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Abstract The mathematical program with switching constraints (MPSC), which is re-

cently introduced, is a difficult class of optimization problems since standard constraint

qualifications are very likely to fail at local minimizers. MPSC arises from the discretiza-

tion of optimal control problems with switching constraints which appears frequently in

the field of control. Due to the failure of standard constraint qualifications, it is reasonable

to propose some constraint qualifications for local minimizers to satisfy some station-

arity conditions that are generally weaker than Karush-Kuhn-Tucker stationarity such

as Mordukhovich (M-) stationarity. First we propose the weakest constraint qualifica-

tion for M-stationarity of MPSC to hold at local minimizers. Then we extend some weak

verifiable constraint qualifications for nonlinear programming to allow the existence of

switching constraints, which are all strictly weaker than MPSC linear independence con-

straint qualification and/or MPSC Mangasarian-Fromovitz constraint qualification used

in the literature. We show that these newly introduced constraint qualifications are suffi-
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cient for local minimizers to be M-stationary. Finally, the relations among MPSC tailored

constraint qualifications are discussed.

Keywords Mathematical program with switching constraints · Constraint qualification ·

Stationarity
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1 Introduction

Very recently, the mathematical program with switching constraints (MPSC) is intro-

duced to investigate the discretization of optimal control problems with switching con-

straints (Clason et al., 2016; Gugat, 2010; Hante & Sager, 2013; Wang & Yan, 2016) in

Mehlitz (2019b). Moreover, MPSC can be used to reformulate either-or-constrained pro-

gramming problems (Dempe & Schreier, 2007). The constraint structure of MPSC is high-

ly related with the mathematical program with complementarity constraints (MPEC)

that has been widely studied (Lin & Fukushima, 2005; Luo et al., 1996a,b; Outrata, 1999;

Shim et al., 2013) and the mathematical program with vanishing constraints (MPVC)

(Achtziger & Kanzow, 2008; Izmailov & Solodov, 2009; Hoheisel et al., 2010; Hoheisel,

2009; Mishra et al., 2016). In Mehlitz (2019b), it was shown that the standard constraint

qualifications are very likely to fail at local minimizers. This means that local minimizers

of MPSC may not be KKT points. Some alternative stationarities such as Mordukhovich

(M-) and strong (S-) stationarities are proposed in Mehlitz (2019b). Moreover, the stan-

dard linear independence constraint qualification (LICQ), Mangasarian-Fromovitz con-

straint qualification (MFCQ), Abadie constraint qualification (ACQ), and Guignard con-

straint qualification (GCQ) are extended to allow the existence of switching constraints.

More recently, based on the theoretical findings in Mehlitz (2019b), a relaxation method

for solving MPSC was proposed in Kanzow et al. (2018) and second-order optimality

conditions for MPSC were investigated in Mehlitz (2019a).

In this paper, we first investigate sufficient and necessary conditions for M-stationarity

of MPSC to hold. We then extend some weak verifiable constraint qualifications for

nonlinear programming to MPSC such as constant rank constraint qualification (CRC-
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Q)(Janin, 1984), relaxed constant rank constraint qualification (RCRCQ) (Minchenko &

Stakhovski, 2011), constant positive linear dependent condition (CPLD)(Qi & Wei, 2000),

relaxed constant positive linear dependent condition (RCPLD) (Andreani et al., 2012),

and quasi-normality and pseudo-normality (Bertsekas & Ozdaglar, 2002). These newly

introduced constraint qualifications are called MPSC tailored constraint qualifications,

which are all strictly weaker than MPSC LICQ and MPSC MFCQ used in Mehlitz (2019b).

We show that all these introduced MPSC tailored constraint qualifications are sufficient

for local minimizers of MPSC to be M-stationary. Finally, we discuss the relations among

MPSC tailored constraint qualifications.

The paper is organized as follows. Section 2 contains some background materials.

In Section 3 we give necessary and sufficient conditions for Bouligand (B-) stationarity

and M-stationarity of MPSC, and show that B-stationarity is strictly stronger than M-

stationarity. In Section 4, we introduce some new MPSC tailored constraint qualifications

and discuss the relations among them.

2 Preliminaries

The notation used in the paper is standard as in the literature. We denote by ‖ · ‖ the

Euclidean norm and denote by Bδ(x) := {z ∈ Rn : ‖z − x‖ < δ} the open ball centered at

x with radius δ > 0. For a differentiable function φ : Rn → Rm and a vector x ∈ Rn,

∇φ(x) denotes the transposed Jacobian of φ at x. Moreover, we let xk →Ω x∗ stand for

xk ∈ Ω for each k and xk → x∗ as k →∞ and let clΩ denote the closure of a set Ω.

In what follows, we review some basic concepts and results in variational analysis,

which will be used later on.

Definition 2.1 (Rockafellar & Wets, 1998) The polar cone of a cone K is a closed and

convex cone defined by Ko := {d : d>x ≤ 0 for each x ∈ K}. The tangent cone of a set Ω

at x∗ ∈ clΩ is a closed cone defined by

TΩ(x∗) := {d : d = lim
k→∞

tk(xk − x∗) with tk ≥ 0 and xk →Ω x∗}.

The regular normal cone of a set Ω at x∗ ∈ clΩ is a closed and convex cone defined by

N̂Ω(x∗) := TΩ(x∗)o. The limiting normal cone of a set Ω at x∗ ∈ clΩ is a closed cone
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defined by

NΩ(x∗) := {d : d = lim
k→∞

dk with dk ∈ N̂Ω(xk) and xk →Ω x∗}.

The MPSC considered in this paper is of this form

min f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m,

hj(x) = 0, j = 1, ..., p,

Gt(x)Ht(x) = 0, t = 1, ..., l,

(1)

where all functions f , g1, . . . , gm, h1, . . . , hp, G1, . . . , Gl, H1, . . . ,Hl: Rn → R are assumed

to be continuously differentiable. For brevity, we let g = (g1, . . . , gm)>, h = (h1, . . . , hp)
>,

G = (G1, . . . , Gl)
>, and H = (H1, . . . ,Hl)

>. Let X denote the feasible region of problem

(1). The last l constraints in X force either Gt(x) or Ht(x) to be zero. We call x ∈ X a

degenerate feasible point if there exists t0 such that Gt0(x) = Ht0(x) = 0. For such de-

generate feasible points, the standard LICQ and MFCQ fail (Mehlitz, 2019b, Lemma 4.1).

Moreover, the tangent cone to X at a degenerate feasible point is generally nonconvex

but the linearized tangent cone is convex. Thus, the standard ACQ also fails at a degen-

erate feasible point; see details in Section 3. These facts make problem (1) different from

standard nonlinear programming problems.

In order to facilitate the notation, we define some index sets which depend on a fea-

sible point x∗ ∈ X :

Ih := {1, . . . , p}, Ig∗ := {i ∈ {1, . . . ,m} : gi(x
∗) = 0},

IG∗ := {t ∈ {1, . . . , l} : Gt(x
∗) = 0 ∧Ht(x

∗) 6= 0},

IH∗ := {t ∈ {1, . . . , l} : Gt(x
∗) 6= 0 ∧Ht(x

∗) = 0},

IGH∗ := {t ∈ {1, . . . , l} : Gt(x
∗) = 0 ∧Ht(x

∗) = 0}.

Note that {IG∗ , IH∗ , IGH∗ } is a disjoint partition of {1, . . . , l}. The MPSC Lagrangian func-

tion of problem (1) is defined by

LMPSC(x, λ, ρ, µ, ν) := f(x) + g(x)>λ+ h(x)>ρ+G(x)>µ+H(x)>ν.

We note that problem (1) can be rewritten as an optimization problem with a geometric

constraint:

min f(x) s.t. F (x) ∈ Λ, (2)
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where

F (x) := (g(x), h(x), ψ(x))
>
, Λ := (−∞, 0]m × {0}p × Sl,

and

ψ(x) := (G1(x), H1(x), . . . , Gl(x), Hl(x))
>
, S := {(a, b) ∈ R2 : ab = 0}.

We call the nonconvex cone S the switching cone. By direct calculation, we have the

following results (Mehlitz, 2019b).

Proposition 2.1 For any (a, b) ∈ S, we have that

TS(a, b) :=


{0} × R if a = 0, b 6= 0

R× {0} if a 6= 0, b = 0

S if a = 0, b = 0

 , N̂S(a, b) :=


R× {0} if a = 0, b 6= 0

{0} × R if a 6= 0, b = 0

{(0, 0)} if a = 0, b = 0

 ,

NS(a, b) :=


R× {0} if a = 0, b 6= 0

{0} × R if a 6= 0, b = 0

S if a = 0, b = 0

 . (3)

The linearized cone of X at x∗ is defined by

LMPSC(x∗) := {d : ∇F (x∗)>d ∈ TΛ(F (x∗))}.

By Proposition 2.1, the linearized cone LMPSC(x∗) can be directly calculated as an ex-

plicit form

LMPSC(x∗) =


d :

∇gi(x∗)>d ≤ 0 i ∈ Ig∗
∇hi(x∗)>d = 0 i ∈ Ih

∇Gi(x∗)>d = 0 i ∈ IG∗
∇Hi(x

∗)>d = 0 i ∈ IH∗
∇Gi(x∗)>d · ∇Hi(x

∗)>d = 0 i ∈ IGH∗


.

Let P(IGH∗ ) be the set of all disjoint bipartitions of IGH∗ , i.e.,

P(IGH∗ ) := {(β1, β2) : β1 ∪ β2 = IGH∗ , β1 ∩ β2 = ∅}.



6 Gaoxi Li, Lei Guo

For any given (β1, β2) ∈ P(IGH∗ ), we define a standard nonlinear programming problem

as follows

NLP(β1, β2)

min f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m,

hj(x) = 0, j = 1, ..., p,

Gk(x) = 0, k ∈ IG∗ ∪ β1,

Hk(x) = 0, k ∈ IH∗ ∪ β2.

(4)

We let X(β1,β2) denote the feasible region of the above problem. We say that NLP(β1, β2)

is a branch of problem (1) since it is easy to verify that locally around x∗, the union of

X(β1,β2) over (β1, β2) ∈ P(IGH∗ ) is exactly the feasible set X . Then one easily has the

following results(Mehlitz, 2019b, Lemma 5.1).

Lemma 2.1 Let x∗ ∈ X . Then the following formulas hold true:

TX (x∗) =
⋃

(β1,β2)∈P(IGH
∗ )

TX (β1,β2)(x
∗),

LMPSC(x∗) =
⋃

(β1,β2)∈P(IGH
∗ )

LX (β1,β2)(x
∗),

where LX (β1,β2)(x
∗) is the linearized cone of problem (4) defined by

LX (β1,β2)(x
∗) :=


d :

∇gi(x∗)>d ≤ 0 i ∈ Ig∗
∇hi(x∗)>d = 0 i ∈ Ih

∇Gi(x∗)>d = 0 i ∈ IG∗ ∪ β1
∇Hi(x

∗)>d = 0 i ∈ IH∗ ∪ β2


.

3 Stationarities

In this section, we first define the prime and dual stationarities of problem (1). We then

investigate sufficient and necessary conditions for stationarities of problem (1).

Definition 3.1 Let x∗ ∈ X . We say that x∗ is a Bouligand (B-) stationary point of problem

(1) iff

∇f(x∗)>d ≥ 0, ∀d ∈ LMPSC(x∗).
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We next give some dual stationarities of problem (1) as given in Mehlitz (2019b).

Definition 3.2 Let x∗ ∈ X . We say that x∗ is weakly stationary (W-stationary) to problem

(1) iff there exists (λ, ρ, µ, ν) ∈ Rm × Rp × Rl × Rl such that∇xLMPSC(x∗, λ, ρ, µ, ν) = 0,

λ ≥ 0, g(x∗)>λ = 0, µi = 0, i ∈ IH∗ , νi = 0, i ∈ IG∗ .
(5)

We say that x∗ is M-stationary to problem (1) iff there exists (λ, ρ, µ, ν) ∈ Rm×Rp×Rl×Rl

satisfying (5) and

µiνi = 0, i ∈ IGH∗ . (6)

We say that x∗ is S-stationary to (1) iff there exists (λ, ρ, µ, ν) ∈ Rm×Rp×Rl×Rl satisfying

(5) and

µi = 0 and νi = 0, i ∈ IGH∗ . (7)

By Proposition 2.1, we can restate the B-, M-, and S-stationarities in the following

compact forms.

Proposition 3.1 Let x∗ ∈ X . We have the following results.

(i) The B-stationarity is equivalent to 0 ∈ ∇f(x∗) + LMPSC(x∗)o.

(ii) The M-stationarity is equivalent to 0 ∈ ∇f(x∗) +∇F (x∗)NΛ(F (x∗)).

(iii) The S-stationarity is equivalent to 0 ∈ ∇f(x∗) +∇F (x∗)N̂Λ(F (x∗)).

3.1 Necessary and sufficient conditions for B-/M-stationarity

In this subsection, we investigate necessary and sufficient conditions for B-stationarity

and M-stationarity, respectively. We point out that although Theorems 3.1 and 3.2 in Guo

& Lin (2013) are obtained for MPEC, their proofs are not dependent of the characteriza-

tion of X . Thus, Theorems 3.1 and 3.2 in Guo & Lin (2013) are valid for any set X . Then,

we immediately have the following two results.

Proposition 3.2 If x∗ ∈ X is a local minimizer of minx∈X θ(x), where θ is a smooth function,

and the following MPSC GCQ holds:

TX (x∗)o = LMPSC(x∗)o,
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then x∗ must be a B-stationary point. Conversely, if x∗ ∈ X is B-stationary to minx∈X θ(x) for

any smooth function θ with x∗ being a locally optimal solution, then MPSC GCQ holds at x∗.

Proposition 3.2 implies that MPSC GCQ is the weakest constraint qualification for

B-stationarity of MPSC to hold at local minimizers.

Proposition 3.3 Suppose that x∗ ∈ X is a local minimizer for minx∈X θ(x), where θ is a smooth

function, and

TX (x∗)o ⊆ ∇F (x∗)NΛ(F (x∗)). (8)

Then x∗ must be an M-stationary point. Conversely, if x∗ ∈ X is M-stationary to minx∈X θ(x)

for any smooth function θ with x∗ being a locally optimal solution, then (8) holds.

From Proposition 3.3, it is easy to see that (8) is the weakest constraint qualification

for M-stationarity of MPSC to hold at local minimizers. For simplicity, we call condition

(8) MPSC MCQ.

We next investigate the relation between B-stationarity and M-stationarity, i.e., the

relation between MPSC GCQ and MPSC MCQ.

Theorem 3.1 B-stationarity (resp. MPSC GCQ) implies M-stationarity (resp. MPSC MCQ).

Proof For any d ∈ TX (x∗)o, by Rockafellar & Wets (1998, Theorem 6.11), there exists a

smooth function ϕ such that −∇ϕ(x∗) = d and arg minx∈X ϕ(x) = {x∗}. Since MPSC

GCQ is valid at x∗, we have −∇ϕ(x∗) ∈ LMPSC(x∗)o, i.e.,

−∇ϕ(x∗)>p ≤ 0, ∀p ∈ LMPSC(x∗). (9)

We next show that d ∈ ∇F (x∗)NΛ(F (x∗)). For any partition (β1, β2) ∈ P(IGH∗ ), from

Lemma 2.1, we have LX (β1,β2)(x
∗) ⊆ LMPSC(x∗). Combining this with (9) implies that

∇ϕ(x∗)>p ≥ 0, ∀p ∈ LX (β1,β2)(x
∗). (10)

This means that p = 0 is a minimizer of the linear programming problem

minp ∇ϕ(x∗)>p

s.t. ∇gi(x∗)>p ≤ 0, i ∈ Ig∗ ,

∇hi(x∗)>p = 0, i ∈ Ih,

∇Gi(x∗)>p = 0, i ∈ IG∗ ∪ β1,

∇Hi(x
∗)>p = 0, i ∈ IH∗ ∪ β2.

(11)
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Then there exist λi ≥ 0 (i ∈ Ig∗ ), ρi (i ∈ Ih), ηi (i ∈ IG∗ ∪ β1), θi (i ∈ IH∗ ∪ β2) such that

∇ϕ(x∗) +
∑
i∈Ig∗

λi∇gi(x∗) +
∑
i∈Ih

ρi∇hi(x∗) +
∑

i∈IG∗ ∪β1

ηi∇Gi(x∗)

+
∑

i∈IH∗ ∪β2

θi∇Hi(x
∗) = 0. (12)

By letting

µi :=

 ηi i ∈ IG∗ ∪ β1,

0 i ∈ β2,
νi :=

0 i ∈ β1,

θi i ∈ IH∗ ∪ β2,

we can rewrite (12) as

−∇ϕ(x∗) =
∑
i∈Ig∗

λi∇gi(x∗) +
∑
i∈Ih

ρi∇hi(x∗) +
∑

i∈IG∗ ∪IGH
∗

µi∇Gi(x∗)

+
∑

i∈IH∗ ∪IGH
∗

νi∇Hi(x
∗), (13)

satisfying µiνi = 0 for each i ∈ IGH∗ . By the explicit expression of NΛ(F (x∗)), we have

that d = −∇ϕ(x∗) ∈ ∇F (x∗)NΛ(F (x∗)). ut

For standard nonlinear programs with equality and inequality constraints, both B-

stationarity and M-stationarity are KKT stationarity. The following example illustrates

that B-stationarity is strictly stronger than M-stationarity.

Example 3.1 Consider an MPSC problem

min x1 + x2 s.t. x2 − x21 = 0, x1x2 = 0.

It is easy to see that the unique feasible point x∗ = (0, 0) is the unique optimal solution.

By direct calculation, we have that

LMPSC(x∗) =

(d1, d2)> :
d2 = 0

d1 ∈ R

 and∇F (x∗)NΛ(F (x∗)) = R2.

Thus, x∗ is an M-stationary point but it is not a B-stationary point since

(1, 1) · (0,−1)> < 0, and (0,−1)> ∈ LMPSC(x∗).
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4 Constraint Qualifications

We first review the existing MPSC tailored constraint qualifications for MPSC which are

all given in Mehlitz (2019b). Then we extend weak verifiable constraint qualifications for

nonlinear programming to MPSC.

Definition 4.1 Let x∗ ∈ X . (a) We say that MPSC LICQ holds at x∗ iff the family of

gradients ∇gi(x∗),∇hj(x∗),∇Gr(x∗),∇Ht(x
∗) :

i ∈ Ig∗ , r ∈ IG∗ ∪ IGH∗
j ∈ Ih, t ∈ IH∗ ∪ IGH∗


is linearly independent.

(b) We say that MPSC MFCQ holds at x∗ iff there is no nonzero {λ, ρ, µ, ν} such that
∇xLMPSC(x∗, λ, ρ, µ, ν) = 0,

λ ≥ 0, g(x∗)>λ = 0,

µi = 0, i ∈ IH∗ , νi = 0, i ∈ IG∗ .

(c) We say that MPSC NNAMCQ holds at x∗ iff there is no nonzero {λ, ρ, µ, ν} such

that 

∇xLMPSC(x∗, λ, ρ, µ, ν) = 0,

λ ≥ 0, g(x∗)>λ = 0,

µi = 0, i ∈ IH∗ , νi = 0, i ∈ IG∗ ,

µiνi = 0, i ∈ IGH∗ .

(d) We say that MPSC ACQ holds at x∗ iff TX (x∗) = LMPSC(x∗).

It is not hard to derive the following relationships:

MPSC LICQ⇒MPSC MFCQ⇒MPSC NNAMCQ

⇒MPSC ACQ⇒MPSC GCQ.

Moreover, in Mehlitz (2019b), it has been shown that all these constraint qualifications

are sufficient for M-stationarity of MPSC to hold at local minimizers. From our result

Theorem 3.2, one can easily have that all these constraint qualifications are even sufficient

for B-stationarity (better than M-stationarity) of MPSC to hold at local minimizers.
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4.1 New verifiable constraint qualifications for M-stationarity

For standard nonlinear programming, the verifiable classical constraint qualifications in

the literature are LICQ, Slater’s CQ, and MFCQ. Moreover, it is well known that if all

constraint functions are affine, then the KKT condition holds at local minimizers with-

out requiring constraint qualifications. Quite a few weaker verifiable constraint quali-

fications have been introduced in the literature. Some relaxed versions of LICQ have

been introduced such as CRCQ and RCRCQ. Some relaxed versions of MFCQ have al-

so proposed such as CPLD, RCPLD, pseudo-normality, and quasi-normality. All these

mentioned constraint qualifications have been extended to allow the existence of com-

plementarity constraints, ensuring M-stationarity of MPEC holds at local minimizers (Ye

& Zhang, 2014; Kanzow & Schwartz, 2010; Kanzow et al., 2018; Guo & Lin, 2013; Guo

et al., 2013a). In the following, we extend the weak verifiable constraint qualifications for

nonlinear programming to allow the existence of switching constraints.

Definition 4.2 Let x∗ ∈ X . (a) We say that MPSC CRCQ holds at x∗ iff there exists δ > 0

such that for any I1 ⊆ Ig∗ , I2 ⊆ Ih, I3 ⊆ IG∗ ∪ IGH∗ , and I4 ⊆ IH∗ ∪ IGH∗ , the family of

gradients

{∇gi(x),∇hj(x),∇Gr(x),∇Ht(x) : i ∈ I1, j ∈ I2, r ∈ I3, t ∈ I4}

has the same rank for each x ∈ Bδ(x∗).

(b) We say that MPSC RCRCQ holds at x∗ iff there exists δ > 0 such that for any

I1 ⊆ Ig∗ and I3, I4 ⊆ IGH∗ , the family of gradients

{∇gi(x),∇hj(x),∇Gr(x),∇Ht(x) : i ∈ I1, j ∈ Ih, r ∈ I3 ∪ IG∗ , t ∈ I4 ∪ IH∗ }

has the same rank for each x ∈ Bδ(x∗).

(c) We say that MPSC CPLD holds at x∗ iff for any I1 ⊆ Ig∗ , I2 ⊆ Ih, I3 ⊆ IG∗ ∪ IGH∗ ,

and I4 ⊆ IH∗ ∪ IGH∗ , whenever there exist {λ, ρ, µ, ν} not all zero, with λi ≥ 0 for each

i ∈ I1 and µiνi = 0 for each i ∈ IGH∗ , such that

∑
i∈I1

λi∇gi(x∗) +
∑
j∈I2

ρj∇hj(x∗) +
∑
r∈I3

µr∇Gr(x∗) +
∑
t∈I4

νt∇Ht(x
∗) = 0, (14)
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there exists δ > 0 such that, for any x ∈ Bδ(x∗), the vectors {∇gi(x) : i ∈ I1}, {∇hj(x) :

j ∈ I2}, {∇Gr(x) : r ∈ I3}, {∇Ht(x) : t ∈ I4} are linearly dependent.

(d) Let x∗ ∈ X and I1 ⊆ Ih, I2 ⊆ IG∗ , I3 ⊆ IH∗ be index sets such that G(x∗; I1, I2, I3) is

a basis for span G(x∗; Ih, IG∗ , IH∗ ). We say that MPSC RCPLD holds at x∗ iff there exists

δ > 0 such that

– G(x; Ih, IG∗ , IH∗ ) has the same rank for each x ∈ Bδ(x∗);

– for each I4 ⊆ Ig∗ , I5, I6 ⊆ IGH∗ , if there exist {λ, ρ, µ, ν} not all zero, with λi ≥ 0 for

each i ∈ I4 and µiνi = 0 for each i ∈ IGH∗ , such that∑
i∈I4

λi∇gi(x∗) +
∑
j∈I1

ρj∇hj(x∗) +
∑

r∈I2∪I5

µr∇Gr(x∗)

+
∑

t∈I3∪I6

νt∇Ht(x
∗) = 0, (15)

then for any x ∈ Bδ(x∗), the vectors {∇gi(x) : i ∈ I4}, {∇hj(x) : j ∈ I1}, {∇Gr(x) :

r ∈ I2 ∪ I5}, {∇Ht(x) : t ∈ I3 ∪ I6} are linearly dependent.

Here G(x; I1, I2, I3) is a set of gradients defined by

G(x; I1, I2, I3) := {∇hj(x),∇Gr(x),∇Ht(x) : j ∈ I1, r ∈ I2, t ∈ I3}.

(e) We say that MPSC pseudo-normality hold at x∗ iff there is no nonzero {λ, ρ, µ, ν}

such that

–
m∑
i=1

λi∇gi(x∗) +
p∑
i=1

ρi∇hi(x∗) +
l∑
i=1

µi∇Gi(x∗) +
l∑
i=1

νi∇Hi(x
∗) = 0;

– λi ≥ 0 for i ∈ Ig∗ , λi = 0 for i 6∈ Ig∗ , µi = 0 for i ∈ IH∗ , νi = 0 for i ∈ IG∗ , and µiνi = 0

for i ∈ IGH∗ ;

– there exists a sequence {xk} → x∗ such that for each k,

m∑
i=1

λigi(x
k) +

p∑
i=1

ρihi(x
k) +

l∑
i=1

µiGi(x
k) +

l∑
i=1

νiHi(x
k) > 0.

(f) We say that MPEC quasi-normality holds at x∗ iff there is no nonzero {λ, ρ, µ, ν}

such that

–
m∑
i=1

λi∇gi(x∗) +
p∑
i=1

ρi∇hi(x∗) +
l∑
i=1

µi∇Gi(x∗) +
l∑
i=1

νi∇Hi(x
∗) = 0;

– λi ≥ 0 for i ∈ Ig∗ , λi = 0 for i 6∈ Ig∗ , µi = 0 for i ∈ IH∗ , νi = 0 for i ∈ IG∗ , and µiνi = 0

for i ∈ IGH∗ ;
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– there exists a sequence {xk} → x∗ such that for each k,

λi > 0⇒ λigi(x
k) > 0, µi 6= 0⇒ µiGi(x

k) > 0,

ρi 6= 0⇒ ρihi(x
k) > 0, νi 6= 0⇒ νiHi(x

k) > 0.

Following from Definitions 4.1 and 4.2, it is easy to see that MPSC NNAMCQ im-

plies MPSC CPLD and MPSC pseudo-normality, MPSC CRCQ implies MPSC RCRCQ,

MPSC CPLD implies MPSC RCPLD, and MPSC pseudo-normality implies MPSC quasi-

normality.

In what follows, we discuss the relations among these MPSC tailored constraint qual-

ifications mentioned in Section 4.

Theorem 4.1 Suppose that MPSC RCRCQ holds at x∗ ∈ X . Then MPSC ACQ is also valid at

x∗.

Proof For any given partition (β1, β2) ∈ P(IGH∗ ), consider NLP(β1, β2) as given in (4).

Since MPSC RCRCQ holds at x∗, it is easy to see that RCRCQ holds at x∗ for NLP(β1, β2).

It then follows from Minchenko & Stakhovski (2011, Lemma 6 ) that

TX (β1,β2)(x
∗) = LX (β1,β2)(x

∗).

Then by the arbitrariness of (β1, β2) ∈ P(IGH∗ ) and Lemma 2.1, one can easily obtain that

TX (x∗) = LMPSC(x∗), i.e., MPSC Abadie CQ holds at x∗. ut

Theorem 4.2 MPSC CRCQ (resp. MPSC RCRCQ) implies MPSC CPLD (resp. MPSC RC-

PLD).

Proof (i) Let MPSC CRCQ hold at x∗. We will show that MPSC CPLD holds at x∗. Let

I1 ⊆ Ig∗ , I2 ⊆ Ih, I3 ⊆ IG∗ ∪IGH∗ , and I4 ⊆ IH∗ ∪IGH∗ . Assume that there exist {λ, ρ, µ, ν}

not all zero, with λi ≥ 0 for each i ∈ I1 and µiνi = 0 for each i ∈ IGH∗ , such that∑
i∈I1

λi∇gi(x∗) +
∑
j∈I2

ρj∇hj(x∗) +
∑
r∈I3

µr∇Gr(x∗) +
∑
t∈I4

νt∇Ht(x
∗) = 0.

This means that the vectors {∇gi(x∗),∇hj(x∗),∇Gr(x∗),∇Ht(x
∗) : i ∈ I1, j ∈ I2, r ∈

I3, t ∈ I4} are linearly dependent. Since MPSC CRCQ holds at x∗ ∈ X , it is easy to verify

that there exists δ > 0 such that the vectors

{∇gi(x),∇hj(x),∇Gr(x),∇Ht(x) : i ∈ I1, j ∈ I2, r ∈ I3, t ∈ I4}
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are linearly dependent for each x ∈ Bδ(x∗). Otherwise we can find a sequence xk → x∗

such that the vectors {∇gi(x),∇hj(x),∇Gr(x),∇Ht(x) : i ∈ I1, j ∈ I2, r ∈ I3, t ∈ I4} has

bigger rank at xk than at x∗, contracting MPSC CRCQ. Thus, MPSC CPLD holds at x∗.

(ii) Let MPSC RCRCQ holds at x∗. We will show that MPSC RCPLD holds at x∗. The

first claim in MPSC RCPLD follows by setting I1 = I3 = I4 = ∅ in the definition of MPSC

RCRCQ.

Let I1 ⊆ Ih, I2 ⊆ IG∗ , I3 ⊆ IH∗ be index sets such that G(x∗, I1, I2, I3) is a basis for

span G(x∗, Ih, IG∗ , IH∗ ). Let I4 ⊆ Ig∗ , I5, I6 ⊆ IGH∗ be such that there exist {λ, ρ, µ, ν} not

all zero, with λi ≥ 0 for each i ∈ I4 and µiνi = 0 for each i ∈ IGH∗ , such that∑
i∈I4

λi∇gi(x∗) +
∑
j∈I1

ρj∇hj(x∗) +
∑

r∈I2∪I5

µr∇Gr(x∗) +
∑

t∈I3∪I6

νt∇Ht(x
∗) = 0.

This means that the vectors

{∇gi(x),∇hj(x),∇Gr(x),∇Ht(x) : i ∈ I4, j ∈ I1, r ∈ I5 ∪ I2, t ∈ I6 ∪ I3} (16)

are linearly dependent at x∗. It is easy to see that the set G(x∗; I1, I2, I3) can generate the

set G(x∗; Ih, IG∗ , IH∗ ) in a neighborhood of x∗. Thus, using MPSC RCRCQ at x∗, we can

have that the set of gradients in (16) has the same rank in some neighborhood Bδ(x∗) of

x∗. Then this set must be linearly dependent for any x ∈ Bδ(x∗). The proof is complete.ut

We next consider the relation between MPSC quasi-normality and MPSC MCQ. To

this end, we give a Fritz John type stationarity for problem (1) whose proof scheme fol-

lows from Bertsekas & Ozdaglar (2002, Proposition 1), Kanzow & Schwartz (2010, Theo-

rem 3.1), or Guo et al. (2013b, Theorem 3.1).

Lemma 4.1 Let x∗ be a local minimizer of problem (1). Then there exist vectors {α, λ, ρ, µ, ν}

such that

(i) α∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +
p∑
i=1

ρi∇hi(x∗) +
l∑
i=1

µi∇Gi(x∗)

+
l∑
i=1

νi∇Hi(x
∗) = 0;

(ii) α ≥ 0, λi ≥ 0 for i ∈ Ig∗ , λi = 0 for i 6∈ Ig∗ , µi = 0 for i ∈ IH∗ , νi = 0 for i ∈ IG∗ , and

µiνi = 0 for i ∈ IGH∗ ;

(iii) α, λ, ρ, µ, ν are not all equal to zero;
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(iv) if λ, ρ, µ, ν are not all equal to zero, then there is a sequence {xk} → x∗ such that for all

k ∈ N,

λi > 0⇒ gi(x
k) > 0, µi 6= 0⇒ µiGi(x

k) > 0,

ρi 6= 0⇒ ρihi(x
k) > 0, νi 6= 0⇒ νiHi(x

k) > 0.

Proof Let x∗ be a local minimizer of problem (1), y∗ := G(x∗), and v∗ := H(x∗). For each

k ∈ N, we consider the following optimization problem

minFk(x, y, z) := f(x) +
k

2
‖max{0, g(x)}‖2 +

k

2
‖h(x)‖2 +

k

2
‖G(x)− y‖2

+
k

2
‖H(x)− z‖2 +

1

2
‖(x, y, z)− (x∗, y∗, z∗)‖2 s.t. (x, y, z) ∈ Ω ∩ C.

where C := Rn × Sl and Ω := {(x, y, z) : ‖(x, y, z) − (x∗, y∗, z∗)‖2 ≤ ε}. Here ε > 0 is

such that x∗ is the global minimizer of minimizing f(x) over X ∩ Bε(x∗).

Since the set Ω ∩C is compact and Fk(x, y, z) is continuous, the problem above has at

least one optimal solution, say (xk, yk, zk). We next show that (xk, yk, zk)→ (x∗, y∗, z∗) as

k →∞. Due to the optimality of (xk, yk, zk), we have thatFk(xk, yk, zk) ≤ Fk(x∗, y∗, z∗) =

f(x∗) for all k ∈ N, i.e.,

f(xk) +
k

2
‖max{0, g(xk)}‖2 +

k

2
‖h(xk)‖2 +

k

2
‖G(xk)− yk‖2

+
k

2
‖H(xk)− zk‖2 +

1

2
‖(xk, yk, zk)− (x∗, y∗, z∗)‖2 ≤ f(x∗), k ∈ N. (17)

Since {f(xk)} is bounded due to the compactness of Ω ∩ C, it follows from the above

inequality that

lim
k→∞

max{0, g(xk)} = 0, lim
k→∞

h(xk) = 0,

lim
k→∞

G(xk)− yk = 0, lim
k→∞

H(xk)− zk = 0.

Let (x̄, ȳ, z̄) be an arbitrary accumulation point of {(xk, yk, zk)}. Then from (17), it follows

that

f(x̄) +
1

2
‖(x̄, ȳ, z̄)− (x∗, y∗, z∗)‖2 ≤ f(x∗).

Note that f(x∗) ≤ f(x̄) by the local optimality of x∗. This and the above inequality

imply that (x̄, ȳ, z̄) = (x∗, y∗, z∗). Thus the whole sequence {(xk, yk, zk)} converges to

(x∗, y∗, z∗) as k →∞.
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Without loss of generality, we may assume that (xk, yk, zk) is an interior point of Ω

for all k ∈ N. By Fermat’s rule, it follows that

−∇Fk(xk, yk, zk) ∈ N̂C(xk, yk, zk), k ∈ N. (18)

By Proposition 2.1, the regular normal cone N̂C(xk, yk, zk) can be written as

N̂C(xk, yk, zk) :=




0

ξ

ζ

 :

ξi ∈ R, ζi = 0 if zki 6= 0

ξi = 0, ζi ∈ R if yki 6= 0

ξi = 0, ζi = 0 if yki = 0, zki = 0

 . (19)

Combining (18) with (19), it is easy to derive that for k ∈ N,

∇f(xk) +

m∑
i=1

kmax{0, gi(xk)}∇gi(xk) +

p∑
i=1

khi(x
k)∇hi(xk) + (xk − x∗)

+

l∑
i=1

k(Gi(x
k)− yki )∇Gi(xk) +

l∑
i=1

k(Hi(x
k)− zki )∇Hi(x

k) = 0, (20)

and

k(Gi(x
k)− yki ) = yki − y∗i if yki 6= 0,

k(Hi(x
k)− zki ) = zki − z∗i if zki 6= 0,

k(Gi(x
k)− yki ) = yki − y∗i if yki = zki = 0,

k(Hi(x
k)− zki ) = zki − z∗i if yki = zki = 0.

(21)

Let

δk :=
(

1 + ‖kmax{0, g(xk)}‖2 + ‖kh(xk)‖2 + ‖k(G(xk)− yk)‖2

+‖(H(xk)− zk)‖2
)1/2

,

αk :=
1

δk
, λk :=

kmax{0, g(xk)}
δk

, ρk :=
kh(xk)

δk
,

µk :=
k(G(xk)− yk)

δk
, νk :=

k(H(xk)− zk)

δk
.

It is easy to see that ‖(αk, λk, ρk, µk, νk)‖ = 1 for all k ∈ N. We may assume that (α, λ, ρ, µ, ν) 6=

0 is an accumulation point of (αk, λk, ρk, µk, νk). Dividing (20) by σk and taking limits on

both sides of (20) yield that

α∇f(x∗) +

m∑
i=1

λi∇gi(x∗) +

p∑
i=1

ρi∇hi(x∗) +

l∑
i=1

µi∇Gi(x∗) +

l∑
i=1

νi∇Hi(x
∗) = 0.
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It is easy to see that α ≥ 0 and λ ≥ 0. Moreover, by the definition of λk and the

continuity of the function g, we have that λi = 0 for each i 6∈ Ig∗ . When i ∈ IH∗ , then

y∗i = Gi(x
∗) 6= 0 and thus yki 6= 0 for all k sufficient large. Then by (21) and the fact that

yk → y∗ as k →∞, we have that

µi = lim
k→∞

k(Gi(x
k)− yki )

δk
= lim
k→∞

yki − y∗i
δk

= 0, i ∈ IH∗ .

In the same way, we can show that νi = 0 for all i ∈ IG∗ . For i ∈ IGH∗ , at least one of

the following three cases occurs: (a) When there exist infinitely many k such that yki 6=

0, zki = 0: in this case, we can similarly show that µi = 0. (b) When there exist infinitely

many k such that yki = 0, zki 6= 0: we can similarly show that νi = 0. (c) When there exist

infinitely many k such that yki = 0, zki = 0: it follows from (21) that

µi = lim
k→∞

k(Gi(x
k)− yki )

δk
= lim
k→∞

yki − y∗i
δk

= 0,

νi = lim
k→∞

k(Hi(x
k)− zki )

δk
= lim
k→∞

vki − z∗i
δk

= 0.

In sum, we have shown that µiνi = 0 for any i ∈ IGH∗ .

We now show condition (iv). Assume that (λ, ρ, µ, ν) 6= 0. By the definition of λk and

ρk, it is easy to see that for all k sufficiently large,

λi > 0⇒ λki > 0⇒ gi(x
k) > 0,

ρi 6= 0⇒ ρiρ
k
i > 0⇒ ρihi(x

k) > 0.

For any µi 6= 0, it follows that µiµki > 0 or equivalently µi(Gi(x
k) − yki ) > 0 for all k

sufficiently large. When µi 6= 0, we have that yki = 0 for all k sufficiently large. Other-

wise if there exists a subsequence of {yki } not equal to 0, then µi = 0 follows from (20)

immediately. Thus, µiGi(xk) > 0 for all k sufficiently large when µi 6= 0. By symmetry,

we can also show that νiHi(x
k) > 0 for all k sufficiently large when νi 6= 0. The proof is

complete. ut

The following theorem follows from Lemma 4.1 immediately.

Theorem 4.3 If MPSC quasi-normality holds at x∗ ∈ X , then MPSC MCQ holds at x∗ as well.
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Proof For any d ∈ TX (x∗)o, it suffices to show that d ∈ ∇F (x∗)NΛ(F (x∗)). Since d ∈

TX (x∗)o, it follows from Rockafellar & Wets (1998, Theorem 6.11) that there exists a s-

mooth function ϕ that achieves a minimizer relative to X at x∗ with −∇ϕ(x∗) = d. Then

by Lemma 4.1, there exist vectors {α, λ, ρ, µ, ν} satisfying (i)-(iv) in Lemma 4.1 with func-

tion ϕ in place of function f . Since MPSC quasi-normality holds at x∗, it is easy to see that

α 6= 0. This implies that x∗ is an M-stationary point of minimizing ϕ over X . By Proposi-

tion 3.1, we have that 0 ∈ ∇ϕ(x∗)+∇F (x∗)NΛ(F (x∗)). Thus, d ∈ ∇F (x∗)NΛ(F (x∗)). The

proof is complete. ut

In the rest of this section, we investigate the relation between MPSC RCPLD and MP-

SC MCQ. To this end, we recall a lemma which can be seen as a corollary of Carathéodory’s

lemma (Andreani et al., 2012).

Lemma 4.2 Let 0 6= x =
∑m+p
i=1 αivi, where {v1, . . . , vm} is linearly independent and αi 6= 0

for all i = m+1, . . . ,m+p. Then there existJ ⊂ {m+1, . . . ,m+p} and ᾱi, i ∈ {1, . . . ,m}∪J ,

such that x =
∑
i∈{1,...,m}∪J ᾱivi with αiᾱi > 0 for every i ∈ J and {vi : i ∈ {1, . . . ,m}∪J }

is linearly independent.

Theorem 4.4 If MPSC RCPLD holds at x∗ ∈ X , then MPSC MCQ holds at x∗.

Proof For any d ∈ TX (x∗)o, by Rockafellar & Wets (1998, Theorem 6.11), it follows that

there exists a smooth function ϕ such that −∇ϕ(x∗) = d and arg minx∈X ϕ(x) = {x∗}. In

the same way as the proof of Lemma 4.1, we have that there exists a sequence (xk, yk, zk)

converging to (x∗, y∗, z∗) such that (20) and (21) hold with function ϕ in place of function

f . By a simple arrangement, we have

ξk +

m∑
i=1

λki∇gi(xk) +

p∑
i=1

µki∇hi(xk) +

l∑
i=1

νi∇Gi(xk) +

l∑
i=1

νi∇Hi(x
k) = 0, (22)

where

λki := kmax{0, gi(xk)}, ρki := khi(x
k),

µki := k(Gi(x
k)− yki )− (yki − y∗i ), νki := k(Hi(x

k)− zki )− (zki − z∗i ),

ξk := ∇ϕ(xk) + (xk − x∗) +

l∑
i=1

(yki − y∗i )∇Gi(xk) +

l∑
i=1

(zki − z∗i )∇Hi(x
k).
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By (21), one can easily have (µki , ν
k
i ) ∈ NS(yki , z

k
i ) for all i = 1, . . . , l. For the sake of

convenience, we denote

Igk := {i ∈ {1, ...,m} : gi(x
k) = 0},

IGk := {i ∈ {1, ..., l} : Gi(x
k) = 0 ∧Hi(x

k) 6= 0},

IHk := {i ∈ {1, ..., l} : Gi(x
k) 6= 0 ∧Hi(x

k) = 0},

IGHk := {i ∈ {1, ..., l} : Gi(x
k) = 0 ∧Hi(x

k) = 0}.

It is obvious that IG∗ ⊆ IGk and IH∗ ⊆ IHk for each k sufficiently large. Denote supp (a) :=

{i : ai 6= 0}. It then follows from (22) that

0 = ξk +
∑

i∈supp (λk)

λki∇gi(xk) +
∑
j∈Ih

ρkj∇hj(xk) +
∑
r∈IG∗

µkr∇Gr(xk)

+
∑
t∈IH∗

νkt ∇Ht(x
k) +

∑
r∈IGk \IG∗ ∪I

GH
k ∩supp (µk)

µkr∇Gr(xk)

+
∑

t∈IHk \IH∗ ∪I
GH
k ∩supp (νk)

νkt ∇Ht(x
k). (23)

If there exists a subsequence such that ξk = 0. Then d = lim
k→∞

∇ϕ(xk) = 0 and hence

d ∈ ∇F (x∗)NΛ(F (x∗)). Thus, without loss of generality, we assume that ξk 6= 0 for all

k. Let I1 ⊆ Ih, I2 ⊂ IG∗ , and I3 ⊂ IH∗ be index sets such that G(x∗, I1, I2, I3) is a basis

for span G(x∗, Ih, IG∗ , IH∗ ). Then G(xk, I1, I2, I3) is linearly independent for k sufficiently

large. Since MPSC RCPLD holds at x∗, by the definition, there is a constant δ > 0 such

that the rank of G(x, Ih, IG∗ , IH∗ ) is constant for each x ∈ Bδ(x∗). Thus G(xk, I1, I2, I3) is a

basis for span G(xk, Ih, IG∗ , IH∗ ) for all k sufficiently large. Then it follows from Lemma

4.2 that there exist Ik4 ⊆ supp (λk), Ik5 ⊆ IGk \IG∗ ∪ IGHk ∩ supp (µk), Ik6 ⊆ IHk \IH∗ ∪ IGHk ∩

supp (νk), and {λ̄k, ρ̄k, µ̄k, ν̄k} such that

0 = ξk +
∑
i∈Ik4

λ̄ki∇gi(xk) +
∑
j∈I1

ρ̄kj∇hj(xk) +
∑
r∈I2

µ̄kr∇Gr(xk)

+
∑
t∈I3

ν̄kt ∇Ht(x
k) +

∑
r∈Ik5

µ̄kr∇Gr(xk) +
∑
t∈Ik6

ν̄kt ∇Ht(x
k) (24)

and the vectors {∇gi(xk) : i ∈ Ik4 }, {∇hj(xk) : j ∈ I1}, {∇Gr(xk) : r ∈ I2 ∪ Ik5 },

{∇Ht(x
k) : t ∈ I3 ∪ Ik6 } are linearly independent for all k sufficiently large. From the

implementation process and Lemma 4.2, we also have λ̄ki ≥ 0 for all i ∈ Ik4 and (µ̄ki , ν̄
k
i ) ∈
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NS(yki , z
k
i ) for all i = 1, . . . , l. Without any loss of generality, we assume that Ik4 ≡ I4,

Ik5 ≡ I5, and Ik6 ≡ I6. Then the vectors

{∇gi(xk) : i ∈ I4}, {∇hj(xk) : j ∈ I1}, {∇Gr(xk) : r ∈ I2 ∪ I5},

{∇Ht(x
k) : t ∈ I3 ∪ I6} are linearly independent. (25)

It is not hord to get that I4 ⊆ Ig∗ , I1 ⊆ Ih, and I5, I6 ⊆ IGH∗ by IG∗ ∪ IH∗ ∪ IGH∗ =

IGk ∪ IHk ∪ IGHk . Define

Mk := max{λ̄ki , ρ̄kj , µ̄kr , ν̄kt : i ∈ I4, j ∈ I1, r ∈ I2 ∪ I5, t ∈ I3 ∪ I6}.

If there exists a subsequence such that Mk → ∞, then we may take a subsequence such

that for any i ∈ I4, j ∈ I1, r ∈ I2 ∪ I5, t ∈ I3 ∪ I6,

(λ̄ki , ρ̄
k
j , µ̄

k
r , ν̄

k
t )

Mk
→ (λ̄∗i , ρ̄

∗
j , µ̄
∗
r , ν̄
∗
t ) as k →∞.

Dividing (24) by Mk and taking limits yield

∑
i∈I4

λ̄∗i∇gi(x∗) +
∑
j∈I1

ρ̄∗j∇hj(x∗) +
∑
r∈I2

µ̄∗r∇Gr(x∗) +
∑
t∈I3

ν̄∗t∇Ht(x
∗)

+
∑
r∈I5

µ̄∗r∇Gr(x∗) +
∑
t∈I6

ν̄∗t∇Ht(x
∗) = 0.

Moreover, we also have λ̄∗i ≥ 0 for all i ∈ I4 and the fact that (µ̄ki , ν̄
k
i ) ∈ NS(yki , z

k
i ) implies

(µ̄∗i , ν̄
∗
i ) ∈ NS(y∗i , z

∗
i ) from the outer semi-continuity of limiting normal cones. The last

two facts and (25) give a contradiction with MPSC RCPLD. Hence {Mk} is bounded.

Taking limits for a suitable subsequence such that for any i ∈ I4, j ∈ I1, r ∈ I2 ∪ I5,

t ∈ I3 ∪ I6,

(λ̄ki , ρ̄
k
j , µ̄

k
r , ν̄

k
t )→ (λ̄∗i , ρ̄

∗
j , µ̄
∗
r , ν̄
∗
t ) as k →∞,

it follows from (24) that

−∇ϕ(x∗) =
∑
i∈I4

λ̄∗i∇gi(x∗) +
∑
j∈I1

ρ̄∗j∇hj(x∗) +
∑
r∈I2

µ̄∗r∇Gr(x∗)

+
∑
t∈I3

ν̄∗t∇Ht(x
∗) +

∑
r∈I5

µ̄∗r∇Gr(x∗) +
∑
t∈I6

ν̄∗t∇Ht(x
∗).
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This prove that x∗ is an M-stationary point of minimizing ϕ over X . By Proposition 3.1,

it follows that 0 ∈ ∇ϕ(x∗) +∇F (x∗)NΛ(F (x∗)). Thus,

d ∈ ∇F (x∗)NΛ(F (x∗)).

The proof is complete. ut

Finally, we summarize the relations among the constraint qualifications for MPSC in

Fig. 1.

MPSC Linear CQ MPSC CRCQ MPSC RCRCQ MPSC ACQ

MPSC LICQ MPSC CPLD MPSC RCPLD MPSC GCQ

MPSC MFCQ MPSC NNAMCQ MPSC MCQ B-stationarity

MPSC pseudo-normality MPSC quasi-normality M-stationarity

Fig.1 Relations among various CQs
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