > 0 if {Ω1,Ω2} is α2−semi-
transversal at (x̄, ȳ) with δ .

(ii) If F is α−subregular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then {Ω1,Ω2} is α1−sub-
transversal at (x̄, ȳ) with any δ ′1 > 0 and δ ′2 > 0 satisfying δ ′1 ≤ (1 + α/2)δ1 and
α1δ ′1 +δ ′2 ≤ δ2.

Conversely, F is α−subregular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0 if {Ω1,Ω2} is
α2−subtransversal at (x̄, ȳ) with δ1 and δ ′2 := max{α2δ1,δ2}.

(iii) If F is α−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then {Ω1,Ω2} is α1−trans-
versal at (x̄, ȳ) with any δ ′1 > 0 and δ ′2 > 0 satisfying δ ′1 ≤ (1 + α/2)δ1 and
α1δ ′1 +δ ′2 ≤ δ2/2.

Conversely, F is α−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0 if {Ω1,Ω2} is
α2−transversal at (x̄, ȳ) with δ1 and δ ′2 := αδ1 +δ2.

Proof Note that α1 ∈]0,1[ and α1 < α2.

(i) Let F be α−semiregular at (x̄, ȳ) with some δ > 0. Set δ ′ := (1 + α/2)δ . Let
u ∈ (α1δ ′)BX and v ∈ (2α1δ ′)BY . Observe that

2α1δ
′ =

2(1+α/2)
2α−1 +1

δ = αδ .
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Thus, v ∈ (αδ )BY . In view of Definition 2(i),

d(x̄+u,F−1(ȳ+ v))≤ d(x̄,F−1(ȳ+ v))+‖u‖ ≤ α
−1‖v‖+‖u‖

≤ (2α
−1 +1)max

{
‖u‖ , 1

2
‖v‖
}
= α

−1
1 max

{
‖u‖ , 1

2
‖v‖
}
.

By Theorem 4, {Ω1,Ω2} is α1−semitransversal at (x̄, ȳ) with δ ′.

Conversely, let {Ω1,Ω2} be α2−semitransversal at (x̄, ȳ) with some δ > 0. Let
v ∈ (αδ )BY . Thus, v ∈ (2α2δ )BY . By Theorem 4(i), α2d(x̄,F−1(ȳ+ v))≤ ‖v‖/2, and
consequently, αd(x̄,F−1(ȳ+ v))≤‖v‖. Hence, by Definition 2(i), F is α−semiregular
at (x̄, ȳ) with δ .

(ii) Let F be α−subregular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Choose δ ′1 > 0 and
δ ′2 > 0 such that δ ′1 ≤ (1+α/2)δ1 and δ ′2 +α1δ ′1 ≤ δ2. Observe that

2α1δ
′
1 ≤

2(1+α/2)
2α−1 +1

δ1 = αδ1. (29)

Let x ∈ Bδ ′2
(x̄), y ∈ Bmin{α1δ ′1,δ

′
2}
(ȳ) with d((x,y),gphF) < α1δ ′1. Then, for any num-

ber ε with d((x,y),gphF) < ε < α1δ ′1, there exists a point (x′,y′) ∈ gphF such that
‖(x,y)− (x′,y′)‖< ε . Thus,

‖x′− x̄‖ ≤ ‖x− x̄‖+‖x′− x‖< δ
′
2 +α1δ

′
1 ≤ δ2,

d(ȳ,F(x′))≤ ‖y′− ȳ‖ ≤ ‖y− ȳ‖+‖y′− y‖< 2α1δ
′
1 ≤ αδ1,

and, in view of Definition 2(ii),

d(x,F−1(ȳ))≤ d(x′,F−1(ȳ))+‖x′− x‖
≤ α

−1d(ȳ,F(x′))+‖x′− x‖
≤ α

−1(‖y− ȳ‖+‖y′− y‖)+‖x′− x‖
< α

−1‖y− ȳ‖+(α−1 +1)ε

≤ (2α
−1 +1)max{‖y− ȳ‖,ε}= α

−1
1 max{‖y− ȳ‖,ε}.

Letting ε ↓ d((x,y),gphF), we arrive at (18). By Theorem 4, {Ω1,Ω2} is α1−sub-
transversal at (x̄, ȳ) with δ ′1 and δ ′2.

Conversely, let δ1 > 0 and δ2 > 0, and {Ω1,Ω2} be α2−subtransversal at (x̄, ȳ) with δ1
and δ ′2 := max{α2δ1,δ2}. Let x ∈ Bδ2(x̄) and d(ȳ,F(x))< αδ1. Then, for any number
ε with d(ȳ,F(x))< ε < αδ1, there exists a point y′ ∈ F(x) such that ‖y′− ȳ‖< ε . Set
y := y′+ȳ

2 . Observe that

‖y− y′‖= ‖y− ȳ‖= ‖y
′− ȳ‖
2

<
αδ1

2
= α2δ1,

‖y− ȳ‖< δ
′
2, d((x,y),gphF)≤ ‖y− y′‖< α2δ1.

By Theorem 4(ii),

α2d(x,F−1(ȳ))≤max{d((x,y),gphF),‖y− ȳ‖}= ‖y− ȳ‖= ‖y
′− ȳ‖
2

<
ε

2
.

Thus, αd(x,F−1(ȳ))< ε . Letting ε ↓ d(ȳ,F(x)), we obtain

αd(x,F−1(ȳ))≤ d(ȳ,F(x)).

In view of Definition 2(ii), F is α−subregular at (x̄, ȳ) with δ1 and δ2.
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(iii) Let F be α−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Choose δ ′1 > 0 and
δ ′2 > 0 such that δ ′1 ≤ (1+α/2)δ1 and δ ′2 +α1δ ′1 ≤ δ2/2. Then we have (29). Let
(x,y) ∈ gphF ∩Bδ ′2

(x̄, ȳ), u ∈ (α1δ ′1)BX and v ∈ (2α1δ ′1)BY . Set y′ := y+ v. Then

‖x− x̄‖+‖y′− ȳ‖ ≤ ‖x− x̄‖+‖y− ȳ‖+‖v‖< 2δ
′
2 +2α1δ

′
1 ≤ δ2,

d(y′,F(x))≤ ‖y′− y‖= ‖v‖< 2α1δ
′
1 ≤ αδ1,

and, in view of Definition 2(iii),

d(x+u,F−1(y+ v))≤ d(x,F−1(y′))+‖u‖ ≤ α
−1d

(
y′,F(x)

)
+‖u‖

≤ α
−1‖v‖+‖u‖ ≤ (2α

−1 +1)max
{
‖u‖ , 1

2
‖v‖
}

= α
−1
1 max

{
‖u‖ , 1

2
‖v‖
}
.

By Theorem 4, {Ω1,Ω2} is α1−transversal at (x̄, ȳ) with δ ′1 and δ ′2.

Conversely, let δ1 > 0 and δ2 > 0, and {Ω1,Ω2} be α2−transversal at (x̄, ȳ) with δ1
and δ ′2 := αδ1 + δ2. Let x ∈ X and y ∈ Y be such that ‖x− x̄‖+ ‖y− ȳ‖ < δ2 and
d(y,F(x)) < αδ1. Then, for any number ε with d(y,F(x)) < ε < αδ1, there exists a
point y′ ∈ F(x) such that ‖y− y′‖< ε . Thus, (x,y′) ∈ gphF ,

‖x− x̄‖< δ2 < δ
′
2, ‖y− y′‖< αδ1 = 2α2δ1,

‖y′− ȳ‖ ≤ ‖y′− y‖+‖y− ȳ‖< αδ1 +δ2 = δ
′
2.

By Theorem 4(iii),

α2d(x,F−1(y))≤ ‖y− y′‖
2

<
ε

2
.

Thus, αd(x,F−1(y)) < ε . Letting ε ↓ d(y,F(x)), we obtain αd(x,F−1(y)) ≤
d(y,F(x)). By Definition 2(iii), F is α−regular at (x̄, ȳ) with δ1 and δ2. ut

The next corollary collects ‘δ -free’ versions of the relations in Theorem 5. It recaptures
[29, Theorem 5.1].

Corollary 2 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF, and Ω1,Ω2 be
defined by (16).

(i) F is semiregular at (x̄, ȳ) if and only if {Ω1,Ω2} is semitransversal at (x̄, ȳ). Moreover,

1
2serg[F ](x̄, ȳ)−1 +1

≤ setr[Ω1,Ω2](x̄)≤
serg[F ](x̄, ȳ)

2
.

(ii) F is subregular at (x̄, ȳ) if and only if {Ω1,Ω2} is subtransversal at (x̄, ȳ). Moreover,

1
2srg[F ](x̄, ȳ)−1 +1

≤ str[Ω1,Ω2](x̄)≤
srg[F ](x̄, ȳ)

2
.

(iii) F is regular at (x̄, ȳ) if and only if {Ω1,Ω2} is transversal at (x̄, ȳ). Moreover,

1
2rg[F ](x̄, ȳ)−1 +1

≤ tr[Ω1,Ω2](x̄)≤
rg[F ](x̄, ȳ)

2
.
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