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A BILEVEL APPROACH FOR IDENTIFYING THE WORST
CONTINGENCIES FOR NONCONVEX ALTERNATING CURRENT
POWER SYSTEMS *

BRIAN DANDURANDT, KIBAEK KIM!, AND SVEN LEYFFERS$

Abstract. We address the bilevel optimization problem of identifying the most critical attacks
to an alternating current (AC) power flow network. The upper-level binary maximization problem
consists in choosing an attack that is treated as a parameter in the lower-level defender minimization
problem. Instances of the lower-level global minimization problem by themselves are NP-hard due
to the nonconvex AC power flow constraints, and bilevel solution approaches commonly apply a
convex relaxation or approximation to allow for tractable bilevel reformulations at the cost of un-
derestimating some power system vulnerabilities. Our main contribution is to provide an alternative
branch-and-bound algorithm whose upper bounding mechanism (in a maximization context) is based
on a reformulation that avoids relaxation of the AC power flow constraints in the lower-level defender
problem. Lower bounding is provided with semidefinite programming (SDP) relaxed solutions to the
lower-level problem. We establish finite termination with guarantees of either a globally optimal
solution to the original bilevel problem, or a globally optimal solution to the SDP-relaxed bilevel
problem which is included in a vetted list of upper-level attack solutions, at least one of which is
a globally optimal solution to the bilevel problem. We demonstrate through computational experi-
ments applied to IEEE case instances both the relevance of our contribution, and the effectiveness of
our contributed algorithm for identifying power system vulnerabilities whose value is underestimated
when using standard convex relaxations of the lower level problem. We conclude with a discussion
of future extensions and improvements.

Key words. Optimal power flow, nonconvex robust optimization, network contingency identi-
fication, nonlinear mixed-integer programming

AMS subject classifications. 90C06, 90C11, 90C22, 90C30, 90C47, 90C56, 90C57, 90C90

1. Introduction. We present solution methods for application to the problem
of identifying the most critical attacks to an alternating current (AC) power system,
which we model as a Stackelberg game, where the attacker (i.e., leader) aims to com-
promise the functionality of a small subset of components whose failure or malfunction
results in a system disruption that cannot be adequately remedied with available de-
fensive measures by a defender (i.e., follower). We allow for an “attack” to be of either
malevolent or natural origin, such as from a “perfect storm” of naturally occurring
component failures. One example of where a small number of component failures had
significant consequence was during the large-scale blackout in the northeastern United
States and neighboring parts of Canada in the summer of 2003 [48, 37].

The optimization model associated with this problem of power system vulnera-
bility analysis (PSVA) naturally has the form of a bilevel problem, a specific type of
bilevel optimization problem (see, e.g., [2, 19, 40]) where the upper-level (attacker)
problem seeks to maximize the same objective that the lower level (defender) seeks
to minimize. For purpose of brevity, we refer to the problem of interest as the PSVA
bilevel problem. Formulation and solution techniques for the PSVA bilevel problem
are well-studied [43, 2, 9, 3, 53, 16, 44, 51], and some noteworthy variants include:
unit-commitment [45, 13]; probabilistic line failure [46] trilevel defender-attacker-
defender [1, 18, 27], defender line-switching capability [53] heuristics, metaheuris-
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2 B. DANDURAND, K. KIM, AND S. LEYFFER

tics [10, 3, 29].

Even well-structured bilevel optimization problems (such as linear bilevel pro-
grams) are known to be NP-hard, and the PSVA bilevel problem is furthermore
complicated by the nonlinearity and nonconvexity of the PSVA lower-level defender
problem due to its AC power flow equations. Naturally, many solution approaches
either relax or linearize the lower-level problem of the PSVA bilevel problem to yield a
modified structure more favorable to single-level reformulations. But in doing so, ac-
curacy of the underlying model is compromised, and the resulting PSVA bilevel model
solutions may misidentify attacks as harmless that are in fact not. For this reason, one
avenue of PSVA bilevel research is to develop and test solution approaches that avoid
relaxing or approximating the AC power flow equations of the PSVA lower-level prob-
lem. Similarly to [10, 3, 29], we focus on the aspect of PSVA bilevel research in which
solution approaches preserve the nonlinear, nonconvex AC power equation structure.
We shift focus from heuristic/metaheuristic approaches considered in [10, 3, 29] and
instead develop a single-level reformulation that is distinct from the reformulation
approaches based on KKT conditions [2, 39] or Lagrangian duality [2, 51], and that
is suitable for the nonconvex structure of the lower-level defender problem.

We focus on the case where attacks consist of the deactivation of up to K trans-
mission lines (including transformers). For the purpose of evaluating power network
security, solving K > 1 instances of the bilevel problem are of the most practical
value; the K = 0 instance trivializes to a feasibility problem for the baseline power
network, and power networks are assumed to be secure against the removal of any
one line as allowed by K = 1.

The PSVA bilevel problem may be formulated equivalently as a single-level max-
imization problem whose objective is the optimal value function of the lower-level
defender problem. The optimal value function of the lower-level problem is a function
of the upper-level attack variable whose output is the optimal value of the lower-level
problem for the input attack. Thus, earlier efforts involved developing equivalent
single-level reformulations that are tractable to known solution method.

The paper [2] describes two single-level reformulation approaches: (i) replacement
of the lower-level problem with either its Karush-Kuhn-Tucker (KKT) conditions;
and (ii) replacement of the lower-level problem with its Lagrangian dual problem.
The KKT conditions are necessary under constraint qualification, and sufficient un-
der convexity of the lower level problem. Thus, under these two assumptions, the
KKT condition-based single-level reformulation is equivalent to the original bilevel
optimization problem. Under the same two assumptions, The Lagrangian dual has
zero duality gap with the primal lower-level problem, likewise yielding an equivalent
single-level reformulation.

Due to the two assumptions (i.e., constraint qualifications and convexity) for
the KKT condition-based or Lagrangian dual-based single-level reformulations to be
equivalent to the original bilevel optimization problem, solution approaches typically
rely on relaxations or approximations of the lower-level problem. Various approaches
based on these ideas have been well-studied and well-developed (e.g., [43, 2, 39, 54,
25, 7, 20, 51]). Some of these relaxations or approximations are linear, while other
relaxations preserve some nonlinearity while yielding convex lower-level problem re-
laxations. Well-studied convex relaxations of the AC power flow equations include
the semidefinite programming (SDP) relaxation [4, 28, 32, 26], the quadratic con-
straint (QC) relaxation [15], and the second-order cone (SOC) relaxation [24]. Thus,
in various ways, these approaches obtain reformulations that are solvable with well-
developed solver technology, but at the cost of diminishing the accuracy of the lower-
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IDENTIFYING CONTINGENCIES IN POWER SYSTEMS 3

level defender model.

The solution approaches based on convex relaxations of the lower-level defender
problem can be expected to yield “false negatives” in terms of of identifying power
system vulnerabilities. That is, the relaxed lower-level defender problem can have
optimal value zero for a given attack when in fact the optimal value for the non-
relaxed lower-level defender problem is nonzero and perhaps even of substantial value.
Furthermore, solution approaches based on approximations for lower-level defender
models can be expected to yield both “false negatives” and “false positives,” which
include the identification of attacks as being substantial that, in fact, are not.

In contrast, our goal is to explore severity of the inaccuracies caused by these re-
laxations and/or approximation to the lower-level defender problem. We ask to what
degree can power system vulnerabilities be missed or inaccurately assessed? Toward
this end, we develop and analyze an alternative bilevel formulation and solution ap-
proach that preserves the original structure to the AC power flow equations in the
lower-level defender problem.

In this paper we present a new solution approach to solving the PSVA bilevel
problem for identifying the most severe attacks to a power system for which optimal
defender response is assumed. The key contributions of this paper are (i) to show that
AC power-flow equations can be used within a rigorous global optimization approach
to analyze grid contingencies, and (ii) to provide an implementable and effective
branch-and-bound framework for solving the PSVA bilevel problem with lower-level
AC power-flow equations. Our branch-and-bound framework is based on two tailored
subproblems for computing lower and upper bounds. In particular, we develop a
single-level reformulation of the PSVA bilevel problem obtained by reformulating the
max-min problem as a min-max problem whose objective provides a valid upper bound
for the original PSVA bilevel problem. We obtain lower bounds through the use of an
SDP relaxation of the lower-level defender subproblem. In addition, we provide an
analysis of the solutions produced upon finite termination of the branch-and-bound
framework, including conditions under which its solutions are either globally optimal,
or are contained within a finite list of candidate solutions. We demonstrate the
effectiveness of our approach in computational experiments, applying our branch-and-
bound approach to the identification of the most severe attacks in IEEE power network
instances. We compare our approach to the SOC relaxation and Lagrangian dual
single-level reformulation approach of [51]. Finally, we use the resulting comparison
to provide insights toward understanding the limitations of using a convex-relaxed
lower-level defender subproblem in formulating and evaluating solutions to the bilevel
problem.

This paper is organized as follows. In Section 2, we present the parameterized
lower-level defender problem as a feasibility problem for satisfying the AC power
flow constraints, with system infeasibilities penalized by absolute slack values, and
binary-valued parameters corresponding to attack states. We embed the lower-level
problem in the bilevel problem, and also in the related bilevel minmax problem. We
derive key properties of these problems and their relationship, and we describe how
to apply the SDP and SOC convex relaxations to the AC power flow constraints.
In Section 3, we present our branch-and-bound algorithm, and we prove properties of
the generated solutions at termination. Section 4 describes our numerical experiments
for (i) demonstrating the advantages of using the AC power-flow equations directly in
the PSVA bilevel problem, and (ii) testing the developed branch-and-bound approach
and reporting the numerical results for the new method and a conic-based method
on different power-grid instances. In Section 5, we summarize our conclusions and
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4 B. DANDURAND, K. KIM, AND S. LEYFFER

describe future work

2. Problem Formulation. To begin, we specify the lower-level AC optimal
power flow (ACOPF) with details of the power flow physics. We follow the develop-
ment of Chapter 3 in [57].

2.1. Nonconvex lower-level ACOPF problem. We consider an AC power
flow system consisting of buses, indexed by i or j with index set N, that are linked
by lines (including transformers) indexed by ! from set L. When the terminal buses
of a line are to be specified, we denote the line as (i,5) = € L, which is connected
from bus i to bus j. Distinction is made between lines that are active indexed from
the set L® C L, and lines that are inactive indexed from the set L' C L. Hence,
L°UL' = L and L°N L' = (). Lines may become inactive due to an intentional attack
on the network or merely due to unexpected component failures.

For a given resistance r; and reactance x; of line [ € L, the complex-valued line
impedance is defined by z; := (r; +1iy;), where the imaginary unit is denoted by
i := v/—1. We denote complex current flows by Llf and ¢}, where the superscripts
f and t indicate the forward and backward direction of flows, respectively. Given
complex bus voltages v; € C, ¢ € N, the line [ € L current flows are determined by

(2.1a) d ] _[Y Y
i vy L

where the line admittance entries Y; are

—1 b 1 -1 1
Yl:={Yl” Yzft]:zl(z tn A w]

l
tf tt -1 1 —1 b
Y, Y, T Z g

(2.1b)

given the charging susceptance b;, the tap ratio 7;, and the phase angle shift ;. At
each line (i,j) = | € L, complex power flows from bus i and to bus j are given
respectively by
(2.1c)

si =0 (i) = v (V) + ol (V) st =i ()" = vjof (V) + ool (1717,

where (-)* applied to a complex-valued argument returns its complex conjugate. The
shunt power flow associated with bus ¢ € N is given by

(2.1d) st = PV iy,

K3

where V"% and Y*"! are bus i € N shunt admittance parameters. Active and
reactive power components are defined as follows:

(2.1e) plf = §R{slf}, qlf = %{slf}, lelL
(2.11) pi=R{si}, ¢ =S{s;}, lel
(2.1g) p = R{s"), ¢t = 3{s"), e N

The real and imaginary voltage components are denoted v := R{v;} and v := S{v;}

for each i € N. Collecting v := [UZR]Z'GN and v! := [vﬂ iEN the active and reactive

power quantities (2.1e), (2.1f), and (2.1g) may be written in the form

(22a) pf = (P, W), of =(Qf.W), »i=(B.W), ¢ =(QW), 1leL,
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IDENTIFYING CONTINGENCIES IN POWER SYSTEMS 5
h h h h .
(2.2b) pit = <PiS ,W> . @t = < H ,W> , 1EN,

where Plf7 Qlf, Pl Q1€ L, and P", Qsh, i € N are constant sparse 2|N| x 2|N|
symmetric real-valued matrices, W € R2N2INI ¢ WAC with

(22C) WAC,{[UR:||:UR :|T "UR ’UIGRINl}
. T ’UI ’UI . ) ’

and (-,-) is the Frobenius inner product.

The power system operator (PSO) has direct control of the bus voltage settings
v; € C, 1 € N, and through control of these settings, indirect control of the bus i € N
shunt power flows via (2.2b) and the active line [ € L° flows via (2.2a). The PSO also
has direct control over active and reactive power generation at bus ¢ € N, which are
denoted by p% = (p§)ien and ¢¢ := (¢¥);ien, respectively. The bus voltage settings
v; € C, i € N, the line power flow quantities (2.2a), and the power generation are
subject to the following physical constraints.

1. Voltage magnitude bounds:

(2.2d) (VM2 < (VM W) < (Vmen)?, i e N,
where VM is the constant sparse 2|N| x 2| N| symmetric matrix for which
> = (VM, W), ieN.
2. Active and reactive power generation bounds:
(2.2¢) P pf SPMT, QPN <qf <QPT, i€,
3. Thermal line flow limits:
@20 @D+ @) < 6P D+ @) < (7). 1e L

where s]"** € Ry U {00} is the upper bound on the absolute value line { flow

in either the ’from’ or ’to’ direction. Constraint (2.2f) is only relevant for

active lines [ € L°.
Using necessary adjustments of vi,pf,in , © € N, as allowed by the physical con-
straints (2.2d)—(2.2f), the PSO is tasked with maintaining, for each bus ¢ € N, the
balance between constant active PP and reactive QP power demands and the bus
i-specific power injection quantities due to 1) power generation p¥, ¢&; 2) via (2.2b),
shunt power flows ps", ¢5"; 3) via (2.2a), line power flows plf, qlf, le L{ N LY where sz
is the set of lines with the origin of bus i; and pf, ¢, I € Lt N LY, where L! is the set
of lines with the destination of bus i. Furthermore, the resulting active and reactive
power flow balance constraint equations at each bus ¢ € N are given by

(2.28) (phowy+ N pl+ Y pi=pf - PP
leLimeO leLfﬂLU

(2.2h) @ wy+ > o+ D d=d"-0QP
leLlfﬂLO leLinLo

We pose a model to accommodate change in the active line index set L° due to
an attack or other disruption to the power system. In such a situation, it may not be
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6 B. DANDURAND, K. KIM, AND S. LEYFFER

possible for the PSO to enforce all of the power system constraints (2.2) by adjustment
of the voltage settings v and power generations p©, and ¢©. That is, load shedding,
excessive power generation, or other violations of system power constraints might be
unavoidable. Consequently, through the introduction of slacks associated with various
types of power quantities, we model the lower-level problem below in (2.3) to minimize
these violations.

In order to model the mutable nature of the active line index set L°, we replace
the use of LY in (2.2) with the use of binary valued parameters z; € {0,1}, I € L
n (2.3). Lines for which z; = 0 behave like active lines, while lines for which z; =1
behave like inactive lines. Consequently, with the use of x := (x;);cr, the use of the
full index set L instead of LY in the following model (2.3) is deliberate. In (2.3),
x := (x1)1ep is treated as a parameter, but in subsequent models for the attacker
problem, it becomes a decision variable. The PSO lower-level problem is given by

O (w) = mmin Y [di] + [d7 ]

W.p,q, N

+3 (1 —m) [\d{p| )+ N |+ 1|+ d

leL
(2.32) + > |lof |+ il + laf | + laf
leL
(2.3b) st. WeWw
(2.3¢) Pt < pf < BT, QP <qf <QPY, ieN
(23d) (V;mzn)Z S <‘/;M’W> S (‘/;mam)Q’ = N,
(2.3¢) W)+ (af)? < (s +dl )%, lel
(2.3f) P)* + (q1)* < (s +dj )% lel
(2.3g) df df >0, leL
(2.3h) (PP WY+ pl + > pj—pF + PP =dl, ieN,
ler! leL}
(2.31) @ W)+ gl +> d—af +QP =4, ieN,
ler! leLt
(2.3)) ol = (B Wy+df, vi=(B.W)+d, leL
(2.3K) of =(Qf.W)+dl, o =(QW)+d, leL,

where W, p, ¢, d are decision variables. For W = WAC entries of W are bilinear terms
in the entries of v and v’, resulting in a nonconvex nonlinear program due to the
quadratic rank-1 constraint, as specified in (2.2c). The thermal limit constraints (2.3e)
and (2.3f) are convex nonlinear, which can also be reformulated as second-order cone
(SOCQ) constraints. All other constraints are linear.

The power flow balance constraints as originally given in (2.2g)—(2.2h) are softened
to (2.3h)~(2.3i) with the use of active and reactive bus power slacks d;\, and d;,, i € N,
whose absolute values are penalized in the objective function; and, Vla (2. 3J) (2.3k),
line flow power slacks dl o dfp, dlf " dt , | € L, whose absolute values are penalized
only for active lines [ with z; = 0. Constraints (2.3j))—(2.3k) quantify the line power
flow slacks as the discrepancies between the actual line power flows over active lines as

This manuscript is for review purposes only.



IDENTIFYING CONTINGENCIES IN POWER SYSTEMS 7
given by the right-hand sides of (2.2a) and the target power flows p{ ., qlf gl lel
applied to the satisfaction of (2.3h)—(2.31).

As required to guarantee the feasibility of problem (2.3), the thermal line limit
constraints (2.2f) are also softened in (2.3e) and (2.3f) with the use of the nonnegative
slacks (2.3g). As with the line flow power slacks, these thermal line limit slacks are
only penalized over lines [ that are active (z; = 0). For lines [ € L that are flagged as
inactive with z; = 1, the softened line flow constraints (2.3j)—(2.3k) and the softened
thermal line limit constraints (2.3¢)—(2.3g) become irrelevant since their corresponding
slack variable terms in the objective (2.3a) have coefficient zero. Rather, any nonzero
targeted power flow plf ,pf,qlf ,ql over lines | € L that are flagged as inactive with
x; = 1 are penalized in absolute value. Throughout the paper, we also assume the
following conditions in order to prevent problem (2.3) from being trivially infeasible:
A1 The physical constraints (2.2d), (2.2¢), and (2.2f) are consistent, i.e., V™" <

V'i’maa:7 Pimzn S Pim(ll" Q;ﬂln S Q;naa:’ and S’lVTLG/I Z ()7
A2 W D WAC,
We now show the following properties of the lower-level problem (2.3).

ProrosITION 2.1. If A1 and A2 hold, then for any realization of W,
1. problem (2.3) is always feasible for all z € [0,1]I%!;
2. for any given x € {0,1}F ¢W(z) = 0 if and only if there exists a feasible
solution (W9 p® ¢°,d°) such that
(a) df ,=dt ,=df =dl,=df =di =0 foralleL withz =0 and
(b) plf:pf:qlf:qlt:()forallleL with ; =1,
which in turn holds if and only if (WO, p°, q°) satisfies the constraints (2.2);
3. x> ¢V (x) is concave (and thus continuous) over x € [0, 1]

Proof. For the first claim, we fix W = W9 p% = (p©)°, and ¢¢ = (¢%)°. Due
to Al and A2, we can assign line flow discrepancies df = (df)°, d!, = (d})°,df =
(d))°,d}, = (d})° and target line flows p/ = (p)°,p* = ()%, ¢/ = (¢)% ¢" = (¢")°
to satisfy the power balance constraints (2.3h)—(2.3i) and the discrepancy-defining
constraints (2.3j)—(2.3k). That leaves only the thermal line limit constraints (2.3e)
and (2.3f), which can be satisfied with sufficiently large slack values df = (df)° and
d’ = (d%)°. Thus, the existence of a feasible solution (W9, p° ¢°, d°) satisfying all
constraints to problem (2.3) has been demonstrated.

The second claim is obvious from the definition of the objective function (2.3a)
and the natural correspond between constraints (2.3¢)—(2.3k) and the power system
constraints (2.2).

For the third claim, we note that ¢"V(z) is just the infimum of an arbitrary
collection of affine functions in x with coefficients parameterized by all feasible values
of the decision variables in (2.3). For this reason, ¢"V(z) is a concave function. (See,
e.g., [42, Lemma 2.58].) 0

We make the following remarks.

Remark 2.2. The first and second properties of Proposition 2.1 cover the baseline
situation with no attack = 0, in which ¢"Y(0) = 0 with W = WA implies the
existence of PSO settings that satisfy the AC power system requirements (2.2) under
normal (i.e., noncontingent) operating conditions.

Remark 2.3. One may possibly consider certain variations to the objective in the
lower-level problem (2.3), while preserving the properties of Proposition 2.1. For
example, one may add weighted expressions to the current objective function (2.3a)
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8 B. DANDURAND, K. KIM, AND S. LEYFFER

that model the cost of power generation. These additional expressions need to be
weighted in such a way so that the original expressions in (2.3a) behave like exact
penalty terms for the soft constraints whose violation they penalize. Though not
known a priori, such a weighting would exist under the satisfaction of a constraint
qualification. For now, we consider only lower-level subproblem objective functions
focusing on system feasibility having the form (2.3a).

2.2. Convex relaxations of the lower-level subproblem. In what follows,
we shall make reference to two well-known convex relaxations of WA¢: SDP and
SOC relaxations. We use the SDP relaxation in order to provide lower bounds for
our maximization branch-and-bound approach, while the SOC is introduced for the
later comparison with the single-level reformulation based on the Lagrangian dual
approach as in [51].

The SDP relaxation (e.g., [4, 28]) of ¢¢ () is realized with the use of W =
WSPP 5 WAC where

(2.4) WSDP . {W e R2INIX2IN| . 1y - O} _ Si‘N"

The SOC relaxation of the power flow equations (2.1) is applied to the entries of
the complex voltage products given in the rank-1 matrix vo* for each line as follows.
For each line (i,7j) = € L with from bus i and to bus j, denote the complex voltage
products between buses ¢ and j by

ko a0k
ji_vlvj‘

(2.5) wii = v, wy = v, wig = w
Collectively, denote w; := [wy;, w;;, w;;] for each (i,j) =1 € L. In terms of W matrix
entries, the real and imaginary components of the complex voltage products as defined
in (2.5) are

(2.6) wii == R{wi;} = Wi+ Winjra viegs wi; = S{wig} = Wy v — Wa v j4s-
The SOC relaxation is then applied to the constraint W € WA by replacing W €
WAC with the following SOC constraints for each line [ € L:

Wi — Wy
(2.7) 2wf§ < wj; +wjj, (i,j)=1€ L.
2w;;
ij
(Note that w;; = wk for each i € N.) Denote for brevity 7 := i+ |N| and j := j +|N]|.
In terms of W, SOC constraint (2.7) is written W € W99¢ = N,_, W9¢, where
each WISOC, l € L, is defined by

Wii+ Wiy —W;; —Wi;
(2.8) WZSOC =W 2(Ws; + Wi 5) < Wi+ Wis + W5+ Wj;
2(Wja — W)

From this point on, for brevity, we denote ¢A¢ := QSWAC, $SPF = ngWSDP and

$50C = ¢WSOC_

7

2.3. PSVA bilevel problem formulation. With the lower-level subproblem (2.3) ]
we formulate the PSVA bilevel optimization problem as follows:

(2.9) W = max { oV (z) st Zml <K, z€{0,1}, 1€ L}7

leL

This manuscript is for review purposes only.
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IDENTIFYING CONTINGENCIES IN POWER SYSTEMS 9

as a discrete optimization problem with nonsmooth objective value function z
o™ (2).

Remark 2.4. By Proposition 2.1, ¢"V is concave (and thus continuous) in = €
[0, 1]|L‘ even for a nonconvex realization of WW. As such, even for W = WAC prob-
lem (2.9) has the structure of a convex mixed-integer nonlinear program (MINLP). In
theory, we may solve MINLPs using such methodologies as the generalized extended
cutting plane (ECP) or outer approximation (OA) approaches [50, 22]. However, in
practice, the use of such approaches require the reliable evaluation of (at least quantifi-
ably approximate) values and (at least quantifiably approximate) subgradients to the
lower-level optimal value function, and this in turn requires solving the corresponding
subproblem to global optimality. Global optimization of the lower-level subproblem
with the nonconvex AC power flow constraints is known to be strongly NP-hard [8].

Such a convexity structure of ¢V, W = WA is not necessary to establish the
global optimality properties of solutions generated in our contributed approach. Nev-
ertheless, such objective function structures are generally desirable within a branch-
and-bound context for informing meaningful branching rules that are more than mere
guesses within what is otherwise a blind combinatorially enumerative process.

When W is a convex relaxation of WAC for which a constraint qualification holds,
the bilevel problem (2.9) can be reformulated into an equivalent single-level maximiza-
tion problem by replacing the function ¢"V(z) with the Lagrangian dual problem to
problem (2.3). Hence, a mixed-integer convex programming algorithm can be applied
directly to the resulting single-level reformulation. Such an approach was applied in
the recent paper [51] where in our present notation, W = W99¢ 5 WAC realizes
the well-known SOC relaxation of WAC. One may then apply a branch-and-bound
approach to the single-level maximization problem, with upper bounds computed as
solutions to the single-level problem relaxation due to relaxing the integrality con-
straints on . Lower bounds are due to the verification of feasible solutions to the
bilevel problem.

The lower-level problem (2.3) with W = WA is nonconvex and may have a
nonzero gap with its Lagrangian dual, so the Lagrangian dual-based single-level re-
formulation will not be equivalent to the nonrelaxed PSVA bilevel problem. Thus,
within a maximizing branch-and-bound context, the node upper bounding procedure
is not yet evident. We address this in the next section.

3. Algorithms and Methods. In this section, we present an implementable
and effective branch-and-bound framework for solving the PSVA bilevel problem with
lower-level AC power-flow equations. Our branch-and-bound framework is based on
two tailored subproblems for computing lower and upper bounds.

Let 7 be a branch-and-bound tree that consists of a set of tree nodes A/. At each
tree node N € T, the algorithm may fix some of the binary variables x; to either 0 or
1 as part of the branching process. We denote by L{)\[ the set of indices of x that are
fixed to 0 at node NV, and we denote by le\/ the set of indices of z components that are
fixed to 1 at node A/. The set of remaining line indices for which the x components
are not fixed is denoted Let LY := L\{L} U LY}. The upper bound associated with
each node is ®}5, and the incumbent lower bound associated with the best-known
feasible solution is @, 5. We now define XV for a given node N as

XN .= {xe{o,l}L':legK, x =0Vl e LY, a:lzlweL/l‘/},
leL

This manuscript is for review purposes only.
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Before proceeding, we define the following.
1. The solution 2V associated with node A is the unique element of XV such
that ; = 0 for all [ € LY.
2. The active node tree T is a collection of nodes N that have not been fathomed
yet; the collection of nodes that have been fathomed due to optimality is
denoted FOPT and the collection of nodes that have been fathomed due to

bound is denoted FEP.
We denote the node N specific instances of problems (2.9) by

(3.1) PWN .= max { W(x) st. z€ XN}.

As we noted in subsection 2.3, we do not readily have a tractable single-level refor-
mulation for the bilevel problem (2.9), and so it is with its node N refinements (3.1).
In addition, even the continuous relaxations of (3.1) is not tractable for providing the
upper bounds.

We develop a tractable single-level reformulation of (3.1) by replacing the max-
min problem with a min-max problem, whose objective provides a valid upper bound
for the node subproblem (3.1). The resulting upper bounding min-max problem is
given by
N = min [dgp + df\fq}

W.,p,q,d
P eN

Sien(U =) (1], |+ 1df |+ 1d] | + |di | +af, + ]
(3.2) g e [lof )+ 1ot + laf |+ laf ]
st. ze XN
s.t. (2.3b) — (2.3K).

We note the following relationships.
PROPOSITION 3.1. Let A1-A2 hold. For each N € T U FOPT U FBP  we have

(3.3) oV (V) < W < g,
Furthermore, if K = |LYY| or |LY| =0, then
(3.4) oV (V) = W = g,

Proof. The first claim follows readily from the definition of ®"YV given that
2N € XV (first inequality) and from elementary minimax theory [41, Lemma 36.1]
(second inequality). To see the second claim, if K = |L{V| or |L| = 0, then the set
XN = {2V} is singleton, and so problems (3.1) and (3.2) are evidently equivalent to

instances of problem (2.3) with z = 27V, |

For purpose of notational brevity, we denote, for each N € T, PACN .— gW N ,
®SPPN . oW PPN gnd WACN . gWA N SDPN . gW PPN
The node N upper bounding problems (3.2) are still not readily solvable as given,

but they may be easily reformulated into equivalent single-level reformulations.
PROPOSITION 3.2. The node N -specific attacker-defender problem with defender
as leader defined in (3.2) may be equivalently written as follows.

N . N
oy = L min (K~ Du®+ > w
Paa.d, byt

This manuscript is for review purposes only.
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> [l il 1)+ L+ + ]

leLy uLy
+ 3 [l 1+ Ipil - laf ]+ D [ +dfy]
ey iEN

5.t.(2.3b)—(2.3k)
(3.5a)

(e 1+ 16t + laf 1+ 1aiT) = (1], | + b | + 0] |+ |df o + df, +df..) <+, 1€ LY

u >0, w>o0 1erLV.

Proof. The inner maximization problem is bounded and feasible in z for all values
of (W,p,q,d). and its constraint matrix has a simple structure that is easily verified

to be totally unimodular [36, II1.2]. As a result, the integrality restriction of the inner
maximization problem can be relaxed while keeping the same optimal value. Strong
duality readily holds for the continuously relaxed inner maximization problem. In
summary, the above reasoning is written mathematically as

Sier(t—m) [1df |+ 1} |+ |af |+ 1 |+ af , +df ]
max + e @ [Ipf 1+ 1ot + laf | + Iaf1]

st. ze XV

Sier (=) [|d] |+ 1} |+ 1af | + 1 | +af  +a ]
= max + e @ [Ip] |+ 1o}l + laf | + 1af1]
s.t. =0, [ € L@f, =1, 1€ Lff
0<m <1, leLll, Y m<kK
:muin(K—|Lf/|)uk+ >
ey
df dt df dt |+df +dt
+ >0 ldf I ldl L 1d] df g ]+ df
tenyuLy

+ 3 Il 1+ 1wt + laf |+ 1af1] + > [d, +al,]
ey iEN

sit. (1of 1+ pf 1+ af 1+ 1af1) = (1a] |+ 1df | + |af | + 1 o1+ af  + df ) <+, ve 12

u >0, w >0 1eL¥.
which results in the claimed single-level reformulation. ]

We introduce more notation.
1. Given z € X/, the global optimal value to (2.3) was denoted by ¢4 (x); but
we also allow for the use of locally optimal values denoted ¢A¢ () and thus
4% (z) < $°(a).
2. We denote WACN for discerning the possible local optimality of computed
solutions to (3.2), so that WACN < ACN,
3. In solving problem (3.2) for either globally or merely locally optimal value, we
denote the dual values associated with the constraints (3.5a) by le e L.
Due to the use of problem (3.5) solutions for computing upper bounds fI){}/ 5, the
branching index selection rule used in Algorithm 3.1 cannot be based on x component
values. Instead, the branching index is selected based on &V component values, in
particular selecting an index corresponding the the maximal &V component value.
This particular branching rule is motivated by the role of each &, | € L{:f , as the
dual value associated with the corresponding x; < 1 bound in the inner maximization
problem (3.2). In general, nonzero values for £ mean that the corresponding bound

This manuscript is for review purposes only.
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Algorithm 3.1 Branch-and-bound applied to (2.9) with W = WAC
1: Inputs: optimality tolerance ¢ > 0

2: Initialize T < 0, FOPT « (), FBP «+ )

3. Create a root node N such that LY « 0, LY « 0, and LY « L
4: Set &N < 00, compute &) « ¢SO (V)

5: Set Prp + (I)jng and g +
6:
T
8
9

Set T « {N}
while 7 # (0 do
Select a node NV € arg maxprer ®Np
Set Pyp + maxpyer (I)'(,}[B and T + T\{N}
10: if (I)UB < ®;p then

11: FBD « FBDU{NYUT, T + 0 {Fathom remaining active nodes by bound}
12: return 7, FOPT FBP [ terminate }

13:  else

14: Solve the node A subproblem (3.2) with W = WAC

15: for a locally maximal value U4V and multipliers £lN ,le L{kv
16: Update @ + min{®,, PACN Y

17: if LY =0O0R K = |L)| OR &), — &} < ¢ then

18: FOPT o FOPT j{N} {Fathom by optimality}

19: else if @/[}/B < ®;p then

20: FBDP « FBD U {N} {Fathom due to bound}

21: else

22: Select I* € arg max;c v §lN

23: Create two nodes Ay and N such that

24; 1) LY Y u{iry, LYo« LY, o)y o), oo N,
25: 2) LYt — LY, I LN u{Ir}, oYL« o,

26: Compute @jg% — ¢SPP (xN1)

o7: if @)L > ®;p then

28: @LB%@%% and (ELB(—.’ENl

29: end if

30: SetT(—TU{No,Nl}

31: end if

32:  end if

33: end while
34: return 7, FOPT FBD

162 x; < 1 is binding and thus favored as a choice in at least one optimal attack for the
163 inner maximization problem (3.2). This particular branching index selection is by no
464 means forced, and additional study into branching index selection rules and analogs
465  to strong and pseudocost branching (e.g., [5]) for similar algorithms is needed.

466 The finite termination of Algorithm 3.1 is combinatorially evident.

467 THEOREM 3.3. Let A1-A2 hold, and let Algorithm 3.1 be applied to problem (2.9)
168 with W = WAC with optimality tolerance € > 0. Then Algorithm 3.1 terminates after
469 processing a finite number of nodes and the following hold.

470 1. The incumbent solution w1 g is e-optimal for problem (2.9) with W = WSPF;
A71 2. If @ﬁ[B —Prp <eforalN e FOPT then xpp is furthermore e-optimal for

172 problem (2.9) with W = WAC.

This manuscript is for review purposes only.
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3. Otherwise, there is at least one solution .Z‘N, N € FOPT, for which @5 <
<I>{}fB, and these solutions are candidate e-optimal solutions for problem (2.9)
with W = WAC.

Proof. By A1-A2, the initial evaluation of ®1 5 in line 5 is finite and hence the
subsequent part of the algorithm is nontrivial. The terminating after processing a
finite number of tree nodes is evident from the combinatorial association of each
node with one of the finite number of possible ways to partition the line index set
L={L), ¥, LN}

For the first claim, the e-optimality of g for problem (2.9) with W =
follows since, by construction we have the following three cases for each N' € FOPT y
FBD,

1. CP/[\,fB < &, and since so HSPPN < @JI}/B, we have ®5PPN < drB.

2. &Ny > ®pp and |LY| = K or |[LY| = 0. By Proposition 3.1 part 2,
PSDPN — @Q/B, and so ®PPN < &, p.

3. ®Np > ®pp and Yy — &) < e Thus, 0 < &Y, — & < e. Furthermore,
since ®SPPN < CIDJIYB, we have ®5PPN < &, 5+ ¢

For the second claim if @fl}fB —®pp < eforall N € FOPT then global e-optimality
of x1,5 with respect to (2.9), W = WAC is also established. Otherwise, for the third
claim, Algorithm 3.1 there is a nonempty list of solutions 2V with A" € FOPT and
(D{}/ g = ®rp since @1 p corresponds to one of the <I>/L\[ p by construction, and at least
one of these solutions is globally optimal for the bilevel problem (2.9), W = WA¢. 00
JACN _ ACN

WSDP

The ability to verify the global optimality is sufficient for resolving
the uncertainty about which of the said candidate solutions are globally optimal.

4. Computational Experiments. In this section, we present the results of
two sets of computational experiments on the test instances IEEE 30-, 57-, 118-, and
300-bus test systems [38]. (We additionally applied experiments with larger Pegase
1354-, and 2869-bus system instances, and we defer discussion of these experiments
to the conclusion.)

Significant parameters associated with each test instance are summarized in Ta-
ble 1. We formulate the optimization models using our Julia Package MaximinOPF .jl [17]]}
built on top of PowerModels.jl [14] and JuMP [21] modeling interface. We use Julia
version 1.4 [6].

TABLE 1
Data associated with each of the test problems.

Number of Components by Type IEEE Case Pegase Case
Type Index Set 30 57 118 300 | 1354 2869
Buses N 30 57 118 300 | 1354 2869
Generators G 6 7 54 69 260 510
Loads (fixed) 20 42 99 201 673 1491
Shunts 2 3 14 29 | 1082 2197
Branches L 41 80 186 411 | 1991 4582
Transformers 0 17 9 107 234 496

4.1. First set of experiments for comparing reliability of lower level
model relaxations. In the first set of experiments, we simply solve instances of
the PSVA min level defender problem (2.3) over W € {WAC WPP WSO for the
smaller IEEE Case 30 and IEEE Case 57 instances over all enumerated line attacks
x € {0,1}2] under attack budget K = 3. For the W = WA instance, we use the
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14 B. DANDURAND, K. KIM, AND S. LEYFFER

open source interior point solver Ipopt [49] with HSL linear solver ma57 [23]. For
the W = WH9PP and WSOC tests, we use the commercially available Mosek [35].
Computations for the first set of experiments are carried out on a workstation with
dual socket Intel Xeon Gold 6140 CPUs, 512 GB RAM, and a total of 36 physical
cores.

We denote specific solutions x with superscripts to indicate the inactive line in-
dices | (z; = 1). For example, using IEEE Case 30 with |L| = 41 lines, then the
specific z solution with x19 = 1, 40 = 1 and all other z; = 0 would be denoted
z[10:40] " When the use of z notation is not required, we simply describe the attack
with attacked lines bracketed, for example, [10, 40].

TABLE 2
Tabulating enumerated contingencies with significant discrepancies between relazations

IEEE Case 30, K =1 IEEE Case 30, K =3
lines cut d)AC ¢SDP ¢SOC lines cut d)AC ¢SDP ¢SOC
[16] 0.013  0.009 0 [5,6,7] 0.117  0.108 0
[25] 0.003  0.003 0 [6,7,8] 0.127 0.118 0
[36] 0.07 0.07 0 [11,15,16] | 0.162 0.162 0
(14,15,16] | 0.162 0.162 0
IEEE Case 57, K =1 IEEE Case 57, K =1
lines cut d)AC ¢SDP (z)SOC lines cut d’AC (z)SDP ¢SOC
[29] 0.002 O 0 [35] 0.003 0 0
[36] 0.001 0 0 [37] 0.019 0.003 0
[38] 0.022  0.003 0 [39] 0.089  0.057 0
[51] 0.006 O 0 [52] 0.014 0.001 0
[55] 0.025  0.007 0 [60] 0.104 O 0
[61] 0.006 O 0 [65] 0.025 0 0
[66] 0 0 0 [79] 0.009 0 0
IEEE Case 57, K =2 IEEE Case 57, K =2
lines cut ¢AC QbSDP (z)SOC lines cut ¢AC (z)SDP ¢SOC
[29, 79] 0.036  0.003 0 [37,60] 0.218 0.032 0
[38,60] 0.267  0.054 0 [38,61] 0.103  0.007 0
[38,79] 0.12 0.031 0 [39,61] 0.171  0.066 0
(39, 65] 0.128  0.069 0 (60, 65] 0.275  0.036 0
[60, 66] 0.597  0.155 0 [61,65] 0.109 0 0
[61,66] 0.194 0.014 0
IEEE Case 57, K =3 IEEE Case 57, K =3
lines cut ¢AC @SDFP 50T lines cut ¢AC ¢SDP 350C
[8,15,18] 0.350 0.350 0 [8,23,63] 0.185 0.085 0
[8,37,79] 0.102  0.032 0 [8,58,79] 0.129  0.052 0
19,38, 79] 0.125 0.028 0 [10,38,79] | 0.138 0.041 0
[10,58,79] | 0.121 0.044 0 [10,59,66] | 0.131  0.098 0
[10,72,79] | 0.123  0.048 0 [10,78,79] | 0.108 0.010 0
[13,15,18] | 0.256  0.044 0 [14,25,28] | 0.124  0.082 0
[15,18,25] | 0.443  0.408 0 [15,18,39] | 0.155 0.092 0
[15,60,66] | 0.602 0.209 0 (17,78,79] | 0.116 0.007 0
[22,58,79] | 0.154 0.048 0 [22,72,79] | 0.156  0.052 0
[22,78,79] | 0.119 0.016 0 [38,55,79] | 0.201 0.075 0

In Table 2, we present noteworthy examples of solutions that are inaccurately
undervalued in attack value due to the use of lower level defender problem convex
relaxations. Observations from Table 2 are as follows.

1. For IEEE Case 30, K = 3 entries, we see how the computed attack value
#°9C can inaccurately take value zero while the corresponding ¢¢ and ¢5PF
values are nonzero and substantial.

2. For IEEE Case 57, K = 1, several single-line cut attacks are noted for which
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their computed ¢€ value is positive and substantial, but at least one of their
#SPP and ¢°9C values is inaccurately valued at zero. Of course, it may be
that A€ > ¢4C for any input (i.e., merely an optimal value in a local sense).

(a) But then, the inclusion of these lines persists in substantial attacks with
larger budgets K = 2,3 with respect to both $4¢ and ¢°PF value, even
when the ¢5PF values for the corresponding single-line K = 1 attacks
were zero. This observation is evident, for example, with the attacks
[29,79], [60, 65], and [60, 66].

(b) Shortly, in the discussion of the second set of experiments, we even see
the cutting of lines 60 and 65 appearing in the optimal attack and in
many of the candidate optimal attacks for the attack budget K = 4 with
respect to ®AC, PP and $5OC,

3. Some of the most notable attacks that are mis-evaluated due to the use of
#°9C¢ appear in the IEEE Case 57 attacks [8,15,18], [8,23,63],[13,15,18],
[15,60,66], and [38,55,79]. It is noteworthy that the optimal attack real-
izing the bilevel optimal values even for ®5PF and ®5°¢ with K = 5 is
[8,15,16,17,18]; this observation suggests that evaluating low budget (here
K = 3) attacks accurately can provide a better sense of which attacks can be
critical with larger budgets (here K = 5).

4. Many attacks involving lines [ = 8,9, 13, 15, 29, 60, 65, 66, and 79 register sub-
stantial nonzero values of ¢ and/or ¢°PF with small budgets K = 1,2, 3,
but zero value with respect to ¢°?¢. While these particular lines may become
part of substantial attacks even with respect to ¢°°¢ for larger budgets, the
criticality of these lines can be detected in smaller budget attacks when the
lower level defender problem value is obtained either without relaxing the AC
power flow equations (i.e., evaluating quC), or at least using tighter convex
relaxations (e.g., evaluating ¢°PF). This observation can be critical in future
research on branch-and-bound branching rules.

The two main conclusions we draw from this first set of experiments are as follows.
First, we note a substantial number of attacks that are of significant ¢ value, but
that are incorrectly valued at zero with respect to ¢°°C and sometimes even with
respect to ¢°PF . These attacks correspond to power system vulnerabilities that would
be missed with any solution approach relying on such relaxations of the PSVA lower
level defender subproblem. Second, we note that the computed values of $¢ that are
nonzero for small K—even if we have not verified global optimality—but which have
#°9¢ and/or ¢PF value zero, seem to predict the significant role these line cuts can
have for larger budgets with respect to all of $4¢, ¢ PP and ¢59C.

Next, we compare the application of Algorithm 3.1 to problem (2.9) with W =
WAC | referred to as ACBnB, with a baseline mixed-integer SOC relaxation-based
approach [51] applied to problem (2.9) with W = W90 referred to as MISOC.

4.2. Numerical experiments for comparing ACBnB with MISOC. We
apply ACBnB and MISOC to all of the test instances mentioned at the beginning
of this section. For each test instance, we apply ACBnB and MISOC with budgets
Ke{l1,...,16}.

For solving the ACBnB upper bound generating instances of the node subprob-
lems (3.2), we use the open source interior point solver Ipopt [49] with HSL linear
solver mab7 [23]. For solving the ACBnB lower bounding instances of the PSVA min
level defender subproblem (2.3) with W = WSPP | we use the commercial Mosek [35]
solver with academic license. These same SDP lower bounding node subproblems
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16 B. DANDURAND, K. KIM, AND S. LEYFFER

are formulated with chordal decomposition [33, 30, 55, 56] automatically through the
PowerModels [14] interface on which our algorithm implementation is built.

For the MISOC experiments, we also apply the Mosek as a mixed-integer SOC
solver to the Lagrangian dual single level reformulation of problem (2.9) with W =
WH39C in line with [51].

Each of these computational tests are carried out on a single core of a single
node of the Argonne National Laboratory Bebop cluster, each consisting of an Intel®
Xeon® CPU E5-2695 v4 @ 2.10 GHz processor. We use the GNU Parallel utility [47]
in submitting jobs in parallel using one core per job. Appropriate parameters for
enforcing the use of one thread are set explicitly in the instantiation of the Mosek
solver object. The methods were run with the time limit of 24 wall-clock hours
(86,400 seconds).

Parameter settings for the use of Ipopt and Mosek are nearly default. For Ipopt,
the only nondefault parameter settings are for specifying the use of the ma57 linear
solver and for setting the maximum number of iterations to 50,000. For Mosek, the
only nondefault parameter setting is for specifying the use of one thread.

When Ipopt is applied to nonconvex subproblems, the initial point is generated
internally through the PowerModels.jl interface. Resolves with random initial bus
voltage solutions are only applied in two cases where global optimality is obviously
not realized, (1) solver status indicating numerical error (happened, but rare) or (2)
due to the computed optimal value exceeding a known upper bound. In generating
the random voltage settings, we always set for each bus i € N initial value v? = 1
and randomly selected v! € {—0.5,0,0.5} with equal probability, and then we use the
initial bus voltage value obtained after rescaling so that ||[[vt, v]][2 = 1.

For the baseline experiments using the approach in [51] (MISOC) and for the
experiments using Algorithm 3.1 (ACBnB), we report the following in Table 3-Table 5:

1. number of nodes (Nodes) processed at termination;

2. average time (in seconds) spent solving each node (Secs/N);

3. total running time for solving the instance, in seconds (Secs); experiments for
which the maximum of 86,400 seconds was reached are marked with T’ in
this entry;

4. either an inteval [LB, U B] in which the optimal value is known to be located,
or in the case that the interval reduces to a singleton, a bracketed optimal
value [OPT].

For the Table 3 experiments, we make the following observations and conclusions:

1. As we shall see in both Table 3 and Table 5, the advantage in terms of less
computational time of using MISOC over ACBnB is always present. In terms
of number of node evaluations, MISOC usually requires fewer nodes to reach
termination.

2. For IEEE Case 30, the optimal attacks and values found using the MISOC
and ACBnB approach do not differ, and the consequence of relaxating the
PSVA min level AC power flow equations is not significant for this instance.

3. However, for IEEE Case 57 with K = 1,...,5, the consequences of this
relaxation are more apparent:

(a) The optimal value for MISOC underestimates the optimal value interval
for ACBnB. This is in line with the observations from the first set of
experiments tabulated in Table 2.

(b) The optimal solutions with respect to ®°PF computed in the ACBnB
experiments match with the optimal solutions with respect to ®5°¢
computed in the MISOC experiments.
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TABLE 3
Comparing MISOC and ACBnB for the smaller test instances (IEEE 30-, 57-bus systems with
K=1,...,16)
MISOC ACBnB
Case K | Nodes Secs/N Secs [LB,UB] | Nodes Secs/N Secs [LB,UB]
30 1 33 0.06 2 [0.153] 57 14 80 [0.153]
2 21 0.05 1 [0.600] 39 1.97 r [0.600]
3 149 003 5 [0.658] 275 0.4 110 [0.658]
4 285 0.04 10 [0.937] 821 0.23 186 (0.937]
5 859  0.03 28 [0.995 | 3191  0.17 543  [0.995]
6 1195 0.03 38 [1.224] 4581 0.17 768 [1.253]
7 977 0.03 31 [1.510] 4443 0.17 764 [1.510]
8 347 0.03 12 [1.939] 1429 0.18 264 [1.939]
9 171 0.04 7 [2.158] 783 0.25 192 [2.158]
10| 367 004 13 [2.216] | 2399  0.19 444 [2.216]
11 765 0.03 23 [2.316] 2927 0.19 564 [2.316]
12| 455 003 13 [2.374] | 3945 02 785  [2.374)
13| 965 003 30 [2.407] | 5461  0.18 974 [2.407]
14 653 0.03 19 [2.528] 1467 0.2 296 [2.528]
15 1027 0.03 31 [2.561] 845 0.24 200 [2.561]
16 563 0.03 19 [2.572] 755 0.35 262 [2.572]
57 1 47 0.06 3 [0.343] 71 1.3 92 [0.368,0.398]
2 223 0.05 12 [0.760] 411 053 217 [0.777,0.812]
3 967  0.05 47 [1.018] | 2073 045 934 [1.024,1.233]
4 1203 0.06 69 [1.579] 2923 0.46 1330 [1.600,1.821]
5| 1341 005 71 [2.419] | 2493 045 1122 [2.420,2.462]
6 331 007 23 [3.601] 493 054 264 [3.601]
7 203 0.07 15 [4.092] 637 0.49 309 [4.092]
8 503 0.07 34 [4.218] 1823 0.42 768 [4.218]
9 905 0.06 58 [4.613] 1977 0.43 857 [4.613]
10 1559 0.06 100 [4.739] 7127 0.41 2903 [4.739]
11 1091 0.07 71 [5.052] 5681 0.43 2470 [5.052]
12 2137 0.06 137 [5.177] 9677 0.38 3723 [5.177]
13 653 0.06 41 [5.436] 4919 0.43 2092 [5.436,5.437]
14 665 0.06 41 [5.579] 5683 0.4 2274 [5.579]
15 513 0.06 30 [5.816] 2327 0.4 942 [5.816,5.817]
16 365 0.05 19 [5.959] 2145 0.41 876 [5.959]

(¢) However, the ACBnB experiments also provide a list of candidate op-
timal solutions with respect to ®4C that are distinct from those with
respect to either ®3PF or 39C  many of which, contingent on verifying
global optimality, can have substantially larger value than the reported
®9PF and ®59C values. Furthermore, the line cuts that recur in many
of these candidate solutions for K = 3 even constitute the optimal K = 4
attack with respect to ®5PF and ®59¢. See Table 4.

(d) For the K = 5 rows of Table 4, it is noteworthy that the optimal so-

(I)SDP (I)SOC

lution with respect to and is substantially different from
the K =1,...,4 optimal solutions. There is also a substantial jump in
corresponding optimal value from K = 4 to K = 5. While noteworthy,
this apparent absence of “nesting” observed in the comparison of the
K =4 and K = 5 optimal solution is not unusual in itself. What is even
more noteworthy is an observation from the first set of experiments,
where ¢AC (zl8:15:181) = ¢SDP (2(8:15.18]) — (.35 but ¢SOC (z[8:15:18]) =
and [8,15,18] nests within the optimal K = 5 attack. From this, we
see that avoiding relaxation or at least using tighter SDP relaxation of
the PSVA lower level problem can provide substantial hints of power
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system vulnerabilities that are missed with the use of the weaker SOC
relaxation.

4. Tt is noteworthy that with the larger attack budgets K =6, ..., 16, the conse-
quences of relaxing the AC power flow equations for IEEE Case 57 diminish,
where the attack values and attack solutions are the same between MISOC
and ACBnB.

TABLE 4
Case 57 comparison of MISOC and ACBnB solutions.

MISOC ACBnB

K opt attack $SOC opt attack PSDP AC
3 (33,41, 80] 1.018 [33,41,80] 1.024 [1.024,1.033]
[60, 66, 72] 0.797 [0.797,1.075]
[41, 60, 66] 0.782 [0.782,1.233]
[41, 60, 80] 0.843 [0.843,1.075]
[60, 65, 66] 0.797 [0.797,1.147]
[58, 60, 66] 0.792 [0.792,1.072]
4 | [60,65,66,72] 1.579 60, 65,66, 72 1.600 [1.600,1.752]
57,60, 65, 66 1.464 [1.464,1.611]
58,60, 65, 66 1.595 [1.595,1.748]
41,60, 65, 66 1.470 [1.470,1.821]
41,57, 60, 66 1.391 [1.391,1.626]
]
]
]
]
]

[ ]
[ ]
[ ]
EE
[41, 58, 60, 66] 1.521 [1.521,1.766
[ ]
[ ]
[ ]
[ ]

41,60, 66,80 1.174 [1.174,1.638
58, 59, 65, 66 1.573  [1.573,1.632
59, 65, 66, 72 1.579 [1.579,1.643
41,60, 66, 72 1.527  [1.527,1.769
5 | [8,15,16,17,18] 2.419 | [8,15,16,17,18] 2.420 [2.420)
[41, 58, 60, 65, 66] [2.326, 2.459]
[41, 60,65, 66, 72] [2.332,2.462]

We make the following observations for the IEEE Case 118 and Case 300 experi-
ments.

Case 118 For the ACBnB experiments that terminated before the time limit (K =
1,...,7), the optimal values and solutions were the same as computed for
the MISOC experiments. This suggests that the relaxation of the PSVA
min level defender problem AC power flow equations may not be significant
for Case 118. Furthmore, the ACBnB incumbent SDP values for the K =
8,9, 10 experiments were the same as the optimal values for the corresponding
MISOC experiments.

Case 300 For the budgets K = 2,6, 7, we have not only different optimal values, but
also different optimal solutions. Furthermore, for K = 3, we have a candidate
optimal solution with respect to ®4€ that is different. See Table 6.

5. Conclusions. We make contributions toward the problem of power system
vulnerability analysis (PSVA) for identifying the most substantial contingencies of
non-relaxed AC power flow networks. The problem is modeled as a bilevel maximin
problem, where the lower-level problem seeks to optimally respond to a parameterized
attack, which is a decision variable in the upper-level attacker’s maximization prob-
lem seeking to inflict a maximal amount of damage in spite of the defender’s optimal
recourse. First, we established concavity and continuity of the optimal value func-
tion for the lower level defender problem as a function of the parameterized attack,
which suggests the existence of an effective branch-and-bound approach based on a
non-relaxed formulation of the lower level defender problem. In addressing the orig-
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TABLE 5

19

Comparing MISOC and ACBnB for the medium size test instances (IEEE 118-, 300-bus sys-
tems with K =1,...,16)

MISOC ACBnB
Case K | Nodes Secs/N  Secs [LB,UB] Nodes Secs/N  Secs [LB,UB]
s 1 5 0.8 1 [0.840] 15 54 sl [0.840]
2 19 0.37 7 [1.448] 81 1.56 126 [1.448]
3 7071 5 [2.288] 81 153 124 [2.288]
4 171 0.19 33 [2.568] 819 0.79 644 [2.568]
5 83 03 25 [3.018] 2403 0.74 1777 [3.018]
6 857 0.17 142 [3.298] 13691 0.71 9694 (3.298]
7 869 0.17 144 [3.697] 40227 0.73 29523 [3.697]
8 2335 0.21 479 [3.977] 142197 0.61 T [3.977,4.216]
9 | 2354 02 460 [4.427) 151459 0.57 T [4.427,4.962]
10 1399 0.21 294 [4.859] 158367 0.55 T [4.859, 5.660]
11 1921 0.21 396 [5.156] 160397 0.54 T [4.019, 6.343]
12| 3081 022 683 [5.439] 153061  0.56 T  [4.316,6.967]
13 3189 0.23 721 [5.783] 153123 0.56 T [4.316, 7.548]
14 2437 0.19 466 [6.268] 158481 0.55 T [4.103,8.102]
15 3831 0.22 850 [6.565] 158827 0.54 T [4.019, 8.696]
16 2385 0.22 528 [6.848] 154891 0.56 T [2.792,9.259]
300 1 25 0.68 17 [8.047] 41 7.68 315 [8.047]
2 203 0.44 89 [12.571] 303 5.25 1590 [12.913,13.145]
3 731 0.43 314 [17.532] 1563 5.02 7848 [17.587,17.668]
4 1495 0.51 758 [23.772] 3929 4.38 17194 [23.790,23.797]
5 2455 0.55 1339 [30.455] 8173 3.86 31508 [30.454,30.455]
6 7327 0.53 3857 [35.185] 24871 3.47 T [35.321,36.291]
7 16639 0.55 9109 [39.940] 29145 2.96 T [40.052,46.484]
8 6001 0.55 3294 [46.180] 31303 2.76 T [44.717,55.653]
9 14577 0.55 7946 [50.911] 30759 2.81 T [49.390,64.588]
10 | 36493 0.55 19899 [65.572] 30531 2.83 T [49.390, 73.566]
11| 76845 0.54 41505 [60.303] 30573 2.83 T [49.390, 82.133]
12 | 132837 0.54 72240 [64.758] 30603 2.82 T [52.751,90.28]
13 | 135191 0.54 72857 [70.407] 30749 2.81 T [49.500,98.271]
14 | 154903 0.56 T [73.835,82.422] | 30303 2.85 T [46.783,106.353]
15 | 161884 0.53 T [79.800,88.091] | 30675 2.82 T [39.990,114.100]
16 | 153309 0.56 T [83.962,95.400] | 31005 2.79 T [42.010,121.634]

Case 300 comparison

TABLE 6

of MISOC and ACBnB solutions.

MISOC
opt attack

$S0C

opt attack

ACBnB

pSDP

$AC

w N

N o

[208, 316]
[177, 181, 208]

[177, 181, 182, 208]
[208, 268, 305, 308, 309]
[208, 266, 268, 305, 309, 317]
[177, 181, 208, 268, 305, 308, 309]

12.571
17.532

23.772

30.455

35.185
39.94

[181, 208]

[177, 181, 208]
[181, 316, 208]
[177, 181, 182, 208]
[208, 268, 305, 308, 309]
[181, 208, 268, 305, 308, 309]
[181, 208, 266, 268, 305, 309, 317]

12.913
17.587
17.437
23.79
30.454
35.321
40.052

[12.913, 13.415]
[17.587, 17.592]
[17.437, 17.668]
[23.790, 23.797]
[30.454, 30.455]
[35.321, 35.553]
[40.052, 46.484]

inal nonconvex lower level defender problem, we cannot obtain an equivalent single
level reformulation based on the KKT conditions or Lagrangian dual reformulation of
the lower level problem. Otherwise, if we could obtain such an equivalent single level
reformulation, then we could apply standard branch-and-bound ideas based on the up-
per bounds (in maximization context) due to the relaxation of integrality constraints.
We find an alternative upper bounding problem by solving the problem obtained by
switching max and min. Such a problem is reformulated in a tractable form while
preserving the nonlinear nonconvex AC power flow equations of the lower level de-
fender problem. We show conditions under which the maxmin problem has equal
value to the minmax upper bounding relaxation that informs a well-defined branch-
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and-bound algorithm which we implement and apply in comparison with a previous
approach based on the convex relaxation of the lower level defender problem. For
lower bounding, we solve instances of the semidefinite program (SDP) relaxed lower
level defender problem. Such lower and upper bounds help to either verify global
optimality of the AC maxmin problem, or otherwise provide a well-vetted list of can-
didate global optimal solutions. We also demonstrate in standard test cases power
system vulnerabilities that are identified due to the use of the non-relaxed lower level
defender problem that are not identified with the use of convex relaxations of the
lower lever defender problem.

Our paper opens a number of interesting future research directions. First, we
have partially addressed the validation of the PSVA lower level defender problem
global optimality using lower bounds to solving the semidefinite programming (SDP)
relaxation of the lower level problem. But we have not fully addressed this issue of
verifying global optimality, which is an important and active area of research [31, 34,
26, 12, 11] that needs to be incorporated into our contribution.

Second, the various areas for improvement in our contributed approach are mo-
tivated by our initial experience applying the algorithm to the larger Pegase 1354
and 2869 instances, which we did not tabulate in Section 4. In particular, for these
two instances, the computational burden at each node (as would be given in the
Secs/N column) due to solving the upper and lower bounding subproblems became
significant, and so not many branch-and-bound tree nodes were processed withing
the allotted 24 hours. Improvements can thus be realized by reducing the required
number of nodes to process through improved branching rules. We gave a simple
rule based on dual solutions for constraints specific to the upper bounding problem.
(Rules based on integrality violation were not applicable in our approach.) Analogs
to strong and pseudo-branching may reduce the number of nodes to process. Further
improvements can of course be obtained through improvement in solution technology,
and especially technology that improves the utilization of sparse network structures
for efficient parallelization. Furthermore, future application of tree-wide paralleliza-
tion in branch-and-bound that efficiently addresses the issues of load-balancing [52]
may also yield computational improvement.

Lastly, other features and contexts of PSVA need to be incorporated into our
contribution, such as the use of additional techniques for verifying global optimality
of nonconvex node subproblems, use of heuristic and metaheuristic approaches [10, 3,
29] for nonconvex node subproblems, the assumption of probabilistic line failure [46]
adaptation for unit commitment applications [45, 13], allowing for the defender to
use line de-activation as a defensive recourse [53], use of trilevel defender-attacker-
defender [1, 18, 27] frameworks.
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