arXiv:1907.06462v2 [math.NA] 5 May 2020

IMPROVED PENALTY ALGORITHM FOR MIXED INTEGER PDE
CONSTRAINED OPTIMIZATION PROBLEMS

DOMINIK GARMATTER*, MARGHERITA PORCELLIf, FRANCESCO RINALDI}, AND
MARTIN STOLL*

Abstract. Optimal control problems including partial differential equation (PDE) as well as
integer constraints merge the combinatorial difficulties of integer programming and the challenges re-
lated to large-scale systems resulting from discretized PDEs. So far, the branch-and-bound framework
has been the most common solution strategy for such problems. In order to provide an alternative
solution approach, especially in a large-scale context, this article investigates penalization techniques.
Taking inspiration from a well-known family of existing exact penalty algorithms, a novel improved
penalty algorithm is derived, whose key ingredients are a basin hopping strategy and an interior point
method, both of which are specialized for the problem class. A thorough numerical investigation is
carried out for a standard stationary test problem. Extensions to a convection-diffusion as well as a
nonlinear test problem finally demonstrate the versatility of the approach.

Key words. mixed integer optimization, optimal control, PDE-constrained optimization, exact
penalty methods, interior point methods

AMS subject classifications. 65K05, 90C06, 90C11, 93C20, 90C51

1. Introduction. Optimal control problems that are governed by a partial dif-
ferential equation (PDE) as well as integer constraints on the control and possible
additional constraints are commonly referred to as mixed integer PDE-constrained
optimization (MIPDECO) problems. They pose several challenges as they combine
two fields that have been surprisingly distinct from each other in the past: inte-
ger programming and PDEs. While integer optimization problems have an inherent
combinatorial complexity that has to be dealt with, PDE-constrained optimization
problems have to deal with possibly large-scale linear systems resulting from the dis-
cretization of the PDE, see, e.g., [1].

Albeit these challenges, MIPDECO problems are gaining an increased attention
as they naturally arise in many real world applications such as gas networks [2],
[3], the placement of tidal and wind turbines [4]-[6] or power networks [7]. From the
theoretical point of view, there have been recent advances in the field including a Sum-
up-Rounding strategy [8], [9], a derivative-free approach [10], and new sophisticated
rounding techniques [11].

A classical solution approach for a MIPDECO problem is to first-discretize-then-
optimize where the PDE and the control are discretized such that the continuous
MIPDECO problem is then approximated by a finite-dimensional (and possibly large-
scale) mixed-integer nonlinear programming problem (MINLP). Standard techniques,
see, e.g., [12] for an excellent overview, such as branch-and-bound can then be used
to solve the MINLP. Unfortunately, depending on the size of the finite dimensional
approximation, these techniques may struggle. On the one hand, the discretization
of the control might (especially for problems with a time-dependent control) result in
a large amount of integer variables and thus an immense combinatorial complexity of
the MINLP. On the other hand, the discretization of the PDE results in large-scale

*Department of Mathematics, Chemnitz University of Technology, Germany

(dominik.garmatter@math.tu-chemnitz.de, martin.stoll@math.tu-chemnitz.de)
TDepartment of Mathematics, University of Bologna, Italy (margherita.porcelli@unibo.it)
!Department of Mathematics ”Tullio Levi-Civita”, University of Padova, Italy (ri-
naldi@math.unipd.it)

mailto:dominik.garmatter@math.tu-chemnitz.de
mailto:martin.stoll@math.tu-chemnitz.de
mailto:margherita.porcelli@unibo.it
mailto:rinaldi@math.unipd.it
mailto:rinaldi@math.unipd.it

2 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

linear systems occurring whenever an NLP-relaxation of the MINLP has to be solved.

The contribution of this article to the field is to provide an alternative approach
for MIPDECO problems via an equivalent penalty formulation of the original problem.
While penalty reformulations have been studied in the context of integer program-
ming, see, e.g., [13]-[17], and penalty approaches have been developed, see, e.g., [18]-
[20], there have been (to the knowledge of the authors) no contributions that explicitly
deal with MIPDECO problems.

The general idea of penalty reformulations is to relax the integer constraints of
the problem and add a suitable penalty term to the objective function, thus penaliz-
ing controls that violate the previously present integer constraints. A naive solution
strategy could then be to iteratively solve the resulting penalty formulation while in-
creasing the amount of penalization in each iteration until one ends up with an integer
solution. The upside of such penalization strategies is that the combinatorial com-
plexity of the integer constraints is eliminated from the problem formulation and the
penalty term then ensures that the resulting solution satisfies the integer constraints.
The downside is that penalty terms are usually concave such that one has to deal
with non-convex NLPs with a possibly exponential amount of local minimizers.

To still provide qualitative solutions in this context, the main contribution of
this article is the development of a novel algorithm that is closely related to a family
of existing exact penalty (EXP) algorithms, which have been analyzed both in the
context of general constrained optimization [21], [22] and in the context of integer
optimization [19]. Roughly speaking, a general EXP algorithmic framework, which is
an iterative procedure, provides an automatic tool for when to increase penalization
and when to aim for a better minimizer via a suitable global solver for the penalized
subproblems. One can then show convergence towards a global minimizer of the
original problem, see, e.g., [19, Corollary 1] for the analysis of the integer case.

A practical implementation of an EXP algorithm is carried out in this paper.
Although the algorithm is developed taking into account a model problem, it will
become clear that it can handle quite general MIPDECO problems. The idea of the
resulting improved penalty algorithm (IPA) is to combine the EXP framework with
a suitably developed search approach, closely connected to basin hopping or iterated
local search methods, see, e.g., [23], [24]. The search combines a local optimization
algorithm with a perturbation strategy (both tailored to the specific application) in
order to find either the global or a good local minimum of the penalty reformulation.

Our suitably developed local optimization solver is an interior point method that
exploits the structure of the penalty formulation related to a MIPDECO problem in
the following ways:

e it explicitly handles the non-convexity introduced by the penalty term;

e it uses a specific preconditioner to efficiently handle the linear algebra.
Via this approach, large-scale problems can be handled and the TPA is numerically
compared, both for a standard test problem and a convection-diffusion problem, to a
traditional penalty method as well as a branch-and-bound routine from CPLEX [25].

The remainder of this work is organized as follows: the model problem is pre-
sented and discretized in Section 2. Section 3 reviews the EXP algorithm, extends its
convergence theory to the class of MIPDECO problems considered, and then develops
the novel improved penalty algorithm. Section 4 gathers implementation details of the
IPA, such as the interior point method, and briefly collects the remaining algorithms
for the numerical comparison that is carried out in Section 5. Finally, conclusions
are drawn in Section 6 including an outlook on MIPDECO problems with a nonlinear
PDE constraint.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 3

2. Problem formulation. We begin with the description of the optimal con-
trol model problem in function spaces. Following the first-discretize-then-optimize
approach, we then present the discretized model problem as well as its continuous
relaxation. Finally, we review existing solution techniques and make some remarks
on the model problem.

2.1. Continuous optimal control problem. We begin with the description
of the PDE in order to formulate the optimal control problem. Consider a bounded
domain Q C R? with Lipschitz boundary, source functions ¢1,...,¢; € L*(Q) and
based on these the PDE: for a given control vector v = (uq, ... ,ul)T € R find the
state y € Hg () solving

!
(2.1) —Ay(r) = Zui¢i($)7 T €,

where the PDE is to be understood in the weak sense. Existence and uniqueness of a
solution y € Hj(Q) of (2.1) follow from the Lax-Milgram theorem. For now, we choose
to model the sources ¢1, ..., ¢; as Gaussian functions with centers Z1,...,Z; € {, and

Q C Q. Thus, for z € R2,

Hw—a‘wlli

(2.2) oi(x) :=kre” =@, i=1,...,1,

with height x > 0 and width w > 0. The optimal control problem in function
spaces then reads: given a desired state y; € L?(Q), find a solution pair (y,u) €
H () x {0,1} of

. 1 2
min 5y — ,
(2.3) yeH () uefo1}t 2 by = vl (o)

s.t. (y,u) fulfill (2.1), and ' u; <SEN,

where the inequality constraint in (2.3) is commonly referred to as a knapsack con-
straint. This problem can be interpreted as fitting a desired heating pattern y; by
activating up to S many sources that are distributed around the domain 2. Since
the amount of controls u € {0,1}! is finite and for each control there is a uniquely
determined state y, problem (2.3) is in its essence a combinatorial problem so that
existence of at least one global minimizer is guaranteed. We close this section with
some remarks on the presented model problem.

Remark 2.1. (a) The Gaussian source functions are motivated by porous-media
flow applications to determine the number of boreholes, see, e.g., [26], [27], and
problem (2.3) with this choice is furthermore a model problem mentioned in [28,
Section 19.3]. We will see throughout the development of our algorithm that it
does not rely on this particular modelling of the control. Exemplarily, Section 5.2
will deal with a convection-diffusion equation with piece-wise constant sources
(and we mention that piece-wise constant sources were also used in [29]), but one
could also use a general distributed control as proposed in [11].

(b) It is well-known that problems with general integer constraints can be reduced
to problems with binary constraints, see, e.g., [30]. Furthermore, [15, Section 4]
provides an alternative in the context of penalty approaches by directly penalizing
general integer constraints. Extending the presented model problem from binary
to general integer constraints and developing strategies to efficiently deal with
these is an interesting aspect for future research.

4 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

2.2. Discretized model problem and continuous relaxation. Introducing
a conforming mesh over Q using N vertices, let M € RV*N and K € RV*N be
the mass and stiffness matrices of a suitable finite element discretization of (2.1).
Furthermore, let the matrix ® € RV*! contain the finite element coefficients of the
source functions in its columns, i.e., each column contains the evaluation of the re-
spective source function at the N vertices of the grid. With these matrices at hand,
we formulate the discretized optimal control problem

. 1 T
min s(y — My — ,
(2.4) JERN mie {0.1)! 2(1/ Yd) (Y — ya)
s.t. Ky= M®u, and 22:1 u; < S eN.
In (2.4) and for the remainder of this article, y denotes the vector of the finite element
coefficients of the corresponding finite element approximation of (2.1) rather than the
actual PDE-solution. The same holds true for the desired state y; which from now

on represents a finite element coefficient vector instead of an actual L?(Q)-function.
Relaxing the integer constraints in (2.4) yields the continuous relazation

1 1 T
min Loy — M(y —
(2.5) yeRN, ueR!l 2 (y — ya) (Y — va)

s.t. Ky=M®u, 0<u<1, and Zé=1UiSS€N~
We reformulate both problems (2.4) and (2.5) in a more compact way.
LEMMA 2.2. Introducing for x € RN+

=« 1 1IM 0 T | Muyy 11
J(a:).—iac {O O}x—x {O }+2ydMyd

and f: R — RN :u s K~ M®u, problems (2.4) and (2.5) are equivalent to

l
(P) min J(z) W := {x:(y,u)T c RN]ue{o,l}l, > ui <8, y=f<u)}

zeW ;
=1

and

l

(Pcont) minJ(z) X := {x = (y,u)T e RVH ‘ u € 0,1, Zui <S5, y= f(u)}7
zeX P

respectively. W C RN s a compact set and X C RNT! is compact and convex such

that (Pcont) is a convex problem.

Proof. The equivalence of the problems in question follows from the definition of
the sets W and X and the map f. Furthermore, W is obviously compact and X as
the image of a compact convex set under a linear map is compact and convex. Thus,
the convexity of (Pcont) follows from the convexity of X and the convexity of J where

the matrix
M 0
0 o}’

with M being positive definite, is positive semidefinite.]

The authors acknowledge that (P) might be tackled by existing methods, see, e.g.,
[18], [20], [29], and thus want to comment on the limitations of these approaches in a
large-scale context.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 5

1. In [29], a branch-and-cut algorithm is presented, where the computation of a
cutting plane requires one linear PDE solution per dimension of the control
space. Therefore, this approach can become excessively time-consuming for
large .

2. In [18], an EXP framework that embeds an iterative genetic algorithm is
presented, where the amount of objective function evaluations per iteration
usually scales quadratically with the problem dimension /. But in the PDE-
constrained optimization context of (P) an evaluation of the objective func-
tion requires a PDE solution, such that the approach can become costly for
large I and/or N.

3. In [20], a penalty-based approach combined with a smoothing method is con-
sidered to solve nonlinear and possibly non-convex optimization problems
with binary variables. The main drawback in this case is: there is no the-
oretical guarantee that one converges towards the global minimum. Hence,
the smoothing and penalty parameters need to be carefully initialized and
handled during the optimization process in order to avoid getting stuck in
bad local minima.

4. Finally, a comparison of our method towards freshly discovered solutions
strategies such as a Sum-Up Rounding method for PDEs [9] and a sophisti-
cated rounding technique [11] are of interest for future work.

Finally, we want to comment on a time-dependent extension of the model problem as
well as what is often referred to as the reduced formulation.

Remark 2.3. (a) Introducing the time interval [0,7] with final time T > 0,
the model problem (2.3) can be expanded to a time-dependent problem by in-
troducing the parabolic PDE: for @ = (a1(t),...,@(t))" € R x (0,7T), find
§ € L?(0,T, H}(Q2)) solving

l
(2.6) %g(t’x) —Ay(t,z) = Zﬂi(t)@(x), (t,z) € (0,T) x €,

7(0,2) =0, z€qQ.

A possible corresponding optimal control problem could then be: given a desired
state g4 € L2((0,T) x), solve

(2.7)
min % ”g*gd”i?((o T)xQ)
§eL?(0,T,Hy () ’
@€{0,1}' x(0,T)
5.6 (§,@) fulfill (2.6), and S'_, @,(t) < S € N, V¢ € (0, 7).

It is easy to see that after discretizing (2.7) in space and time, the dimensions of
both the PDE constraint and the control will scale with the number of time steps,
so that the resulting discretized optimal control problem is of large scale both in
l 'and N. It will become obvious in the upcoming sections that our approach aims
at such large-scale problems and we plan to tackle time-dependent problems in
future work.

We acknowledge that (2.4), from a theoretical point of view, can be recast in
reduced form via the substitution y = K~ 'M®u so that the resulting reduced
optimal control problem only depends on the control u. Due to the large scale
context present in this work and in possible extensions, we consider the frequent

6 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

inversion of the stiffness matrix that is necessary in order to obtain this reduced
form to be prohibitive and impractical for numerical investigations.

3. Improved penalty algorithm (IPA). This section contains the main con-
tribution of this article, the development of our novel improved penalty algorithm
(IPA). We will first introduce a well-known equivalent penalty reformulation of (P),
followed by an exact penalty algorithm from [19]. Afterwards we will develop the IPA,
where the idea is to combine the EXP framework with a local search strategy such
that the resulting algorithm only relies on a local solver.

3.1. Penalty formulation and exact penalty (EXP) algorithm. Starting
from the continuous relaxation (2.5), we add the well-known penalty term

!
(3.1) ézui(l — ;)

to the objective function. Obviously, this concave penalty term penalizes a non-binary
control, where € > 0 controls the amount of penalization. This yields the following
penalty formulation

: 1 T 1 1
Ly —ya) M(y — 1 (]
(3.2) yeptin 5= ya) My —ya) + £ Xiey w1~ wi)

s.t. Ky=M®u, 0<u<1 and ZizluiSSEN.
Following Lemma 2.2, (3.2) can be rewritten as
min J(z;¢), with

zeX
T[M 0]m—xT[Myd

(Ppen)] Lty
2 1 53U Yd,
0 _EIZ —g]_ 2 d

1
J(x;e) = 5%

where I; € R'*! is the identity-matrix and 1 := (1,...,1)" € RL

PROPOSITION 3.1. There exists an € > 0 such that for all € € (0,€] problems (P)
and (Ppen) have the same minimum points. Having the same minimum points here
means that both problems (P) and (Ppen) have the same global minima (if there exist
multiple). In this sense both problems (P) and (Ppen) are equivalent.

Proof. From Lemma 2.2 it is clear that J € C*(RN*!) and that W and X are
compact. Together with the results derived in [15, Section 3] all assumptions of [15,
Theorem 2.1] are fulfilled such that the desired statement follows. |

We mention that the equivalence result from Proposition 3.1 also holds for a variety
of concave penalty terms, see, e.g., [15, (19)-(23)] or [16, (21)]. We chose the penalty
term (3.1) in this article since it is quadratic and thus the combined objective function
J remains quadratic.

Before we formulate the exact penalty algorithm, we introduce a rounding strategy
that suitably handles the knapsack constraint in X and W and prove that it is the
correct tool required for the algorithm design.

DEFINITION 3.2. Let for x = [y,u]T € X and S € N, with S <1, denote ug € RS
the S largest components of u. We then define the smart rounding [z]qp € W of @
as follows:

o define [u]gp by rounding us component-wise to the closest integer and set the
remaining components to 0,

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 7

T
o define [z]sr = (f([ulsr), [ulsr) € W.
We illustrate the smart rounding by considering a simple example.

EXAMPLE 3.3. Let S = 2 and | = 3 and let [-] denote the usual rounding to the
closest integer. Then, for

u = (0.8,0.7,0.1)" and us = (0.63, 0.62, 0.61)"

it is [ui)sr = (1, 1, O)T = [wi], but [uz]sr = (1, 1, O)T # lug] = (1, 1, 1)T. Thus, for
us, the smart rounding does satisfy the knapsack constraint while the usual rounding
does not.

DEFINITION 3.4. The Chebyshev distance between a point x € RNt and a set
C C RNt is defined as

disteo(z,C) = 228 lz =yl -

PrOPOSITION 3.5. Let f, W and X be the linear map and the sets defined in
Lemma 2.2. For z = (f(z4),24)" € W, let B(2) be the set

T
(3.3) B(z) = {z = (y,u) e RV ||yl < B, u— 2zl <p},
where p, f > 0 are chosen such that z € B(z) and

B(zq) N B(zp) =0, for all zq,2, € W with z4 # 2p.

Given a point T = (f(a),u)’ € X, then the point z := [Z]sg € W minimizes the
Chebyshev distance between T and the sets B(z) with z € W, that is

Z € arg min disto (7, B(2)).
zeW

Proof. We first note that for example p = 0.4 and 8 > max.cw || f(zu)]|,, are
sufficient choices such that the requirements for the sets B(z), z € W are met.

Now, if there exists a z € W such that Z € B(z), it has to be z = zZ = [Z]sg. In
this trivial case, we have disto(Z, B(Z)) = 0 and the result follows.

Therefore, we assume in the following that z ¢ B(z) for all z € W. By contra-
diction, there then exists a point 2 = (f(24), 2.)" € W satisfying

(3.4) disteo (7, B(2)) < disteo (7, B(2)).

We can hence find two points p = (ﬁy,ﬁu)T € B(2)and p = (ﬁy,ﬁu)T € B(Z) satisfying
(3.5) Ip — 2|, = disteo(Z, B(2)) and ||p—Z||,, = diste(Z, B(Z)).

From the definition (3.3) and Z = (f(@),)", it is easy to see that

(3.6) by =py = f(@) and [pu— Zul = IPu — Zull = p-

From (3.6), we obtain

(3.7) 1P = Zlloe = max{[|pu — Ul , 1Dy — F(@)]| .} = 1Pu — @l
—_—

=0

8 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

and equivalently ||p — Z||,, = ||pu — @], such that we have on the one hand

(3-8) %= Zull o = 1% = Pull oo + 10 — 2ull
—_——
=p
and
(3.9) @ = Zullog = 14— Pull oo + IPu — Zull -
————

=p

On the other hand, we obtain from (3.4) and (3.5) that ||a — py|| . > [|@ — Pul|,, such
that we conclude from equations (3.4)-(3.9) that

(3.10) 12— Zulloe = 17 = Zulloo = 18 = Pulloo + o = &= Pullc — > 0.

Remembering that z = [Z]gg, such that z, = [u|gp, and that z # 2 = 2z, # 2,
(follows from the definition of W), we know that for at least one component i € I =
{1,...,1} it holds Z,; # 24,. Let us now define the set

I Z{Z€I|ﬂ1205}

If |[I| < S, we have Z, = [u]sr = [@], where [] denotes the usual rounding, and it is
easy to see that
12 = Zulloo < [= 2ullco,

thus contradicting (3.10). Therefore, we assume that |Ir| > S in the following and
define the set Is, with |Ig| = S, so that @; > u; for all i € I's and j € I, \ I, i.e., the
index set of the S largest components of @. By the definition of the smart rounding,
it is then obvious that z,; =1 for ¢ € Ig and 2, ,; =0 for i € I\ Is.
Now, any z € W can be obtained from Z by considering any combination of the

following operations:

1. Z4i=1—=Z,,; =0 for one i € Ig;

2. Zy;,=1—%,;,=0forone i€ Igand Z,; =1 for one j € I\ Ip;

3. Zy;=1—%,,=0forone i€ Igand Z,; =1 for one j € I, \ Is.
Since u; > 0.5 for all ¢ € Ig, the first part of any of these operations results in

|G — Zuil < |8 — Zuil-

In the second operation j € I\ I, implies that @; < 0.5 and %z, ; = 0 and we obtain
(@ = Zug| <[5 = Zu,gl-

In the third operation j € Iy, \ Is implies that @; > 0.5 but Zz, ; = 0 such that
|85 = Zu 5] = 85 = Zu 4.

Taking the whole third operation into account and remembering that ¢ € Ig as well
as the definition of the smart rounding, we can see that

max{|i; — Zu |, [t — Zui|} < max{[a; — Zu], 4 — Zul}-
Forming any Z € W from z via these operations thus implies that

2 = Zulloo < 12— Zullo

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 9

and as especially z, € W can be obtained from Zz,, we have ||i — Zy||loo < ||T — Zullco
which is a contradiction to (3.10). Hence, we get that

distoo(Z, B(2)) > disto (T, B(Z)), for all 2 € W,

which concludes the proof. 0

With this result at hand, we state in Algorithm 3.1 the adaptation of the EXP algo-
rithm from [19, Section 4] to our model problem (Ppen).

Algorithm 3.1 EXP(e? >0, 6° >0, o € (0,1))

Ln=0e"=¢0 7 =4§°

2: Step 1. Compute 2™ € X such that J(x™;e™) < J(x;e™) 4+ 6™ for all x € X.
3: Step 2.

4: if 2" ¢ W and J(2";e™) — J([2"]|sr;e™) < €™ ||2™ — [2"]sr]|, then

5. et = gen, g7l = 7

6: else

7. E7z+1 — €n7 5n+1 = g™

8: end if

9: Step 3. Set n =n + 1 and go to Step 1.

Algorithm 3.1 assumes that in Step 1 a so-called §-global optimizer, i.e., an iterate
fulfilling the condition in Step 1, can be found, for example via a global optimization
method, see, e.g., [31] for an overview of existing methods. Step 2 of the algorithm
then provides a tool to decide when to increase penalization and when to seek for
a better global minimizer. The main convergence property of Algorithm 3.1 is re-
ported in the upcoming Proposition 3.6 and shows that Algorithm 3.1 extends global
optimization methods for continuous problems to integer problems.

PROPOSITION 3.6. Every accumulation point x* of a sequence of iterates {x"} nen
of Algorithm 3.1 is a global minimizer of (P).

Proof. Using Proposition 3.5 the statement follows from [19, Corollary 1]. O

Before we develop our novel algorithm in the upcoming section, we want to comment
on the second condition in line 4 of Algorithm 3.1: this condition is based on [19,
(3)], a Hoelder-condition for the unpenalized objective function. Since our objective
function J is quadratic, it is Hoelder-continuous with Hoelder-exponent equal to 1.
Furthermore, the Hoelder-constant that appears in the original formulation of the
algorithm in [19, Section 4], can for simplicity be set to 1 since it only influences the
convergence speed of the algorithm. Thus, it does not appear in our formulation.

3.2. Development of the improved penalty algorithm (IPA). Based on
the EXP algorithm from the previous section, we now want to develop our novel
algorithm. In our practical implementation, we do not require a d-global optimizer in
Step 1 of Algorithm 3.1 for a certain level of §, but instead want to compute an iterate
™ € X that simply reduces the objective function such that J(xz™;e") < J(x™ 1;em).
Do note that this corresponds to Step 1 of Algorithm 3.1 but with an unknown rule
of reducing §. Having a look at Algorithm 3.1, one could terminate it as soon as §
is smaller than some tolerance. Since our new approach does not make use of any
explicit §, our algorithm will terminate as soon as we are unable to find a new iterate
that reduces the objective function.

10 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

Both these adjustments are collected in the Sub-Algorithm 3.2.a, where we aim
at improving the current iterate by perturbing it and utilizing this perturbation as
initial guess for a local optimization solver. This strategy is closely connected with
classic basin hopping or iterated local search strategies, see, e.g., [23], [24], for global
optimization problems. The sub-algorithm is then terminated after a certain amount
of these perturbation cycles and this bears the information that no better iterate could
be found. Gathering these thoughts results in the improved penalty algorithm (IPA),
i.e., Algorithm 3.2 reported below.

Algorithm 3.2 Improved penalty algorithm(z° € X, €° > 0, o € (0,1))

Ln=0z"=20 " =¢°

2: Step 1. Call Algorithm 3.2.a(z™, ") to generate a new iterate 1.
3: Step 2.

4 if 2" ¢ Woand J(a" 1) — J([a" gRie™) < e |2t — [T gg]|, then
5. e'tl=gen

6: else

7. entl=gn

8: end if

9: Step 3.

10: if 2" = 2! then

11: return [2"TYgp

12: else

13: Set n=n+1 and go to Step 1.

14: end if

Algorithm 3.2.a Reduction via perturbation(z € X, € > 0)

init

1. x =

2: for j=1,...,pmax do

3. Use a local optimization solver to determine a solution z!°¢ of (Ppen) for ¢
using " as initial guess.

4 if J(a!°¢e) < J(x;¢) then

5: return zlo

6: else

7: Generate a point zP°"" = Perturbation(z!°) and set z'" = gPert,

8 end if

9: end for

10: return x

Do note that if the for-loop in Algorithm 3.2.a does finish (and thus no better iterate
was found after ppnax perturbations), the algorithm terminates with x which was
the input iterate. In that case it is 2"*! = 2™ and the overall Algorithm 3.2 then
terminates. Therefore, the perturbation strategy in Algorithm 3.2.a together with the
choice of ppax give the information at what point no further reduction in the objective
function can be found. Algorithm 3.2.a does not specify a perturbation strategy in
line 7 and one can develop a strategy that does fit his own problem in question. We
will present our strategy in the upcoming Section 4.1.

While ¢ is decreased during Algorithm 3.2 (and thus the amount of penalization
is increased), the concave penalty term (3.1) introduces local minima to J(x;€) near

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 11

the integer points of X which, as ¢ is decreased, move towards the integer points.
Due to this behavior, the condition J(z!°¢;e™) < J(z;€™) in line 4 of Algorithm 3.2.a
is always fulfilled as long as € < "' holds in Algorithm 3.2. By this, we expect
Algorithm 3.2 to have a two-phase behavior: in the first phase, the penalization is
increased until a feasible iterate 2! € W is found. In the second phase, Algorithm
3.2.a then tries to improve the current iterate by perturbing it and restarting the
local solver with this perturbed iterate. This way, one wants to escape bad basins of
attraction of J and then move towards better local minima and eventually the global
one.

Depending on the perturbation strategy and on the choice of ppax, the search
strategy described in Algorithm 3.2.a would again find a d-global optimizer (for an
unknown §) and Algorithm 3.2 would reproduce Algorithm 3.1. The main difference
now is that Algorithm 3.2.a only requires a local solver. Therefore, Algorithm 3.2
will be applicable to large-scale problems: the combinatorial complexity induced by a
large control dimension [is taken care of via the penalty term as well as the framework
of the EXP algorithm, and a large state dimension N induced by, e.g., a parabolic or
a 3d PDE constraint can be handled via a sophisticated local solver.

T

Finally, we want to mention that a new iterate z"+! = [y"+1,u”+1] found by
Algorithm 3.2.a is always feasible so that 2! € X. Thus, the criterion "1 ¢ W
in line 4 of Algorithm 3.2 can, in an actual implementation, be replaced by

[0t = " sl > reas

with some feasibility tolerance €feqs. Thus, it is reasonable to return [x"+1] sr such
that the control of our output iterate is always integer and respects the knapsack
constraint.

4. Implementation details, local solver, and numerical setup. We begin
with a discussion on various details of our implementation of the IPA, i.e., Algorithm
3.2/3.2.a, including the perturbation strategy and the local solver. Afterwards, we
shortly introduce two other solution strategies for problem (P) and discuss the setup
and parameter choices for the numerical investigation that will be carried out in
Section 5.

4.1. Implementation details of the IPA. We start with the presentation
of our perturbation strategy used in Algorithm 3.2.a. The details are described in
Algorithm 3.2.b.

As mentioned in Section 3.2, this perturbation strategy should only be called upon
in the later stages of Algorithm 3.2 where the amount of penalization is significant
enough such that the set Is in Algorithm 3.2.b is not empty. When Algorithm 3.2.b
is called by Algorithm 3.2.a inside Algorithm 3.2, z is equal to the current iterate

" = [y”7u"]T. The algorithm then essentially performs 6 € N flips to the current
control u", where a flip is one iteration of the for-loop of Algorithm 3.2.b, i.e., a large
value of u™ is set to a small value and an entry of u" corresponding to a source that
is adjacent to the source corresponding to the large value is set to a large value. By
this strategy the resulting perturbation xP"* possibly lies outside the current basin
of attraction and therefore might be an initial guess for the local solver in Algorithm
3.2.aresulting in a point with a potentially better function value. It remains to explain
what we mean by adjacent in the above context.

For now, we assume that the centers z1, .. ., ; of our source functions are arranged
in a uniform m x m grid over (and make more specifications in Section 4.4). Using

12 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

Algorithm 3.2.b Perturbation(z € X)

1: Split = = (y, u)T into the state y € RV and control u € R'. Define uP¢"* := w.
2: Find Ig, the set containing the indices of the entries of u that are larger than %
3: for j =1,...,min{|Ig|,0} do

4: Randomly select 7 € Ig.

5: Define I,4; the set of indices corresponding to sources adjacent to ;.

6: Randomly select 9q4; € Io4;-

7: Set (uP?); to a randomly chosen value smaller than 3.

8 Set (upe”)iadj to a randomly chosen value larger than 2.

9: Remove 7 from Ig.
10: end for
11: Compute the state yP¢"* corresponding to uP*™, i.e., yP°'t = f(uPet).
12: return Pt i= [yPert yPert

this, we define I,4; the index set of sources adjacent to Z; in the case when ; is an
interior source as

(4.1) {i—-1i+1li—-m—-1i—mi—m+1i+m—1,i+m,i+m+1}.

Since Z; is assumed to correspond to an interior source this set corresponds to the
indices of all sources that are direct neighbors of Z; in the m x m grid of sources.
Obviously this set has to be adjusted if Z; is on the boundary of the source grid.
Although the perturbation strategy presented so far depends on the uniform grid
of source centers in order to determine the index set I,q;, the underlying concept
of this flipping does not depend on the chosen modelling. The large component
(uPet); of the control can often be associated to a spatial counterpart denoted, for
the purpose of clarity, as x; here. In our case this is x; = Z;, the center of the
Gaussian source function. If the control would for example be modeled via piece-
wise constant functions {x;(z)}!_, (as in [29] or Section 5.2), ; could be the center
of the patch of the subdomain that corresponds to x;(z). If the control would be
distributed, x; would be the vertex of the grid that corresponds to u;. Finding the set
of adjacent indices in line 5 of Algorithm 3.2.b then translates to selecting all indices
that correspond to spatial counterparts z with ||z; — Z||, < r, where the radius 7 > 0

controls the degree of adjacency. The set of indices in (4.1) could thus be generated
with the radius r = mifl

With this interpretation, as long as the control can be associated to spatial coun-
terparts of the domain €2, the presented perturbation strategy can easily be applied
to different kinds of controls, models, and domains.

Finally, we found it effective in our experiments to set (u?¢"*), to a random value
in [0.1,0.2] during Algorithm 3.2.b. Afterwards, we calculate d; := | (), — (uP*"™), |
and set (upe”)iadj to a random value in [d; — 0.1, d;]. This strategy ensures that the
perturbed control uP¢"t is still feasible (especially fulfilling the knapsack constraint).
Furthermore, this prohibits the perturbed control of having values that are too close
to 0 or 1. By this, 2P°"* is then an initial guess for the local solver in Algorithm 3.2.a
that (possibly) lies outside the current basin of attraction and is at the same time not
too close to other local minimizers (at this stage of the IPA there are local minimizers
nearby all integer points).

In the remainder of this section, we want to discuss the termination of Algorithm

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 13

3.2.a and thus Algorithm 3.2. The criterion J(z!°¢;e") < J(2";e") in Algorithm
3.2.a (as it is called inside Algorithm 3.2 with x = 2™ and € = €™) can be numerically
challenging in an actual implementation. Although the criterion should be fulfilled
when it was e < ¢”~! in Algorithm 3.2 as mentioned in Section 3.2, this might not
be the case numerically since any local solver used in Algorithm 3.2.a only computes

zloe = [yloc,ul"c}T up to some internal tolerance. Furthermore, if ™ is close to an
integer already, we do not want to accidentally fulfill J(z!°%;e™) < J(2™;e") due to
numerical effects although [u/°¢] = [u"] such that no progress towards a better integer
solution would be made. To cover both of these cases in our implementation, we first
calculate the two distances
dloc = Huloc o unHOO and dfg?}c{ — ||[uloc]SR o [un}SRHOO

and replace J(z!°¢;e™) < J(2™;e™) by the following two criteria and thus return z!°¢
in Algorithm 3.2.a if one of these is fulfilled.

1. If e < "1 and either J(z!°%em) < J(z";em), d'°° < 0.2, or d¥5 = 0 are

fulfilled.
2. Ife™ = e~ L and di¢§ # 0, as well as J(z1°% &™) < J(2";€™), and additionally
J([z'¢)sRr; e™) < J([2"]sRr;e™) are fulfilled.

The first criterion targets the case when J(x!°¢;e™) £ J(x™; ™) numerically (although
it was e < "1 in Algorithm 3.2) and thus also accepts iterates that are either
close to, or presumably in the same basin of attraction as, the previous iterate. We
mention that this usually happens during the first phase of the IPA where the amount
of penalization is increased (due to e"*! = ge™) and is not yet large enough for the
local solver to produce near integer solutions fulfilling Huloc — [ulOC]SRHOO < Efeas- As
a result it is not necessary to search for better solutions via the perturbation strategy
such that this criterion tries to prevent non-productive iterations in Algorithm 3.2.a.
If a feasible iterate was found and the amount of penalization was not increased,
the second criterion only accepts better iterates that lie outside the current basin of
attraction and thus enforces progress towards a better integer solution and should
prevent the algorithm from getting stuck in an unsatisfactory local minimum.

4.2. Implementation of the local solver: an interior point framework for
the large scale setting. We now discuss our implementation of line 3 in Algorithm
3.2.a, that is the choice of the local solver for finding a solution #!°¢ of (Ppen) for
a given . Due to the structure of (Ppen), which was equivalent to (3.2), we opt
for an interior point method (IPM) that is particularly suitable for solving quadratic
programming problems and it also allows the use of an efficient preconditioner in the
linear algebra phase, see, e.g., [32], [33]. Following [33], we present the derivation of
a standard interior point method for the following reformulation of problem (Ppen),
that is

. LN L AT _ 14T, T
yERNglgllQl,zER J(yvuv 5) - Q(y yd) M(y yd) + 5(1 U—1u ’LL),
s.t. Ky=M®u and 1"u+2—-85=0,
0<u<l1 and z >0,

where z > 0 is a scalar slack variable and the notation has been adapted to distinguish
the control w and the state y. For the sake of generality we include the case when the
stiffness matrix K is non-symmetric. The main idea of an IPM is the elimination of

14 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

the inequality constraints on u and z via the introduction of corresponding logarithmic
barrier functions. The resulting Lagrangian associated with the barrier subproblem
reads

Ly (y,u,zp,q) =J (y, use) + p' (Ky — M®u) +g(1 u+z — 5)
l 1
- MZIOg(ui) - uZlog(l —u;) — plog(z),
=1 =1

where p € RY is the Lagrange multiplier (or adjoint variable) associated with the
state equation, g € R is the Lagrange multiplier associated with the scalar equation
1Tu+z-8= 0, and g > 0 is the barrier parameter that controls the relation between
the barrier term and the original objective J(y,u;e). As the method progresses, u is
decreased towards zero.

First-order optimality conditions are derived by applying duality theory resulting
in a nonlinear system parametrized by p as detailed below. Thus, differentiating L, .
with respect to the variables y, u, z, p, ¢ gives the nonlinear system

(4.2a) Mnyyd+KTp:O,
1
c
(4.2¢) g—Ao=0, Ky—Mdbu=0, 1u+z—S=0,

(4.2b) (1—2u)— @ Mp+ql — Auo+ Aus =0,

where the Lagrange multipliers Ay 0, Ay,1 € R! and Az,0 € R are defined as

(Au,0)i == ﬁ, (Au1)i == H fori=1,...,1, and X, o:= g

U].—Ui

Furthermore, the bound constraints A, g > 0, A,,1 > 0 and A, o > 0 then enforce the
constraints on u and z.

The crucial step of deriving the IPM, is the application of Newton’s method to
the above nonlinear system. Letting y, u, z, p, ¢, Ay,0, Au,1 and A ¢ denote the most
recent Newton iterates, these are then updated in each iteration by computing the
corresponding Newton steps Ay, Au, Az, Ap, Aq, AX, 0, AX,1 and AX; ¢ through
the solution of the following Newton system

M 0 0 K' 0] Ay
0 -25,+0, 0 -9 M 1| |Au
(4.3) 0 0 0, 0 1| |Az
K —-M®d 0 0 ol |Ap
0 1’ 1 0 0| |Aq

My — Myq+K'p
11 —2u) =" Mp+ql — Auo + A

= - q7>\z,0
Ky — Mdu
1Tu+2-8

Here, ©, = U Ay o+ (I, — U)"'Ayu1, 0. == X,0/z, and U, Ao, and A, 1 are
diagonal matrices with the most recent iterates of u, A\, 0, and A, appearing on
their diagonal entries. The matrices ©, and 8, > 0, while being positive definite, are
typically very ill-conditioned. Also, due to the term fgfl, the block fgfl + 6, may

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 15

be indefinite, especially for small values of . Following suggestions in [32, Chapter
19.3] to handle nonconvexities in the objective function by promoting the computation
of descent directions, we heuristically keep the diagonal matrix —%Il + O, positive
definite by setting any negative values to some value v > 0.

Once the above system is solved, one can compute the steps for the Lagrange
multipliers via

A>\u,O = *UﬁlAuyoAu — /\u,O + ‘u,Ufl]_’
A)\u,l = (Il - U)_lAu,lAu —)‘u,l —|—M(Il — U)_117
Al o=—(Ns0/2)A%z — X0+ 1)z

A general IPM implementation only involves one Newton step per iteration. Thus,
after choosing suitable step-lengths so that the updated iterates remain feasible, the
new iterates can be calculated and the barrier parameter pu is reduced, thus concluding
one iteration of the IPM. Finally, we report the primal and dual feasibilities

My — Myg+ K p
} and &y := %(1—2U)—@TMp+q1_)\u,0+)\u,l)

Ky — Mou
&p =
q_)‘z,O

1"u+z2-8

as well as the complementarity gap

U)\u,O - Ml
= (I —U)Ay1 — pl|,
Z)\Z,O — U

where measuring the change in the norms of §,, £; and &, allows us to monitor the
convergence of the entire process.

Clearly, the computational burden of this IPM lies in the solution of the Newton
system (4.3) and our strategy regarding this issue is twofold: on the one hand we
employ an inexact Newton-Krylov strategy for the solution of the nonlinear system
(4.2) and on the other hand we design a suitable preconditioner to speed up the con-
vergence of our Krylov method of choice for the Newton system (4.3). Regarding the
inexactness strategy, the idea is to increase the accuracy in the solution of the Newton
equation as p decreases. This minimizes the occurrence of so-called oversolving in the
first interior point steps. Global convergence results to a solution of the first-order
optimality conditions for the resulting inexact IPM can be found in [34].

We will now present our linear algebra strategy for the solution of the Newton
system, i.e., we choose our Krylov method and design a suitable preconditioner.

Preconditioning for the interior point method. Investigating the system matrix of
the Newton system (4.3), we observe that with the choice

M 0 0
K —-M®
0 0 0.
BT
we have to solve a saddle point system [B 0 } . As discussed already, the block

—%Il + O, is kept positive definite throughout the interior point method, so that we
can assume that A is positive definite.

16 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

Such systems are a cornerstone of applied mathematics and appear in many ap-
plication scenarios, see, e.g., [35], [36]. While the system is symmetric and we could
apply MINRES [37], we here use a nonsymmetric method, namely GMRES [38], be-
cause we found that a block-triangular preconditioner

A
P = OA
B -5
performs better in our experiments. It would also be possible to use symmetric solvers,
which are based on nonstandard inner products, see, e.g., [39], [40].

We here focus on the design of the approximations for the (1, 1)-block A~ Aand
for the Schur-complement

G KM7'K" + M®(-21, +0,) "' M 0
0 1" (=20 +0,) "1 +6;1°

In our preconditioning approach, we neglect the term 17 (—%Il +0,) 11+601 and set
the preconditioner to 1 as this typically does not result in many additional iterations
and we avoid dealing with the ill-conditioning of both (—%Il +0,) and .. In our
setup here we thus end up with the following approximation

N e
S:[KM K 0

0 J and A= A.

We close this section with two short remarks.

Remark 4.1. The purpose of this basic preconditioner is to speed up the solution
process of our IPM, but for future research we need to enhance this based on recent
progresses in preconditioning for interior point methods, see, e.g., [41]-[43].

Remark 4.2. Although this IPM together with the preconditioner are formulated
for the penalty formulation (Ppen) that refers to the model problem (2.1), it is clear
that the IPM generalizes to general linear PDE constraints (in fact, Section 5.2 will
contain experiments for a convection-diffusion problem resulting in a nonsymmetric
stiffness matrix K). Furthermore, the IPM and the preconditioner can be formally
adapted to a nonlinear PDE constraint F(y,u) = 0, where F : RN+t — RN is a
smooth nonlinear function. One simply has to introduce F’(y,u) € RN*(N+D the
Jacobian of F as well as F! € RV*Y and F), € RV*! the submatrices of the Jacobian
such that F'(y,u) = [F, F,]. We then obtain the IPM for this nonlinear problem by
replacing in the Newton system (4.3) K' by (FZ;)T, —M® by F! (and thus —®' M
by (F!)"), and Ky — M®u by F(y,u). In the nonlinear case, convergence of the IPM
is ensured when embedded in suitable globalization strategies [32].

4.3. Simple penalty and branch-and-bound method. We shortly discuss
a simple penalty approach and a branch-and-bound strategy for the solution of (P)
to which we want to compare our IPA in the numerical Section 5.

Starting with the penalty formulation (Ppen), we use the following naive iterative
approach: given a feasible initial guess ° € X, an initial penalty parameter €0 > 0
and n =10

1. use a local solver to determine a solution 2" € X of (Ppen) for £ using
" as initial guess,

2. stop if 2" € W, else set e"! = ge™ (0 € (0,1)), n =n + 1 and go to the
first step.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 17

As mentioned at the end of Section 3.2, instead of checking for 2™ +! € W one can use
the criterion ||u"Jr1 — [u”“]SRHOO < €feas- Putting these thoughts into an algorithm,
we end up with the penalty algorithm, i.e., Algorithm 4.1.

Algorithm 4.1 Penalty(z°, €%, o € (0,1))

0 -n 0

n=0z"==x
repeat
Use a local solver to determine a solution "+ of (Ppen) for e using 2" as
initial guess.
En—‘,—l = ge™
n=n+1
until ||u™ — [Un]SR”oo < Efeas
return [z"|sr

LM =¢

N e

Algorithm 4.1 is a simplification of Algorithm 3.2 in several ways. The penalty param-
eter is reduced in every iteration, a new iterate 2"t! generated by the local solver is
always accepted as such, and the algorithm terminates as soon as an iterate 2"+t € W
is found. By this, there is no theoretical framework that might support the algorithm
anymore and one has to hope that the iterates approach the global minimizer of (P),
or at least a good local minimizer.

We can also interpret Algorithm 4.1 as a more sophisticated rounding strategy:
starting from the initial guess x°, by slowly decreasing € (and thus increasing pe-
nalization of a non-binary control), the control is then component-wise slowly driven
towards either 0 or 1.

Regarding the branch-and-bound routine, we neither describe the branch-and-
bound framework in detail here nor present an actual branch-and-bound routine. We
rather refer the reader to [12] for an elaborate overview of the topic. For the numerical
comparison that will be carried out in Section 5, we will utilize cplexmiqp, the branch-
and-bound routine of CPLEX [25] for quadratic mixed integer problems, to solve (P).
Do note that this algorithm incorporates many algorithmic features lately developed
to improve branch-and-bound performance.

4.4. Numerical setting and parameter choices. We present the general
setting in which the numerical experiments will be conducted as well as default pa-
rameter choices for the algorithms. If different choices are utilized, it is mentioned in
the respective experiment.

We choose € := [0,1]? as our computational domain for the numerical experi-
ments. Regarding the Gaussian sources defined in (2.2), we choose I = 100 sources
with centers 71, ..., %; being arranged in a uniform 10 x 10 grid over := [0.1,0.9]%> C

Q (thus, m = 10 w.r.t. (4.1)). The height of the sources is x = 100 and the width w
is chosen such that every source takes 5% of its center-value at a neighboring center.
We mention that this choice of height and width is motivated by [6, Section 4.2]. The
PDE (2.1) is discretized using uniform piece-wise linear finite elements with a step
size of 277 (unless specified otherwise) resulting in N = 16641 vertices.

Whenever a local solver is required, i.e, in Algorithms 3.2.a and 4.1, we use
the interior point method derived in Section 4.2. The outer interior point itera-
tion is stopped as soon as either max{[|&,,,[[€alls, [|€clla} < 1076 or the safeguard
1 < 10715 is triggered. Furthermore, starting from an initial 4 = 1 we decrease u by
factor 0.1 in each outer interior point iteration. The inexactness is implemented by
stopping GMRES when the norm of the unpreconditioned relative residual is below

18 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

n = max{min{10~*, x},107'°}. Finally, the block —2I; + ©,, in the Newton system
(4.3) is kept positive definite by setting any negative values to v = 1076 and the pre-
conditioner proposed at the end of Section 4.2 is applied by performing the Cholesky
decomposition of both M and K once at the beginning of the IPA process.

As initial guess for Algorithms 3.2 and 4.1 the solution of (Pcont) obtained by
our IPM is used. Do note that this is not necessary since (Ppen) for large enough &°
is usually still a convex problem in the first iteration of these algorithms so that any
initial guess would be sufficient.

Further default parameters are €® = 10° for both algorithms as well as ¢ = 0.9
for Algorithm 4.1 and ¢ = 0.7 for Algorithm 3.2. The more conservative value of
o for Algorithm 4.1 is necessary here, since with o being closer to 0 one would risk
increasing the amount of penalization too fast and thus possibly ’skipping’ a good
local minimum and settling for an unsatisfactory local minimum. Finally, we used
the feasibility tolerance €feqs = 0.1 in Algorithm 4.1 and, as discussed at the end of
Section 3.2, in line 4 of Algorithm 3.2.

Regarding cplexmiqp, we use default options except that we set a time limit of
1 hour (unless specified otherwise) and a memory limit of 16000 megabytes for the
search tree.

All experiments were conducted on a PC with 32 GB RAM and a QUAD-Core-
Processor INTEL-Core-17-4770 (4x 3400MHz, 8 MB Cache) utilizing Matlab 2019a
via which CPLEX 12.9.0 was accessed.

5. Numerical Experiments. We begin with four different experiments for our
Poisson model problem (P) and then shortly discuss a convection-diffusion problem
as well as the behaviour of our local solver.

5.1. Poisson model problem. In the first experiment we want to investigate
the performance of the improved penalty algorithm (IPA), i.e., Algorithm 3.2, with
respect t0 ppax € N and 6 € N i.e., how these choices in Algorithms 3.2.a and 3.2.b
affect the solution quality and solution time of the overall algorithm. In the second
experiment we want to see that the IPA can indeed handle large scale problems and
convince ourselves that cplexmigp, the branch-and-bound method of CPLEX intro-
duced in Section 4.3, can not handle large scale problems. In the third experiment we
then carry out a detailed comparison of the IPA with the solution strategies presented
in Section 4.3. In the final experiment we investigate the robustness of the stochastic
component of the IPA, i.e., how the random choices in Algorithm 3.2.b affect the
solution time and quality of the overall algorithm. Do note that due to the different
implementation languages included in these experiments, the reported computational
times only give a qualitative information on the performance of the solvers.

First experiment. For the first experiment we generate a test set of desired states,
which contains 20 different desired states for each value of S € {3, 6,10, 15,20}. Each
desired state y4 in this test set is a solution of (the discretized version of) (2.1) with
S active sources in the right-hand side and the centers of these sources are randomly
distributed over Q = [0.1,0.9]2. The height and width of these sources coincide with
the values that were used for the source-grid in Section 4.4. Clearly, the combinatorial
complexity of the optimization problem corresponding to such a desired state increases
drastically for larger values of S and this will be a good challenge for cplexmiqp as
well as Algorithm 3.2 throughout the various experiments. To further illustrate the
optimization problem here, Figure 5.1 exemplarily shows two desired states, one for
S = 3 and one for S = 20, where the white stars depict Z1,...,Z;, the centers of the
source grid introduced in Section 4.4, and the red stars depict the centers of the S

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 19

active sources in 4.

*
+
¥
+
-
*
k-,
+

*
¥

0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

(a) yq with S = 3 active sources. (b) yq with S = 20 active sources.

Fig. 5.1: Exemplary desired states including the centers of the source grid (white
stars) and the centers of the active sources of the respective desired state (red stars).

In order to investigate the IPA with respect to pmax € N, the amount of perturba-
tion cycles in Algorithm 3.2.a, and # € N, the amount of flips per perturbation in
Algorithm 3.2.b, we solve the created test set with the IPA using the following nine
different variations.

e variations 1 — 3: it is always 0 = 1 and ppax varies as pmax € {100, 300, 500}.

e variations 4 — 6: it is always 8 = 3 and ppax varies as pmax € {100, 300,500}.

e variations 7 — 9: for S € {3,6,10,15,20} we always choose 6 € {1,2,3,4,5}
and pmax varies as pmax € {100,300, 500}.

After solving the test set with these nine variations of the IPA, we compare the results
with respect to solution time and quality. For the solution time, we report 't_av’ the
average solution time in seconds and for the solution quality, we choose the following
two criteria.

e 'min_count’: in each of the 20 runs for a value of S, it is noted which algorithm
(here the nine variations of the IPA) achieved the smallest objective function
value and this algorithm is then awarded a 'min_count’-score. Surely, multiple
algorithms can be awarded a score in the same run (when multiple algorithms
find the same ’best’ minimum).

e 'rel_err_av’: the average relative error. In each of the 20 runs for a value of .5,
we store for each algorithm the relative error between the objective function
value achieved by that algorithm and the smallest objective function value in
that run (the one that was awarded a 'min_count’-score). Thus, only runs that
produced a non-zero relative error are taken into account when computing
the average relative error for an algorithm.

We chose to measure the quality of the algorithms via the described two quantities
since, as the centers of the desired states in the test set are randomly distributed
over Q, the global minimum of the optimization problem is not known analytically.
Therefore, the 'min_count’-value simply tells us how often an algorithm performed
best compared to the other algorithms. The average relative error is an additional
measure of quality.

The results of this first experiment can be seen in Figure 5.2, where the data,
i.e., 'min_count’, 'rel_err_av’, and ’t_av’, is displayed for the 100 instances of the whole
test set (resulting in a total average error and total average solution time). The data

20 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

is displayed in more detailed fashion (splitting up the test set for each value of S) in
the Appendix.

min_count rel_err_av t_av
T T T T T T 11 T T T 1T T T 17 T T T T T T 11
n °
- 0.25 ° I
55 - s ° 1,500 |- .
n o °
50 |- - s | 02 Y - 1,000 |- .
. "
e ’ ° 500 | :
- 0.15 | P s
I Y I I | I Y
123456789 123456789 123456789

Fig. 5.2: Results of the first experiment. The respective data is plotted over the nine
different variations of the IPA.

As the x-axis represents the nine different variations of the IPA, the left-most data
point in Figure 5.2 exemplarily means: from the 100 different desired states in the
test set, the TPA with variation 1 described above, i.e., § = 1 and py.x = 100, got a
'min_count’-score of 43. Remembering the definition of the 'min_count’, this means
that compared to the other eight variations of the IPA, variation 1 found the smallest
objective function value available amongst these nine variations in 43 out of the 100
runs. Similarly, the remaining data points in Figure 5.2 have to be understood.

Now, having a look at the average solution time, we can observe that increasing
Pmax has much more influence on the solution time than increasing 6. This is expected
as an increase in pmax directly results in more calls of the local solver in Algorithm
3.2.a as the IPA can only terminate when it was confirmed in Algorithm 3.2.a that
no better iterate was found after py,.x iterations.

As the main observation of this experiment, we can see that variations 5, 6, and
9 seem to be the most competitive ones. While variation 9 has the overall highest
'min_count’-score, it has a rather large average relative error (compared to variations
5 and 6) and it is also the overall most time consuming one. Variation 6 has again
a very good ’min_count’-score and also convinces with the lowest average relative
error, although it is the second most time consuming variation. Variation 5, being
the computationally cheapest variation (out of these three), does still have a good
‘min_count’-score and relative errors very much comparable to variation 6.

As a result from this first experiment, we choose variation 5 and fix ppax = 300
as well as § = 3 in the IPA for the remaining experiments. This choice should
yield a reasonable balance between solution time and solution quality and prevent an
‘overfitting’ of these parameters towards the test set used in this experiment.

Second experiment. We now want to see that the IPA can handle large-scale
problems and cplexmigp, the branch-and-bound routine of CPLEX, can not. There-
fore, we create a problem instance per value of S € {3,10,20} and per step-size
h € {277,278} of the FEM grid and solve each instance with the IPA, cplexmiqgp
with a 1 hour time limit, cplexmigp with a 10 hour time limit, and (for comparison
reasons) with the simple penalty approach from Algorithm 4.1. Regarding the solu-
tion quality, the algorithm with the lowest objective function value is indicated with

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 21
a 'min’ in Table 5.1 (or a 'min*’ if it was the global minimum) and for each other
algorithm the relative error towards this minimum objective function value is then
displayed. Furthermore, Table 5.1 contains the run times in seconds for each algo-
rithm in each instance, where in case of cplexmiqp 'TL’ indicates that the respective
time limit was reached.

h S Penalty | IPA | cplexmigp 1h | cplexmigp 10h
3 rel_err min® | min® min* .
time (s) 89 925 1527
2-7 | 10 rel_err 20% 13% 13% min
time (s) | 163 | 1035 TL TL
20 rel_err 57% min 19% 1%
time (s) | 188 | 1143 TL TL
3 rel_err min min 6305% 6805%
time (s) 541 6219 TL TL
2-8 | 10 rel_err 8% min 45535% 45535%
time (s) | 1101 | 7550 TL TL
20 rel_err 12% min 93718% 93718%
time (s) | 1400 | 9190 TL TL

Table 5.1: Results of the second experiment. For each problem instance the algorithm
with the lowest objective function value is indicated. The respective relative error of
other algorithms as well as the solution times are furthermore reported.

We observe that for h = 277 and S = 3 all algorithms find the global minimum,
although we stress that this is only a single problem instance which does not allow for
a conclusive comparison with respect to solution quality. A more detailed comparison
will be carried out in the next experiment. With an increase in S (and thus an
increase in the combinatorial complexity of the problem), cplexmigp, while hitting
the prescribed time limit, is still able to provide good solutions, although our IPA
is able to at least keep up with cplexmiqp. Refining the FEM-mesh once and thus
moving towards h = 278 (resulting in N = 66049 instead of N = 16641) results in
cplexmiqgp not being able to handle the problem at all. The time limit is always
reached and the algorithm (even given 10 hours time) terminates with a tremendous
relative error w.r.t. the qualitative solutions found by our IPA. The solution found by
the TPA should then by construction always be better than the solution found by the
simple penalty algorithm. One might be tempted to believe that the simple penalty
algorithm could also be a viable alternative due to its inherent fast solution time but
the next experiment will reveal that the algorithm cannot produce qualitative points
in a reliable way.

Third experiment. In this third experiment we carry out a detailed comparison
between the IPA, the penalty algorithm in Algorithm 4.1 and cplexmiqgp. In order
to do so, we construct another test set as described in the first experiment and as
the desired states in these test sets are randomly generated, this new test set differs
from the one used in the first experiment (upon which 6 and pp,.x were chosen). We
then solve this test set with the algorithms under analysis and compare solution time
and quality using the three criteria introduced in the first experiment (‘min_count’,
'rel_err_av’ and ’t_av’). The results of this experiment can be found in Table 5.2.
Starting the discussion with the S = 3-block of the data (the first 3 rows of Table 5.2),

22 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

S t.av (s) | min_count | rel_err_av
Penalty 88 12 33%
3 TPA 918 20 0
cplexmiqp 1885 20 0
Penalty 125 5 41%
6 TPA 1112 13 6%
cplexmiqp 3486 18 13%
Penalty 152 2 52%
10 1PA 1149 14 37%
cplexmiqp TL 9 5035%
Penalty 184 1 33%
15 1PA 1343 16 11%
cplexmigp TL 5 4311%
Penalty 202 1 56%
20 1PA 1239 15 12%
cplexmiqp TL 5 7582%

Table 5.2: Results of the third experiment. Comparison of the Penalty algorithm, the
IPA and cplexmigp for different values of S.

we see that cplexmiqgp as well as the IPA always find the global minimum, where the
IPA is about 50% faster. The simple penalty algorithm in Algorithm 4.1 , while being
very fast, only finds the global minimum in 12 cases with an average relative error of
33% in the remaining 8 cases. Increasing S (and thus the combinatorial complexity
of the problem), we observe that cplexmiqp (especially for S > 10) fails to find the
global minimum in the given time. The IPA on the other hand then starts to be
the most competitive algorithm in the 'min_count’-sense, i.e., producing the smallest
objective function values compared to the other algorithms (do also note the small
relative average error of the IPA). We can also observe, that the computational time of
the ITPA only slightly increases with S while cplexmiqp at some point always hits the
prescribed time limit. Furthermore, we report that for S = 10, 15, and 20 there was
always one problem instance where cplexmiqp only returned the zero solution (which
is feasible but does not make sense from the application point of view). As a result the
average relative error is significantly large. Combining the results of this experiment
with the results from the second experiment, we can conclude that the IPA can solve
large scale problems, and can, at the same time, compete with cplexmiqp in smaller
problem instances. The simple penalty approach is very fast but, as we can see in
this experiment, fails to produce solutions of high quality in a reliable fashion.
Fourth experiment. In this last experiment, we want to investigate the robustness
of the IPA with respect to its stochastic component, i.e., the random choices made in
Algorithm 3.2.b, in the chosen setting. To this end, we generate a random problem
instance for each value of S € {3,6,10, 15,20} and solve that instance 20 times with
the TPA. We then report for each instance a box-plot of the objective function values
and a box-plot of the solution times obtained in the 20 runs of the instance with the
IPA. The results can be seen in Figure 5.3, where the first row contains the box-plots
of the function values and the second row contains the box-plots of the solution times.
A box-plot (as depicted in Figure 5.3) consists of several parts: the lower and upper
ends of the box represent the 25th and the 75th percentile of the data vector, the

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 23

red line inside the box depicts the median of the data and the black dashed lines
extending the box (especially seen in the second row of Figure 5.3) are the so called
whiskers which represent the remaining data points that are not considered outliers
(which are depicted as red crosses).

108 107 10 <107 x10™
8 12

14 6

10 10
12 5 6

8 8
10 4
8 _ 4 — 6 6 =

3 [] [I] -
6 2 4 4
4 2 —~
$=3 S=6 s=10 S=15 §=20

2000

1500 3000

T
|
1800 }
1600 ‘ 2500

-
- |
|
1400 |
925 | 1400
1300
1200 1400 2000
920 1200
1200
|
|
€L

—_——————

T
1
1
1
1000 1100 1500
1000
1

915 1000 ‘ 1000

Fig. 5.3: Results of the fourth experiment. Box-plots for the objective function values
in the first row and box-plots for the solution times in seconds in the second row.

We begin with the discussion related to the box-plots in the first row of Figure 5.3,
i.e., the results with respect to solution quality. In the first plot, we can see that there
is no variation in the function values obtained by the IPA. Thus, the median contains
all data points such that the IPA is robust in this case. For the remaining box-plots,
we see actual boxes, sometimes whiskers and also some outliers. Nevertheless, by
having a look at the scale in the y-axis of these plots we can safely say that, while
different minimizers are found by the IPA for the same problem instance, all of them
still have very high quality and should be satisfactory solutions for the respective
problem instance. Investigating the second row, i.e., the box-plots for the solution
times, we can observe very little variance in the solution time for S = 3. Again, as
S and thus the complexity of the problem increases, we can observe more variance in
the solution times but it still looks very much acceptable.

5.2. Convection-Diffusion model problem. We now consider the original
optimal control problem, but governed by the convection-diffusion PDE

!
(5.1) —Ay(z) +w(z) - Vy(z) = Zuixz‘(fﬂ)a z €,

with the wind vector w(z) = (2z2(1 — 22), —221(1 — #2))" and piece-wise constant
source functions x1,...,x; € L?(Q), that are constant on the subdomains €, ..., C
) forming a uniform decompostion of Q = [0, 1] into [many squares. Here, we use Q1

24 D. GARMATTER, M. PORCELLI, F. RINALDI AND M. STOLL

finite elements, while also employing the Steamline Upwind Petrov-Galerkin (SUPG)
[44] upwinding scheme as implemented in the IFISS software package [45] to discretize
(5.1) and build the relevant finite element matrices.

For the resulting discretized optimal control problem, we repeat the third ex-
periment from the previous section, where all settings and parameters are chosen as
before. We chose not to include the other experiments to keep the length of this
presentation healthy but can report that results similar to the Poisson problem are
obtained. The result of the third experiment for this convection-diffusion problem
can be seen in Table 5.3.

S t_av (s) | min_count | rel_err_av
Penalty 103 16 39%
3 TPA 943 19 16%
cplexmiqgp 1937 20 0
Penalty 148 7 27%
6 1PA 1008 16 19%
cplexmiqp TL 16 10%
Penalty 198 4 44%
10 1PA 1083 15 12%
cplexmiqp TL 7 24%
Penalty 231 0 50%
15 1PA 1223 15 16%
cplexmiqgp TL 5 52%
Penalty 247 0 38%
20 1PA 1337 14 12%
cplexmiqp TL 6 24%

Table 5.3: Results for the convection-diffusion problem: comparison of the penalty
algorithm, the IPA and cplexmiqgp for different values of S.

Investigating Table 5.3, we observe that cplexmiqp shows basically the same behav-
iour as in the Poisson problem: it is always able to solve the problem in the given time
for S = 3, but then requires much more time and starts to produce unsatisfactory
solutions for larger values of S. The IPA again succeeds in finding either the global
minimum or a reasonable solution in around 15 — 20 minutes. The simple penalty
approach is again very fast, but also quite unreliable in terms of solution quality.

5.3. Analysis of the local solver. As already mentioned, one of the main
benefits of our IPA is the possibility to exploit the problem features through the use
of a cleverly implemented local solver in line 3 of Algorithm 3.2.a. We now briefly
report on the numerical behaviour of our implementation of the IPM described in
Section 4.2. Thus, we create an exemplary problem instance (both for the Poisson
and convection-diffusion problem) for S = 10, and vary the step size of the FEM grid
as h € {275,276}, The instance is then solved for each step size with the IPA, where
the settings for the IPM and the IPA are as before. Figure 5.4 shows the number
of nonlinear (outer) iterations (NLI) required by the IPM and the average number
of preconditioned GMRES iterations (aGMRES) for each value of ¢ visited during
the TPA. Clearly, multiple values reported for a single value of € correspond to active
perturbation cycles of Algorithm 3.2.a.

IMPROVED PENALTY ALGORITHM FOR MIPDECO PROBLEMS 25

Poisson (h = 27°) Convection-Diffusion (h = 27°)
20\7 T 1 117 T T T 171 \\.\\\‘ T \.\.\\\\‘. T T \\\.\\
15 m L] g 9,
[] ° : u : ¢ : " =
Em U
15 = = n ' o N : u . m m °]
E N ° n 10 °
n

[]
10 - l
. l e aGMRES
S5 Beoe
° mNLI
5T R | I - Ll [T]
104 10° 103 104 10°
€ €
Poisson (h = 27°) Convection-Diffusion (h = 279)
20 L T 1 117 T T 1 171 T T 1T T L] T T T 11T
b] EEEEN o’ i
[| I | 15 = - Y
15 | = [e ® B : . : : ® ®°a "
— °] .]
. 10 3
10 |- o °
. e aGMRES ' e aGMRES
- = NLI 51 8 = NLI i
It L L L1 1| ‘ L L L L L1 1| /] \‘ L L1 1117 L L L 111
104 10° 103 10% 10°

3 S

Fig. 5.4: Number of IPM iterations and average GMRES iterations during the IPA
steps for Poisson and convection-diffusion problems for varying grid sizes over the
penalty parameter €.

Firstly, we observe that both values of NLI and aGMRES are higher at the be-
ginning of the IPA process, that is for larger values of €. On the other hand, when
€ gets smaller and more perturbation cycles are expected, the number of IPM itera-
tions may get lower and, mostly, the average number of GMRES iterations is reduced.
This shows that the IPA together with the IPM efficiently drives the solution of prob-
lem (Ppen) to the mixed-integer solution of the original problem. This behaviour is
observed in Figure 5.4 for both problems and the varying mesh sizes.

Secondly, the reported number of average number of GMRES iterations is pretty
low and does not depend on the mesh size. This reveals the effectiveness of the
proposed preconditioner also in combination with the inexact approach. Remarkably,
values of aGMRES are extremely low in the last IPA iterations when ¢ is small.

6. Conclusion & Outlook. A standard MIPDECO problem with a linear PDE
constraint and a modelled control was presented and discretized. A novel improved
penalty algorithm (IPA) was developed, that combines well-known exact penalty ap-
proaches with a basin hopping strategy and an updating tool for the penalty param-
eter. As a result, only a local optimization solver is required and an interior point
method (IPM) that is suited for the problem in question was presented. The linear

26 REFERENCES

algebra phase of the IPM was handled by a Krylov space method together with an
efficient preconditioner. Via this, the IPA was shown to work very well in numerical
applications for a Poisson as well as a convection-diffusion problem when compared to
a simple penalty approach and cplexmiqgp, the branch-and-bound routine of CPLEX.
As an outlook, the authors want to mention that the IPA has already been success-
fully applied to the presented optimal control problem, but governed by the nonlinear
PDE

!
—Ay(z) +y(o)® = Zui¢i(x)a z €,
i=1

where again the Gaussian source functions defined in (2.2) are used and the IPM
has been adapted as described in Remark 4.2. As first results, Figure 6.1 shows the
desired state of a random problem instance for S = 10, as well as the optimal state
found by the IPA. Furthermore, Figure 6.2 shows the result of the experiment from
the previous Section 5.3 conducted for this problem instance.

o8 08

jo7 [

06 06

05 05
L 04 04
' 03 ! 03
’ 02 0.2
! 01 01

0 0
0 02 04 06 08 1 [02 04 06 08 1

Fig. 6.1: Desired state (left) and optimal state found by the IPA (right) for a problem
instance for S = 10 of the nonlinear problem.

Overall, these results are already very encouraging and in future work, a comparison
of the IPA with state of the art solvers for such nonlinear problems should be carried
out (do note that CPLEX cannot deal with nonlinear PDE constraints). Furthermore,
future work shall contain the application to MIPDECO problems that are governed by
time-dependent PDEs as outlined in Remark 2.3 as these result in a truly large-scale
context.

Acknowledgement. D. Garmatter and M. Stoll acknowledge the financial sup-
port by the Federal Ministry of Education and Research of Germany (support code
05M180CB). D. Garmatter, M. Porcelli, and M. Stoll were partially supported by
the DAAD-MIUR Joint Mobility Program 2018-2020 (Grant 57396654). The work of
M. Porcelli was also partially supported by the National Group of Computing Science
(GNCS-INDAM).

References.
[1] F. Troltzsch, Optimal control of partial differential equations: Theory, methods,
and applications. American Mathematical Soc., 2010, vol. 112.
[2] M. Hahn, S. Leyffer, and V. M. Zavala, Mized-Integer PDE-Constrained Optimal
Control of Gas Networks, Argonne National Laboratory, MCS Division Preprint
ANL/MCS-P9040-0218, Feb. 2017.

REFERENCES 27

h=2"5 h =26
20 L T 1 171 ‘ T T 1 171 T T 1 171 ‘ T 1 171
o ©® ¢ 20 |-)
[] [J []
] I I T | °
15| = . ° LI 51 = n : [T |
° ' | - | |
10 ° °
o e aGMRES 10 | e aGMRES
mNLI ° s NLI
L L1 1| ‘ L L L L L1 1| L L I ‘ L L L L L 1|
104 10° 104 10°
€ €

Fig. 6.2: Number of IPM iterations and average GMRES iterations during the IPA
steps for the nonlinear problem instance for varying grid sizes over the penalty pa-
rameter €.

[3] M. E. Pfetsch, A. Fiigenschuh, B. Geifiler, N. Geifler, R. Gollmer, B. Hiller, J.
Humpola, T. Koch, T. Lehmann, A. Martin, et al., “Validation of nominations
in gas network optimization: Models, methods, and solutions,” Optimization
Methods and Software, vol. 30, no. 1, pp. 15-53, 2015.

[4] S. Funke, P. Farrell, and M. Piggott, “Tidal turbine array optimisation using
the adjoint approach,” Renewable Energy, vol. 63, pp. 658-673, 2014.

[5] P.Y.Zhang, D. A. Romero, J. C. Beck, and C. H. Amon, “Solving wind farm
layout optimization with mixed integer programs and constraint programs,”
EURO Journal on Computational Optimization, vol. 2, no. 3, pp. 195-219, Aug.
2014.

[6] C. Wesselhoeft, “Mixed-Integer PDE-Constrained Optimization,” PhD thesis,
Imperial College London, 2017.

[7] S. Gottlich, A. Potschka, and C. Teuber, “A partial outer convexification ap-
proach to control transmission lines,” Computational Optimization and Appli-
cations, vol. 72, no. 2, pp. 431-456, Mar. 2019, 1SSN: 1573-2894.

[8] P. Manns and C. Kirches, “Multi-dimensional Sum-Up Rounding for Elliptic
Control Systems,” DFG Preprint SPP1962-080, 2018.

9] S. Leyffer, P. Manns, and M. Winckler, Convergence of Sum-Up Rounding
Schemes for the Electromagnetic Cloak Problem, Argonne National Laboratory,
MCS Division Preprint ANL/MCS-P9268-1219, Dec. 2019.

[10] J.Larson, S. Leyffer, P. Palkar, and S. M. Wild, “A method for convex black-box
integer global optimization,” ArXiv preprint arXiv:1903.11366, 2019.

[11] M. Sharma, M. Hahn, S. Leyffer, L. Ruthotto, and B. van Bloemen Waanders,
Inversion of Convection-Diffusion Equation with Discrete Sources, Argonne Na-
tional Laboratory, MCS Division Preprint ANL/MCS-P9270-1219, Dec. 2019.

[12] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,
“Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1-131,
2013.

[13] M. De Santis and F. Rinaldi, “Continuous reformulations for zero-one program-
ming problems,” Journal of Optimization Theory and Applications, vol. 153, no.
1, pp. 7584, 2012.

[19]

[20]

REFERENCES

F. Giannessi and F. Niccolucci, “Connections between nonlinear and integer
programming problems,” in Symposia Mathematica, Academic Press New York,
vol. 19, 1976, pp. 161-176.

S. Lucidi and F. Rinaldi, “Exact penalty functions for nonlinear integer pro-
gramming problems,” Journal of optimization theory and applications, vol. 145,
no. 3, pp. 479-488, 2010.

F. Rinaldi, “New results on the equivalence between zero-one programming and
continuous concave programming,” Optimization Letters, vol. 3, no. 3, pp. 377—
386, 2009.

W. X. Zhu, “Penalty Parameter for Linearly Constrained 0—1 Quadratic Pro-
gramming,” Journal of Optimization Theory and Applications, vol. 116, no. 1,
pp- 229-239, 2003.

M. F. P. Costa, A. M. A. C. Rocha, R. B. Francisco, and E. M. G. P. Fernandes,
“Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear
programming,” Optimization, vol. 65, no. 5, pp. 1085-1104, 2016.

S. Lucidi and F. Rinaldi, “An exact penalty global optimization approach for
mixed-integer programming problems,” Optimization Letters, vol. 7, no. 2, pp. 297—
307, 2013.

W. Murray and K.-M. Ng, “An algorithm for nonlinear optimization problems
with binary variables,” Computational Optimization and Applications, vol. 47,
no. 2, pp. 257288, 2008.

G. Di Pillo, S. Lucidi, and F. Rinaldi, “An approach to constrained global
optimization based on exact penalty functions,” Journal of Global Optimization,
vol. 54, no. 2, pp. 251-260, 2012.

G. D. Pillo, S. Lucidi, and F. Rinaldi, “A Derivative-Free Algorithm for Con-
strained Global Optimization Based on Exact Penalty Functions,” Journal of
Optimization Theory and Applications, vol. 164, no. 3, pp. 862-882, 2013.

A. Grosso, M. Locatelli, and F. Schoen, “A population-based approach for hard
global optimization problems based on dissimilarity measures,” Math. Program.,
vol. 110, no. 2, pp. 373-404, 2007.

R. H. Leary, “Global optimization on funneling landscapes,” J. Global Optim.,
vol. 18, no. 4, pp. 367-383, 2000.

IBM ILOG CPLEX, https://www.ibm.com/analytics/cplex-optimizer.

S. R. Fipke and A. O. Celli, “The Use of Multilateral Well Designs for Improved
Recovery in Heavy-Oil Reservoirs,” in JADC/SPE Drilling Conference, Society
of Petroleum Engineers, 2008.

U. Ozdogan and R. N. Horne, “Optimization of well placement under time-
dependent uncertainty,” SPE Reservoir Evaluation € Engineering, vol. 9, no.
02, pp. 135-145, 2006.

S. Leyffer, Optimization: Applications, Algorithms and Computations. 24 lec-
tures on Nonlinear optimization and Beyond, 2016.

C. Buchheim, R. Kuhlmann, and C. Meyer, “Combinatorial optimal control of
semilinear elliptic PDEs,” Computational Optimization and Applications, vol.
70, no. 3, pp. 641-675, 2018.

F. Giannessi and F. Tardella, “Connections between nonlinear programming and
discrete optimization,” in Handbook of Combinatorial Optimization, Springer
US, 1998, pp. 149-188.

M. Locatelli and F. Schoen, Global optimization: Theory, algorithms, and ap-
plications. Siam, 2013, vol. 15.

REFERENCES 29

J. Nocedal and S. J. Wright, Eds., Numerical Optimization. Springer-Verlag,
1999.

J. Gondzio, “Interior point methods 25 years later,” European Journal of Op-
erational Research, vol. 218, no. 3, pp. b87-601, 2012.

S. Bellavia, “Inexact interior-point method,” Journal of Optimization Theory
and Applications, vol. 96, no. 1, pp. 109-121, 1998.

H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast itera-
tive solvers: With applications in incompressible fluid dynamics, ser. Numerical
Mathematics and Scientific Computation. New York: Oxford University Press,
2005.

M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point
problems,” Acta Numerica, vol. 14, pp. 1-137, 2005.

C. C. Paige and M. A. Saunders, “Solutions of sparse indefinite systems of linear
equations,” SIAM J. Numer. Anal, vol. 12, no. 4, pp. 617-629, 1975.

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput, vol. 7,
no. 3, pp. 856-869, 1986.

M. Stoll and A. Wathen, “Combination Preconditioning and the Bramble—
Pasciak™ Preconditioner,” SIAM J. Matriz Anal. Appl, vol. 30, no. 2, pp. 582—
608, 2008.

H. S. Dollar, N. I. M. Gould, M. Stoll, and A. Wathen, “Preconditioning saddle
point problems with applications in optimization,” SIAM J. Sci. Computing,
vol. 32, pp. 249-270, 2010.

J. W. Pearson, M. Porcelli, and M. Stoll, “Interior-point methods and precondi-
tioning for PDE-constrained optimization problems involving sparsity terms,”
Numerical Linear Algebra with Applications, vol. 27, no. 2, 2020.

J. W. Pearson and J. Gondzio, “On Block Triangular Preconditioners for the
Interior Point Solution of PDE-Constrained Optimization,” Domain Decompo-
sition Methods in Science and Engineering XXIV, vol. 125, p. 503, 2019.

L. Bergamaschi, J. Gondzio, and G. Zilli, “Preconditioning indefinite systems
in interior point methods for optimization,” Computational Optimization and
Applications, vol. 28, no. 2, pp. 149-171, 2004.

A. N. Brooks and T. J. Hughes, “Streamline upwind/Petrov-Galerkin formu-
lations for convection dominated flows with particular emphasis on the incom-
pressible Navier-Stokes equations,” Computer methods in applied mechanics and
engineering, vol. 32, no. 1-3, pp. 199-259, 1982.

H. C. Elman, A. Ramage, and D. J. Silvester, “Algorithm 866: IFISS, a Matlab
toolbox for modelling incompressible flow,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 2, 14—es, 2007.

Appendix. Figure 6.3 contains the detailed representation of the data from the

first experiment conducted in Section 5, where the color of the plot indicates the
results for the different values of S, i.e., S = 3 (blue circles), S = 6 (green crosses),
S = 10 (red crosses), S = 15 (turquoise stars) and S = 20 (pink boxes), and the
x-axis encodes the different variations of the IPA. Furthermore, Figure 6.4 contains a
zoomed in version of the data from the same experiment for S = 6.

30 REFERENCES

min_count rel_err_av t_av
1T T T 1T T T 117 1T T T 1T T T 11 T T T 1T T T 17
04l | 2,500 - B
20 [X X - [| 3
[X X (X X ®
181 1 035} e
.
" e+ | 2,000} o
16 = " 03] 1 x
am] ® m «
14 - s = ® ®
. 025 o *°%7 (R
12 = m e - * | 1,500 |- . :
*
0.270 | «~ W
107 | ‘I** | I
* * ¢ * ®
® e] ' hd °
8 o ox| 0150 s, 1000 ¢ & °
e o ® ’ Py i
6 * % | 0.1} ¢ - ¥
® * : []
4t **% ¢ - 5 (N] [N N]
N N 1 500 o
' ®
21 * ¢ t ® ™
. . 0F [X N) —) ®
0, |
I I | I Y I |
123456789 123456789 123456789

Fig. 6.3: Results of the first experiment. Data for S = 3 (blue dots), S = 6 (red
boxes), S = 10 (brown dots), S = 15 (black stars) and S = 20 (blue diamonds) is
plotted over the nine different variations.

t_av
T T T
[]
16 -] LI
E =]
14 R
]
12 - [] N

1 2 3 4 5 6 7 8 9

Fig. 6.4: Results of the first experiment: only the 'min_count’ data for S = 6 is plotted
over the nine different variations.

	1 Introduction
	2 Problem formulation
	2.1 Continuous optimal control problem
	2.2 Discretized model problem and continuous relaxation

	3 Improved penalty algorithm (IPA)
	3.1 Penalty formulation and exact penalty (EXP) algorithm
	3.2 Development of the improved penalty algorithm (IPA)

	4 Implementation details, local solver, and numerical setup
	4.1 Implementation details of the IPA
	4.2 Implementation of the local solver: an interior point framework for the large scale setting
	4.3 Simple penalty and branch-and-bound method
	4.4 Numerical setting and parameter choices

	5 Numerical Experiments
	5.1 Poisson model problem
	5.2 Convection-Diffusion model problem
	5.3 Analysis of the local solver

	6 Conclusion & Outlook

