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Abstract

We introduce the Stochastic Maintenance Fleet Transportation Problem for Offshore wind farms (SMFTPO), in

which a maintenance provider determines an optimal, medium-term planning for maintaining multiple wind farms

while controlling for uncertainty in the maintenance tasks and weather conditions. Since the maintenance provider

is typically not the owner of a wind farm, it needs to adhere minimum service requirements that specify the required

service. We consider three of such settings: 1) perform all maintenance tasks, 2) allow for a fraction of unscheduled

tasks, and 3) incentivize to perform maintenance rather quickly. We provide a two-stage stochastic mixed integer

programming model for the three SMFTPO settings, and solve it by means of Sample Average Approximation. In

addition, we provide an overview of the, what we discovered, non-aligned modeling assumptions in the literature

regarding operational decisions. By providing a series of special cases of the second-stage problem resembling the

different modeling assumptions, we aim to establish a common consensus regarding the key modeling decisions to

be taken in maintenance planning problems for offshore wind farms. We provide newly constructed, and publicly

available, benchmark sets. We extensively compare the different SMFTPO settings and its special cases on those

benchmark sets, and we show that the special case reformulations are very effective for solving the second-stage

problems. In addition, we find that for particular cases, established modeling techniques result in overestimations

and increased running times.

Keywords: Mixed Integer Programming, Stochastic Programming, Offshore Wind, Transportation, Service

Logistics, Maintenance

1. Introduction

Successful offshore wind maintenance service logistics requires a thought-out maintenance strategy describing

service-vessel1 utilization strategies for the medium- and long-term. Such strategies need to consider a highly

stochastic, operational environment, in which the turbines’ failure behavior is difficult to predict and in which

weather conditions determine the wind farm’s daily accessibility (Shafiee 2015, Shafiee and Sørensen 2017). In

addition, misaligned objectives between the wind farm owner (i.e., profit maximization) and the maintenance ser-
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1For readability, we use the term ‘vessel’ to indicate both helicopters and vessels
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vice provider (i.e., cost minimization) has led to current practices where operations are streamlined by imposing

minimum service requirements (Ferreira et al. 2014). These are contractually binding requirements specifing the

required performance of the maintenance provider. In this context, we study a stochastic maintenance planning

problem for offshore wind farms, controlling for uncertain maintenance tasks and weather conditions, in which we

explicitly take the viewpoint of a maintenance service provider that is subject to such minimum service require-

ments. We refer to this problem as the Stochastic Maintenance Fleet Transportation Problem at Offshore wind

farms (SMFTPO).

When considering decisions on a tactical level as in the SMFTPO, simplifications on the underlying operational

planning problem are insurmountable as the operational planning is already shown to be computationally challing

in a deterministic setting (see, e.g., Irawan et al. 2017, Schrotenboer et al. 2018, 2019). However, the extent of such

simplifications affects the medium-term vessel utilization and thereby long-term vessel charter strategies. A wide

variety of approximations (and underlying assumptions) have been made in the literature, and we show, by means

of a thorough review, that there is no common consensus on those assumptions. We present four categories of

modeling decisions that are crucial for the resulting complexity and practicality of the optimization problems. We

aim to provide more insight into the impact of those assumptions on the tractability of the resulting optimization

problems, and consequently, how this affects the computational efficiency. This structural overview of the im-

pact of such assumptions on the underlying optimization problem, both computationally and mathematically, will

contribute to the development of a common consensus on key modeling decisions in offshore wind maintenance

logistics.

Inspired by offshore wind practices observed in the Netherlands, and contrary to previous work in offshore

wind maintenance service logistics (see e.g., Stålhane et al. 2016b), we take the perspective of a single, large

maintenance service provider that is responsible for the maintenance of one or multiple offshore wind farms. This

maintenance service provider is not the owner of the wind farms and, therefore, does not bear the risk of uncertain

production revenues due to the highly volatile energy prices and the risk of production losses due to downtime of the

turbines. The maintenance service provider’s sole priority is adhering the minimum service requirements specified

in a service contract between the wind farm owner and the maintenance service provider, typically resulting in

a misalignment of objectives between wind farm owner (production maximization) and the maintenance service

provider (maintenance cost minimization). This is in contrast with the current literature, in which it is assumed

that objectives are aligned and the sum of total costs will be minimized, without imposing hard constraints on the

service requirements.

In this paper, we introduce the Stochastic Maintenance Fleet Transportation Problem for Offshore wind farms

(SMFTPO). Its goal is to develop a cost-minimizing, medium-term maintenance planning by assigning vessels to

depots (O&M bases) in the first stage, and after the uncertain maintenance tasks and weather conditions are re-

vealed, to assign maintenance tasks to the vessels in the second stage. This is, to the best of the authors’ knowledge,

the first study on a tactical level of decision making in offshore wind maintenance service logistics. We consider

three settings of the SMFTPO, each describing a different variant of minimum service requirements. These set-
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tings are 1) to perform all maintenance tasks, 2) to allow for a fraction of unscheduled tasks, and 3) to incentivize

performing maintenance rather quickly. We provide a general two-stage stochastic mixed integer programming

formulation and its scenario-based large scale representation which we solve by Sample Average Approximation

(see, e.g., Kleywegt et al. 2002, Santoso et al. 2005). The second-stage is modelled by using decomposed and time-

expanded networks, which are commonly used in network design applications (see, e.g., Crainic 2000, Andersen

et al. 2011) and for which sophisticated solution approaches have been developed (see, e.g., Boland et al. 2017).

We provide insights in the value of the stochastic solution and the effect of the different service requirements, both

from a computational and a managerial point of view.

In addition, we exemplify the impact of different decisions regarding the identified modeling categories by

studying five special cases of the second-stage problem of the SMFTPO, resulting in a series of reformulations

for each SMFTPO setting. The special cases are inspired on practical observations in offshore wind, on the need

for further mathematical insights as identified in our literature review, or on both. The special cases elaborate on

differences between single and multiple wind farm settings, maintenance task pre-processing techniques, and the

level of detail of the operational problem. A numerical investigation on the computational tractability of the special

cases is performed to assess the trade-off between the level of modeling detail and the computational performance.

The formulations of the special cases are shown to be very efficient in terms of computational efficiency. Moreover,

it is numerically shown that pre-processing maintenance tasks into bundles (see, e.g., Gundegjerde et al. 2015) will

result in an overestimation of the total incurred maintenance costs, although it is computationally attractive to do

so. To foster future research in this area, we made our set of benchmark instances publicly available2.

1.1. Literature Review

The SMFTPO relates to so-called fleet size and mix problems in offshore wind, which focus on strategic

decision making (buying or chartering a vessel) as opposed to the tactical decision making (assigning vessels to

wind farms and maintenance tasks) in the SMFTPO. Halvorsen-Weare et al. (2013) presents the first application

of fleet size and mix problems in the context of offshore wind. They propose a MIP formulation, which formed the

basis of the 3-stage stochastic programming approach by Gundegjerde et al. (2015). It includes stochastic vessel

spot rates, weather conditions, electricity prices, and turbine failures.

Motivated by this seminal work, a number of papers have studied slight variants of this optimization prob-

lem or introduced new solution approaches.The work by Stålhane et al. (2016a) considers a similar setting as

Gundegjerde et al. (2015). By advanced preprocessing of maintenance tasks, they provide the first sophisticated

solution approach in this context. Its mathematical model forms the basis of three other works. First, Stålhane

et al. (2016b) use the same concepts to study optimal fleet size and mix over the complete lifetime of a wind farm.

Second, Gutierrez-Alcoba et al. (2017) provide additional insights by means of a sophisticated case-study. Third,

Halvorsen-Weare et al. (2017) developed a metaheuristic approach in which uncertainty is assessed by means of

2https://sites.google.com/rug.nl/albertschrotenboer
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simulation. Slightly different works are those by Stålhane et al. (2017) studying optimal jack-up vessel chartering

strategies and the work of Sperstad et al. (2017) on the robustness of different decision support tools.

Since the accurateness of the modeling of operational activities such as vessel routing and short-term mainte-

nance planning is crucial for the difficulty of fleet size and mix problems, we shortly review the most important

contributions in that area. The short-term planning of maintenance tasks in offshore wind farms has become in-

creasingly popular among researchers. A series of research articles (Dai et al. 2015, Stålhane et al. 2015, Irawan

et al. 2017, Raknes et al. 2017, Schrotenboer et al. 2019, 2018) discuss this problem, leading to a branch-and-

price-and-cut method for the single wind farm case (Schrotenboer et al. 2019), and a metaheuristic approach for

the multiple wind farm case (Schrotenboer et al. 2018).

In addition, a number of articles are written about decisions support tools for offshore wind maintenance

logistics (see, e.g., Stålhane et al. 2015, 2016a). The interested reader is referred to the work of Hofmann (2011)

for a review of papers on decisions support tools for offshore wind (maintenance) logistics. For interested readers

on the installation phase of offshore wind farms, see the papers by Vis and Ursavas (2016) and Ursavas (2017). For

all contributions on fleet size and mix problems in onshore logistics, we refer the interested reader to the recent

review by Braekers et al. (2016). Finally, for all other aspects related to offshore wind maintenance logistics that

are not stringently relevant to the SMFTPO, we refer the reader to the excellent review by Shafiee and Sørensen

(2017).

The notion of minimum service requirements is, to the best of the authors’ knowledge, not considered before in

maintenance planning optimization problems focussing on offshore wind. However, it is well-known that mainte-

nance performance should be measured and the right incentives should be given (Parida et al. 2015). Especially in

more mature industries that include applications in rail (see, e.g., Lidén 2015) and power systems (see, e.g., Froger

et al. 2016) the use of minimum service requirements is common. However, the impact of stochastic weather

conditions that limit the maximum working hours in a period is typical for offshore wind, and can not directly be

related to other applications. We, therefore, introduce three basic minimum service requirements and investigate

their impact on the maintenance planning problem as discussed in this paper.

1.1.1. Modeling decisions and assumptions.

From the literature review it is clear that a series of research articles has been devoted to offshore wind mainte-

nance planning problems. However, those studies are typically not aligned with regards to their modeling decisions.

We discuss, what we call, four modeling categories, and we detail how the existing studies have taken decisions

within.

First, there is a difference between maintenance tasks that take more than a single period, and less than a single

day. The papers by Halvorsen-Weare et al. (2013) and Gundegjerde et al. (2015) partition the set of maintenance

tasks based on their duration (whether they take a single period or more). However, the impact of this on the

computational tractability is not discussed by the authors. In Stålhane et al. (2016b) and Stålhane et al. (2016a),

task durations are assumed to be at most a single period, i.e., tasks are not scheduled among multiple periods.
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Second, taking the perspective of a single, large maintenance provider in offshore wind (as in the SMFTPO),

the question how to jointly use multiple depots (ports or harbours) is of utmost importance. In Gundegjerde et al.

(2015), they assume vessels can switch depots, however, they consider only a single wind farm in their experiments.

Hence it is not clear what the impact of this assumption is. In Stålhane et al. (2016b), vessels may switch depots,

however as the period length resembles several months, this does not have a great influence. In Stålhane et al.

(2016a) and Halvorsen-Weare et al. (2017) it is assumed that vessels are associated with a single base.

The third modeling category is the modeling and categorization of maintenance tasks. Halvorsen-Weare et al.

(2013) and Gundegjerde et al. (2015) consider every task on its own, but belonging to different categories that

define whether or not a vessel is eligible to perform the maintenance task. Moreover, they assume that a task can

only be completed by a single vessel. In Stålhane et al. (2016b), the considered time horizon length equals the

wind farm lifetime and the length of single period is in the order of several months. Tasks of the same category

are assumed to demand a number of technicians, and a piecewise linear relation between vessel fleet capacity and

incurred downtime costs is proposed. The same holds for, Stålhane et al. (2016a) and Halvorsen-Weare et al.

(2017) though they have a similar focus as Ahmadi-Javid and Seddighi (2012), i.e., they consider a time horizon

of a year and periods reflect days. In this paper, we are especially interested in the impact of assuming that a single

job is performed by one vessel only.

The final modeling category is the extent to which minimum service requirements are imposed, as we detailed

for the SMFTPO in the former. Halvorsen-Weare et al. (2013) and Gundegjerde et al. (2015) consider a penalty

cost for not scheduling maintenance tasks. Before solving actual instances, penalty costs need to be set so that

enough tasks are completed in order to reflect practical situations. This is structurally different from the SMFTPO,

as we model minimum service requirements with hard constraints. The papers by Stålhane et al. (2016b), Stålhane

et al. (2016a), and Halvorsen-Weare et al. (2017) model the assigned vessel’s capacity to wind farms and penalize

under- and over-coverage of the expected number of needed technicians.

1.2. Contributions and outlook

Summarizing, four key differences of this paper with the current literature are observed. First, all the above-

mentioned papers considered the wind farm as a single entity of which the total costs are to be minimized. We,

however, take the viewpoint of a maintenance service provider subject to minimum service requirements. Such a

maintenance service provider is not concerned with production losses but minimizes their own costs so that the

maintenance service requirements are met. Second, all the above-mentioned papers on optimizing maintenance

planning at offshore wind farms did not provide mathematical insights into the underlying MIP formulations and

its relation to the observed computational performance. In this paper, we provide such insights in Section 4, by

discussing a series of reformulations for special cases in offshore wind. Third, we study tactical decision making,

i.e., we allocate an already existing vessel fleet to wind farms and depots instead of focusing on strategic or

operational decisions, allowing us to elaborate further on those mathematical insights. Fourth, by taking decisions

on a tactical level, the SMFTPO is the first model that allows vessels to be utilized from multiple depots.
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Figure 1: Example planning horizon with T = 12 periods devided into L = 4 leaseterms each with a length of 3 periods.

The remainder of this paper is structured as follows. In Section 2, we provide, next to a formal problem

statement, the two-stage stochastic mixed integer programming formulation and its scenario-based large-scale

monolithic formulation. In Section 3, we present five special cases of the second-stage problem of the SMFTPO

that focus on the modeling categories and assumptions discussed in Section 1.1.1. A numerical analysis of all the

special cases and the SMFTPO is provided in Section 4. We conclude our work in Section 5, where we provide

numerous avenues for further research as well.

2. Problem Formulation

In this section, we present the Mixed Integer Programming (MIP) formulation for the Stochastic Maintenance

Fleet Transportation Problem for Offshore wind farms (SMFTPO). We first describe the system upon which the

SMFTPO is based, and discuss the first and second stage decisions to take. After that, we provide a time expanded

and decomposed network formulation upon which we model the second-stage decisions. We discuss three distinct

second-stage optimization models each of which is tailored towards a particular setting of minimum service re-

quirements. In the first setting, all maintenance tasks need to be scheduled. In the second setting, a fraction α of

so-called technician hours can be left unscheduled. The third setting restricts the maximum fraction β of periods

on which turbines are left unrepaired. Those three settings, although stylized, will provide realistic cost estima-

tions of the medium-term maintenance planning accounting for different incentives; the setting with α unscheduled

technician hours is commonly encountered and results in delaying tasks that are most unprofitable, and the setting

with at most β downtime periods resembles a maintenance contract giving incentives to perform maintenance tasks

rather quickly.

We end this section by providing the two-stage stochastic programming model and its scenario-based mono-

lithic formulation. In the remainder, we denote uncertainty by the set Ξ. Dependency on this set is denoted by the

general descriptor ·(ξ), where ξ ∈ Ξ.

2.1. System description

An overview of the notation used for describing the system is given in Table 1. We consider a time horizon

T = {1, . . . ,T } that is partitioned in L lease terms of equal size. We refer to each t ∈ T as a period. Each period

has a maximum number of working hours. The corresponding periods of each lease term ` ∈ L = {1, 2, . . . , L} are

given by T ` = {(T/L)(` − 1) + 1, . . . , (T/L)`}. In Figure 1, an example planning horizon with T = 12 periods and

L = 4 leaseterms is presented. Throughout the paper we will assume that T/L ∈ N.
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Table 1: Overview of the main sets, parameters, and decision variables

Determenistic sets and parameters

T = {1, . . . ,T } The complete time horizon

W = {1, . . . ,W} Set of wind farms

D = {1, . . . ,D} Set of depots

L Number of leaseterms with equal length T/L ∈ N

V = {1, . . . ,V} Set of vessels

S v
1 Number of technicians on board vessel v ∈ V

S v
2 Number of hours that technicians can perform maintenance per period on vessel v ∈ V

Ĉv
d` Costs of assigning vessel v to depot d in leaseterm `.

P̂ Exogenous costs of changing the assigned depot of a vessel in the second stage

Lm Set of maintenance categories

Lv Set of vessel types

Θ(`v) Set of maintenance categories that can be performed by vessel type `v

Θ(`m) Set of vessel types that can perform maintenance category `m

θ(`m, `v) Equals 1 if vessel type `v can perform maintenance category `m

Stochastic sets and parameters

M(ξ) = {1, . . . ,M(ξ)} Set of maintenance tasks

Mw(ξ) Number of maintenance tasks at wind farm w

Mwt(ξ) Number of maintenance tasks at wind farm w in period t

S m(ξ) First period in which maintenance task m can be scheduled

Em(ξ) The latest period in which maintenance task m can be scheduled

Tm(ξ) The set of periods in which maintenance task m can be scheduled

Fm(ξ) Wind farm in which maintenance task m is located

Dm
1 (ξ) Number of technicians demanded for maintenance task m

Dm
2 (ξ) Number of hours of work (for each of the demanded technicians) v ∈ V

Htw
`v

(ξ) Number of hours vessel type `v can work offshore in period t at wind farm w

Decision variables

yv
d` First stage binary variable equalling 1 if vessel v is assigned to depot d in period `.

xv
i j(ξ) Second Stage binary variable whether arc (i, j) ∈ AT is traversed by vessel v

zv
i j(ξ) number of technician hours send along arc (i, j) ∈ AT by vessel v

The set of wind farms is denoted byW. Each wind farm w ∈ W consists of Nw turbines and is geographically

represented by a single set of coordinates (Xw,Yw). All distances within a wind farm will be ignored. LetD be the

set of depots (O&M bases). Each depot d ∈ D is geographically placed at (Xd,Yd). Distances between depots and

wind farms are assumed to be Euclidean.

The set of stochastic maintenance tasks is denoted byM(ξ) = {1, . . . ,M(ξ)}. A maintenance task m ∈ M(ξ)

is part of a particular wind farm Fm. The set of maintenance tasks at wind farm w ∈ W is defined asMw(ξ) :=

{m ∈ M(ξ) : Fm = w}. Every maintenance task m has a number of consecutive periods T m(ξ) in which it can

be scheduled, the first period being denoted by S m, and the latest period is denoted by Em. We call the periods

7



between S m(ξ) and Em(ξ) the maintenance window. Then, the set of maintenance tasks of windfarm w at period t

is defined asMwt(ξ) := {m ∈ Mw(ξ) : S m(ξ) ≤ t ≤ Em(ξ)}.

We consider a given fleet of vesselsV that are deployed for performing maintenance tasks. Each vessel v ∈ V

transports S v
1 technicians that can work S v

2 hours in each period. Each maintenance task requires Dm
1 technicians to

work for Dm
2 hours to be completed. We will model the demand (resp. supply) of technicians in terms of technician

hours: The number of technicians multiplied with the number of hours they are required (resp. available) to work.

The supply of technician hours can be restricted to reflect travel time, unloading time, or severe weather conditions.

Each maintenance task m can be categorized to a maintenance category `M ∈ LM , where the set LM =

{1M , . . . , LM} contains all maintenance categories. Similarly, each vessel v can be categorized to a vessel type

`V ∈ LV , where the set LV = {1V , . . . , LV } is the set of vessel types. A vessel cannot perform all maintenance

categories. We use `M(m) and `V (v) to denote the category of a maintenance task m and the type of a vessel v,

respectively. We let θ(`M , `V ) = 1 if maintenance category `M can be performed by vessel type `V . For notational

convenience, we let Θ(`m) := {`V ∈ LV | θ(`M , `V ) = 1}, and Θ(`V ) := {`M ∈ M | θ(`M , `V ) = 1}. In other

words, Θ(`M) ⊆ LV are all the vessel types that can perform maintenance category `M , and Θ(`V ) ⊆ LM are all the

maintenance categories that can be performed by vessel type `V .

We define Hwt
`V (ξ) as the number of hours that a vessel of type `V can perform maintenance tasks in period t at

wind farm w. This reflects the impact of weather conditions on the daily operations. We, hereby, imply that vessels

cannot change wind farms within a period. However, wind farms being close are likely to be exposed to similar

weather conditions, and such wind farms will be modeled as a single wind farm.

Then, the SMFTPO is a two-stage stochastic optimization problem. In the first stage, we need to assign vessels

to depots for each lease period l ∈ L. Then, in the second stage, after the set of maintenance tasks and the weather

conditions are revealed, we need to assign the vessels to the maintenance tasks. We allow a vessel to change depot

in the second stage with a penalty cost P̂. The first-stage decisions are modelled by binary decision variables yv
d`

equalling 1 if vessel v ∈ V is assigned to depot d ∈ D in leaseterm ` ∈ L, and 0 otherwise.

2.2. The second stage problem

We model the second-stage problem, i.e., given a first-stage decision and after observing uncertain parameters

ξ ∈ Ξ, as a network design problem on a decomposed and time-expanded network. An overview of the notation

used is provided in Table 2. The time expansion is made on the period level, i.e., nodes encode a maintenance

task in a particular period. The decomposition is made in the vessel dimension, as we assume their movements are

independent. To enhance readability, we omit the dependency on ·(ξ) in this subsection.

We first consider a flat network (i.e., no time expansion or decomposition) that forms the basis of the decom-

posed and time-expanded formulation. Let G = (N ,A) be this network, where the node set N consists of a node

for each wind farm w ∈ W, depot d ∈ D, and maintenance task m ∈ M. The arc set A consists of two types of

arcs:

(1) We create arcs (i, j) for each i, j ∈ (D∪W), i.e., arcs between depots and reachable wind farms.
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Table 2: Overview of node and arc sets in the decomposed and time-expanded formulation

Node Sets

GT The time expanded network

NT Set of nodes in the time expanded graph.

N
T ,v
D

Set of nodes representing depots (for vessel v).

N
T ,v
W

Set of nodes representing wind farms (for vessel v).

N
T ,v
M

Set of nodes representing maintenance tasks (for vessel v).

N
T ,v
art Set of nodes representing artificial source and sink nodes (for vessel v).

Arc Sets

AT ,v Set of arcs in the time expanded graph.

A
T ,v
1 Set of arcs from depot nodes to wind farm nodes.

A
T ,v
2 Set of arcs from wind farm nodes to depot nodes.

A
T ,v
3 Set of arcs from depot nodes to depot nodes.

A
T ,v
4 Set of arcs from wind farm nodes to task nodes, and vice versa.

A
T ,v
5 Set of arcs connecting artificial (source and sink) nodes to depots, and vice versa.

A
T ,v
4 (m) Set of incoming arcs into nodes representing maintenance task m.

A
T ,v
4 (w) Set of incoming arcs into nodes representing maintenance tasks at windfarm w.

(2) We create arcs (i,w) and (w, i) for each i ∈ Mw and for all w ∈ W, i.e., arcs between maintenance tasks and

their corresponding wind farms.

2.2.1. Decomposed and time-expanded network.

Let T and v ∈ V be given. The corresponding, decomposed and time expanded graph is then defined as

GTv = (NTv ,A
T
v ) for each vessel v ∈ V. The node set is defined as NTv := NT ,v

D
∪ N

T ,v
W
∪ N

T ,v
M
∪ N

t,v
art . Here

N
T ,v
D

:= {(d, t) | d ∈ D, t ∈ T }, NT ,v
W

:= {(w, t) | w ∈ W, t ∈ T }, NT ,v
M

:= {(m, t) | m ∈ M : `V (v) ∈ Θ(`M(m)), t ∈

(T m ∩ T )}, and NT ,vart := {` | ` ∈ L}. In other words, those sets contain node copies for each t ∈ T representing

the depots, wind farms, the eligible maintenance tasks for vessel v, and artificial nodes modeling the availability of

vessels.

The arc setAT ,v is partitioned into the setsAT ,v1 ,AT ,v2 ,AT ,v3 ,AT ,v4 , andAT ,v5 , which are constructed as follows:

(1) Arcs ((d, t), (w, t)) ∈ AT ,v1 for each d ∈ D, j ∈ W, t ∈ T . Note that we only consider arcs from a depot to

a windfarm if it is reachable from that depot. The costs of these arcs represent the daily traveling costs.The

capacity of this arc represents the realization of Htω
`v

.

(2) Arcs ((w, t), (d, t + 1)) ∈ AT ,v2 for each w ∈ W, d ∈ D, t ∈ T\T . Here t + 1 refers to the first period that

follows t in T . Again, we only consider wind farm to depot arcs if the wind farm can be reached from the

depot. The costs represent the traveling costs.

(3) Arcs ((d, t), (d′, t + 1)) ∈ AT ,v3 for each d, d′ ∈ D, t ∈ T\T . These arcs between depots represent either no

maintenance (if they connect the same depot) or the recourse action that can be taken to change the allocation

of the vessel to a different depot. In case of the latter, travel costs and the penalty P̂ are incurred.
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(4) Arcs ((i, t), (w, t)) ∈ AT ,v4 and ((w, t), (i, t)) ∈ AT4 for each i ∈ Mwt, t ∈ T , w ∈ W. These arcs represent

performing a particular maintenance task in a wind farm. The costs represent maintenance specific costs.

The capacity of those arcs resemble the demand for technician hours by the maintenance task.

(5) Arcs (`, (d, t′)) and ((d, t′), ` + 1) ∈ AT ,v5 , with t′ being the earliest period t in lease period ` and t′′ the latest

period t in lease period `, for all ` ∈ L\L. These arcs model the inflow of vessels in a lease term, as depicted

by the first-stage solution. The costs are already included in the first-stage decision. The capacity of this arc

equals the supply of technician hours of vessel type `v

Example 1. An illustrative example of a time-expanded network GTv for an arbitrary vessel v ∈ V is presented in

Figure 2. Using this graph, we can model the second-stage problem of the SMFTPO as a network design problem.

In the example, we included two wind farms ‘wf1’ and ‘wf2’, two depots ‘D1’ and ‘D2’. In this particular example,

wf1 is only reachable from D1, and wf2 is only reachable from D2. On the left, the node ‘ART’ is a artificial node

acting as source (and sink) of the vehicle flow. In the example, six jobs ‘j1’-‘j6’ are depicted. It is seen that jobs

‘j1’-‘j3’ are located in the first wind farm, and the remaning jobs in the second wind farm. Each job is only present

in its maintenance window, e.g., job six is not present in period 2. Finally, note the (red) arcs between the depots,

which model either a period in which no maintenance is performed (an arc between the same depot) or a period

where the vessel changes depot and incures the penalty P̂.

art

D1 wf1 wf1

j1

j2

j3

D1 wf1 wf1

j1

j2 D1

D2 wf2 wf2

j4

j5

j6

D2 wf2 wf2

j4

j5 D2

D1

D2

Art

t = 1 t = 2 t = 3, . . . , 30

Figure 2: (Color online) Graph GTv corresponding to Example 1 with in blue (and dotted) the set AT ,v1 , in brown (and densily dotted) the set

A
T ,v
2 , in red (and dashed) the set AT3 , in green (and dashdotted) the set AT ,v4 , and in black (and solid) the set AT ,v5 . For illustrative purposes,

only a single vessel is included in the example

2.2.2. Second-stage mixed integer programming formulation.

We can model the second-stage problem of the SMFTPO on the decomposed and time-expanded networks

GT . Let xv
i j be a binary decision variable equaling 1 if arc (i, j) ∈ AT ,v is traversed by vessel v ∈ V. Let zv

i j be

a continuous decision variable indicating the number of technician hours sent along arc (i, j) ∈ ATv . For each arc
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(i, j) ∈ ATv , we let Uv
i j be the total number of technician hours (or capacity) that can be sent along (i, j) with vessel

v, as described in the former.

We define Cv
i j as the costs of traversing arc (i, j) and we let Fv

i j be the task-specific maintenance cost per

supplied technician hour. Note that these costs are exogenously given and might be used to make a distinction

between corrective or preventive maintenance costs. We elaborate more on the actual construction of the arc

capacities and costs in the numerical results in Section 4.

Some additional notation is required in order to obtain a concise formulation. Let δ+(S ) := {(i, j) ∈ ATv | i ∈

S , j < S } and δ−(S ) := {(i, j) ∈ ATv | i < S , j ∈ S } for any S ⊆ NTv . In addition, we denote with δn the difference in

incoming and outgoing technician hours. This equals 0 for each node except the artificial nodes NT ,vart , in which δn

models the availability of vessels and their corresponding supply of technician hours (i.e., the first-stage decision).

Finally, we refer to the complete vectors of decision variables by denoting them in bold, e.g., with y we denote yv
d`

for all d ∈ D, ` ∈ L, and v ∈ V. Then, the second-stage problem of the SMFTPO asks for solving

Q(x, z | ξ) := min
∑
v∈V

∑
(i, j)∈AT ,v

Cv
i jx

v
i j +

∑
v∈V

∑
m∈M

∑
(i, j)∈AT ,v4 (m)

Fv
i jz

v
i j (1)

s.t.
∑

(i, j)∈δ+(n)

xv
i j ≤ 1 ∀ n ∈ NT ,v

D
, v ∈ V (2)

∑
(i, j)∈δ−(n)

xv
i j ≤ 1 ∀n ∈ NT ,v

D
, v ∈ V (3)

∑
(i, j)∈δ−(n)

zv
i j −

∑
(i, j)∈δ+(n)

zv
i j = δn ∀n ∈ NT ,v, v ∈ V (4)

zv
i j ≤ Uv

i jx
v
i j ∀(i, j) ∈ AT ,v (5)∑

v∈V

∑
(i, j)∈AT ,v4 (m)

zi, j ≥ Dm
1 Dm

2 ∀m ∈ M (6)

xv
i j ∈ {0, 1}, zv

i j ∈ R+ ∀ (i, j) ∈ AT ,v, v ∈ V (7)

The Objective (1) minimizes the costs over the arcs in the network. Constraints (2) and (3) ensure that a

vessel cannot be split to multiple wind farms in the same period and that it returns to a single depot, respectively.

Constraints (4) ensure the flow conservation of technicians, and Constraints (5) ensure that only a positive flow of

technician hours can be sent along an arc if it is traversed. Constraints (6) ensure that every task is being performed

and the variable domains are denoted by (7).

Example 2. In Figure 3, we provide two feasible example flows of technician hours (of vessel v) through the same

graph as in Example 1. In black, we depict a solution that visits windfarm 1 and works on job 1 and job 3 in period

1, and switch depots in period 2. In blue, we work in wind farm 2 on job 6 in period 1, and switch depots in period

2.
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Figure 3: (Color online) Illustration accompanying Example 2 that shows two feasible flows (a dashed and blue flow, and a solid black flow) of

technician hours through the time expanded network. For illustrative purposes, only a single vessel is included.

2.2.3. The three SMFTPO settings.

The minimum service requirements, as modeled by Constraints (6), impose that all the tasks should be sched-

uled within their imposed time windows. This is the first setting of the SMFTPO. However, this might not reflect

the practical incentives of a maintenance service provider that does not bear any risk of incurred downtime costs.

In the second setting, we allow that a fraction αw of demanded technician hours in wind farm w ∈ W is left

unassigned. The values of αw are typically small (e.g., 0.10 or 0.05). We model this as follows: The total supply

of technician hours to maintenance tasks should be at least (1 − αw) times the total demand of technician hours of

all the maintenance tasks. The second setting asks for solving

Qα(x, z | ξ) := min
∑
v∈V

∑
(i, j)∈AT ,v

Cv
i jx

v
i j +

∑
v∈V

∑
m∈M

∑
(i, j)∈AT ,v4 (m)

Fv
i jz

v
i j (8)

s.t.
∑
v∈V

∑
(i, j)∈AT ,v4 (w)

zv
i j ≥ (1 − αw)

∑
w∈Mw

Dw
1 Dw

2 ∀ w ∈ W (9)

Constraints (2) - (5), (7)

Constraints (9) ensure that, for each wind farm w, the fraction of technician hours supplied by the vessels is at least

(1 − αw) of the total number of required technician hours. Constraints (2) - (5), and (7) are unchanged, as no other

modeling restrictions need to be taken into account.

In the third setting, we consider a maximum fraction βw of so-called downtime periods. These are defined as

the difference between the first possible period of scheduling a task and the latest period in which a task is actually

performed. We introduce the variable ηm, being equal to the latest period in which task m is scheduled. This is

required since tasks could be split up among different periods and vessels. The third setting of the SMFTPO asks

12



for solving

Qβ(x, z, η | ξ) := min
∑
v∈V

∑
(i, j)∈AT ,v

Cv
i jx

v
i j (10)

+
∑
v∈V

∑
m∈M

∑
(i, j)∈AT ,v4 (m)

Fv
i jz

v
i j

s.t.
∑

m∈Mw

ηm − S m ≤ β
wNwT ∀w ∈ W (11)

ηm ≥ txv
i j ∀ (i, j) ∈ A{t},v4 (m),m ∈ M, t ∈ T , v ∈ V (12)

S m ≤ ηm ≤ Em ∀ m ∈ M (13)

ηm ∈ R+ ∀ m ∈ M (14)

Constraints (2) - (7)

Constraints (11) ensure that the number of downtime periods is, for each windfarm w, at most βw times the max-

imum number of production periods. Constraints (12) ensure that the variables ηm are equal to the last period

in which maintenance task m is scheduled, and Constraints (13) impose a trivial upper and lower bound on the

variables ηm. Finally, Constraints (14) indicate that ηm is a continuous variable.

2.3. Two-stage stochastic programming formulation

In order to provide a concise two-stage mixed integer stochastic programming formulation for each of the three

SMFTPO variants, we introduce the following notation. We gather feasibility of the second stage variables x, z, η

in the feasibility sets X,Z so that we can denote x ∈ X to ensure feasibility of the second stage decision. Similar

notation is used for z and η. Let φdv`
i j be equal to 1 if arc (i, j) ∈ AT ,v connects the the artifical source node at lease

term ` to depot d. Then, the SMFTPO asks for solving

z := min
∑
d∈D

∑
`∈L

∑
v∈V

Ĉv
d`y

v
d` + Eξ[Q(x, z, ξ)] (15)

s.t.
∑
d∈D

yv
d` ≤ 1 ∀` ∈ L, v ∈ V (16)

∑
(i, j)∈AT ,v5

yv
i jφ

d`
i j − xv

d` ≤ 0 ∀d ∈ D, v ∈ V, ` ∈ L (17)

x ∈ Y, z ∈ Z (18)

Here, Objective (15) minimizes the sum of first-stage vessel assignments and the expected costs of the second-

stage decisions. Constraints (16) ensure that a vessel is assigned at most once every period. Constraints (17) are

the non-anticipativity constraints linking the first and second stage decisions. Finally, with Constraints (18) we

indicate second-stage feasibility of x and z.

The above formulation is for the first setting of the SMFTPO, i.e., when all maintenance tasks need to be

scheduled. Replacing Q(x, z, ξ) with Qα(x, z, ξ) or Qβ(x, z, η, ξ) results in the second SMFTPO setting in wich we
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can leave a fraction αw of demanded technician hours unscheduled (denoted by zα) and the third SMFTPO setting

where the fraction of downtime periods is at most β (denoted by zβ), respectively.

2.3.1. Monolithic formulation by scenario generation.

Instead of directly working with the two-stage stochastic mixed integer programming formulation above, we

will consider set of generated scenarios Ξ of size N and its accompanying monolithic formulation. This formulation

can directly be solved with commercial MIP solvers and is provided in Appendix A.

We will employ a Sample Average Approximation (SAA) approach to solve this monolithic formulation (see,

e.g., Kleywegt et al. 2002, Santoso et al. 2005). In order to detail this procedure, we write solving the scenario-

based formulation of the SFTMPO as

zSAA := min
y∈Y

Ĉy +
∑
ξ∈Ξ

1
N

[
Q(xξ, zξ, ξ | xξ ∈ Xξ, zξ ∈ Zξ)

] (19)

Here, the superscript ξ in the second-stage decision variables xξ and zξ denotes that we explicitly define the vari-

ables for each scenario ξ ∈ Ξ (see also appendix A).

Then, SAA consists of the following two steps:

1. We take M samples of N scenarios. Let zSAA
i denote the solution of the monolithic MIP imposed by the

N scenarios in sample i ≤ M. Then L̂B := 1
M

∑M
i=1 zSAA

i is an estimation of a lower bound on an optimal

solution of the two-stage stochastic mixed integer program.

2. Let j := arg mini zSAA
i the sample with the lowest objective value. Let ŷ be the corresponding first-stage

solution. To estimate an upper bound, we take this first-stage solution and evaluate it on M′ scenarios. That

is, for each scenario ξi, 1 ≤ i ≤ M′, we calculate zSAA
ξi = Ĉŷ + Q(xξi

, zξi
, ξi | ŷ). Then, we estimate an upper

bound for the two-stage stochastic mixed integer program by ÛB := 1
M′

∑M′
i=1 zSAA

ξŷ .

Once again, we can replace Q(·) with Qα(·) or Qβ(·) to solve the monolithic formulations of the second and third

setting of the SMFTPO, respectively.

3. Modeling decisions for the second-stage problem

In this section, we present a series of reformulation for the second-stage problem of the SMFTPO (for each

setting) by imposing additional assumptions. We refer to these formulations as special cases for the second-

stage problem of the SMFTPO, or in short special cases. As stated in Section 1.1.1, we identified four modeling

categories that are both relevant from an optimization perspective and a practical point of view. These modeling

categories are (1) the duration of maintenance tasks, (2) the allocation of vessels to depots, (3) the modeling and

categorization of maintenance tasks, and (4) the induced minimum service requirements.

Table 3 provides an overview of the special cases and the corresponding modeling decisions. With regards to

the task duration, a distinction is made based on wether they take more than 1 period, or not. A preprocessing step
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Table 3: Overview of special cases and relation to modeling categories. Note that Special Case IV equals the SMFTPO for a single scenario ξ,

L = 1 and P̂ = 0

1) task duration 2) vessel allocation 3) maintenance modeling 4) service requirements

Special Case I ≥ 1 period 1 depot free all, α, β

Special Case II ≥ 1 period 1 depot no split jobs all, α, β

Special Case III ≤ 1 period 1 depot no split jobs & bundles all, α, β

Special Case IV ≥ 1 period ≥ 2 depots free all, α, β

Special Case V ≤ 1 period ≥ 2 depots no split jobs & bundles all, α, β

is required that splits the tasks that take more than 1 period into tasks that take at most a single day. The vessel

allocation indicates if chartered vessels are allowed to change depots in their lease term. Special Cases I-III are

single windfarm, single depot cases, and inherently assume it is not possible to change depots. Special Cases IV

and V consider multiple depots, and we allow vessels to change depots during the lease term. The maintenance

modeling has two distinct assumptions that we investigate. First, whether jobs can be completed by more than a

single vessel (referred to as ‘free’), and second, whether the preprocessing step is taken (referred to as ‘bundles’).

Finally, we specify the special cases for each of the service requirements as discussed in Section 2, which we refer

to as ‘all’, ‘α’, and ‘β’. Note that this leads us to fifteen distinct models (fifteen special cases with each three

different service requirements).

In the following, we describe these special cases, show how they reduce to classic problems in the field of

Operations Research, and provide an outlook of their computational efficiency. Note that, without additional

assumptions, maintenance tasks might take any amount of time, vessels are allowed to use all the depots available,

and all the maintenance tasks are treated individually.

Finally, to not distract the reader from our goal to highlight the impact of different modeling assumptions and

to keep the exposition concise, we will assume that there are no costs attached for assigning vesssels to depots for

the special cases. Therefore, we will assume that the complete planning horizon is comprised of a single leaseterm

for the special cases and that P̂ = 0.

3.1. Special Case I: Single wind farm

In the case of a single depot, there is no need to track the vessels’ depot and the vessels’ wind farm location

over time. Hence, constraints ensuring that vessels can only depart from, and work in, a single wind farm or depot

are abundant. The analysis in the following will also hold for multiple wind farms when vessels cannot change

depot, since, then, the problem can be decomposed in a straightforward way.

Assuming a single wind farm allows the reformulation of the second-stage problem of the SMFTPO into

(variants of) the capacitated facility location problem. In facility-location terms, we need to open capacitated

facilities (a vessel traveling to the wind farm in a particular period), and assign customers’ demand (technician

hours) to the opened facility. Let ŷv
tm be the fraction of the demanded technician hours of task m fulfilled by vessel

v in period t. Let uv
t be a binary decision variable whether vessel v is deployed in period t. Let Uv

t be the total
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technician hours that can be supplied from vessel v in period t. Let Ctm be the costs of maintaining task m in period

t, and let Gv
t be the fixed vessel deployment costs.

We need to impose upper bounds Y
v
tm on the variable yv

tm in the following way. First, if task m does not exist

in period t, we set Y
v
tm = 0 for all v ∈ V. Second, the fraction (D1

mS 1
v)/(D1

mD2
m) indicates the maximum fraction

of technician hours that can be sent from vessel v to task m in period t. This ensures, for example, that if a task

demands 3 technicians for 16 hours, no supply of 48 (3 × 16) technician hours in a single period can be sent to

satisfy the tasks’ demand. Hence we set Y
v
tm = min{1, (D1

mS 2
v)/(D1

mD2
m)}. Notice that this still allows for multiple

vessels supplying a particular task with more technicians than possible in a single period. However, this is typically

not observed in the resulting optimal solutions due to the set-up costs of visiting a wind farm, and we, therefore,

do not include additional constraints to cover those scenarios. Then, this special case is solved by finding

Qf1(ŷ,u | ξ) := min
∑
t∈T

∑
m∈M

∑
v∈V

Ctmŷv
tm +

∑
v∈V

∑
t∈T

Gv
t uv

t (20)

s.t.
∑
m∈M

Dm
1 Dm

2 ŷv
tm ≤ Uv

t uv
t ∀ t ∈ T , v ∈ V (21)

∑
v∈V

∑
t∈T

ŷv
tm ≥ 1 ∀ m ∈ M (22)

0 ≤ ŷv
tm ≤ Y

v
tm, u

v
t ∈ {0, 1} ∀ t ∈ T ,m ∈ M, v ∈ V (23)

Objective (20) minimizes the fixed costs of deploying a vessel and the task specific costs. Constraints (21) ensure

that no more technicians are deployed than possible in each period. Constraints (22) ensure that all tasks are

performed, and Constraints (23) indicate the domain of the decision variables. The formulations Qα
f1(ŷ,u | ξ) and

Qβ
f1(ŷ,u, η1, η2 | ξ) are similar as discussed in Section 2, i.e., they model the minimum service requirements in

which at most α unscheduled technician hours are allowed and in which the fraction of downtime periods is at

most β, respectively. To keep our exposition concise, we provide these formulations in Appendix Appendix B.

3.2. Special Case II: Single wind farm and dedicated vessels

An often encountered constraint is that a single maintenance task should completely be performed by a single

vessel. We refer to this assumption as ‘dedicated vessels’. This implies that the we need additional binary variables

λv
m equaling 1 if vessel v ∈ V is assigned to task m. This special case then reduces to solving
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Qf1-v1(ŷ,u, λ | ξ) := min
∑
t∈T

∑
m∈M

∑
v∈V

ŷv
tmCtm + Gv

t uv
t (24)

s.t.
∑
m∈M

Dm
1 Dm

2 ŷv
tm ≤ Uv

t uv
t ∀ t ∈ T v ∈ V (25)

∑
v∈V

∑
t∈T

ŷv
tm ≥ 1 ∀ m ∈ M (26)

∑
t∈T

ŷv
tm ≤ λ

v
m ∀ m ∈ M, v ∈ V (27)

∑
v∈V

λv
m ≤ 1 ∀ m ∈ M (28)

0 ≤ ŷv
tm ≤ Y

v
tm, λ

v
t , u

v
m ∈ {0, 1} ∀ t ∈ T ,m ∈ M, v ∈ V (29)

Constraints (27) and (28) ensure that each maintenance task is only performed by a single vessel. Hence, finding

Qf1-v1(ŷ,u, λ | ξ) is equal to solving a facility location problem in which demand of a ‘customer’ can only be

assigned to a, to be determined, subset of opened facilities. Similar to the previous exposition, the models for this

special case with the generalized minimum service requirements (Qα
f1-v1(ŷ,u, λ | ξ) and Qβ

f1-v1(ŷ,u, λ, η1, η2 | ξ))

are provided in Appendix Appendix B.

3.3. Special Case III: Single wind, dedicated vessels, and bundle preprocessing

We can preprocess the maintenance tasks such that each vessel is assigned to a so-called bundle of tasks in

every period (Gundegjerde et al. 2015). These bundles are sets of maintenance tasks that will be performed on a

single day. Inherently, it is assumed that tasks will take less than a period. One could argue that tasks can be split

up into smaller pieces that fit into a period, a strategy we will follow in our numerical analysis in Section 5. The

major concern is the number of bundles being generated. For the zbasic variants one can assume that each period

contains at most φ tasks, the total number of bundles will be approximately V
∑φ

i=1

(
Mvt

i

)
. The number of bundles

might be reduced in two ways. First one could provide sophisticated enumeration algorithms in which particular

bundle compositions are suboptimal. Second, one could use a dynamic discretization discovery algorithm (Boland

et al. 2017) which iteratively enlarges the set T .

For the single wind farm case, with bundle preprocessing, we need to solve a set covering problem, i.e., one

needs to assign preprocessed task bundles to a vessel in a particular period. We only need a single set of variables,

as technician hours cannot be split between tasks as in the previous models. We let B the set of all possible

bundles of maintenance tasks. The binary parameter φm
b equals 1 if maintenance task m is contained in bundle

b ∈ B. Other notation for bundles b ∈ B is straightforwardly obtained from the notation on maintenance tasks: Db
1

and Db
2 denote the demanded technicians and the demand working hours of those technicians for bundle b ∈ B,

respectively. Binary variables ỹv
tb indicate whether vessel v in period t is assigned to bundle b. The upper bounds
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on the ỹv
tb variables are similarly obtained as their task counterpart. Then, this variant asks for solving:

Qf1-b(ỹ | ξ) := min
∑
t∈T

∑
b∈B

∑
v∈V

ỹv
tbCv

tb (30)

s.t.
∑
v∈V

∑
t∈T

ỹv
tbφ

m
b ≥ 1 ∀ b ∈ B (31)

∑
b∈B

ỹv
tb ≤ 1 ∀ t ∈ T , v ∈ V (32)

0 ≤ ỹv
tb ≤ Y

v
tb ∀ t ∈ T , v ∈ V, b ∈ B (33)

The Objective (30) minimizes the costs of assigning bundles to vessels, and Constraints (31) ensure that each

maintenance task is being completed. The generalizations to the other minimum service requirements (Qα
f1-b(ỹ | ξ)

and Qβ
f1-b(ỹ | ξ)) are provided in Appendix Appendix B. The above formulation classifies as a traditional set-

covering formulation.

3.4. Special Cases IV and V: Multiple farms and bundle preprocessing

We refer to the second-stage problem of the SMFTPO (see (1) - (14)) with P̂ = 0 and L = 1 as Special Case

IV. We like to impose the idea of bundle preprocessing on the general second-stage problem of the SFTMPO, and

refer to that as Special Case V.

To consider job bundles instead of individual tasks, we need to merge the task nodes, as illustrated in Figure

2, into sets of tasks. We thereby implicitly assume that only complete tasks are part of a bundle, otherwise the

number of generated bundles becomes too large, or one should allow a separate flow for each task in the bundle

thereby undoing the whole benefit of introducing bundles. We do so by preprocessing the maintenance tasks in

tasks of at most a single day, see Section 4.

Let us revise some of the notation. First, we disregard the flow variables zv
i j, since selecting an arc entering a

bundle immediately implies performing all the tasks within the bundle. This implies that the flow conservation (i.e.,

Constraints (4)) are modelled in terms of the xv
i j variables. Moreover, we assume that the task-specific maintenance

costs Fv
i j are incorporated in the Cv

i j, as we only have binary decision variables. LetAT ,v4 (b) be the set of incoming

arcs of bundle b ∈ B. Then the basic formulation with bundle preprocessing reduces to finding

Qb(x | ξ) := min
∑
v∈V

∑
(i, j)∈AT ,v

Cv
i jx

v
i j (34)

s.t.
∑

(i, j)∈δ+(n)

xv
i j ≤ 1 ∀ n ∈ NT ,v

D
, v ∈ V (35)

∑
(i, j)∈δ−(n)

xv
i j ≤ 1 ∀n ∈ NT ,v

D
, v ∈ V (36)

∑
(i, j)∈δ−(n)

xv
i j −

∑
(i, j)∈δ+(n)

xv
i j = δn ∀n ∈ NT ,v, v ∈ V (37)

∑
v∈V

∑
(i, j)∈AT ,v4 (b)

xv
i jφ

m
b ≥ 1 ∀m ∈ M (38)

xv
i j ∈ {0, 1} ∀ (i, j) ∈ AT ,v, v ∈ V (39)
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Objective (34) minimizes the costs of traveling along edges in the network. Constraints (35) and (36) ensure that

vessels cannot be split between different depots and wind farms. Constraints (37) ensure that flow is conserved in

all nodes but the source and sink nodes. Constraints (38) ensure that all tasks are being performed, and Constraints

(39) indicate the domain of the x variables.

As in the previous expositions, the formulations for the other minimum service requirements (Qα
b (x | ξ) and

Qβ
b(x | ξ)) are provided in Appendix Appendix B.

4. Numerical Results

The goal of this section is twofold. First, we provide a numerical analysis of the second-stage special cases

of the SMFTPO as discussed in Section 3. We assess their computational tractability on a set of newly created

benchmark instances. Second, we provide an analysis of the three different settings of the SMFTPO by solving the

two-stage stochastic optimization models, using the the monolithic formulations and an SAA approach.

In the following, we first describe how we constructed the benchmark instances for the second-stage models.

Afterward, we show the performance of the different special cases on the benchmark instances. We analyze the

proposed solutions by the different formulations and assess which formulations are the most suitable for particular

offshore wind scenarios. Then, we discuss the implications for managers and scientists in the field of offshore wind

maintenance service logistics, in which we focus on how the identified modeling categories (Sections 1.1.1 and 3)

relate to the presented results. Then, we discuss the benchmark instances used for testing the two-stage stochastic

models, and we finally present results on that.

4.1. Benchmark instances for the second-stage models

The newly constructed benchmark instances are inspired on the works of Gundegjerde et al. (2015) and Stål-

hane et al. (2016a). In addition, information and knowledge gathered from industry partners participating in our

research project on “Sustainable service logistics for offshore wind farms”3 is used as well. The analysis consists

of two parts, one for comparing the different models and assumptions for the single wind farm case (Benchmark

Set A - Special Cases I-III), and one for comparing it in the context of multiple wind farms (Benchmark Set B -

Special Cases IV-V).

Within the benchmark sets, the instances differ in the number of turbines in the wind farm(s) and in the total

number of periods. Three instances are randomly constructed, as described below, for each combination of the

number of wind farms and the number of periods. This results in 30 instances for Benchmark Set A and 24

instances for Benchmark Set B. See Table 5 and 6 for an overview of the instances and the corresponding solutions.

The maintenance tasks are generated as follows. We consider five different maintenance categories: (i) small

preventive maintenance, requiring 2 - 4 technicians for 2 - 12 hours; (ii) large preventive maintenance, requiring

2 - 6 technicians for 12 - 24 hours; (iii) small corrective maintenance, requiring 2 - 3 technicians for 2 - 6 hours;

3https://www.rug.nl/cope/projecten/servicelogistiek-windmolens
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(iv) severe corrective maintenance, requiring 3 - 5 technicians for 12 - 36 hours; (v) Lifting operations, requiring

3 technicians for 2 hours. Each turbine has a tuple p =< p1, p2, p3, p4, p5 > denoting the probability of a mainte-

nance event of each type. Technician demand and required hours are then drawn uniformly from the intervals as

specified in the former. We ensure that the number of lifting operations is smaller or equal to the number main-

tenance tasks performed. We ignore any precedence relations between maintenance tasks (see, e.g., Gundegjerde

et al. 2015).

An overview of the considered transportation modes is provided in Table 4. We assume all the transportation

modes are available in each period. Although varying fleets over time can be handled by the special cases, we

choose to keep the fleet composition constant to not overly complicate the analysis.

Weather conditions limit the vessel’s daily availability. For this, historical data (see, e.g., Uit het Broek et al.

2019) is used similar to Gundegjerde et al. (2015). A Weibull distribution with shape 2.17 and scale 1.128ϕ, where

ϕ is the mean wind speed of an arbitrarily drawn month from the historical data, is used to generate wind speeds

for all the periods. We assume all the drawings are independent, similar to Gundegjerde et al. (2015).

The vessels’ daily working hours are affected by the observed wind speed ϕt in period t in the following way:

If ϕt is larger than the maximum allowed wind speed ϕsafev than no operation are allowed. If ϕsafe > ϕt, the working

hours of vessel v in period t are reduced to min{S v
2, ϕ
safe
v − ϕt} hours. For the single wind farm case, we directly

incorporated further travel and transfer times between depot and wind farm into the vessels’ daily working hours.

Table 4: Characteristics of the vessels present in the special case experiments. Speeds and fuel cost are in unit distances.

Type # tech (S 1
v ) work. hours (S 2

v )∗ Travel speed Fuel cost max wind speed

Small CTV 10 10 h 50 20 20 m/s

Large CTV 15 12 h 35 25 25 m/s

Helicopter 4 10 h 200 30 20 m/s

Supply Vessel (with lifting) 20 12 h 35 20 35 m/s

4.2. A comparison of second-stage special cases

We provide an overview of the computational performance of the different formulations in two parts. First,

we consider Benchmark Set A and provide an overview of the three variants of minimum service requirements

models for the single wind farm case, with and without dedicated vessels, with and without bundle preprocessing.

In other words, we obtain the Special Case I-III solutions for each of the three settings regarding minimum service

requirements. The results are presented in Table 5. Next, we solve the instances of Benchmark Set B as Special

Cases IV and V, i.e., with and without bundle preprocessing. These results are provided in Table 6. We will omit

the arguments of the Q(·) functions to enhance readability.

All the instances are solved by means of CPLEX 12.8.0 via its callable library in C++. The runtime is limited

to 10800 seconds or when 24gb of RAM is used. At most four parallel threads are exploited by CPLEX. In the

following, we will discuss the results presented in Tables 5 and 6. Initial experiments have shown that the results

are robust with respect to the values of α and β, and we, therefore, fixed those on 0.0175 and 0.02, respectively.
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4.2.1. The single wind farm case.

We compare solving the Special Case models assuming a single wind farm (Qf1(·), Qα
f1(·), and Qβ

f1(·)), assuming

a single wind farm with dedicated vessels (Qf1-v1(·), Qα
f1-v1(·), and Qβ

f1-v1(·)), and assuming a single wind farm with

bundle-preprocessing (Qf1-b(·), Qα
f1-b(·), and Qβ

f1-b(·)). Recall that, the Special Cases I and IIs are (variants of)

the capacitated facility location problem, whereas the Special Case III models are (variants of) a set-covering

formulation (see Section 3 for further details).

The models with bundled maintenance tasks assume that all tasks can be performed within a single period,

hence a preprocessing step is done to convert the instances so that the models Qf1-b(·), Qα
f1-b(·), and Qβ

f1-b(·) can be

solved: Every task lasting more than 8 hours is partitioned into tasks of 8 hours and a task that takes the remaining

hours. In this way, every task can be performed within a period. Preliminary experiments have shown that this

provides us with the most convenient and comparable instances, i.e., a significant amount of instances becomes

infeasible if we increase the maximum task duration to more than 8 hours. In addition, we ensure that there is no

bundle containing multiple tasks that correspond to the same original task.

In Table 5, the results of solving all the models is provided. Some instances of the Special Case III models

(Qf1-b) were not solved to optimality (indicated with an asterisk), but their final optimality gaps were so small

(0.20% or smaller) that reporting it is not relevant. It is observed that the runtime of all the models become larger

if the instance sizes grow, which is expected. Significant differences are observed between instances of the same

size, which is typically caused by differing distances between wind farm and depot. Larger distances inherently

complicate the planning process, which is expressed by the runtime for the particular instances.

A few observations stand out. First, averaging over all the results, the special cases with the β downtime

setting take on average 969 seconds compared to on average 25 and 140 for the second setting where α technician

hours are unmet and the first setting where all jobs need to be scheduled, respectively. Second, although α is only

small (0.02), the decrease in cost-estimation between the first and second setting is on average 10.13%. Third, the

differences between whether or not vessels are dedicated (Special Case II) or not have their influence on both the

running time and on the objective values. The objective values raise on average with 5.10%, 4.34%, and 5.43%

for the three settings of the SMFTPO (i.e, Qf1-v1(·), Qα
f1-v1(·), and Qβ

f1-v1(·)), respectively. The runtime remarkably

decreases when vessels are dedicated, which might be explained by a more restricted solution space. In other

words, branch and bound is more efficient which decreases the runtime of the instances that are difficult to solve,

e.g., the runtime of instance 25 reduces from 6623 seconds to 2757 seconds.

Fourth, the effect of β on the resulting objective values is not very large, i.e., the objective value increases

with 1.27%, 1.59%, and 0.80% for the single wind farm formulation, the single wind farm with dedicated vessels

formulation, and the bundled formulation, respectively. Finally, the average increase in objective value that is

observed when using the bundled formulations (Special Cases III) instead of the non-bundled formulations (Special

Cases I and II) is remarkable. This increase equals 9.91%, 9.03%, and 9.40% for the three SMFTPO settings,

respectively. Comparing the runtime, those differences are 10779%, 7444% and -98% for the three settings,

respectively.
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The last result has severe practical implications for operations managers in offshore wind maintenance service

logistics. Although the bundled formulations have their popularity (see, e.g., Gundegjerde et al. 2015), and are

quite intuitive to incorporate and model, they come at an overestimation of the actual maintenance planning costs.

The major difficulty is how the bundles are generated, and how tasks that take more than a single period are split up

over multiple tasks. Summarizing, taking into account the cost estimation increase and the differences in runtime,

only for the third SMFTPO setting (with at most β downtime periods) one might prefer the use of a bundled

formulation. For the other minimum service requirements (all the tasks or the at least α technician hours variant),

we advise to using the non-bundled formulations.

4.2.2. The multiple wind farm case.

The results of solving the Special Case IV models Q(·),Qα(·), and Qβ(·) and their bundle-preprocessed coun-

terparts (the Special Case V models) Qb(·),Qα
b (·), and Qβ

b(·) are given in Table 6. The columns headed with “UB”,

“LB”, and “Sec” denote the best upper bound, the best lower bound, and the runtime of the solver, respectively.

What stands out is the difference in computational efficiency between the Special Case IV and V models. The

average optimality gap for the Special Case IV models equals 10.00 % against 0.07% for their bundled counterparts

formulations. Since the lower bounds of the basic formulations are significantly lower than the optimal solutions

found by the bundled formulations, we infer that the bundled formulations are overestimating the costs similarly

as in the single wind farm case, but no hard conclusions cab be drawn from this

Regarding the difference between the cost estimations for different minimum service requirement policies, we

focus on the models with bundled tasks (Special Case V). Average cost differences of -10.18% and 6.10% are

observed for the Qα(·) and Qβ(·) settings over the Q(·) setting, respectively. The 6.10% increase of incorporating

the at most β downtime periods constraints stands out when compared with the increases around 2 % in case of a

single wind farm. Finally, similar to the single wind farm case, the second setting of the SMFTPO (α technician

hours unscheduled) is relatively difficult to solve compared to the other two minimum service requirement settings.

4.2.3. Implications.

The analysis of the results in Tables 5 and 6 made clear that it is important to have a good understanding of the

different models and the underlying assumptions since it severely impacts the accuracy of the cost-estimations for

tactical maintenance planning at offshore wind farms. What stands out is that the effect of bundling maintenance

tasks. It essentially assumes that the tasks will be performed in a single period, by a single vessel, and this

simplifies the underlying optimization problem at the expense of a quite expensive preprocessing step (of which

the computation times are not taken into account in the results). This relates to the first three Modeling Categories,

as identified in Sections 1.1.1 and 3. Especially when multiple wind farms are included and when the necessary

skills to develop sophisticated solution approaches are lacking, the bundled tasks are efficient and effective for

obtaining quick cost-estimations for medium-term maintenance planning problems.

The effect of the different minimum service requirement settings (Modeling Category 4) is also noteworthy.

Operations managers should be aware of the fact that, when a fraction of jobs can be left unscheduled in the
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Table 5: Computation performance of the different models and formulations to the instances of Benchmark Set A.

Special Case I Special Case II Special Case III

Qf1(·) Qα
f1(·) Qβ

f1(·) Qf1-v1(·) Qα
f1-v1(·) Qβ

f1-v1(·) Qf1-b(·) Qα
f1-b(·) Qβ

f1-b(·)

Inst. L N Obj. Sec. Obj. Sec. Obj. Sec. Obj. Sec. Obj. Sec. Obj. Sec. Obj. Sec. Obj. Sec. Obj. Sec.

1 2 50 46264 0 42951 0 47789 33 47789 0 43828 1 49313 20 49301 0 45538 0 50825 0
2 2 50 51261 0 46625 0 52029 11 52414 0 47710 0 53950 14 55846 0 51618 1 56614 0
3 2 50 47238 0 43048 0 47722 1 51111 0 45911 0 53047 14 53991 0 48257 3 53991 0
4 2 60 55457 0 50399 0 55457 1 56994 0 51981 1 56994 1 60424 0 55059 0 60808 0
5 2 60 38812 0 34554 2 38812 2 39178 0 34800 1 39178 1 43548 0 39164 1 43548 0
6 2 60 54348 0 50202 0 54348 0 57846 0 53313 0 57846 0 63077 0 58836 0 63077 0
7 2 70 60250 0 54850 0 60734 3 68481 0 61843 1 69449 14 68934 1 62908 1 68934 1
8 2 70 58325 0 53412 0 58325 0 60657 0 55814 0 60657 0 68219 0 62985 0 68219 0
9 2 70 65274 0 59305 5 69588 8108 69156 1 62059 3 75627 10800 73850 2352 65724 91 79024 42
10 2 80 48651 0 43404 1 48651 1 49750 0 44112 1 49750 0 54114 1 48724 2 54114 2
11 2 80 74622 1 68087 1 77967 7387 78525 4 72257 6 80755 2913 85746 1 77050 5 87976 4
12 2 80 73294 0 66644 1 74842 84 76391 1 69323 1 78455 308 80486 0 73846 7 81518 1
13 2 90 64307 0 57587 1 64307 1 68524 0 60981 1 68524 2 70359 1 64271 3 70359 1
14 2 90 74414 0 67355 1 74955 76 76037 1 68711 5 76037 8 82487 3 74168 8 83027 55
15 2 90 78066 12 69665 3 79200 10811 81468 1 72823 7 84493 7340 87102 19 76700 5227 87858 11
16 3 50 48570 0 43173 0 48570 0 49802 0 43583 0 49802 0 53872 0 46899 0 53872 0
17 3 50 49290 0 43783 1 49290 0 50071 0 43992 0 50071 0 53564 0 47795 33 53564 0
18 3 50 45418 0 41913 1 45418 0 45790 0 42017 1 45790 0 49498 0 45136 0 49498 0
19 3 60 58879 0 52344 1 58879 1 59269 0 52625 1 59269 1 64319 0 57526 0 64319 0
20 3 60 75774 0 67478 1 75774 5 78658 1 71090 2 78658 11 88358 1 77832 114 88358 1
21 3 60 72236 0 64853 1 72236 0 79376 0 66648 1 79376 1 83186 0 73879 1 83186 0
22 3 70 62337 0 55897 0 62337 0 64942 0 57732 1 64942 1 67895 0 60602 1 67895 0
23 3 70 83947 0 76543 1 83947 0 92734 0 81254 1 92734 0 94344 0 84042 0 94344 1
24 3 70 89487 0 79487 1 92392 1570 93845 0 83672 1 96750 1708 101552 1 90243 10 102520 4
25 3 80 94442 1 84256 23 95163 6623 98408 3 87757 3 99129 2757 107376 14 94828 6440 108096 47
26 3 80 101258 0 92557 1 104306 473 105322 0 95735 1 108878 438 118497 4 104630 12 118497 8
27 3 80 106455 0 95489 1 107728 175 111547 0 100936 2 112819 90 119973 4 105276 6 122093 710
28 3 90 125062 1 113918 18 127892 10800 135250 1 121354 9 140911 7765 141998 25 126697 40 143696 79
29 3 90 117250 3 105147 101 119094 4849 127391 9 112632 12 128774 954 - - - - - -
30 3 90 90029 0 81986 1 90029 6 91919 1 83254 2 91919 37 100958 1 89613 6 100958 3

Average 70367.19 0.77 63563.66 5.49 71259.34 1700.72 73954.71 0.92 66324.79 2.09 75129.83 1173.21 77340.48 83.77 69305.03 414.16 77958.21 33.52

The entries marked with ‘-’ are infeasible due to bundle preprocessing. The zbasic-2 formulations of instance 9 are not solved to optimality (but with optimality gaps

around 1 %)
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Table 6: Computation performance of the different models and formulations to the instances of Benchmark Set B.

Special Case IV Special Case V

Q(·) Qα(·) Qβ(·) Qb(·) Qα
b (·) Qβ

b (·)

Inst. W L Nw UB LB Sec UB LB Sec UB LB Sec UB LB Sec UB LB Sec UB LB Sec

1 2 1 30 20868 20314 4919 19308 18524 4485 20868 20314 4962 21498 21498 0 20225 20225 1 22595 22595 0

2 2 1 30 36888 35287 6076 31741 31143 10814 36888 35287 5997 38277 38277 1 34749 34749 2 43982 43982 1

3 2 1 30 23389 22174 10800 20061 19458 4388 23389 22173 10800 23269 23269 0 20769 20769 1 24687 24687 0

4 2 1 45 43581 40033 3492 39519 35643 3870 43581 40033 3408 42001 42001 1 38401 38397 10 47978 47978 3

5 2 1 45 35680 35676 9461 32300 30766 10800 35680 35676 9370 36835 36835 3 33032 33030 48 41585 41582 2

6 2 1 45 30799 29481 2946 29298 27554 3749 30799 29481 2910 32786 32786 0 30712 30712 1 34628 34628 0

7 2 2 30 46569 43693 10800 43172 39335 10800 46569 43681 10800 48160 48160 0 44782 44782 2 48826 48826 0

8 2 2 30 57055 52956 10800 48447 45600 10800 57055 52958 10800 56749 56749 13 49186 49186 37 63307 63307 16

9 2 2 30 55974 51641 10800 52158 45815 2926 56361 51641 10800 56092 56092 0 51224 51224 1 58739 58739 0

10 2 2 45 69378 67079 10800 62504 57756 8205 69378 67081 10800 73003 73003 50 64296 63353 10800 75177 75177 100

11 2 2 45 78176 71039 3468 68947 63480 6866 78176 71039 3504 78773 78773 1 69681 69681 4 84667 84667 2

12 2 2 45 84779 77169 10800 74234 66361 4018 84696 77169 10800 79117 79117 1 69382 69171 2814 86763 86763 2

13 3 1 30 36437 33646 10800 33351 30192 10800 36354 33645 10800 36806 36806 1 35001 35001 4 40956 40956 1

14 3 1 30 42060 37181 2290 38623 32960 9352 41356 37414 5136 41951 41951 0 37694 37694 3 45403 45403 1

15 3 1 30 38071 33788 5864 32782 29321 10800 38071 33788 5932 36800 36800 1 32646 32645 6 39265 39265 1

16 3 1 45 47726 44964 4035 41960 39717 8696 47726 44964 4032 50097 50097 1 44607 44604 6 52897 52897 2

17 3 1 45 47669 44748 3852 42122 39357 10800 47669 44748 3910 49694 49694 4 43956 43777 7003 50760 50756 8

18 3 1 45 50155 46635 10808 45125 40662 9744 50101 46635 10808 50428 50428 0 46425 46425 1 51306 51303 0

19 3 2 30 76509 69907 10800 72566 60325 10801 76916 69907 10800 75438 75438 0 66540 66533 16 77558 77556 1

20 3 2 30 63822 59187 10800 57886 52498 10800 63822 59184 10800 64016 64016 1 57420 57415 44 66850 66850 3

21 3 2 30 74793 67691 10800 99011 60953 6832 74793 67691 10800 74654 74654 0 67851 67851 1 76066 76066 0

22 3 2 45 94307 85376 10800 86961 75648 10800 94307 85376 10800 93768 93768 3 83337 83107 5111 98861 98861 4

23 3 2 45 109801 100524 10800 100017 88250 10800 109801 100523 10800 110765 110765 8 99005 98269 2514 117641 117630 7

24 3 2 45 109988 99292 10800 141207 87692 3156 109624 99292 10800 108229 108229 1 97911 97385 5526 112740 112730 9

Average 57270 52895 8234 54721 46625 8129 57249 52904 8349 57467 57467 4 51618 51499 1415 60968 60967 7

The entries marked with ‘-’ are infeasible due to bundle preprocessing
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mathematical model, a multiplying effect is observed with regards to the cost estimations, i.e., not satisfying 2% of

the demanded technician hours will result in cost-decreases of more than 2%. This is explained by noticing that in

such cases the most expensive tasks will be left (partly) unscheduled. However, it might result in a more realistic

description of the actual behavior of the maintenance service provider, as such minimum service requirements are

commonly encountered. Hence, if the models as presented in this paper will be used for predicting the behavior of

maintenance providers, it is advisable to include such minimum service requirements in the mathematical model

formulation.

Furthermore, when a restriction in downtime periods is included in the minimum service requirements, it can

be seen that the resulting estimated cost-increases will slightly increase. If such requirements are part of a service

contract between wind farm owner and maintenance provider, it is likely that the maintenance provider will ask a

higher price for the maintenance operations. The results have shown, however, that this increase should only be

slight. This holds as well for the assumption that a maintenance task cannot be performed by multiple vessels,

although this assumption reflects upon the operations of the maintenance provider and is less likely to be part of

the service contract negotiations.

Finally, the implications are not only of interest for practitioners (e.g., operations managers at wind farms), but

also provide guidance for scientists to build upon the models we propose for the SMFTPO settings and its special

cases.

4.3. Computational results of the SMFTPO

In the following, we present experiments on the three settings of the SMFTPO in its two-stage stochastic opti-

mization model. We briefly discuss how we generated a suitable set of benchmark instances and the configuration

of the Sample Average Approximation algorithm. Consequently, we analyze the obtained solutions and provide

insights in the computational difficulty.

As as indicated by the results of the Special Case IV and V models, the pre-processed maintenance tasks (i.e.,

considering bundles) is computationally the most efficient. We, therefore, apply this preprocessing and solve the

instances as such in the following.

4.3.1. Benchmark instances for the SMFTPO.

To evaluate the three settings of the SMFTPO in the full two-stage stochastic optimizatino model by means

of Sample Average Approximation (SAA), two main ingredients are required. First, we need to be able to draw

scenarios in an independent and identical fashion, and second, we need a series of benchmark instances with

varying characteristics of the base system. The scenarios are identically generated as described for the previous

benchmark instances with the major distinction that the previous benchmark instances were in fact single scenario

realizations, and we use them in a sampling context as part of the SAA approach.

We differed the base system by the number of considered lease terms and the number of periods per lease term,

see Table 7 for detailed characteristics. We considered three windfarms that each can be served from a single depot.

The wind farm sizes are set to 30 turbines per farm. We consider the same vessel types as denoted in Table 4. The
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fleet is of a relatively large size: The number of small CTVs equals equals twice the number of depots, the number

of medium sized CTV’s equals the number of depots, we considered two helicoptors and a single supply vessel.

Their charter prices per period equal 3500, 5000, 10000, and 25000 respectively. The penalty P̂ for changing

depots within a lease-term equals 2500.

4.3.2. Sample Average Approximation, EVPI, and VSS.

The SAA algorithm, as explained in Section 2, is used to evaluate the three settings of the SMFTPO on the

benchmark instances described in the former. The lower bound estimates are obtained by averaging the lower

bounds of M = 96 samples of N = 25 scenarios. Preliminary experiments have shown that this ensures a relatively

low variance of the obtained estimators. Then, an upper bound estimation is obtained by selecting the first-stage

solution corresponding to the solution with lowest cost from the M = 96 samples. This first-stage solution is then

evaluated on M′ = 1000 scenarios. The average objective from these M = 1000 evaluations is an upper bound

estimation of the SMFTPO.

Except for the lower and upper bound estimations, we are interested in two additional estimations. First, we

are interested in the so-called Expected Value of Perfect Information (EVPI), which expresses the amount by which

costs are reduced in a perfect information situation. We calculate it by solving the complete two-stage stochastic

optimization model for each of the M′ = 1000 scenario’s obtained for estimating the upper bound. The average

is then an estimator for the perfect information solution. The difference between this perfect information solution

and the estimated upper bound is an estimation of the EVPI.

In addition, we are interested in the so-called Value of the Stochastic Solution (VSS). It expresses the reduction

in costs if one considers the two-stage optimization model instead of using simply the expected values of the

uncertain parameters. This expected value solution is obtained by solving the two-stage optimization model with

a single scenario where all parameters are equal to their expected value. We evaluate this solution on M′ = 1000

individually drawn scenarios and average the obtained objective values. The VSS is then the difference between

this average and the estimated upper bound.

Finally, for computational reasons we terminate the MIP solver if the optimality gap is smaller than 2%. The

experiments are performed on two Intel Xeon E5 2680v3 CPUs, totalling 24 cores. Each MIP is solved by four

dedicated threads. We allow for a maximum of three days to calculate lower bound, upper bound, EVPI and

VSS. Finally, to ensure relatively complete recourse decisions we include artificial binary variables (to perform an

individual maintenance task) that we penalize at 15000 each.

4.3.3. Results of the SAA.

The results of solving all the benchmark instances as each of the three SMFTPO settings are given in Table 7.

For each setting, we provide the estimated lower bound (in ·103), upper bound (in ·103), and the EVPI (in ·103).

We further provide the difference ∆(z, zα) in percentages of using zα instead of z, and similarly ∆(z, zβ) denotes this

difference for using zβ instead of z. We do no provide the VSS in this table as its values are very large, i.e, the

estimated expected value solution is 2-5 times as large as the estimated upper bound. The explanation is simple;
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Table 7: Overview of the solutions of the two-stage optimization model

all jobs (z) α uptime (zα) β downtime (zβ)

Inst L T/L D rep L̂B ÛB ÊVPI L̂B ÛB ÊVPI L̂B ÛB ÊVPI ∆(z, zα) ∆(z, zβ)

1 5 5 3 1 175.6 187.0 27.3 159.0 175.3 27.0 192.1 197.1 20.8 -6.3 5.4

2 5 5 3 2 171.8 179.9 26.7 155.5 165.7 22.6 188.3 195.0 21.5 -7.9 8.4

3 5 5 3 3 187.1 196.3 24.6 169.6 182.2 21.3 204.0 209.3 19.8 -7.2 6.6

4 5 7 3 1 222.8 234.5 24.3 189.8 225.4 37.1 241.9 257.4 25.9 -3.9 9.8

5 5 7 3 2 221.2 234.3 25.5 188.3 211.7 25.8 240.3 253.1 25.8 -9.7 8.0

6 5 7 3 3 208.0 216.4 24.9 176.6 196.7 23.1 227.4 249.2 32.9 -9.1 15.1

7 8 5 3 1 289.3 303.1 37.2 245.5 270.9 37.2 310.1 320.0 30.9 -10.6 5.6

8 8 5 3 2 275.4 287.5 38.3 233.1 257.9 40.7 295.9 306.6 32.5 -10.3 6.6

9 8 5 3 3 283.9 295.2 35.7 241.1 261.4 32.8 304.5 316.4 31.4 -11.4 7.2

10 8 7 3 1 368.9 390.3 36.4 297.5 351.3 52.3 391.5 415.6 36.7 -10.0 6.5

11 8 7 3 2 349.6 368.0 38.5 279.8 316.4 36.3 371.7 394.7 38.8 -14.0 7.3

12 8 7 3 3 371.0 390.9 35.9 299.4 335.8 35.6 393.5 413.7 33.0 -14.1 5.8

13 10 5 3 1 335.1 350.5 49.4 274.3 305.5 48.0 358.7 373.5 42.9 -12.8 6.6

14 10 5 3 2 339.8 358.5 48.7 279.2 306.8 43.6 362.1 379.3 40.3 -14.4 5.8

15 10 5 3 3 356.9 374.3 46.2 295.1 340.4 60.5 381.0 399.6 44.8 -9.1 6.7

16 10 7 3 1 418.1 443.0 50.9 328.4 389.3 63.6 444.6 485.0 62.7 -12.1 9.5

17 10 7 3 2 416.8 436.7 48.6 328.1 380.5 55.2 444.5 489.2 64.1 -12.9 12.0

18 10 7 3 3 433.5 458.3 47.9 342.7 412.9 71.0 460.6 490.8 48.1 -9.9 7.1

L̂B, ÛB, and ÊVPI are given in ·103. The variance of the estimators in the order of 500 - 2000, and is not

presented to enhance readibility reasons. Instances 9-11 and 16-18, setting zα, are solved with 18 scenarios

instead of 24 to estimated the lower bound.

the difficulty of the SFMTPO is caused by the high variability in weather conditions and in maintenance activities

which is not reflected by the ‘nicely‘ behaving expected value solution.

First it should be noted that the estimated lower and upper bounds for all the SFMTPO settings, and all the

instances, are rather tight. As we terminated the MIP solver at 2%, this gap should is at least 2%, and the differences

are only slightly larger. Second, we see that the estimated differences between scheduling all tasks and leaving α

technician hours unscheduled (i.e., ∆(z, zα)) is becoming larger for longer planning horizons, whereas for ∆(z, zβ)

no such trend is visible. This is explained by the fact that for longer planning horizons more variability in the

uncertainty realizations is observed, which increases the importance to anticipate upon the uncertain demand by

not scheduling maintenance tasks.

The EVPI is, as expected, increasing for instances with longer planning horizons. This is trivial, as a longer

planning horizon includes more uncertainty to deal with, and therefore a larger variability (in absolute value) in the

uncertainty realizations. We furthermore observe that the EVPI is rather small for a tactical planning problem as

the one we propose. Namely, although vessels will be allocated more in the solution corresponding to the estimated

upper bound (i.e., the stochastic programming solution), the effect on individual perfect information solutions is

not devestating. Still, the EVPI is around 10%, which might motivate further research in this area for more dynamic
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planning algorithms.

5. Conclusion

In this paper, we introduced the Stochastic Maintenance Fleet Transportation Problem for Offshore wind farms

(SMFTPO). In the SMFTPO, we aim to find a cost-minimizing assignment of maintenance tasks to vessels while

controlling for uncertain maintenance tasks and weather conditions. We take the viewpoint of a single maintenance

provider which is responsible for the maintenance at multiple wind farms, a situation often encountered in practice.

This is in high contrast with existing research on tactical and strategic decisions in offshore wind maintenance

service logistics; current research does not make the distinction between the maintenance provider and wind farm

owner.

We introduced the notion of minimum service requirements, in the context of offshore wind, describing the

contractual obligations of the logistics provider to the wind farm owner. Three settings of those minimum service

requirements were considered. We then modeled those settings of the SMFTPO as a generic two-stage stochastic

mixed integer programming model. The second-stage problem is modelled on a decomposed and time expanded-

network, and Sample Average Approximation was used to solve a scenario-based large-scale mixed integer pro-

gramming model.

In addition, by means of a thorough literature review, we provided an overview of the key-modeling decisions

in related work by presenting four modeling categories in the context of offshore wind maintenance service lo-

gistics. To gain insights into the (computational) tractability of those key-modeling decisions, we presented five

(re)formulations of the second-stage problem of each of the three SMFTPO settings.

We provided a new set of benchmark instances, which we made publicly available, and used those to assess the

computational performance of all the models. First, focussed on the (re)formulations of the second-stage problems

of the SMFTPO. It is shown, amongst others, that an established method for bundling maintenance tasks results

in overestimating medium-term maintenance costs but is a computationally attrictive. Moreover, it is shown that

incorporating additional constraints incentivizing quickly scheduling maintenance tasks is especially costly in a

multiple wind farm setting. Second, we studied the solutions of the two-stage stochastic optmization model for

each of the three SMFTPO settings. It is clearly shown that considering uncertainty is a must, as the value of the

stochastic solution is large, while on the other hand, the expected value of perfect information is rather small.

The directions for further research are numerous. A natural extension of this exploratory work is the incorpo-

ration of the notion of minimum service requirements in a multi-stage stochastic programming model, instead of

a two-stage stochastic programming model. The development of such multi-stage models goes hand-in-hand with

the need for advanced solution algorithms (e.g., integer L-shaped algorithms). Up until now, no such advanced al-

gorithms exist in the context of strategic and tactical offshore wind maintenance service logistics. Such algorithms

are required for solving practical cases in a more dynamic fashion since the increasing number of offshore wind

farms and increased collaboration between the wind farms complicates the optimization problem significantly.
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Furthermore, building upon the increasing popularity of approximate dynamic programming (Powell 2007), a

fundamentally different approach might be interesting to pursue. Namely, to model the SMFTPO by means of a

stochastic dynamic program, instead of a two- or multi-stage stochastic mixed integer program. A comparison of

the required level of dynanism in such optimization problems is interesting for researchers and practicioners.

A different, but not less interesting extension could be the development of polynomial approximation algo-

rithms to obtain cost-estimations for particular offshore wind scenarios. Then tactical planning models, as the ones

developed in this paper, might be incorporated in real-time decision making which requires instant calculation of

cost-estimations.
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Appendix A. Monolithic formulation for solving the SMFTPO

Here we detail the complete MIP for solving the scenario-based formulation of the SMFTPO. We only provide

this for the first setting of the SMFTPO (i.e., where all the jobs need to be performed).

min
∑
d∈D

∑
`∈L

∑
v∈V

Ĉv
d`y

v
d` +

1
N

∑
ξ∈Ξ

∑
v∈V

∑
(i, j)∈AT ,v

Cvξ
i j xvξ

i j +
∑
v∈V

∑
m∈M

∑
(i, j)∈AT ,v4 (m)

Fvξ
i j zvξ

i j

 (A.1)

s.t.
∑
d∈D

yv
d` ≤ 1 ∀` ∈ L, v ∈ V (A.2)

∑
(i, j)∈AT ,v,ξ5

yv
i jφ

d`
i j − xvξ

d` ≤ 0 ∀d ∈ D, v ∈ V, ` ∈ L, ξ ∈ Ξ (A.3)

∑
(i, j)∈δ+(n)

xvξ
i j ≤ 1 ∀ n ∈ NT ,v,ξ

D
, v ∈ V, ξ ∈ Ξ (A.4)

∑
(i, j)∈δ−(n)

xvξ
i j ≤ 1 ∀n ∈ NT ,v,ξ

D
, v ∈ V, ξ ∈ Ξ (A.5)

∑
(i, j)∈δ−(n)

zvξ
i j −

∑
(i, j)∈δ+(n)

zvξ
i j = δnξ ∀n ∈ NT ,v,ξ, v ∈ V, ξ ∈ Ξ (A.6)

zvξ
i j ≤ Uvξ

i j xvξ
i j ∀(i, j) ∈ AT ,v,ξ, ξ ∈ Ξ (A.7)∑

v∈V

∑
(i, j)∈AT ,v,ξ4 (m)

zvξ
i j ≥ Dm

1 Dm
2 ∀m ∈ Mξ, ξ ∈ Ξ (A.8)

xvξ
i j ∈ {0, 1} ∀ (i, j) ∈ AT ,v,ξ, v ∈ V, ξ ∈ Ξ (A.9)

zvξ
i j ∈ R+ ∀ (i, j) ∈ AT ,v,ξ, v ∈ V, ξ ∈ Ξ (A.10)

yv
d` ∈ {0, 1} ∀d ∈ D, ` ∈ L, v ∈ V (A.11)

The above formulation is similar to the stochastic mixed integer programming formulation presented in Section

2. Only difference is that all second-stage decision variables are indexed by ξ, and in the objective we take the

average costs of all the second-stage decisions.
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Appendix B. Additional MIP formulations of special cases

This appendix provides the MIP formulations referred to in Section 3.

Appendix B.1. Special Case I: Single wind farm

No additional variables or notation is required for finding Qα
f1(ŷ,u, λ | ξ),, i.e, the generalization of the single

wind farm case to include the α-uptime minimum service requirements. Notice we drop the indices w ∈ W, since

we assume that there is only a single wind farm. This special case asks for solving

Qα
f1(ŷ,u | ξ) := min

∑
t∈T

∑
m∈M

∑
v∈V

Ctmŷv
tm +

∑
v∈V

∑
t∈T

Gv
t uv

t (B.1)

s.t.
∑
m∈M

Dm
1 Dm

2 ŷv
tm ≤ Uv

t uv
t ∀ t ∈ T , v ∈ V (B.2)

∑
m∈Mw

∑
v∈V

∑
t∈T

ŷv
tmD1

mD2
m ≥ (1 − α)

∑
m∈M

D1
mD2

m (B.3)

∑
t∈T

∑
v∈V

ŷv
tm ≤ 1 ∀m ∈ M (B.4)

0 ≤ ŷv
tm ≤ Y

v
tm, uv

t ∈ {0, 1} ∀ t ∈ T ,m ∈ M, v ∈ V (B.5)

Objective (B.1) minimizes the fixed costs of deploying a vessel and the task specific costs. Constraints (B.2) ensure

that the supplied technicians do not exceed the availability. Constraint (B.3) ensures that at least (1−α) of the total

technician hours are supplied. Since a task cannot be performed more than once, Constraints (B.4) are required.

Finally, Constraints (B.5) denote the domain of the decision variables.

To model Qβf1(ŷ,u, ηλ | ξ) (at most β downtime periods with a single wind farm), additional variables are

needed to track the latest period in which flow is send to a maintenance task. We define the continues variables η1
m

and the binary variables η2
tm to indicate the latest period in which task m is maintained and whether or not task m is

performed in period t, respectively. Then, it boils down to finding

Qβ
f1(ŷ,u, η1, η2 | ξ) := min

∑
t∈T

∑
m∈M

∑
v∈V

Ctmŷv
tm +

∑
v∈V

∑
t∈T

Gv
t uv

t (B.6)

s.t.
∑
m∈M

Dm
1 Dm

2 ŷv
tm ≤ Uv

t uv
t ∀ t ∈ T v ∈ V (B.7)

∑
m∈Mw

ηm − S m ≤ βNT (B.8)

η2
tm ≥ ŷv

tm ∀ m ∈ M, t ∈ T , v ∈ V (B.9)

η1
m ≥ tη2

tm ∀m ∈ M, t ∈ T (B.10)

0 ≤ ŷv
tm ≤ Y

v
tm, S m ≤ η

1
m ≤ Em, and uv

t , η
2
tm ∈ {0, 1} ∀ t ∈ T ,m ∈ M, v ∈ V (B.11)

Objective (B.6) minimizes the fixed costs of deploying a vessel and the task specific costs. Constraints (B.7)

ensure that no more technicians are deployed than possible in each period. Constraints (B.8) ensure that at most

β downtime periods are observed in any feasible solution. Constraints (B.9)-(13) ensure that the ηm variables are

modeled correctly. Finally, the domain of the variables is indicated by Constraints (B.11).
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Appendix B.2. Single wind farm case with dedicated vessels

We extend model zf1-v1
basic-1 to the case in which at least (1−α) technician hours are supplied of the total demanded

technician hours in a straightforward way. It asks for solving

Qα
f1-v1(ŷ,u, λ | ξ) := min

∑
t∈T

∑
m∈M

∑
v∈V

Ctmŷv
tm +

∑
v∈V

∑
t∈T

Gv
t uv

t (B.12)

s.t.
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m∈M
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1 Dm

2 ŷv
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t uv
t ∀ t ∈ T , v ∈ V (B.13)
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ŷv
tmD1

mD2
m ≥ (1 − α)

∑
m∈M

D1
mD2

m (B.14)

∑
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∑
v∈V

ŷv
tm ≤ 1 ∀m ∈ M (B.15)

∑
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v
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∑
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0 ≤ ŷv
tm ≤ Y

v
tm and λv

t , u
v
m ∈ {0, 1} ∀ t ∈ T ,m ∈ Mv ∈ V (B.18)

Objective (B.12) minimizes the fixed costs of deploying a vessel and the task specific costs. Constraints (B.13)

ensure that no more technicians are deployed than possible in each period. Constraints (B.14) make sure that the

fraction of not supplied technician hour is at most α, and Constraints (B.15) ensure that at task is not served more

than once. Constraints (B.16) and (B.17) ensure that a each task is at most assigned to a one vessel. Finally, the

variables’ domains are modeled via Constraints (B.18).
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The extension to at most β downtime periods asks for solving

Qβ
f1-v1(ŷ,u, λ, η1, η2 | ξ) := min
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s.t.
∑

m∈Mw

η1
m − S m ≤ β

wNwT ∀w ∈ W

(B.21)

η1
m ≥ tη2

tm ∀ m ∈ M, t ∈ T

(B.22)

η2
tm ≥ ŷv
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(B.26)

Objective (B.19) minimizes the fixed costs of deploying a vessel and the task specific costs. Constraints (B.20)

ensure that no more technicians are deployed than possible in each period. Constraints (B.21) ensure that at most

βw downtime periods are observed in any feasible solution. Constraints (B.22)- (B.25) ensure that the ηm, ztm, and

λv
m variables are modeled correctly. Finally, Constraints (B.26) indicate the decision variables’ domains.

Appendix B.3. Bundle Preprocessing

The extension of zf1-b
basic to the α and β minimum service requirement variants is presented in the following. The

variant in which at most a fraction (1 − α) of the total technician hours is left unassigned asks for solving

Qα
f1-b(ỹ | ξ) := min

∑
t∈T

∑
b∈B

∑
v∈V

ỹv
tbCv

tb (B.27)
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Objective (B.27) minimizes the costs of assigning bundles to vessels. Constraints (B.28) ensures that at least (1−α)

technician hours are supplied. Moreover, Constraints (B.29) ensure that each bundle is assigned only once, and

Constraints (B.30) ensure that a maintenance task is not scheduled more than once. The domains of the decision

variables are given in Constraints (B.31).

To model the zf1-b
basic-2 variant, we introduce the integer parameter ξb indicating the number of downtime periods

incurred when assigning bundle b . The formulation then becomes

Qβ
f1-b(ỹ | ξ) := min

∑
t∈T

∑
b∈B

∑
v∈V

ỹv
tbCv

tb (B.32)

s.t.
∑
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∑
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ỹv
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m
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∑
v∈V

∑
t∈T

ỹv
tbξb ≤ βNT (B.35)

ỹv
tb ∈ {0, 1} ∀ t ∈ T , v ∈ V, b ∈ B (B.36)

Objective (B.32) minimizes the costs of assigning bundles to vessels. Constraints (B.33) ensures that each task is

performed, while not assigning more bundles to vessels on a single period than possible (Constraints (B.34)). Con-

straints (B.35) ensures that the downtime constraints are respected. Finally, the domain of the decision variables is

indicated via Constraints (B.36).

Appendix B.4. Bundle selection in basic formulation

Introducing bundles in the zbasic-1 formulation leads to finding

Qα
b (x | ξ) := min

∑
v∈V

∑
(i, j)∈AT ,v

Cv
i jx

v
i j (B.37)

s.t.
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D
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∑
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∑
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1
bD2
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∑
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xv
i j ∈ {0, 1} ∀ (i, j) ∈ AT ,v, v ∈ V (B.43)

Here, we let AT ,v4 (b,w) be the set of arcs incoming at bundle b ∈ B at windfarm w ∈ W. Objective (B.37)

minimizes the transportation and maintenance costs. Constraints (B.38) - (B.40) ensure that vessels are not split
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among wind farms and depots and ensure flow conservation of technician hours. Constraints (B.41) models that a

task can only be performed once, and Constraints (B.42) model that the fraction of supplied technician hours is at

least (1 − αw). Finally, the domain of the decision variables is denoted by Constraints (B.43).

The variant in which the fraction of downtime periods is at most βw asks for finding

Qβb(x | ξ) := min
∑
v∈V

∑
(i, j)∈AT ,v

Cv
i jx

v
i j (B.44)

s.t.
∑
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D
, v ∈ V (B.45)
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D
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∑
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m
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∑
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∑
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i jξb ≤ βNwT ∀w ∈ W (B.49)

xv
i j ∈ {0, 1} ∀(i, j) ∈ AT ,v, v ∈ V (B.50)

Constraints (B.44) - (B.48) are similar to the zbbasic formulation provided in Section 4. We let ξb be the number of

downtime periods when bundle b is chosen to be performed. Then constraints (B.49) model the minimum service

requirements. Finally, the domain of the decision variables is denoted by Constraints (B.50).
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