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Abstract. We address the bilevel optimization problem of identifying the most critical attacks5
to an alternating current (AC) power flow network. The upper-level binary maximization problem6
consists in choosing an attack that is treated as a parameter in the lower-level defender minimization7
problem. Instances of the lower-level global minimization problem by themselves are NP-hard due8
to the nonconvex AC power flow constraints, and bilevel solution approaches commonly apply a9
convex relaxation or approximation to allow for tractable bilevel reformulations at the cost of un-10
derestimating some power system vulnerabilities. Our main contribution is to provide an alternative11
branch-and-bound algorithm whose upper bounding mechanism (in a maximization context) is based12
on a reformulation that avoids relaxation of the AC power flow constraints in the lower-level defender13
problem. Lower bounding is provided with semidefinite programming (SDP) relaxed solutions to the14
lower-level problem. We establish finite termination with guarantees of either a globally optimal15
solution to the original bilevel problem, or a globally optimal solution to the SDP-relaxed bilevel16
problem which is included in a vetted list of upper-level attack solutions, at least one of which is17
a globally optimal solution to the bilevel problem. We demonstrate through computational experi-18
ments applied to IEEE case instances both the relevance of our contribution, and the effectiveness of19
our contributed algorithm for identifying power system vulnerabilities whose value is underestimated20
when using standard convex relaxations of the lower level problem. We conclude with a discussion21
of future extensions and improvements.22
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1. Introduction. We present solution methods for application to the problem26

of identifying the most critical attacks to an alternating current (AC) power system,27

which we model as a Stackelberg game, where the attacker (i.e., leader) aims to com-28

promise the functionality of a small subset of components whose failure or malfunction29

results in a system disruption that cannot be adequately remedied with available de-30

fensive measures by a defender (i.e., follower). We allow for an “attack” to be of either31

malevolent or natural origin, such as from a “perfect storm” of naturally occurring32

component failures. One example of where a small number of component failures had33

significant consequence was during the large-scale blackout in the northeastern United34

States and neighboring parts of Canada in the summer of 2003 [48, 37].35

The optimization model associated with this problem of power system vulnera-36

bility analysis (PSVA) naturally has the form of a bilevel problem, a specific type of37

bilevel optimization problem (see, e.g., [2, 19, 40]) where the upper-level (attacker)38

problem seeks to maximize the same objective that the lower level (defender) seeks39

to minimize. For purpose of brevity, we refer to the problem of interest as the PSVA40

bilevel problem. Formulation and solution techniques for the PSVA bilevel problem41

are well-studied [43, 2, 9, 3, 53, 16, 44, 51], and some noteworthy variants include:42

unit-commitment [45, 13]; probabilistic line failure [46] trilevel defender-attacker-43

defender [1, 18, 27], defender line-switching capability [53] heuristics, metaheuris-44
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2 B. DANDURAND, K. KIM, AND S. LEYFFER

tics [10, 3, 29].45

Even well-structured bilevel optimization problems (such as linear bilevel pro-46

grams) are known to be NP-hard, and the PSVA bilevel problem is furthermore47

complicated by the nonlinearity and nonconvexity of the PSVA lower-level defender48

problem due to its AC power flow equations. Naturally, many solution approaches49

either relax or linearize the lower-level problem of the PSVA bilevel problem to yield a50

modified structure more favorable to single-level reformulations. But in doing so, ac-51

curacy of the underlying model is compromised, and the resulting PSVA bilevel model52

solutions may misidentify attacks as harmless that are in fact not. For this reason, one53

avenue of PSVA bilevel research is to develop and test solution approaches that avoid54

relaxing or approximating the AC power flow equations of the PSVA lower-level prob-55

lem. Similarly to [10, 3, 29], we focus on the aspect of PSVA bilevel research in which56

solution approaches preserve the nonlinear, nonconvex AC power equation structure.57

We shift focus from heuristic/metaheuristic approaches considered in [10, 3, 29] and58

instead develop a single-level reformulation that is distinct from the reformulation59

approaches based on KKT conditions [2, 39] or Lagrangian duality [2, 51], and that60

is suitable for the nonconvex structure of the lower-level defender problem.61

We focus on the case where attacks consist of the deactivation of up to K trans-62

mission lines (including transformers). For the purpose of evaluating power network63

security, solving K > 1 instances of the bilevel problem are of the most practical64

value; the K = 0 instance trivializes to a feasibility problem for the baseline power65

network, and power networks are assumed to be secure against the removal of any66

one line as allowed by K = 1.67

The PSVA bilevel problem may be formulated equivalently as a single-level max-68

imization problem whose objective is the optimal value function of the lower-level69

defender problem. The optimal value function of the lower-level problem is a function70

of the upper-level attack variable whose output is the optimal value of the lower-level71

problem for the input attack. Thus, earlier efforts involved developing equivalent72

single-level reformulations that are tractable to known solution method.73

The paper [2] describes two single-level reformulation approaches: (i) replacement74

of the lower-level problem with either its Karush-Kuhn-Tucker (KKT) conditions;75

and (ii) replacement of the lower-level problem with its Lagrangian dual problem.76

The KKT conditions are necessary under constraint qualification, and sufficient un-77

der convexity of the lower level problem. Thus, under these two assumptions, the78

KKT condition-based single-level reformulation is equivalent to the original bilevel79

optimization problem. Under the same two assumptions, The Lagrangian dual has80

zero duality gap with the primal lower-level problem, likewise yielding an equivalent81

single-level reformulation.82

Due to the two assumptions (i.e., constraint qualifications and convexity) for83

the KKT condition-based or Lagrangian dual-based single-level reformulations to be84

equivalent to the original bilevel optimization problem, solution approaches typically85

rely on relaxations or approximations of the lower-level problem. Various approaches86

based on these ideas have been well-studied and well-developed (e.g., [43, 2, 39, 54,87

25, 7, 20, 51]). Some of these relaxations or approximations are linear, while other88

relaxations preserve some nonlinearity while yielding convex lower-level problem re-89

laxations. Well-studied convex relaxations of the AC power flow equations include90

the semidefinite programming (SDP) relaxation [4, 28, 32, 26], the quadratic con-91

straint (QC) relaxation [15], and the second-order cone (SOC) relaxation [24]. Thus,92

in various ways, these approaches obtain reformulations that are solvable with well-93

developed solver technology, but at the cost of diminishing the accuracy of the lower-94
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level defender model.95

The solution approaches based on convex relaxations of the lower-level defender96

problem can be expected to yield “false negatives” in terms of of identifying power97

system vulnerabilities. That is, the relaxed lower-level defender problem can have98

optimal value zero for a given attack when in fact the optimal value for the non-99

relaxed lower-level defender problem is nonzero and perhaps even of substantial value.100

Furthermore, solution approaches based on approximations for lower-level defender101

models can be expected to yield both “false negatives” and “false positives,” which102

include the identification of attacks as being substantial that, in fact, are not.103

In contrast, our goal is to explore severity of the inaccuracies caused by these re-104

laxations and/or approximation to the lower-level defender problem. We ask to what105

degree can power system vulnerabilities be missed or inaccurately assessed? Toward106

this end, we develop and analyze an alternative bilevel formulation and solution ap-107

proach that preserves the original structure to the AC power flow equations in the108

lower-level defender problem.109

In this paper we present a new solution approach to solving the PSVA bilevel110

problem for identifying the most severe attacks to a power system for which optimal111

defender response is assumed. The key contributions of this paper are (i) to show that112

AC power-flow equations can be used within a rigorous global optimization approach113

to analyze grid contingencies, and (ii) to provide an implementable and effective114

branch-and-bound framework for solving the PSVA bilevel problem with lower-level115

AC power-flow equations. Our branch-and-bound framework is based on two tailored116

subproblems for computing lower and upper bounds. In particular, we develop a117

single-level reformulation of the PSVA bilevel problem obtained by reformulating the118

max-min problem as a min-max problem whose objective provides a valid upper bound119

for the original PSVA bilevel problem. We obtain lower bounds through the use of an120

SDP relaxation of the lower-level defender subproblem. In addition, we provide an121

analysis of the solutions produced upon finite termination of the branch-and-bound122

framework, including conditions under which its solutions are either globally optimal,123

or are contained within a finite list of candidate solutions. We demonstrate the124

effectiveness of our approach in computational experiments, applying our branch-and-125

bound approach to the identification of the most severe attacks in IEEE power network126

instances. We compare our approach to the SOC relaxation and Lagrangian dual127

single-level reformulation approach of [51]. Finally, we use the resulting comparison128

to provide insights toward understanding the limitations of using a convex-relaxed129

lower-level defender subproblem in formulating and evaluating solutions to the bilevel130

problem.131

This paper is organized as follows. In Section 2, we present the parameterized132

lower-level defender problem as a feasibility problem for satisfying the AC power133

flow constraints, with system infeasibilities penalized by absolute slack values, and134

binary-valued parameters corresponding to attack states. We embed the lower-level135

problem in the bilevel problem, and also in the related bilevel minmax problem. We136

derive key properties of these problems and their relationship, and we describe how137

to apply the SDP and SOC convex relaxations to the AC power flow constraints.138

In Section 3, we present our branch-and-bound algorithm, and we prove properties of139

the generated solutions at termination. Section 4 describes our numerical experiments140

for (i) demonstrating the advantages of using the AC power-flow equations directly in141

the PSVA bilevel problem, and (ii) testing the developed branch-and-bound approach142

and reporting the numerical results for the new method and a conic-based method143

on different power-grid instances. In Section 5, we summarize our conclusions and144
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describe future work145

2. Problem Formulation. To begin, we specify the lower-level AC optimal146

power flow (ACOPF) with details of the power flow physics. We follow the develop-147

ment of Chapter 3 in [57].148

2.1. Nonconvex lower-level ACOPF problem. We consider an AC power149

flow system consisting of buses, indexed by i or j with index set N , that are linked150

by lines (including transformers) indexed by l from set L. When the terminal buses151

of a line are to be specified, we denote the line as (i, j) = l ∈ L, which is connected152

from bus i to bus j. Distinction is made between lines that are active indexed from153

the set L0 ⊆ L, and lines that are inactive indexed from the set L1 ⊆ L. Hence,154

L0∪L1 = L and L0∩L1 = ∅. Lines may become inactive due to an intentional attack155

on the network or merely due to unexpected component failures.156

For a given resistance rl and reactance χl of line l ∈ L, the complex-valued line157

impedance is defined by zl := (rl + iχl), where the imaginary unit is denoted by158

i :=
√
−1. We denote complex current flows by ιfl and ιtl , where the superscripts159

f and t indicate the forward and backward direction of flows, respectively. Given160

complex bus voltages vi ∈ C, i ∈ N , the line l ∈ L current flows are determined by161

(2.1a)

[
ιfl
ιtl

]
:=

[
Y ffl Y ftl
Y tfl Y ttl

] [
vi
vj

]
,162

where the line admittance entries Yl are163

(2.1b) Yl :=

[
Y ffl Y ftl
Y tfl Y ttl

]
:=

[
(z−1 + i bl2 ) 1

τ2
l
−z−1l

1
τle
−iψl

−z−1l
1

τle
iψl

z−1l + i bl2

]
164

given the charging susceptance bl, the tap ratio τl, and the phase angle shift ψl. At165

each line (i, j) = l ∈ L, complex power flows from bus i and to bus j are given166

respectively by167

(2.1c)

sfl := vi(ι
f
l )∗ = viv

∗
i (Y ffl )∗ + viv

∗
j (Y ftl )∗, stl := vj(ι

t
l)
∗ = vjv

∗
i (Y tfl )∗ + vjv

∗
j (Y ttl )∗,168

where (·)∗ applied to a complex-valued argument returns its complex conjugate. The169

shunt power flow associated with bus i ∈ N is given by170

sshi := |vi|2(Y shRi − iY shIi ),(2.1d)171172

where Y shRi and Y shIi are bus i ∈ N shunt admittance parameters. Active and173

reactive power components are defined as follows:174

pfl := <{sfl }, qfl := ={sfl }, l ∈ L(2.1e)175

ptl := <{stl}, qtl := ={stl}, l ∈ L(2.1f)176

pshi := <{sshi }, qshi := ={sshi }, i ∈ N.(2.1g)177178

The real and imaginary voltage components are denoted vRi := <{vi} and vIi := ={vi}179

for each i ∈ N . Collecting vR :=
[
vRi
]
i∈N and vI :=

[
vIi
]
i∈N , the active and reactive180

power quantities (2.1e), (2.1f), and (2.1g) may be written in the form181

pfl =
〈
P fl ,W

〉
, qfl =

〈
Qfl ,W

〉
, ptl =

〈
P tl ,W

〉
, qtl =

〈
Qtl ,W

〉
, l ∈ L,(2.2a)182
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pshi =
〈
P shi ,W

〉
, qshi =

〈
Qshi ,W

〉
, i ∈ N,(2.2b)183184

where P fl , Qfl , P tl , Qtl , l ∈ L, and P shi , Qshi , i ∈ N are constant sparse 2|N | × 2|N |185

symmetric real-valued matrices, W ∈ R2|N |×2|N | ∈ WAC with186

(2.2c) WAC :=

{[
vR

vI

] [
vR

vI

]T
: vR, vI ∈ R|N |

}
,187

and 〈·, ·〉 is the Frobenius inner product.188

The power system operator (PSO) has direct control of the bus voltage settings189

vi ∈ C, i ∈ N , and through control of these settings, indirect control of the bus i ∈ N190

shunt power flows via (2.2b) and the active line l ∈ L0 flows via (2.2a). The PSO also191

has direct control over active and reactive power generation at bus i ∈ N , which are192

denoted by pG := (pGi )i∈N and qG := (qGi )i∈N , respectively. The bus voltage settings193

vi ∈ C, i ∈ N , the line power flow quantities (2.2a), and the power generation are194

subject to the following physical constraints.195

1. Voltage magnitude bounds:196

(2.2d) (V mini )2 ≤
〈
VMi ,W

〉
≤ (V maxi )2, i ∈ N,197

where VMi is the constant sparse 2|N | × 2|N | symmetric matrix for which198

|vi|2 =
〈
VMi ,W

〉
, i ∈ N.199

2. Active and reactive power generation bounds:200

(2.2e) Pmini ≤ pGi ≤ Pmaxi , Qmini ≤ qGi ≤ Qmaxi , i ∈ N,201

3. Thermal line flow limits:202

(2.2f) (pfl )2 + (qfl )2 ≤ (smaxl )2, (ptl)
2 + (qtl )

2 ≤ (smaxl )2, l ∈ L0
203

where smaxl ∈ R+ ∪ {∞} is the upper bound on the absolute value line l flow204

in either the ’from’ or ’to’ direction. Constraint (2.2f) is only relevant for205

active lines l ∈ L0.206

Using necessary adjustments of vi, p
G
i , q

G
i , i ∈ N , as allowed by the physical con-207

straints (2.2d)–(2.2f), the PSO is tasked with maintaining, for each bus i ∈ N , the208

balance between constant active PDi and reactive QDi power demands and the bus209

i-specific power injection quantities due to 1) power generation pGi , q
G
i ; 2) via (2.2b),210

shunt power flows pshi , q
sh
i ; 3) via (2.2a), line power flows pfl , q

f
l , l ∈ Lfi ∩L0 where Lfi211

is the set of lines with the origin of bus i; and ptl , q
t
l , l ∈ Lti ∩ L0, where Lti is the set212

of lines with the destination of bus i. Furthermore, the resulting active and reactive213

power flow balance constraint equations at each bus i ∈ N are given by214 〈
P shi ,W

〉
+

∑
l∈Lfi ∩L0

pfl +
∑

l∈Lti∩L0

ptl = pGi − PDi(2.2g)215

〈
Qshi ,W

〉
+

∑
l∈Lfi ∩L0

qfl +
∑

l∈Lti∩L0

qtl = qGi −QDi .(2.2h)216

217

We pose a model to accommodate change in the active line index set L0 due to218

an attack or other disruption to the power system. In such a situation, it may not be219
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6 B. DANDURAND, K. KIM, AND S. LEYFFER

possible for the PSO to enforce all of the power system constraints (2.2) by adjustment220

of the voltage settings v and power generations pG, and qG. That is, load shedding,221

excessive power generation, or other violations of system power constraints might be222

unavoidable. Consequently, through the introduction of slacks associated with various223

types of power quantities, we model the lower-level problem below in (2.3) to minimize224

these violations.225

In order to model the mutable nature of the active line index set L0, we replace226

the use of L0 in (2.2) with the use of binary valued parameters xl ∈ {0, 1}, l ∈ L227

in (2.3). Lines for which xl = 0 behave like active lines, while lines for which xl = 1228

behave like inactive lines. Consequently, with the use of x := (xl)l∈L, the use of the229

full index set L instead of L0 in the following model (2.3) is deliberate. In (2.3),230

x := (xl)l∈L is treated as a parameter, but in subsequent models for the attacker231

problem, it becomes a decision variable. The PSO lower-level problem is given by232

φW(x) := min
W,p,q,d

∑
i∈N

[
|dNi,p|+ |dNi,q|

]
233

+
∑
l∈L

(1− xl)
[
|dfl,p|+ |d

t
l,p|+ |d

f
l,q|+ |d

t
l,q|+ dfl,s + dtl,s

]
234

+
∑
l∈L

xl

[
|pfl |+ |p

t
l |+ |q

f
l |+ |q

t
l |
]

(2.3a)235

s.t. W ∈ W(2.3b)236

Pmini ≤ pGi ≤ Pmaxi , Qmini ≤ qGi ≤ Qmaxi , i ∈ N(2.3c)237

(V mini )2 ≤
〈
VMi ,W

〉
≤ (V maxi )2, i ∈ N,(2.3d)238

(pfl )2 + (qfl )2 ≤ (smaxl + dfl,s)
2, l ∈ L(2.3e)239

(ptl)
2 + (qtl )

2 ≤ (smaxl + dtl,s)
2, l ∈ L(2.3f)240

dfl,s, d
t
l,s ≥ 0, l ∈ L(2.3g)241

〈P shi ,W 〉+
∑
l∈Lfi

pfl +
∑
l∈Lti

ptl − pGi + PDi = dNi,p, i ∈ N,(2.3h)242

〈Qshi ,W 〉+
∑
l∈Lfi

qfl +
∑
l∈Lti

qtl − qGi +QDi = dNi,q, i ∈ N,(2.3i)243

pfl =
〈
P fl ,W

〉
+ dfl,p, ptl =

〈
P tl ,W

〉
+ dtl,p, l ∈ L(2.3j)244

qfl =
〈
Qfl ,W

〉
+ dfl,q, qtl =

〈
Qtl ,W

〉
+ dtl,q, l ∈ L,(2.3k)245

246

where W,p, q, d are decision variables. ForW =WAC , entries of W are bilinear terms247

in the entries of vR and vI , resulting in a nonconvex nonlinear program due to the248

quadratic rank-1 constraint, as specified in (2.2c). The thermal limit constraints (2.3e)249

and (2.3f) are convex nonlinear, which can also be reformulated as second-order cone250

(SOC) constraints. All other constraints are linear.251

The power flow balance constraints as originally given in (2.2g)–(2.2h) are softened252

to (2.3h)–(2.3i) with the use of active and reactive bus power slacks dNi,p and dNi,q, i ∈ N ,253

whose absolute values are penalized in the objective function; and, via (2.3j)–(2.3k),254

line flow power slacks dfl,p, d
t
l,p, d

f
l,q, d

t
l,q, l ∈ L, whose absolute values are penalized255

only for active lines l with xl = 0. Constraints (2.3j)–(2.3k) quantify the line power256

flow slacks as the discrepancies between the actual line power flows over active lines as257

This manuscript is for review purposes only.



IDENTIFYING CONTINGENCIES IN POWER SYSTEMS 7

given by the right-hand sides of (2.2a) and the target power flows pfl , p
t
l , q

f
l , q

t
l , l ∈ L258

applied to the satisfaction of (2.3h)–(2.3i).259

As required to guarantee the feasibility of problem (2.3), the thermal line limit260

constraints (2.2f) are also softened in (2.3e) and (2.3f) with the use of the nonnegative261

slacks (2.3g). As with the line flow power slacks, these thermal line limit slacks are262

only penalized over lines l that are active (xl = 0). For lines l ∈ L that are flagged as263

inactive with xl = 1, the softened line flow constraints (2.3j)–(2.3k) and the softened264

thermal line limit constraints (2.3e)–(2.3g) become irrelevant since their corresponding265

slack variable terms in the objective (2.3a) have coefficient zero. Rather, any nonzero266

targeted power flow pfl , p
t
l , q

f
l , q

t
l over lines l ∈ L that are flagged as inactive with267

xl = 1 are penalized in absolute value. Throughout the paper, we also assume the268

following conditions in order to prevent problem (2.3) from being trivially infeasible:269

A1 The physical constraints (2.2d), (2.2e), and (2.2f) are consistent, i.e., V mini ≤270

V maxi , Pmini ≤ Pmaxi , Qmini ≤ Qmaxi , and smaxl ≥ 0;271

A2 W ⊇WAC .272

We now show the following properties of the lower-level problem (2.3).273

Proposition 2.1. If A1 and A2 hold, then for any realization of W,274

1. problem (2.3) is always feasible for all x ∈ [0, 1]|L|;275

2. for any given x ∈ {0, 1}|L|, φW(x) = 0 if and only if there exists a feasible276

solution (W 0, p0, q0, d0) such that277

(a) dfl,p = dtl,p = dfl,q = dtl,q = dfl,s = dtl,s = 0 for all l ∈ L with xl = 0 and278

(b) pfl = ptl = qfl = qtl = 0 for all l ∈ L with xl = 1,279

which in turn holds if and only if (W 0, p0, q0) satisfies the constraints (2.2);280

3. x 7→ φW(x) is concave (and thus continuous) over x ∈ [0, 1]|L|.281

Proof. For the first claim, we fix W = W 0, pG = (pG)0, and qG = (qG)0. Due282

to A1 and A2, we can assign line flow discrepancies dfp = (dfp)0, dtp = (dtp)
0, dfq =283

(dfq )0, dtq = (dtq)
0 and target line flows pf = (pf )0, pt = (pt)0, qf = (qf )0, qt = (qt)0284

to satisfy the power balance constraints (2.3h)–(2.3i) and the discrepancy-defining285

constraints (2.3j)–(2.3k). That leaves only the thermal line limit constraints (2.3e)286

and (2.3f), which can be satisfied with sufficiently large slack values dfs = (dfs )0 and287

dts = (dts)
0. Thus, the existence of a feasible solution (W 0, p0, q0, d0) satisfying all288

constraints to problem (2.3) has been demonstrated.289

The second claim is obvious from the definition of the objective function (2.3a)290

and the natural correspond between constraints (2.3c)–(2.3k) and the power system291

constraints (2.2).292

For the third claim, we note that φW(x) is just the infimum of an arbitrary293

collection of affine functions in x with coefficients parameterized by all feasible values294

of the decision variables in (2.3). For this reason, φW(x) is a concave function. (See,295

e.g., [42, Lemma 2.58].)296

We make the following remarks.297

Remark 2.2. The first and second properties of Proposition 2.1 cover the baseline298

situation with no attack x = 0, in which φW(0) = 0 with W = WAC implies the299

existence of PSO settings that satisfy the AC power system requirements (2.2) under300

normal (i.e., noncontingent) operating conditions.301

Remark 2.3. One may possibly consider certain variations to the objective in the302

lower-level problem (2.3), while preserving the properties of Proposition 2.1. For303

example, one may add weighted expressions to the current objective function (2.3a)304
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8 B. DANDURAND, K. KIM, AND S. LEYFFER

that model the cost of power generation. These additional expressions need to be305

weighted in such a way so that the original expressions in (2.3a) behave like exact306

penalty terms for the soft constraints whose violation they penalize. Though not307

known a priori, such a weighting would exist under the satisfaction of a constraint308

qualification. For now, we consider only lower-level subproblem objective functions309

focusing on system feasibility having the form (2.3a).310

2.2. Convex relaxations of the lower-level subproblem. In what follows,311

we shall make reference to two well-known convex relaxations of WAC : SDP and312

SOC relaxations. We use the SDP relaxation in order to provide lower bounds for313

our maximization branch-and-bound approach, while the SOC is introduced for the314

later comparison with the single-level reformulation based on the Lagrangian dual315

approach as in [51].316

The SDP relaxation (e.g., [4, 28]) of φAC(x) is realized with the use of W =317

WSDP ⊃ WAC where318

(2.4) WSDP :=
{
W ∈ R2|N |×2|N | : W � 0

}
= S2|N |+ .319

The SOC relaxation of the power flow equations (2.1) is applied to the entries of320

the complex voltage products given in the rank-1 matrix vv∗ for each line as follows.321

For each line (i, j) = l ∈ L with from bus i and to bus j, denote the complex voltage322

products between buses i and j by323

(2.5) wii = |vi|2, wjj = |vj |2, wij = w∗ji = viv
∗
j .324

Collectively, denote wl := [wii, wjj , wij ] for each (i, j) = l ∈ L. In terms of W matrix325

entries, the real and imaginary components of the complex voltage products as defined326

in (2.5) are327

(2.6) wRij := <{wij} = Wi,j +W|N |+i,|N |+j , wIij := ={wij} = Wj,|N |+i −Wi,|N |+j .328

The SOC relaxation is then applied to the constraint W ∈ WAC by replacing W ∈329

WAC with the following SOC constraints for each line l ∈ L:330

(2.7)

∥∥∥∥∥∥
wii − wjj

2wRij
2wIij

∥∥∥∥∥∥ ≤ wii + wjj , (i, j) = l ∈ L.331

(Note that wii = wRii for each i ∈ N .) Denote for brevity ı̂ := i+ |N | and ̂ := j+ |N |.332

In terms of W , SOC constraint (2.7) is written W ∈ WSOC =
⋂
l∈LWSOC

l , where333

each WSOC
l , l ∈ L, is defined by334

(2.8) WSOC
l :=

W :

∥∥∥∥∥∥
Wi,i + Wı̂,ı̂ −Wj,j −W̂,̂

2(Wi,j + Wı̂,̂)
2(Wj,ı̂ −Wi,̂)

∥∥∥∥∥∥ ≤Wi,i + Wı̂,ı̂ + Wj,j + W̂,̂

335

336

From this point on, for brevity, we denote φAC := φW
AC

, φSDP := φW
SDP

, and337

φSOC := φW
SOC

.338

2.3. PSVA bilevel problem formulation. With the lower-level subproblem (2.3),339

we formulate the PSVA bilevel optimization problem as follows:340

(2.9) ΦW := max
x

{
φW(x) s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L

}
,341
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as a discrete optimization problem with nonsmooth objective value function x 7→342

φW(x).343

Remark 2.4. By Proposition 2.1, φW is concave (and thus continuous) in x ∈344

[0, 1]|L| even for a nonconvex realization of W. As such, even for W = WAC , prob-345

lem (2.9) has the structure of a convex mixed-integer nonlinear program (MINLP). In346

theory, we may solve MINLPs using such methodologies as the generalized extended347

cutting plane (ECP) or outer approximation (OA) approaches [50, 22]. However, in348

practice, the use of such approaches require the reliable evaluation of (at least quantifi-349

ably approximate) values and (at least quantifiably approximate) subgradients to the350

lower-level optimal value function, and this in turn requires solving the corresponding351

subproblem to global optimality. Global optimization of the lower-level subproblem352

with the nonconvex AC power flow constraints is known to be strongly NP-hard [8].353

Such a convexity structure of φW , W = WAC , is not necessary to establish the354

global optimality properties of solutions generated in our contributed approach. Nev-355

ertheless, such objective function structures are generally desirable within a branch-356

and-bound context for informing meaningful branching rules that are more than mere357

guesses within what is otherwise a blind combinatorially enumerative process.358

WhenW is a convex relaxation ofWAC for which a constraint qualification holds,359

the bilevel problem (2.9) can be reformulated into an equivalent single-level maximiza-360

tion problem by replacing the function φW(x) with the Lagrangian dual problem to361

problem (2.3). Hence, a mixed-integer convex programming algorithm can be applied362

directly to the resulting single-level reformulation. Such an approach was applied in363

the recent paper [51] where in our present notation, W = WSOC ⊃ WAC realizes364

the well-known SOC relaxation of WAC . One may then apply a branch-and-bound365

approach to the single-level maximization problem, with upper bounds computed as366

solutions to the single-level problem relaxation due to relaxing the integrality con-367

straints on x. Lower bounds are due to the verification of feasible solutions to the368

bilevel problem.369

The lower-level problem (2.3) with W = WAC is nonconvex and may have a370

nonzero gap with its Lagrangian dual, so the Lagrangian dual-based single-level re-371

formulation will not be equivalent to the nonrelaxed PSVA bilevel problem. Thus,372

within a maximizing branch-and-bound context, the node upper bounding procedure373

is not yet evident. We address this in the next section.374

3. Algorithms and Methods. In this section, we present an implementable375

and effective branch-and-bound framework for solving the PSVA bilevel problem with376

lower-level AC power-flow equations. Our branch-and-bound framework is based on377

two tailored subproblems for computing lower and upper bounds.378

Let T be a branch-and-bound tree that consists of a set of tree nodes N . At each379

tree node N ∈ T , the algorithm may fix some of the binary variables xl to either 0 or380

1 as part of the branching process. We denote by LN0 the set of indices of x that are381

fixed to 0 at node N , and we denote by LN1 the set of indices of x components that are382

fixed to 1 at node N . The set of remaining line indices for which the x components383

are not fixed is denoted Let LN∗ := L\{LN0 ∪LN1 }. The upper bound associated with384

each node is ΦNUB , and the incumbent lower bound associated with the best-known385

feasible solution is ΦLB . We now define XN for a given node N as386

XN :=

{
x ∈ {0, 1}|L| :

∑
l∈L

xl ≤ K, xl = 0 ∀l ∈ LN0 , xl = 1 ∀l ∈ LN1

}
,387
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10 B. DANDURAND, K. KIM, AND S. LEYFFER

Before proceeding, we define the following.388

1. The solution xN associated with node N is the unique element of XN such389

that xl = 0 for all l ∈ LN∗ .390

2. The active node tree T is a collection of nodes N that have not been fathomed391

yet; the collection of nodes that have been fathomed due to optimality is392

denoted FOPT , and the collection of nodes that have been fathomed due to393

bound is denoted FBD.394

We denote the node N specific instances of problems (2.9) by395

(3.1) ΦW,N := max
x

{
φW(x) s.t. x ∈ XN

}
.396

As we noted in subsection 2.3, we do not readily have a tractable single-level refor-397

mulation for the bilevel problem (2.9), and so it is with its node N refinements (3.1).398

In addition, even the continuous relaxations of (3.1) is not tractable for providing the399

upper bounds.400

We develop a tractable single-level reformulation of (3.1) by replacing the max-401

min problem with a min-max problem, whose objective provides a valid upper bound402

for the node subproblem (3.1). The resulting upper bounding min-max problem is403

given by404

ΨW,N := min
W,p,q,d

∑
i∈N

[
dNi,p + dNi,q

]
405

+ max
x


∑
l∈L(1− xl)

[
|dfl,p|+ |dtl,p|+ |d

f
l,q|+ |dtl,q|+ dfl,s + dtl,s

]
+
∑
l∈L xl

[
|pfl |+ |ptl |+ |q

f
l |+ |qtl |

]
s.t. x ∈ XN

(3.2)406

s.t. (2.3b)− (2.3k).407408

We note the following relationships.409

Proposition 3.1. Let A1-A2 hold. For each N ∈ T ∪ FOPT ∪ FBD, we have410

(3.3) φW(xN ) ≤ ΦW,N ≤ ΨW,N .411

Furthermore, if K = |LN1 | or |LN∗ | = 0, then412

(3.4) φW(xN ) = ΦW,N = ΨW,N .413

Proof. The first claim follows readily from the definition of ΦW,N given that414

xN ∈ XN (first inequality) and from elementary minimax theory [41, Lemma 36.1]415

(second inequality). To see the second claim, if K = |LN1 | or |LN∗ | = 0, then the set416

XN = {xN } is singleton, and so problems (3.1) and (3.2) are evidently equivalent to417

instances of problem (2.3) with x = xN .418

For purpose of notational brevity, we denote, for each N ∈ T , ΦAC,N := ΦW
AC ,N ,419

ΦSDP,N := ΦW
SDP ,N and ΨAC,N := ΨW

AC ,N , ΨSDP,N := ΨW
SDP ,N .420

The node N upper bounding problems (3.2) are still not readily solvable as given,421

but they may be easily reformulated into equivalent single-level reformulations.422

Proposition 3.2. The node N -specific attacker-defender problem with defender423

as leader defined in (3.2) may be equivalently written as follows.424

ΨW,N = min
W,p,q,d,u

(K − |LN1 |)uk +
∑

l∈LN∗

ul425
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+
∑

l∈LN0 ∪LN∗

[
|dfl,p|+ |d

t
l,p|+ |dfl,q|+ |d

t
l,q|+ dfl,s + dtl,s

]
426

+
∑

l∈LN1

[
|pfl |+ |p

t
l |+ |qfl |+ |q

t
l |
]

+
∑
i∈N

[
dNi,p + dNi,q

]
427

s.t.(2.3b)–(2.3k)428

(
|pfl |+ |p

t
l |+ |qfl |+ |q

t
l |
)
−
(
|dfl,p|+ |d

t
l,p|+ |dfl,q|+ |d

t
l,q|+ dfl,s + dtl,s

)
≤ ul + uK , l ∈ LN∗

(3.5a)

429

uK ≥ 0, ul ≥ 0, l ∈ LN∗ .430431

Proof. The inner maximization problem is bounded and feasible in x for all values432
of (W,p, q, d). and its constraint matrix has a simple structure that is easily verified433

to be totally unimodular [36, III.2]. As a result, the integrality restriction of the inner434
maximization problem can be relaxed while keeping the same optimal value. Strong435
duality readily holds for the continuously relaxed inner maximization problem. In436
summary, the above reasoning is written mathematically as437

max
x


∑

l∈L(1− xl)
[
|dfl,p|+ |d

t
l,p|+ |d

f
l,q |+ |d

t
l,q |+ dfl,s + dtl,s

]
+
∑

l∈L xl

[
|pfl |+ |p

t
l |+ |q

f
l |+ |q

t
l |
]

s.t. x ∈ XN

438

= max
x



∑
l∈L(1− xl)

[
|dfl,p|+ |d

t
l,p|+ |d

f
l,q |+ |d

t
l,q |+ dfl,s + dtl,s

]
+
∑

l∈L xl

[
|pfl |+ |p

t
l |+ |q

f
l |+ |q

t
l |
]

s.t. xl = 0, l ∈ LN0 , xl = 1, l ∈ LN1
0 ≤ xl ≤ 1, l ∈ LN∗ ,

∑
l∈L xl ≤ K.

439

= min
u

(K − |LN1 |)uk +
∑

l∈LN∗

ul440

+
∑

l∈LN0 ∪LN∗

[
|dfl,p|+ |d

t
l,p|+ |d

f
l,q |+ |d

t
l,q |+ dfl,s + dtl,s

]
441

+
∑

l∈LN1

[
|pfl |+ |p

t
l |+ |q

f
l |+ |q

t
l |
]

+
∑
i∈N

[
dNi,p + dNi,q

]
442

s.t.
(
|pfl |+ |p

t
l |+ |q

f
l |+ |q

t
l |
)
−
(
|dfl,p|+ |d

t
l,p|+ |d

f
l,q |+ |d

t
l,q |+ dfl,s + dtl,s

)
≤ ul + uK , l ∈ LN∗443

uK ≥ 0, ul ≥ 0, l ∈ LN∗ .444445

which results in the claimed single-level reformulation.446

We introduce more notation.447

1. Given x ∈ XN , the global optimal value to (2.3) was denoted by φAC(x); but448

we also allow for the use of locally optimal values denoted φ̄AC(x) and thus449

φAC(x) ≤ φ̄AC(x).450

2. We denote Ψ̄AC,N for discerning the possible local optimality of computed451

solutions to (3.2), so that ΨAC,N ≤ Ψ̄AC,N .452

3. In solving problem (3.2) for either globally or merely locally optimal value, we453

denote the dual values associated with the constraints (3.5a) by ξNl , l ∈ LN∗ .454

Due to the use of problem (3.5) solutions for computing upper bounds ΦNUB , the455

branching index selection rule used in Algorithm 3.1 cannot be based on x component456

values. Instead, the branching index is selected based on ξN component values, in457

particular selecting an index corresponding the the maximal ξN component value.458

This particular branching rule is motivated by the role of each ξl, l ∈ LN∗ , as the459

dual value associated with the corresponding xl ≤ 1 bound in the inner maximization460

problem (3.2). In general, nonzero values for ξl mean that the corresponding bound461
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12 B. DANDURAND, K. KIM, AND S. LEYFFER

Algorithm 3.1 Branch-and-bound applied to (2.9) with W =WAC

1: Inputs: optimality tolerance ε ≥ 0
2: Initialize T ← ∅, FOPT ← ∅, FBD ← ∅
3: Create a root node N such that LN0 ← ∅, LN1 ← ∅, and LN∗ ← L
4: Set ΦNUB ←∞, compute ΦNLB ← φSDP (xN )
5: Set ΦLB ← ΦNLB and xLB ← xN

6: Set T ← {N}
7: while T 6= ∅ do
8: Select a node N ∈ arg maxN∈T ΦNUB
9: Set ΦUB ← maxN∈T ΦNUB and T ← T \{N}

10: if ΦUB < ΦLB then
11: FBD ← FBD ∪{N}∪T , T ← ∅ {Fathom remaining active nodes by bound}

12: return T ,FOPT ,FBD { terminate }
13: else
14: Solve the node N subproblem (3.2) with W =WAC

15: for a locally maximal value Ψ̄AC,N and multipliers ξNl , l ∈ LN∗
16: Update ΦNUB ← min{ΦNUB , Ψ̄AC,N }
17: if |LN∗ | = 0 OR K = |LN1 | OR ΦNUB − ΦNLB ≤ ε then
18: FOPT ← FOPT ∪ {N} {Fathom by optimality}
19: else if ΦNUB ≤ ΦLB then
20: FBD ← FBD ∪ {N} {Fathom due to bound}
21: else
22: Select l∗ ∈ arg maxl∈LN∗ ξ

N
l

23: Create two nodes N0 and N1 such that
24: 1) LN0

0 ← LN0 ∪ {l∗}, LN0
1 ← LN1 , ,ΦN0

LB ← ΦNLB , ΦN0

UB ← ΦNUB
25: 2) LN1

0 ← LN0 , LN1
1 ← LN1 ∪ {l∗}, ΦN1

UB ← ΦNUB
26: Compute ΦN1

LB ← φSDP (xN1)

27: if ΦN1

LB > ΦLB then

28: ΦLB ← ΦN1

LB and xLB ← xN1

29: end if
30: Set T ← T ∪ {N0,N1}
31: end if
32: end if
33: end while
34: return T ,FOPT ,FBD

xl ≤ 1 is binding and thus favored as a choice in at least one optimal attack for the462

inner maximization problem (3.2). This particular branching index selection is by no463

means forced, and additional study into branching index selection rules and analogs464

to strong and pseudocost branching (e.g., [5]) for similar algorithms is needed.465

The finite termination of Algorithm 3.1 is combinatorially evident.466

Theorem 3.3. Let A1–A2 hold, and let Algorithm 3.1 be applied to problem (2.9)467

with W =WAC with optimality tolerance ε > 0. Then Algorithm 3.1 terminates after468

processing a finite number of nodes and the following hold.469

1. The incumbent solution xLB is ε-optimal for problem (2.9) with W =WSDP ;470

2. If ΦNUB −ΦLB ≤ ε for all N ∈ FOPT , then xLB is furthermore ε-optimal for471

problem (2.9) with W =WAC .472
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3. Otherwise, there is at least one solution xN , N ∈ FOPT , for which ΦLB ≤473

ΦNUB, and these solutions are candidate ε-optimal solutions for problem (2.9)474

with W =WAC .475

Proof. By A1–A2, the initial evaluation of ΦLB in line 5 is finite and hence the476

subsequent part of the algorithm is nontrivial. The terminating after processing a477

finite number of tree nodes is evident from the combinatorial association of each478

node with one of the finite number of possible ways to partition the line index set479

L = {LN0 , LN1 , LN∗ }.480

For the first claim, the ε-optimality of xLB for problem (2.9) with W = WSDP481

follows since, by construction we have the following three cases for each N ∈ FOPT ∪482

FBD.483

1. ΦNUB ≤ ΦLB , and since so ΦSDP,N ≤ ΦNUB , we have ΦSDP,N ≤ ΦLB .484

2. ΦNUB > ΦLB and |LN1 | = K or |LN∗ | = 0. By Proposition 3.1 part 2,485

ΦSDP,N = ΦNLB , and so ΦSDP,N ≤ ΦLB .486

3. ΦNUB > ΦLB and ΦNUB − ΦNLB ≤ ε. Thus, 0 < ΦNUB − ΦLB ≤ ε. Furthermore,487

since ΦSDP,N ≤ ΦNUB , we have ΦSDP,N ≤ ΦLB + ε488

For the second claim if ΦNUB−ΦLB ≤ ε for all N ∈ FOPT , then global ε-optimality489

of xLB with respect to (2.9), W =WAC is also established. Otherwise, for the third490

claim, Algorithm 3.1 there is a nonempty list of solutions xN with N ∈ FOPT and491

ΦNUB ≥ ΦLB since ΦLB corresponds to one of the ΦNLB by construction, and at least492

one of these solutions is globally optimal for the bilevel problem (2.9), W =WAC .493

The ability to verify the global optimality Ψ̄AC,N = ΨAC,N is sufficient for resolving494

the uncertainty about which of the said candidate solutions are globally optimal.495

4. Computational Experiments. In this section, we present the results of496

two sets of computational experiments on the test instances IEEE 30-, 57-, 118-, and497

300-bus test systems [38]. (We additionally applied experiments with larger Pegase498

1354-, and 2869-bus system instances, and we defer discussion of these experiments499

to the conclusion.)500

Significant parameters associated with each test instance are summarized in Ta-501

ble 1. We formulate the optimization models using our Julia Package MaximinOPF.jl [17]502

built on top of PowerModels.jl [14] and JuMP [21] modeling interface. We use Julia503

version 1.4 [6].504

Table 1
Data associated with each of the test problems.

Number of Components by Type IEEE Case Pegase Case
Type Index Set 30 57 118 300 1354 2869

Buses N 30 57 118 300 1354 2869
Generators G 6 7 54 69 260 510
Loads (fixed) 20 42 99 201 673 1491
Shunts 2 3 14 29 1082 2197
Branches L 41 80 186 411 1991 4582
Transformers 0 17 9 107 234 496

4.1. First set of experiments for comparing reliability of lower level505

model relaxations. In the first set of experiments, we simply solve instances of506

the PSVA min level defender problem (2.3) over W ∈ {WAC ,WSDP ,WSOC} for the507

smaller IEEE Case 30 and IEEE Case 57 instances over all enumerated line attacks508

x ∈ {0, 1}|L| under attack budget K = 3. For the W = WAC instance, we use the509
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14 B. DANDURAND, K. KIM, AND S. LEYFFER

open source interior point solver Ipopt [49] with HSL linear solver ma57 [23]. For510

the W = WSDP and WSOC tests, we use the commercially available Mosek [35].511

Computations for the first set of experiments are carried out on a workstation with512

dual socket Intel Xeon Gold 6140 CPUs, 512 GB RAM, and a total of 36 physical513

cores.514

We denote specific solutions x with superscripts to indicate the inactive line in-515

dices l (xl = 1). For example, using IEEE Case 30 with |L| = 41 lines, then the516

specific x solution with x10 = 1, x40 = 1 and all other xl = 0 would be denoted517

x[10,40]. When the use of x notation is not required, we simply describe the attack518

with attacked lines bracketed, for example, [10, 40].519

Table 2
Tabulating enumerated contingencies with significant discrepancies between relaxations

IEEE Case 30, K = 1 IEEE Case 30, K = 3

lines cut φAC φSDP φSOC lines cut φAC φSDP φSOC

[16] 0.013 0.009 0 [5, 6, 7] 0.117 0.108 0
[25] 0.003 0.003 0 [6, 7, 8] 0.127 0.118 0
[36] 0.07 0.07 0 [11, 15, 16] 0.162 0.162 0

[14, 15, 16] 0.162 0.162 0
IEEE Case 57, K = 1 IEEE Case 57, K = 1

lines cut φAC φSDP φSOC lines cut φAC φSDP φSOC

[29] 0.002 0 0 [35] 0.003 0 0
[36] 0.001 0 0 [37] 0.019 0.003 0
[38] 0.022 0.003 0 [39] 0.089 0.057 0
[51] 0.006 0 0 [52] 0.014 0.001 0
[55] 0.025 0.007 0 [60] 0.104 0 0
[61] 0.006 0 0 [65] 0.025 0 0
[66] 0 0 0 [79] 0.009 0 0

IEEE Case 57, K = 2 IEEE Case 57, K = 2

lines cut φAC φSDP φSOC lines cut φAC φSDP φSOC

[29, 79] 0.036 0.003 0 [37, 60] 0.218 0.032 0
[38, 60] 0.267 0.054 0 [38, 61] 0.103 0.007 0
[38, 79] 0.12 0.031 0 [39, 61] 0.171 0.066 0
[39, 65] 0.128 0.069 0 [60, 65] 0.275 0.036 0
[60, 66] 0.597 0.155 0 [61, 65] 0.109 0 0
[61, 66] 0.194 0.014 0

IEEE Case 57, K = 3 IEEE Case 57, K = 3

lines cut φAC φSDP φSOC lines cut φAC φSDP φSOC

[8, 15, 18] 0.350 0.350 0 [8, 23, 63] 0.185 0.085 0
[8, 37, 79] 0.102 0.032 0 [8, 58, 79] 0.129 0.052 0
[9, 38, 79] 0.125 0.028 0 [10, 38, 79] 0.138 0.041 0
[10, 58, 79] 0.121 0.044 0 [10, 59, 66] 0.131 0.098 0
[10, 72, 79] 0.123 0.048 0 [10, 78, 79] 0.108 0.010 0
[13, 15, 18] 0.256 0.044 0 [14, 25, 28] 0.124 0.082 0
[15, 18, 25] 0.443 0.408 0 [15, 18, 39] 0.155 0.092 0
[15, 60, 66] 0.602 0.209 0 [17, 78, 79] 0.116 0.007 0
[22, 58, 79] 0.154 0.048 0 [22, 72, 79] 0.156 0.052 0
[22, 78, 79] 0.119 0.016 0 [38, 55, 79] 0.201 0.075 0

In Table 2, we present noteworthy examples of solutions that are inaccurately520

undervalued in attack value due to the use of lower level defender problem convex521

relaxations. Observations from Table 2 are as follows.522

1. For IEEE Case 30, K = 3 entries, we see how the computed attack value523

φSOC can inaccurately take value zero while the corresponding φAC and φSDP524

values are nonzero and substantial.525

2. For IEEE Case 57, K = 1, several single-line cut attacks are noted for which526
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their computed φ̄AC value is positive and substantial, but at least one of their527

φSDP and φSOC values is inaccurately valued at zero. Of course, it may be528

that φ̄AC ≥ φAC for any input (i.e., merely an optimal value in a local sense).529

(a) But then, the inclusion of these lines persists in substantial attacks with530

larger budgets K = 2, 3 with respect to both φ̄AC and φSDP value, even531

when the φSDP values for the corresponding single-line K = 1 attacks532

were zero. This observation is evident, for example, with the attacks533

[29, 79], [60, 65], and [60, 66].534

(b) Shortly, in the discussion of the second set of experiments, we even see535

the cutting of lines 60 and 65 appearing in the optimal attack and in536

many of the candidate optimal attacks for the attack budget K = 4 with537

respect to ΦAC , ΦSDP , and ΦSOC .538

3. Some of the most notable attacks that are mis-evaluated due to the use of539

φSOC appear in the IEEE Case 57 attacks [8, 15, 18], [8, 23, 63],[13, 15, 18],540

[15, 60, 66], and [38, 55, 79]. It is noteworthy that the optimal attack real-541

izing the bilevel optimal values even for ΦSDP and ΦSOC with K = 5 is542

[8, 15, 16, 17, 18]; this observation suggests that evaluating low budget (here543

K = 3) attacks accurately can provide a better sense of which attacks can be544

critical with larger budgets (here K = 5).545

4. Many attacks involving lines l = 8, 9, 13, 15, 29, 60, 65, 66, and 79 register sub-546

stantial nonzero values of φAC and/or φSDP with small budgets K = 1, 2, 3,547

but zero value with respect to φSOC . While these particular lines may become548

part of substantial attacks even with respect to φSOC for larger budgets, the549

criticality of these lines can be detected in smaller budget attacks when the550

lower level defender problem value is obtained either without relaxing the AC551

power flow equations (i.e., evaluating φAC), or at least using tighter convex552

relaxations (e.g., evaluating φSDP ). This observation can be critical in future553

research on branch-and-bound branching rules.554

The two main conclusions we draw from this first set of experiments are as follows.555

First, we note a substantial number of attacks that are of significant φAC value, but556

that are incorrectly valued at zero with respect to φSOC and sometimes even with557

respect to φSDP . These attacks correspond to power system vulnerabilities that would558

be missed with any solution approach relying on such relaxations of the PSVA lower559

level defender subproblem. Second, we note that the computed values of φAC that are560

nonzero for small K—even if we have not verified global optimality—but which have561

φSOC and/or φSDP value zero, seem to predict the significant role these line cuts can562

have for larger budgets with respect to all of φAC , φSDP , and φSOC .563

Next, we compare the application of Algorithm 3.1 to problem (2.9) with W =564

WAC , referred to as ACBnB, with a baseline mixed-integer SOC relaxation-based565

approach [51] applied to problem (2.9) with W =WSOC , referred to as MISOC.566

4.2. Numerical experiments for comparing ACBnB with MISOC. We567

apply ACBnB and MISOC to all of the test instances mentioned at the beginning568

of this section. For each test instance, we apply ACBnB and MISOC with budgets569

K ∈ {1, . . . , 16}.570

For solving the ACBnB upper bound generating instances of the node subprob-571

lems (3.2), we use the open source interior point solver Ipopt [49] with HSL linear572

solver ma57 [23]. For solving the ACBnB lower bounding instances of the PSVA min573

level defender subproblem (2.3) with W =WSDP , we use the commercial Mosek [35]574

solver with academic license. These same SDP lower bounding node subproblems575
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are formulated with chordal decomposition [33, 30, 55, 56] automatically through the576

PowerModels [14] interface on which our algorithm implementation is built.577

For the MISOC experiments, we also apply the Mosek as a mixed-integer SOC578

solver to the Lagrangian dual single level reformulation of problem (2.9) with W =579

WSOC in line with [51].580

Each of these computational tests are carried out on a single core of a single581

node of the Argonne National Laboratory Bebop cluster, each consisting of an Intel R©582

Xeon R© CPU E5-2695 v4 @ 2.10 GHz processor. We use the GNU Parallel utility [47]583

in submitting jobs in parallel using one core per job. Appropriate parameters for584

enforcing the use of one thread are set explicitly in the instantiation of the Mosek585

solver object. The methods were run with the time limit of 24 wall-clock hours586

(86,400 seconds).587

Parameter settings for the use of Ipopt and Mosek are nearly default. For Ipopt,588

the only nondefault parameter settings are for specifying the use of the ma57 linear589

solver and for setting the maximum number of iterations to 50,000. For Mosek, the590

only nondefault parameter setting is for specifying the use of one thread.591

When Ipopt is applied to nonconvex subproblems, the initial point is generated592

internally through the PowerModels.jl interface. Resolves with random initial bus593

voltage solutions are only applied in two cases where global optimality is obviously594

not realized, (1) solver status indicating numerical error (happened, but rare) or (2)595

due to the computed optimal value exceeding a known upper bound. In generating596

the random voltage settings, we always set for each bus i ∈ N initial value vRi = 1597

and randomly selected vIi ∈ {−0.5, 0, 0.5} with equal probability, and then we use the598

initial bus voltage value obtained after rescaling so that ‖[vRi , vIi ]‖2 = 1.599

For the baseline experiments using the approach in [51] (MISOC) and for the600

experiments using Algorithm 3.1 (ACBnB), we report the following in Table 3–Table 5:601

1. number of nodes (Nodes) processed at termination;602

2. average time (in seconds) spent solving each node (Secs/N);603

3. total running time for solving the instance, in seconds (Secs); experiments for604

which the maximum of 86,400 seconds was reached are marked with ’T’ in605

this entry;606

4. either an inteval [LB,UB] in which the optimal value is known to be located,607

or in the case that the interval reduces to a singleton, a bracketed optimal608

value [OPT ].609

For the Table 3 experiments, we make the following observations and conclusions:610

1. As we shall see in both Table 3 and Table 5, the advantage in terms of less611

computational time of using MISOC over ACBnB is always present. In terms612

of number of node evaluations, MISOC usually requires fewer nodes to reach613

termination.614

2. For IEEE Case 30, the optimal attacks and values found using the MISOC615

and ACBnB approach do not differ, and the consequence of relaxating the616

PSVA min level AC power flow equations is not significant for this instance.617

3. However, for IEEE Case 57 with K = 1, . . . , 5, the consequences of this618

relaxation are more apparent:619

(a) The optimal value for MISOC underestimates the optimal value interval620

for ACBnB. This is in line with the observations from the first set of621

experiments tabulated in Table 2.622

(b) The optimal solutions with respect to ΦSDP computed in the ACBnB623

experiments match with the optimal solutions with respect to ΦSOC624

computed in the MISOC experiments.625
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Table 3
Comparing MISOC and ACBnB for the smaller test instances (IEEE 30-, 57-bus systems with

K = 1, . . . , 16)

MISOC ACBnB
Case K Nodes Secs/N Secs [LB,UB] Nodes Secs/N Secs [LB,UB]
30 1 33 0.06 2 [0.153] 57 1.4 80 [0.153]

2 21 0.05 1 [0.600] 39 1.97 77 [0.600]
3 149 0.03 5 [0.658] 275 0.4 110 [0.658]
4 285 0.04 10 [0.937] 821 0.23 186 [0.937]
5 859 0.03 28 [0.995] 3191 0.17 543 [0.995]
6 1195 0.03 38 [1.224] 4581 0.17 768 [1.253]
7 977 0.03 31 [1.510] 4443 0.17 764 [1.510]
8 347 0.03 12 [1.939] 1429 0.18 264 [1.939]
9 171 0.04 7 [2.158] 783 0.25 192 [2.158]
10 367 0.04 13 [2.216] 2399 0.19 444 [2.216]
11 765 0.03 23 [2.316] 2927 0.19 564 [2.316]
12 455 0.03 13 [2.374] 3945 0.2 785 [2.374]
13 965 0.03 30 [2.407] 5461 0.18 974 [2.407]
14 653 0.03 19 [2.528] 1467 0.2 296 [2.528]
15 1027 0.03 31 [2.561] 845 0.24 200 [2.561]
16 563 0.03 19 [2.572] 755 0.35 262 [2.572]

57 1 47 0.06 3 [0.343] 71 1.3 92 [0.368, 0.398]
2 223 0.05 12 [0.760] 411 0.53 217 [0.777, 0.812]
3 967 0.05 47 [1.018] 2073 0.45 934 [1.024, 1.233]
4 1203 0.06 69 [1.579] 2923 0.46 1330 [1.600, 1.821]
5 1341 0.05 71 [2.419] 2493 0.45 1122 [2.420, 2.462]
6 331 0.07 23 [3.601] 493 0.54 264 [3.601]
7 203 0.07 15 [4.092] 637 0.49 309 [4.092]
8 503 0.07 34 [4.218] 1823 0.42 768 [4.218]
9 905 0.06 58 [4.613] 1977 0.43 857 [4.613]
10 1559 0.06 100 [4.739] 7127 0.41 2903 [4.739]
11 1091 0.07 71 [5.052] 5681 0.43 2470 [5.052]
12 2137 0.06 137 [5.177] 9677 0.38 3723 [5.177]
13 653 0.06 41 [5.436] 4919 0.43 2092 [5.436, 5.437]
14 665 0.06 41 [5.579] 5683 0.4 2274 [5.579]
15 513 0.06 30 [5.816] 2327 0.4 942 [5.816, 5.817]
16 365 0.05 19 [5.959] 2145 0.41 876 [5.959]

(c) However, the ACBnB experiments also provide a list of candidate op-626

timal solutions with respect to ΦAC that are distinct from those with627

respect to either ΦSDP or ΦSOC , many of which, contingent on verifying628

global optimality, can have substantially larger value than the reported629

ΦSDP and ΦSOC values. Furthermore, the line cuts that recur in many630

of these candidate solutions for K = 3 even constitute the optimal K = 4631

attack with respect to ΦSDP and ΦSOC . See Table 4.632

(d) For the K = 5 rows of Table 4, it is noteworthy that the optimal so-633

lution with respect to ΦSDP and ΦSOC is substantially different from634

the K = 1, . . . , 4 optimal solutions. There is also a substantial jump in635

corresponding optimal value from K = 4 to K = 5. While noteworthy,636

this apparent absence of “nesting” observed in the comparison of the637

K = 4 and K = 5 optimal solution is not unusual in itself. What is even638

more noteworthy is an observation from the first set of experiments,639

where φAC(x[8,15,18]) = φSDP (x[8,15,18]) = 0.35 but φSOC(x[8,15,18]) = 0,640

and [8, 15, 18] nests within the optimal K = 5 attack. From this, we641

see that avoiding relaxation or at least using tighter SDP relaxation of642

the PSVA lower level problem can provide substantial hints of power643
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system vulnerabilities that are missed with the use of the weaker SOC644

relaxation.645

4. It is noteworthy that with the larger attack budgets K = 6, . . . , 16, the conse-646

quences of relaxing the AC power flow equations for IEEE Case 57 diminish,647

where the attack values and attack solutions are the same between MISOC648

and ACBnB.649

Table 4
Case 57 comparison of MISOC and ACBnB solutions.

MISOC ACBnB
K opt attack ΦSOC opt attack ΦSDP ΦAC

3 [33, 41, 80] 1.018 [33, 41, 80] 1.024 [1.024, 1.033]
[60, 66, 72] 0.797 [0.797, 1.075]
[41, 60, 66] 0.782 [0.782, 1.233]
[41, 60, 80] 0.843 [0.843, 1.075]
[60, 65, 66] 0.797 [0.797, 1.147]
[58, 60, 66] 0.792 [0.792, 1.072]

4 [60, 65, 66, 72] 1.579 [60, 65, 66, 72] 1.600 [1.600, 1.752]
[57, 60, 65, 66] 1.464 [1.464, 1.611]
[58, 60, 65, 66] 1.595 [1.595, 1.748]
[41, 60, 65, 66] 1.470 [1.470, 1.821]
[41, 57, 60, 66] 1.391 [1.391, 1.626]
[41, 58, 60, 66] 1.521 [1.521, 1.766]
[41, 60, 66, 80] 1.174 [1.174, 1.638]
[58, 59, 65, 66] 1.573 [1.573, 1.632]
[59, 65, 66, 72] 1.579 [1.579, 1.643]
[41, 60, 66, 72] 1.527 [1.527, 1.769]

5 [8, 15, 16, 17, 18] 2.419 [8, 15, 16, 17, 18] 2.420 [2.420]
[41, 58, 60, 65, 66] [2.326, 2.459]
[41, 60, 65, 66, 72] [2.332, 2.462]

We make the following observations for the IEEE Case 118 and Case 300 experi-650

ments.651

Case 118 For the ACBnB experiments that terminated before the time limit (K =652

1, . . . , 7), the optimal values and solutions were the same as computed for653

the MISOC experiments. This suggests that the relaxation of the PSVA654

min level defender problem AC power flow equations may not be significant655

for Case 118. Furthmore, the ACBnB incumbent SDP values for the K =656

8, 9, 10 experiments were the same as the optimal values for the corresponding657

MISOC experiments.658

Case 300 For the budgets K = 2, 6, 7, we have not only different optimal values, but659

also different optimal solutions. Furthermore, for K = 3, we have a candidate660

optimal solution with respect to ΦAC that is different. See Table 6.661

5. Conclusions. We make contributions toward the problem of power system662

vulnerability analysis (PSVA) for identifying the most substantial contingencies of663

non-relaxed AC power flow networks. The problem is modeled as a bilevel maximin664

problem, where the lower-level problem seeks to optimally respond to a parameterized665

attack, which is a decision variable in the upper-level attacker’s maximization prob-666

lem seeking to inflict a maximal amount of damage in spite of the defender’s optimal667

recourse. First, we established concavity and continuity of the optimal value func-668

tion for the lower level defender problem as a function of the parameterized attack,669

which suggests the existence of an effective branch-and-bound approach based on a670

non-relaxed formulation of the lower level defender problem. In addressing the orig-671
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Table 5
Comparing MISOC and ACBnB for the medium size test instances (IEEE 118-, 300-bus sys-

tems with K = 1, . . . , 16)

MISOC ACBnB
Case K Nodes Secs/N Secs [LB,UB] Nodes Secs/N Secs [LB,UB]
118 1 5 0.8 4 [0.840] 15 5.4 81 [0.840]

2 19 0.37 7 [1.448] 81 1.56 126 [1.448]
3 7 0.71 5 [2.288] 81 1.53 124 [2.288]
4 171 0.19 33 [2.568] 819 0.79 644 [2.568]
5 83 0.3 25 [3.018] 2403 0.74 1777 [3.018]
6 857 0.17 142 [3.298] 13691 0.71 9694 [3.298]
7 869 0.17 144 [3.697] 40227 0.73 29523 [3.697]
8 2335 0.21 479 [3.977] 142197 0.61 T [3.977, 4.216]
9 2354 0.2 460 [4.427] 151459 0.57 T [4.427, 4.962]
10 1399 0.21 294 [4.859] 158367 0.55 T [4.859, 5.660]
11 1921 0.21 396 [5.156] 160397 0.54 T [4.019, 6.343]
12 3081 0.22 683 [5.439] 153061 0.56 T [4.316, 6.967]
13 3189 0.23 721 [5.783] 153123 0.56 T [4.316, 7.548]
14 2437 0.19 466 [6.268] 158481 0.55 T [4.103, 8.102]
15 3831 0.22 850 [6.565] 158827 0.54 T [4.019, 8.696]
16 2385 0.22 528 [6.848] 154891 0.56 T [2.792, 9.259]

300 1 25 0.68 17 [8.047] 41 7.68 315 [8.047]
2 203 0.44 89 [12.571] 303 5.25 1590 [12.913, 13.145]
3 731 0.43 314 [17.532] 1563 5.02 7848 [17.587, 17.668]
4 1495 0.51 758 [23.772] 3929 4.38 17194 [23.790, 23.797]
5 2455 0.55 1339 [30.455] 8173 3.86 31508 [30.454, 30.455]
6 7327 0.53 3857 [35.185] 24871 3.47 T [35.321, 36.291]
7 16639 0.55 9109 [39.940] 29145 2.96 T [40.052, 46.484]
8 6001 0.55 3294 [46.180] 31303 2.76 T [44.717, 55.653]
9 14577 0.55 7946 [50.911] 30759 2.81 T [49.390, 64.588]
10 36493 0.55 19899 [55.572] 30531 2.83 T [49.390, 73.566]
11 76845 0.54 41505 [60.303] 30573 2.83 T [49.390, 82.133]
12 132837 0.54 72240 [64.758] 30603 2.82 T [52.751, 90.28]
13 135191 0.54 72857 [70.407] 30749 2.81 T [49.500, 98.271]
14 154903 0.56 T [73.835, 82.422] 30303 2.85 T [46.783, 106.353]
15 161884 0.53 T [79.800, 88.091] 30675 2.82 T [39.990, 114.100]
16 153309 0.56 T [83.962, 95.400] 31005 2.79 T [42.010, 121.634]

Table 6
Case 300 comparison of MISOC and ACBnB solutions.

MISOC ACBnB

K opt attack ΦSOC opt attack ΦSDP ΦAC

2 [208, 316] 12.571 [181, 208] 12.913 [12.913, 13.415]
3 [177, 181, 208] 17.532 [177, 181, 208] 17.587 [17.587, 17.592]

[181, 316, 208] 17.437 [17.437, 17.668]
4 [177, 181, 182, 208] 23.772 [177, 181, 182, 208] 23.79 [23.790, 23.797]
5 [208, 268, 305, 308, 309] 30.455 [208, 268, 305, 308, 309] 30.454 [30.454, 30.455]
6 [208, 266, 268, 305, 309, 317] 35.185 [181, 208, 268, 305, 308, 309] 35.321 [35.321, 35.553]
7 [177, 181, 208, 268, 305, 308, 309] 39.94 [181, 208, 266, 268, 305, 309, 317] 40.052 [40.052, 46.484]

inal nonconvex lower level defender problem, we cannot obtain an equivalent single672

level reformulation based on the KKT conditions or Lagrangian dual reformulation of673

the lower level problem. Otherwise, if we could obtain such an equivalent single level674

reformulation, then we could apply standard branch-and-bound ideas based on the up-675

per bounds (in maximization context) due to the relaxation of integrality constraints.676

We find an alternative upper bounding problem by solving the problem obtained by677

switching max and min. Such a problem is reformulated in a tractable form while678

preserving the nonlinear nonconvex AC power flow equations of the lower level de-679

fender problem. We show conditions under which the maxmin problem has equal680

value to the minmax upper bounding relaxation that informs a well-defined branch-681
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and-bound algorithm which we implement and apply in comparison with a previous682

approach based on the convex relaxation of the lower level defender problem. For683

lower bounding, we solve instances of the semidefinite program (SDP) relaxed lower684

level defender problem. Such lower and upper bounds help to either verify global685

optimality of the AC maxmin problem, or otherwise provide a well-vetted list of can-686

didate global optimal solutions. We also demonstrate in standard test cases power687

system vulnerabilities that are identified due to the use of the non-relaxed lower level688

defender problem that are not identified with the use of convex relaxations of the689

lower lever defender problem.690

Our paper opens a number of interesting future research directions. First, we691

have partially addressed the validation of the PSVA lower level defender problem692

global optimality using lower bounds to solving the semidefinite programming (SDP)693

relaxation of the lower level problem. But we have not fully addressed this issue of694

verifying global optimality, which is an important and active area of research [31, 34,695

26, 12, 11] that needs to be incorporated into our contribution.696

Second, the various areas for improvement in our contributed approach are mo-697

tivated by our initial experience applying the algorithm to the larger Pegase 1354698

and 2869 instances, which we did not tabulate in Section 4. In particular, for these699

two instances, the computational burden at each node (as would be given in the700

Secs/N column) due to solving the upper and lower bounding subproblems became701

significant, and so not many branch-and-bound tree nodes were processed withing702

the allotted 24 hours. Improvements can thus be realized by reducing the required703

number of nodes to process through improved branching rules. We gave a simple704

rule based on dual solutions for constraints specific to the upper bounding problem.705

(Rules based on integrality violation were not applicable in our approach.) Analogs706

to strong and pseudo-branching may reduce the number of nodes to process. Further707

improvements can of course be obtained through improvement in solution technology,708

and especially technology that improves the utilization of sparse network structures709

for efficient parallelization. Furthermore, future application of tree-wide paralleliza-710

tion in branch-and-bound that efficiently addresses the issues of load-balancing [52]711

may also yield computational improvement.712

Lastly, other features and contexts of PSVA need to be incorporated into our713

contribution, such as the use of additional techniques for verifying global optimality714

of nonconvex node subproblems, use of heuristic and metaheuristic approaches [10, 3,715

29] for nonconvex node subproblems, the assumption of probabilistic line failure [46]716

adaptation for unit commitment applications [45, 13], allowing for the defender to717

use line de-activation as a defensive recourse [53], use of trilevel defender-attacker-718

defender [1, 18, 27] frameworks.719
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