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Abstract Bilevel optimization problems embed the optimality conditions of
a sub-problem into the constraints of another optimization problem. We intro-
duce the concept of near-optimality robustness for bilevel problems, protecting
the upper-level solution feasibility from limited deviations at the lower level.
General properties and necessary conditions for the existence of solutions are
derived for near-optimal robust versions of generic bilevel problems. A duality-
based solution method is de�ned when the lower level is convex, leveraging the
methodology from the robust and bilevel literature. Numerical results assess
the e�ciency of the proposed algorithm and the impact of valid inequalities
on the solution time.

Keywords bilevel optimization, robust optimization, game theory, bounded
rationality, duality, bilinear constraints, extended formulation

Mathematics Subject Classi�cation (2010) 90C33 · 90C46 · 91A65 ·
90C26 · 90C34 ·

1 Introduction

Bilevel optimization problems embed the optimality conditions of a sub-problem
into the constraints of another one. They can model various decision-making
problems such as Stackelberg or leader-follower games, market equilibria, or
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pricing and revenue management. A review of methods and applications of
bilevel problems is presented in [1]. In the classical bilevel setting, when opti-
mizing its objective function, the upper level anticipates an optimal reaction
of the lower level to its decisions. However, in many practical cases, the lower
level can make near-optimal decisions [2]. An important issue in this setting
is the de�nition of the robustness of the upper-level decisions with respect to
near-optimal lower-level solutions.

In some engineering applications [3,4,5], the decision-maker optimizes an
outcome over a dynamical system (modelled as the lower level). For stable
systems, the rate of change of the state variables decreases as the system con-
verges towards the minimum of a potential function. If the system is stopped
before reaching the minimum, the designer of the system would require that
the upper-level constraints be feasible for near-optimal lower-level solutions.

The concept of bounded rationality initially proposed in [6], sometimes
referred as ε-rationality [7], de�nes an economic and behavioural interpreta-
tion of a decision-making process where an agent aims to take any solution
associated with a �satisfactory� objective value instead of the optimal one.

Protecting the upper level from a violation of its constraints by deviations
of the lower level is a form of robust optimization. Indeed, it corresponds to
a protection of some constraints against uncertain parameters of the problem.
Therefore, we use the terms �near-optimality robustness� and �near-optimal
robust bilevel problem� or NORBiP in the rest of the paper.

The introduction of uncertainty and robustness in games has been ap-
proached from di�erent points of view in the literature. In [8], the authors
prove the existence of robust counterparts of Nash equilibria under standard
assumptions for simultaneous games without the knowledge of probability dis-
tributions associated with the uncertainty. In [9], the robust version of a net-
work congestion problem is developed. Users are assumed to make decisions
under bounded rationality, leading to a robust Wardrop equilibrium. Robust
versions of bilevel problems modelling speci�c Stackelberg games have been
studied in [10,11], using robust formulations to protect the leader against
non-rationality or partial rationality of the follower. A stochastic version of
the pessimistic bilevel problem is studied in [12], where the realization of the
random variable occurs after the upper level and before the lower level. The
authors then derive lower and upper bounds on the pessimistic and optimistic
versions of the stochastic bilevel problem as MILPs, leveraging an exact lin-
earization by assuming the upper-level variables are all binary. The models
developed in [13] and [14] explore di�erent forms of bounded or partial ratio-
nality of the lower level, where the lower level either makes a decision using
an imperfect algorithm or may deviate from its optimal value in a way that
penalizes the objective of the upper level.

Solving bilevel problems under limited deviations of the lower-level re-
sponse was introduced in [2] under the term �ε-approximation� of the pes-
simistic bilevel problem. The authors focus on the independent case, i.e. cases
where the lower-level feasible set is independent of the upper-level decisions.
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Problems in such settings are shown to be simpler to handle than the depen-
dent case and can be solved in polynomial time when the lower-level problem
is linear under the optimistic and pessimistic assumptions. A custom algo-
rithm is designed for the independent case, solving a sequence of non-convex
non-linear problems relying on global optimization solvers.

We consider bilevel problems involving upper- and lower-level variables in
the constraints and objective functions at both levels, thus more general than
the independent �ε-approximation� from [2]. Unlike the independent case, the
dependent bilevel problem is NP-hard even when the constraints and ob-
jectives are linear. By de�ning the uncertainty in terms of a deviation from
optimality of the lower level, our formulation o�ers a novel interpretation of
robustness for bilevel problems and Stackelberg games. In the case of a linear
lower level, we derive an exact MILP reformulation while not requiring the
assumption of pure binary upper-level variables.

The main contributions of the paper are:

1. The de�nition and formulation of the dependent near-optimal robust bilevel
problem, resulting in a generalized semi-in�nite problem and its interpre-
tation as a special case of robust optimization applied to bilevel problems.

2. The study of duality-based reformulations of NORBiP where the lower-
level problem is convex conic or linear in Section 3, resulting in a �nite-
dimensional single-level optimization problem.

3. An extended formulation for the linear-linear NORBiP in Section 4, lin-
earizing the bilinear constraints of the single-level model using disjunctive
constraints.

4. A solution algorithm for the linear-linear NORBiP in Section 5 using the
extended formulation and its implementation with several variants.

The paper is organized as follows. In Section 2, we de�ne the concepts
of near-optimal set and near-optimal robust bilevel problem. We study the
near-optimal bilevel problems with convex and linear lower-level problems in
Section 3 and Section 4 respectively. In both cases, the near-optimal robust
bilevel problem can be reformulated as a single level. For a linear lower level, an
extended formulation can be derived from the single-level problem. A solution
algorithm is provided and computational experiments are conducted for the
linear case in Section 5, comparing the extended formulation to the compact
one and studying the impact of valid inequalities. Finally, in Section 6 we
draw some conclusions and highlight research perspectives on near-optimality
robustness.

2 Near-optimal set and near-optimal robust bilevel problem

In this section, we �rst de�ne the near-optimal set of the lower level and near-
optimality robustness for bilevel problems. Next, we illustrate the concepts
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on an example and highlight several properties of general near-optimal robust
bilevel problems before focusing on the convex and linear cases in the following
sections.

The generic bilevel problem is classically de�ned as:

min
x

F (x, v) (1a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (1b)

x ∈ X (1c)

v ∈ argmin
y∈Y

{f(x, y) s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]]}. (1d)

The upper- and lower-level objective functions are noted F, f : X ×Y 7→ R
respectively. Constraint (1b) and gi(x, y) ≤ 0∀i ∈ [[ml]] are the upper- and
lower-level constraints respectively. In this section, we assume that Y = Rnl

in order that the lower-level feasible set can be only determined by the gi
functions. The optimal value function φ(x) is de�ned as follows:

φ : Rnu → {−∞} ∪ R ∪ {+∞}
φ(x) = min

y
{f(x, y) s.t. g(x, y) ≤ 0}. (2)

To keep the notation succinct, the indices of the lower-level constraints gi
are omitted when not needed as in Constraint (2). Throughout the paper, it
is assumed that the lower-level problem is feasible and bounded for any given
upper-level decision.

When, for a feasible upper-level decision, the solution to the lower-level prob-
lem is not unique, the bilevel problem is not well de�ned and further assump-
tions are required [1]. In the optimistic case, we assume that the lower level
selects the optimal solution favouring the upper level and the optimal solution
disfavouring them the most in the pessimistic case. We refer the reader to
[15, Chapter 1] for further details on these two approaches. The near-optimal
set of the lower level Z(x; δ) is de�ned for a given upper-level decision x and
tolerance δ as:

Z(x; δ) = {y | g(x, y) ≤ 0, f(x, y) ≤ φ(x) + δ}.

A Near-Optimal Robust Bilevel Problem, NORBiP, of parameter δ is de�ned
as a bilevel problem where the upper-level constraints are satis�ed for any
lower-level solution z in the near-optimal set Z(x; δ).
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min
x,v

F (x, v) (3a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (3b)

f(x, v) ≤ φ(x) (3c)

g(x, v) ≤ 0 (3d)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (3e)

x ∈ X . (3f)

Each k constraint in (3b) is satis�ed if the corresponding constraint set in (3e)
holds and is therefore redundant, since v ∈ Z(x; δ). However, we mention Con-
straint (3b) in the formulation to highlight the structure of the initial bilevel
problem in the near-optimal robust formulation.

The special case Z(x; 0) is the set of optimal solutions to the original lower-
level problem, NORBiP with δ = 0 is therefore equivalent to the pessimistic
bilevel problem as formulated in [2]:

f(x, y) ≤ φ(x) ∀y ∈ Z(x; 0).

For δ < 0, Z(x; δ) is the empty set, in which case Problem (3) is equivalent to
the original optimistic bilevel problem while the set Z(x;∞) corresponds to
the complete lower-level feasible set, assuming the lower-level optimal solution
is not unbounded for the given upper-level decision x.

Unlike the constraint-based pessimistic bilevel problem presented in [2], the
upper-level objective F (x, v) depends on both the upper- and lower-level vari-
ables, but is only evaluated with the optimistic lower-level variable v and not
with a worst-case near-optimal solution. This implies the upper level chooses
the best optimistic decision which protects its feasibility from near-optimal
deviations. One implication for the modeller is that a near-optimal robust
problem can be constructed directly from a bilevel instance where the objec-
tive function often depends on the variables of the two levels. Alternatively,
the near-optimal robust formulation can protect both the upper-level objective
value and constraints from near-optimal deviations of the lower level using an
epigraph formulation introducing an additional variable:

min
x,v,τ

τ (4a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (4b)

f(x, v) ≤ φ(x) (4c)

g(x, v) ≤ 0 (4d)

F (x, z) ≤ τ ∀z ∈ Z(x; δ) (4e)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (4f)

x ∈ X . (4g)
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The two models de�ne di�erent levels of conservativeness and risk. Indeed:

opt(1a-1d) ≤ opt(3a-3f) ≤ opt(4a-4g),

where opt(P ) denotes the optimal value of problem P . Both near-optimal ro-
bust formulations can be of interest to model decision-making applications. It
can also be noted that Problem 3 includes the special case of opposite objec-
tives between the two levels, i.e. problems for which F (x, v) = −f(x, v). The
two models o�er di�erent levels of conservativeness and risk and can both be
of interest when modelling decision-making applications.

Constraint (3e) is a generalized semi-in�nite constraint, based on the ter-
minology from [16]. The dependence of the set of constraints Z(x; δ) on the
decision variables leads to the characterization of Problem (3) as a robust
problem with decision-dependent uncertainty [17]. Each constraint in the set
(3e) can be replaced by the corresponding worst-case second-level decision zk
obtained as the solution of the adversarial problem, parameterized by (x, v, δ):

zk ∈ argmax
y

Gk(x, y) (5a)

s.t. f(x, y) ≤ φ(x) + δ (5b)

g(x, y) ≤ 0. (5c)

Finally, the near-optimal robust bilevel optimization problem can be expressed
as:

min
x,v

F (x, v) (6a)

s.t. f(x, v) ≤ φ(x) (6b)

g(x, v) ≤ 0 (6c)

0 ≥ max
y
{Gk(x, y) s.t. y ∈ Z(x; δ)} ∀k ∈ [[mu]] (6d)

x ∈ X . (6e)

In the robust optimization literature, models can present uncertainty on
the constraints and/or on the objective function [18]. In bilevel optimization,
the �rst case corresponds to NORBiP, where the impact of near-optimal lower-
level solutions on the upper-level constraints is studied. The second case corre-
sponds to the impact of near-optimal lower-level decisions on the upper-level
objective value.

We next prove that the model including uncertainty on the objective,
named Objective-Robust Near-Optimal Bilevel Problem (ORNOBiP), is a spe-
cial case of NORBiP.
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ORNOBiP is de�ned as:

min
x∈X

sup
z∈Z(x;δ)

F (x, z) (7a)

s.t. Z(x; δ) = {y s.t. g(x, y) ≤ 0, f(x, y) ≤ φ(x) + δ}. (7b)

In contrast to most objective-robust problem formulations, the uncertainty set
Z depends on the upper-level solution x, qualifying Problem (7) as a problem
with decision-dependent uncertainty.

Proposition 1 ORNOBiP is a special case of NORBiP.

Proof The reduction of the objective-uncertain robust problem to a constraint-
uncertain robust formulation is detailed in [19]. In particular, Problem (7) is
equivalent to:

min
x,τ

τ

s.t. x ∈ X
τ ≥ F (x, z) ∀z ∈ Z(x, δ),

this formulation is a special case of NORBiP. ut

The pessimistic bilevel optimization problem de�ned in [20] is both a spe-
cial case and a relaxation of ORNOBiP. For δ = 0, the inner problem of
ORNOBiP is equivalent to �nding the worst lower-level decision with respect
to the upper-level objective amongst the lower-level-optimal solutions. For any
δ > 0, the inner problem can select the worst solutions with respect to the
upper-level objective that are not optimal for the lower level. The pessimistic
bilevel problem is therefore a relaxation of ORNOBiP.
We illustrate the concept of near-optimal set and near-optimal robust solution
with the following linear bilevel problem, represented in Fig. 1.

min
x,v

x (8)

s.t. x ≥ 0

v ≥ 1− x

10

v ∈ argmax
y
{y s.t. y ≤ 1 +

x

10
}.

The high-point relaxation of Problem (8), obtained by relaxing the opti-
mality constraint of the lower-level, while maintaining feasibility, is:

min
x,v

x

s.t. x ≥ 0

v ≥ 1− x

10

v ≤ 1 +
x

10
.
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The shaded area in Fig. 1 represents the interior of the polytope, which is fea-
sible for the high-point relaxation. The induced set, resulting from the optimal
lower-level reaction, is given by:

{(x, y) ∈ (R+,R) s.t. y = 1 +
x

10
}.

The unique optimal point is (x̂, ŷ) = (0, 1).

0.5 1 1.5 2

0.5

1

1.5
f(x) = -y

F(x,y) = x

E

Fig. 1 Linear bilevel problem

Let us now consider a near-optimal tolerance of the follower with δ = 0.1.
If the upper-level decision is x̂, then the lower level can take any value between
1− δ = 0.9 and 1. All these values except 1 lead to an unsatis�ed upper-level
constraint problem. The problem can be reformulated as:

min
x,v

x

s.t. x ≥ 0

v ≥ 1− x

10

v ∈ argmax
y
{y s.t. y ≤ 1 +

x

10
}

z ≥ 1− x

10
∀z s.t. {z ≤ 1 +

x

10
, z ≥ v − δ}.

Fig. 2 illustrates the near-optimal equivalent of the problem with an addi-
tional constraint ensuring the satisfaction of the upper-level constraint for all
near-optimal responses of the lower level.
This additional constraint is represented by the dashed line. The optimal
upper-level decision is x = 0.5, for which the optimal lower-level reaction
is y = 1 + 0.1 · 0.5 = 1.05. The boundary of the near-optimal set is y =
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0.5 1.1 1.7

0.5

1

1.5
f(x) = -y

F(x,y) = x

E F

Fig. 2 Linear bilevel problem with a near-optimality robustness constraint

1− 0.1 · 0.5 = 0.95.

In the rest of this section, we establish properties of the near-optimal set
and near-optimal robust bilevel problems. If the lower-level optimization prob-
lem is convex, then the near-optimal set Z(x; θ) is convex as the intersection
of two convex sets:

� {y | g(x, y) ≤ 0}
� {y | f(x, y) ≤ φ(x) + δ}.

In robust optimization, the characteristics of the uncertainty set sharply
impact the di�culty of solving the problem. The near-optimal set of the lower-
level is not always bounded; this can lead to infeasible or ill-de�ned near-
optimal robust counterparts of bilevel problems. In the next proposition, we
de�ne conditions under which the uncertainty set Z(x; δ) is bounded.

Proposition 2 For a given pair (x, δ), any of the following properties is suf-

�cient for Z(x; δ) to be a bounded set:

1. The lower-level feasible domain is bounded.

2. f(x, ·) is radially unbounded with respect to y.
3. f(x, ·) is radially bounded such that:

lim
r∈R,r→+∞

f(x, rs) > f(x, v) + δ ∀s ∈ S,

with S the unit sphere in the space of lower-level decisions.

Proof The �rst case is trivially satis�ed since Z(x; δ) is the intersection of sets
including the lower-level feasible set. If f(x, ·) is radially unbounded, for any
�nite δ > 0, there is a maximum radius around v beyond which any value
of the objective function is greater than f(x, v) + δ. The third case follows
the same line of reasoning as the second, with a lower bound in any direction
‖y‖ → ∞, such that this lower bound is above f(x, v) + δ. ut
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The radius of robust feasibility is de�ned as the maximum �size� of the
uncertain set [21,22], such that the robust problem remains feasible. In the case
of near-optimality robustness, the radius can be interpreted as the maximum
deviation of the lower-level objective from its optimal value, such that the
near-optimal robust bilevel problem remains feasible.

De�nition 1 For a given optimization problem BiP , let NO(BiP ; δ) be the
optimum value of the near-optimal robust problem constructed from BiP with
a tolerance δ. The radius of near-optimal feasibility δ̂ is de�ned by:

δ̂ = argmax
δ

{δ s.t. NO(BiP ; δ) <∞}. (9)

It is interesting to note that the radius as de�ned in De�nition 1 can be
interpreted as a maximum robustness budget in terms of the objective value
of the lower level. It represents the maximum level of tolerance of the lower
level on its objective, such that the upper level remains feasible.

Proposition 3 The standard optimistic bilevel problem BiP is a relaxation

of the equivalent near-optimal robust bilevel problem for any δ > 0.

Proof By introducing additional variables zjk, j ∈ [[nl]], k ∈ [[mu]] in the opti-
mistic bilevel problem, we obtain:

min
x,v,z

F (x, v) (10)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]]

f(x, v) ≤ φ(x)
g(x, v) ≤ 0

x ∈ X , v ∈ Rnl , z ∈ Rnl×mu .

Problem (10) is strictly equivalent to the optimistic bilevel problem with
additional variables z that are not used in the objective nor constraints. Fur-
thermore, Problem (10) is a relaxation of Problem (6), which has similar vari-
ables but additional constraints (6d). At each point where the bilevel problem
is feasible, either the objective value of the two problems are the same or
NORBiP is infeasible. ut

Proposition 4 If the bilevel problem is feasible, then the adversarial problem

(5) is feasible.

Proof If the bilevel problem is feasible, then the solution z = v is feasible for
the primal adversarial problem. ut

Proposition 5 If (x̂, ŷ) is a bilevel-feasible point, and Gk(x̂, ·) is Kk-Lipschitz

continuous for a given k ∈ [[mu]] such that:

Gk(x̂, ŷ) < 0,
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then the constraint Gk(x̂, y) ≤ 0 is satis�ed for all y ∈ F (k)
L such that:

F (k)
L (x̂, ŷ) = {y ∈ Rnl | ‖y − ŷ‖ ≤ |Gk(x̂, ŷ)|

Kk
}.

Proof As Gk(x̂, ŷ) < 0, and Gk(x̂, ·) is continuous, there exists a ball Br(ŷ) in
Rnl centered on (ŷ) of radius r > 0, such that

G(x̂, y) ≤ 0 ∀y ∈ Br(ŷ).

Let us de�ne:

r0 = argmax
r

r (11)

s.t. G(x̂, y) ≤ 0 ∀y ∈ Br(ŷ).

By continuity, Problem (11) always admits a feasible solution. If the feasible
set is bounded, there exists a point y0 on the boundary of the ball, such that
Gk(x̂, y0) = 0. It follows from Lipschitz continuity that:

|Gk(x̂, ŷ)−Gk(x̂, y0)| ≤ Kk‖y0 − ŷ‖
|Gk(x̂, ŷ)|

Kk
≤ ‖y0 − ŷ‖.

Gk(x̂, y) ≤ Gk(x̂, y0) ∀y ∈ Br0(ŷ), therefore all lower-level solutions in the set

F (k)
L (x̂, ŷ) = {y ∈ Rnl s.t. ‖y − ŷ‖ ≤ |Gk(x̂, ŷ)|

Kk
}

satisfy the k-th constraint. ut

Corollary 1 Let (x̂, ŷ) be a bilevel-feasible solution of a near-optimal robust

bilevel problem of tolerance δ, and

FL(x̂, ŷ) =
mu⋂
k=1

F (k)
L (x̂, ŷ),

then Z(x; δ) ⊆ FL(x̂, ŷ) is a su�cient condition for near-optimality robustness

of (x̂, ŷ).

Proof Any lower-level solution y ∈ FL(x̂, ŷ) satis�es all mu upper-level con-
straints, thus Z(x; δ) ⊆ FL(x̂, ŷ) is a su�cient condition for the near-optimality
robustness of (x̂, ŷ). ut

Corollary 2 Let (x̂, ŷ) be a bilevel-feasible solution of a near-optimal robust

bilevel problem of tolerance δ, R be the radius of the lower-level feasible set

and Gk(x̂, ·) be Kk-Lipschitz for a given k, then the k-th constraint is robust

against near-optimal deviations if:

|Gk(x̂, ŷ)| ≤ KkR.

Proof The inequality can be deduced from the fact that ‖y − ŷ‖ ≤ R. ut

Corollary 2 can be used when the lower level feasible set is bounded to verify
near-optimality robustness of incumbent solutions.
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3 Near-optimal robust bilevel problems with a convex lower level

In this section, we study near-optimal robust bilevel problems where the lower-
level problem (1d) is a parametric convex optimization problem with both a
di�erentiable objective function and di�erentiable constraints. If Slater's con-
straint quali�cations hold, the KKT conditions are necessary and su�cient
for the optimality of the lower-level problem and strong duality holds for the
adversarial subproblems. These two properties are leveraged to reformulate
NORBiP as a single-level closed-form problem.

Given a bilevel solution (x, v), the adversarial problem associated with con-
straint k can be formulated as:

max
y

Gk(x, y) (12a)

s.t. g(x, y) ≤ 0 (12b)

f(x, y) ≤ f(x, v) + δ. (12c)

Even if the upper-level constraints are convex with respect to y, Problem (12)
is in general non-convex since the function to maximize is convex over a convex
set. First-order optimality conditions may induce several non-optimal critical
points and the de�nition of a solution method needs to rely on global opti-
mization techniques [23,24].

By assuming that the constraints of the upper-level problem Gk(x, y) can
be decomposed and that the projection onto the lower variable space is a�ne:

Gk(x, y) ≤ 0⇔ Gk(x) +HT
k y ≤ qk. (13)

The k-th adversarial problem is then expressed as:

max
y
〈Hk, y〉 (14a)

s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]] (αi) (14b)

f(x, y) ≤ f(x, v) + δ (β) (14c)

and is convex for a �xed pair (x, v). Satisfying the upper-level constraint in
the worst-case requires that the objective value of Problem (14) is lower than
qk − Gk(x). We denote by Ak and Dk the objective values of the adversarial
problem (14) and its dual respectively. Dk takes values in the extended real set
to account for infeasible and unbounded cases. Proposition 4 holds for Problem
(14). The feasibility of the upper-level constraint with the dual adversarial
objective value as formulated in Constraint (15) is, by weak duality of convex
problems, a su�cient condition for the feasibility of a near-optimal solution.
If Slater's constraint quali�cations hold, it is also a necessary condition [25]
by strong duality:

Ak ≤ Dk ≤ qk −Gk(x). (15)
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The generic form for the single-level reformulation of the near-optimal robust
problem can then be expressed as:

min
x,v,α,β

F (x, v) (16a)

s.t. G(x) +Hv ≤ q (16b)

f(x, v) ≤ φ(x) (16c)

g(x, v) ≤ 0 (16d)

Dk ≤ qk −Gk(x) ∀k ∈ [[mu]] (16e)

x ∈ X , (16f)

where (α, β) are certi�cates of the near-optimality robustness of the solution.
In order to write Problem (16) in a closed form, the lower-level problem (16c-
16d) is reduced to its KKT conditions:

∇vf(x, v)−
ml∑
i=1

λi∇vgi(x, v) = 0 (17a)

gi(x, v) ≤ 0 ∀i ∈ [[ml]] (17b)

λi ≥ 0 ∀i ∈ [[ml]] (17c)

λigi(x, v) = 0 ∀i ∈ [[ml]]. (17d)

Constraint (17d) derived from the KKT conditions cannot be tackled directly
by non-linear solvers [26]. Speci�c reformations, such as relaxations of the
equality constraints (17d) into inequalities or branching on combinations of
variables (as developed in [27,28]) are often used in practice.

In the rest of this section, we focus on bilevel problems such that the lower level
is a conic convex optimization problem. Unlike the convex version developed
above, the dual of a conic optimization problem can be written in closed form.

min
y
〈d, y〉 (18)

s.t. Ax+By = b

y ∈ K

where 〈·, ·〉 is the inner product associated with the space of the lower-level
variables and K is a proper cone [25, Chapter 2]. This class of problems en-
compasses a broad class of convex optimization problems of practical interest
[29, Chapter 4], while the dual problem can be written in a closed-form if the
dual cone is known, leading to a closed-form single-level reformulation. The
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k−th adversarial problem is given by:

max
y,r
〈Hk, y〉 (19a)

s.t. By = b−Ax (19b)

〈d, y〉+ r = 〈d, v〉+ δ (19c)

y ∈ K (19d)

r ≥ 0 (19e)

with the introduction of a slack variable r. With the following change of vari-
ables:

ŷ =

[
y
r

]
B̂ =

[
B 0

]
d̂ =

[
d 1
]
Ĥk =

[
Hk

0

]
,

K̂ = {(y, r), y ∈ K, r ≥ 0},

K̂ is a cone as the Cartesian product of K and the nonnegative orthant. Prob-
lem (19) is reformulated as:

max
ŷ
〈Ĥk, ŷ〉

s.t. (B̂ŷ)i = bi − (Ax)i ∀i ∈ [[ml]] (αi)

〈d̂, ŷ〉 = 〈d, v〉+ δ (β)

ŷ ∈ K̂

which is a conic optimization problem, for which the dual problem is:

min
α,β,sk

〈(b−Ax), α〉+ (〈d, v〉+ δ)β (20a)

s.t. B̂Tα+ βd̂+ s = Ĥk (20b)

s ∈ −K̂∗, (20c)

with K̂∗ the dual cone of K̂. In the worst case (maximum number of non-zero
coe�cients), there are (ml ·nu+nl) bilinear terms inmu non-linear non-convex
constraints. This number of bilinear terms can be reduced by introducing the
following variables (p, o), along with the corresponding constraints:

min
α,β,s,p,o

〈p, α〉+ (o+ δ)β (21a)

s.t. p = b−Ax (21b)

o = 〈d, v〉 (21c)

B̂Tα+ βd̂+ s = Ĥk (21d)

s ∈ −K̂∗. (21e)

The number of bilinear terms in the set of constraints is thus reduced from
nu ·ml + nl to ml + 1 terms in (21a). Problem (20) or equivalently Problem
(21) have a convex feasible set but a bilinear non-convex objective function.
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The KKT conditions of the follower problem (18) are given for the primal-dual
pair (y, λ):

By = b−Ax (22a)

y ∈ K (22b)

d−BTλ ∈ K∗ (22c)

〈d−BTλ, y〉 = 0. (22d)

The single-level problem is:

min
x,v,λ,α,β,s

F (x, v) (23a)

s.t. G(x) +Hv ≤ q (23b)

Ax+Bv = b (23c)

d−BTλ ∈ K∗ (23d)

〈d−BTλ, v〉 = 0 (23e)

〈Ax− b, αk〉+ βk (〈v, d〉+ δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (23f)

B̂Tαk + d̂βk + sk = Ĥk ∀k ∈ [[mu]] (23g)

x ∈ X , v ∈ K (23h)

sk ∈ −K̂∗ ∀k ∈ [[mu]]. (23i)

The Mangasarian-Fromovitz constraint quali�cation is violated at every feasi-
ble point of Constraint (23e) [30]. In non-linear approaches to complementarity
constraints [27,26], parameterized successive relaxations of the complementar-
ity constraints are used:

〈d−BTλ, v〉 ≤ ε (24a)

−〈d−BTλ, v〉 ≤ ε. (24b)

Constraints (23f) and (24) are both bilinear non-convex inequalities, the
other ones added by the near-optimal robust model are conic and linear con-
straints.

In conclusion, near-optimal robustness has only added a �nite number of
constraints of the same nature (bilinear inequalities) to the reformulation pro-
posed in [26]. Solution methods used for bilevel problems with convex lower-
level thus apply to their near-optimal robust counterpart.

4 Linear near-optimal robust bilevel problem

In this section, we focus on near-optimal robust linear-linear bilevel problems.
More precisely, the structure of the lower-level problem is exploited to derive
an extended formulation leading to an e�cient solution algorithm.We consider
that all vector spaces are subspaces of Rn, with appropriate dimensions. The
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inner product of two vectors 〈a, b〉 is equivalently written aT b.

The linear near-optimal robust bilevel problem is formulated as:

min
x,v

cTx x+ cTy v (25a)

s.t. Gx+Hv ≤ q (25b)

dT v ≤ φ(x) (25c)

Ax+Bv ≤ b (25d)

Gx+Hz ≤ q ∀z ∈ Z(x; δ) (25e)

v ∈ Rnl
+ (25f)

x ∈ X . (25g)

For a given pair (x, v), each semi-in�nite robust constraint (25e) can be refor-
mulated as the objective value of the following adversarial problem:

max
y

HT
k y (26a)

s.t. (By)i ≤ bi − (Ax)i ∀i ∈ [[ml]] (αi) (26b)

dT y ≤ dT v + δ (β) (26c)

y ∈ Rnl
+ . (26d)

Let (α, β) be the dual variables associated with each group of constraints
(26b-26c). The near-optimal robust version of Problem (25) is feasible only
if the objective value of each k-th adversarial subproblem (26) is lower than
qk − (Gx)k. The dual of Problem (26) is de�ned as:

min
α,β

αT (b−Ax) + β (dT v + δ) (27a)

s.t. BTα+ βd ≥ Hk (27b)

α ∈ Rml
+ β ∈ R+. (27c)

Based on Problem (4) and weak duality results, the dual problem is either
infeasible or feasible and bounded. By strong duality, the objective value of the
dual and primal problems are equal. This value must be smaller than qk−(Gx)k
to satisfy Constraint (25e). This is equivalent to the existence of a feasible dual
solution (α, β) certifying the feasibility of (x, v) within the near-optimal set
Z(x; δ). We obtain one pair of certi�cates (α, β) for each upper-level constraint
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in [[mu]], resulting in the following problem:

min
x,v,α,β

cTx x+ cTy v (28a)

s.t. Gx+Hv ≤ q (28b)

dT v ≤ φ(x) (28c)

Ax+Bv ≤ b (28d)

αTk (b−Ax) + βk (d
T v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (28e)

BTαk + βkd ≥ Hk ∀k ∈ [[mu]] (28f)

αk ∈ Rml
+ βk ∈ R+ ∀k ∈ [[mu]] (28g)

v ∈ Rnl
+ (28h)

x ∈ X . (28i)

Lower-level optimality is guaranteed by the corresponding KKT conditions:

dj +
∑
i

Bijλi − σj = 0 ∀j ∈ [[nl]] (29a)

0 ≤ bi − (Ax)i − (Bv)i ⊥ λi ≥ 0 ∀i ∈ [[ml]] (29b)

0 ≤ vj ⊥ σj ≥ 0 ∀j ∈ [[nl]] (29c)

σ ≥ 0, λ ≥ 0 (29d)

where ⊥ de�nes a complementarity constraint. A common technique to lin-
earize Constraints (29b-29c) is the �big-M� reformulation, introducing auxil-
iary binary variables with primal and dual upper bounds. The resulting for-
mulation has a weak continuous relaxation. Furthermore, the correct choice
of bounds is itself an NP-hard problem [31], and the incorrect choice of these
bounds can lead to cutting valid and potentially optimal solutions [32]. Other
modelling and solution approaches, such as special ordered sets of type 1
(SOS1) or indicator constraints avoid the need to specify such bounds in a
branch-and-bound procedure.
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The aggregated formulation of the linear near-optimal robust bilevel problem
is:

min
x,v,λ,σ,α,β

cTx x+ cTy v (30a)

s.t. Gx+Hv ≤ q (30b)

Ax+Bv ≤ b (30c)

dj +
∑
i

λiBij − σj = 0 ∀j ∈ [[nl]] (30d)

0 ≤ λi⊥Aix+Biv − bi ≤ 0 ∀i ∈ [[ml]] (30e)

0 ≤ σj ⊥ vj ≥ 0 ∀j ∈ [[nl]] (30f)

x ∈ X (30g)

αk · (b−Ax) + βk(d
T v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (30h)

ml∑
i=1

Bijαki + βkdj ≥ Hkj ∀k ∈ [[mu]], ∀j ∈ [[nl]]

(30i)

αk ∈ Rml
+ , βk ∈ R+ ∀k ∈ [[mu]]. (30j)

Problem (30) is a single-level problem and has a closed form. However,
constraints (30h) contain bilinear terms, which cannot be tackled as e�ciently
as convex constraints by branch-and-cut based solvers. Therefore, we exploit
the structure of the dual adversarial problem and its relation to the primal
lower level to design a new e�cient reformulation and solution algorithm.

4.1 Extended formulation

The bilinear constraints (30h) involve products of variables from the upper and
lower level (x, v) as well as dual variables of each of the mu dual-adversarial
problems. For �xed values of (x, v), mu dual adversarial sub-problems (27)
are de�ned. The optimal value of each k-th subproblem must be lower than
qk−(Gx)k. The feasible region of each sub-problem is de�ned by (30h-30j) and
is independent of (x, v). The objective functions are linear in (α, β). Following
Proposition 4, Problem (27) is bounded. If, moreover, Problem (27) is feasible,
a vertex of the polytope (30h-30j) is an optimal solution. Following these
observations, Constraints (30h-30j) can be replaced by disjunctive constraints,
such that for each k, at least one extreme vertex of the k-th dual polyhedron
is feasible. This reformulation of the bilinear constraints has, to the best of
our knowledge, never been developed in the literature. Let Vk be the number
of vertices of the k-th sub-problem and αlk, β

l
k be the l-th vertex of the k-th

sub-problem. Constraints (30h-30j) can be written as:

Vk∨
l=1

ml∑
i=1

αlki(b−Ax)i + βlk · (dT v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]], (31)
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where
∨N
i=1 Ci is the disjunction (logical �OR�) operator, expressing the con-

straint that at least one of the constraints Ci must be satis�ed. These disjunc-
tions are equivalent to indicator constraints [33].

This reformulation of bilinear constraints based on the polyhedral descrip-
tion of the (α, β) feasible space is similar to the Benders decomposition. Indeed
in the near-optimal robust extended formulation, at least one of the vertices
must satisfy a constraint (a disjunction) while Benders decomposition consists
in satisfying a set of constraints for all extreme vertices and rays of the dual
polyhedron (a constraint described with a universal quanti�er). Disjunctive
constraints (31) are equivalent to the following formulation, using set cover
and SOS1 constraints:

θlk ∈ B ∀k,∀l (32a)

ωlk ≥ 0 ∀k,∀l (32b)

(b−Ax)Tαlk + βlk(d
T v + δ)− ωlk ≤ qk − (Gx)k ∀k,∀l (32c)

Vk∑
l=1

θlk ≥ 1 ∀k (32d)

SOS1(θlk, ω
l
k) ∀k, ∀l. (32e)

In conclusion, using disjunctive constraints over the extreme vertices of
each dual polyhedron and SOS1 constraints to linearize the complementarity
constraints leads to an equivalent reformulation of Problem (30). The �nite
solution property holds even though the boundedness of the dual feasible set
is not required. This single-level extended reformulation can be solved by any
o�-the-shelf MILP solver. Nevertheless, to decrease the computation time, we
design a speci�c algorithm based on necessary conditions for the existence of
a solution.

First, we illustrate the extended formulation on the following example.

4.2 Bounded example

Consider the bilevel linear problem de�ned by the following data:

x ∈ R+, y ∈ R+

G =

[
−1
1

]
H =

[
4
2

]
q =

[
11
13

]
cx =

[
1
]
cy =

[
−10

]

A =

[
−2
5

]
B =

[
−1
−4

]
b =

[
−5
30

]
d =

[
1
]
.
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The optimal solution of the high-point relaxation (x, v) = (5, 4) is not
bilevel-feasible. The optimal value of the optimistic bilevel problem is reached
at (x, v) = (1, 3). These two points are respectively represented by the blue
diamond and red cross in Fig. 3. The dotted segments represent the upper-level
constraints and the solid lines represent the lower-level constraints.

1 2 3 4 5 6 7 8

1

2

3

4

5
cxx+ cyy

dT y

Fig. 3 Representation of the bilevel problem.

1 2 3 4 5 6 7 8

1

2

3

4

5

δ = 1.0

δ = 0.5

Fig. 4 Near-optimal robustness constraints.

The feasible space for (α, β) is given by:

− 1α11 − 4α12 + β1 ≥ 4

− 1α21 − 4α22 + β2 ≥ 2

αki ≥ 0, βk ≥ 0.

This feasible space can be described as a set of extreme points and rays.
It consists in this case of one extreme point (αki = 0, β1 = 4, β2 = 2) and
4 extreme rays. The (x, v) solution needs to be valid for the corresponding
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near-optimality conditions:

β1 (v + δ) ≤ 11 + x

β2 (v + δ) ≤ 13− x.

This results in two constraints in the (x, v) space, represented in Fig. 4 for
δ = 0.5 and δ = 1.0 in dotted blue and dashed orange respectively. The
radius of near-optimal feasibility δ̂ = 5 can be computed using the formulation
provided in De�nition 1, for which the feasible domain at the upper-level is
reduced to the point x = 5, for which v = 0, represented as a green circle at
(5, 0) in Fig. 4.

4.3 Solution algorithm

The solution procedure is de�ned as follows based on the structure of the
extended formulation. The main goal of the algorithm is to prove infeasibility
early in the resolution process and to solve the extended formulation only in
the last step. Let P0(BiP ), P1(BiP ), FEASk((BiP ), Pno(BiP ; δ) be the high-
point relaxation, optimistic bilevel problem, dual feasibility and near-optimal
robust problem respectively. Let Ck be the list of extreme vertices of the k-th
dual adversarial polyhedron.

Algorithm 1 Near-Optimal Robust Vertex Enumeration Procedure
(NORVEP)

1: function near_optimal_bilevel(BiP, δ)
2: {Step 1: dual subproblems expansion & pre-solving}
3: for k ∈ [[mu]] do
4: Solve dual adversarial problem
5: if feask = Infeasible then
6: Terminate: k-th dual adversarial infeasible
7: else

8: Ck ← (αl
k, β

l
k)l∈Vk

9: end if

10: end for

11: {Step 2: high-point relaxation P0(BiP )}
12: if P0(BiP ) infeasible then
13: Terminate: high-point relaxation infeasible
14: end if

15: {Step 3: optimistic relaxation P1(BiP )}
16: if P1(BiP ) infeasible then
17: Terminate: optimistic bilevel infeasible
18: end if

19: {Step 4: extended formulation Pno(BiP, (Ck)k∈[[mu]]; δ)}
20: return Terminate and return solution information
21: end function

Each step consists in solving a problem that must be feasible for the feasibil-
ity of NORBiP to hold. The algorithm terminates without proceeding to the
subsequent steps in an infeasibility is detected.
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4.4 Valid inequalities

The extended formulation and Algorithm 1 can be directly applied. Neverthe-
less, we propose two groups of valid inequalities to tighten the formulation.

The �rst group of inequalities consists of the primal upper-level constraints:

(Gx)k + (Hv)k ≤ qk ∀z ∈ [[mu]].

These constraints are necessary for the optimistic formulation but not for the
near-optimal robust one since they are always redundant with and included in
the near-optimal robust constraints. However, their addition can strengthen
the linear relaxation of the extended formulation and lead to faster conver-
gence.

The second group of inequalities is de�ned in [34] and based on strong
duality of the lower level. We only implement the valid for the root node,
which are the primary focus of [34]:

〈λ, b〉+ 〈v, d〉 ≤ 〈A+, λ〉, (33)

where A+
i is an upper bound on 〈Ai, x〉. The computation of each upper bound

A+
i relies on solving an auxiliary problem:

A+
i = max

x,v,λ
〈Ai, x〉 (34a)

s.t. Gx+Hv ≤ q (34b)

Ax+Bv ≤ b (34c)

d+BTλ ≥ 0 (34d)

x ∈ X , v ≥ 0, λ (34e)

(x, v, λ) ∈ Υ, (34f)

where Υ is the set containing all valid inequalities (33).

The method proposed in [34] relies on solving each i-th auxiliary problem
once and using the resulting bound A+. We de�ne a new iterative procedure
to improve the bounds computed at the root node:

1. Solve Problem (34a) ∀i ∈ [[ml]] and obtain A+;
2. If ∃i, A+

i is unbounded, terminate;
3. Otherwise, add Constraint (33) to (34f) and go to step 1;
4. Stopping criterion: when an iteration does not improve any of the bounds,

terminate and return the last inequality with the sharpest bound.

This procedure allows tightening the bound as long as improvement can be
made in one of the A+

i . If the procedure terminates with one A+
i unbounded,

the right-hand side of (33) is +∞, the constraint is trivial and cannot be
improved upon. Otherwise, each iteration improves the bound until the con-
vergence of A+.
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5 Computational experiments

In this section, we demonstrate the applicability of our approach through
numerical experiments on instances of the linear-linear near-optimal robust
bilevel problem. We �rst describe the sets of test instances and the computa-
tional setup and then the experiments and their results.

5.1 Instance sets

Two sets of data are considered. For the �rst one, a total number of 1000 small,
200 medium and 100 large random instances are generated and characterized
as follows:

(mu,ml, nl, nu) = (5, 5, 5, 5) (small)

(mu,ml, nl, nu) = (10, 10, 10, 10) (medium)

(mu,ml, nl, nu) = (20, 10, 20, 20) (large).

All matrices are randomly generated with each coe�cient having a 0.6
probability of being 0 and uniformly distributed on [0, 1] otherwise. High-point
feasibility and the vertex enumeration procedures are run after generating
each tuple of random parameters to discard infeasible instances. Collecting
1000 small instances required generating 10532 trials, the 200 medium-sized
instances were obtained with 18040 trials and the 100 large instances after
90855 trials. A second dataset is created from the 50 MIPS/Random instances
of the Bilevel Problem library [35], where integrality constraints are dropped.
All of these instances contain 20 lower-level constraints and no upper-level
constraints. For each of them, two new instances are built by moving either the
�rst 6 or the last 6 constraints from the lower to the upper level, resulting in 100
instances. We will refer to the �rst set of instances as the small/medium/large
instances and the second as the MIPS instances. All instances are available in
[36] in JLD format, along with a reader to import them in Julia programs.

5.2 Computational setup

Algorithm 1 is implemented in Julia [37] using the JuMP v0.21 modelling
framework [38,39]; the MILP solver is SCIP 6.0 [40] with SoPlex 4.0 as the
inner LP solver, both with default solving parameters. SCIP handles indicator
constraints in the form of linear inequality constraints activated only if a binary
variable is equal to one. Polyhedra.jl [41] is used to model the dual subprob-
lem polyhedra with CDDLib [42] as a solver running the double-description
algorithm, computing the list of extreme vertices and rays from the constraint-
based representation. The exact rational representation of numbers is used in
CDDLib instead of �oating-point types to avoid rounding errors. Moreover,
CDDLib fails to produce the list of vertices for some instances when set in
�oating-point mode. All experiments are performed on a consumer-end laptop
with 15.5GB of RAM and an Intel i7 1.9GHz CPU running Ubuntu 18.04LTS.
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5.3 Bilinear and extended formulation

To assess the e�ciency of the extended formulation, we compare its solution
time to that of the non-extended formulation including bilinear constraints
(25). The bilinear formulation is implemented with SCIP using SoPlex as the
linear optimization solver and Ipopt as the non-linear solver. SCIP handles
the bilinear terms through bound computations and spatial branching. We
test the two methods on 100 small instances. The bilinear version only man-
ages to solve the small random instances and runs out of time or memory for
all other instance sets. A time limit of 3600 seconds and a memory limit of
5000MB were �xed. The distribution of runtimes is presented in Fig. 5.

Fig. 5 Runtime of the two methods on 100 of the small instances

The extended formulation dominates at almost any time the bilinear for-
mulation that uses spatial branching. The latter runs out of time or memory
for most instances.

5.4 Robustness of optimistic solutions and in�uence of δ

We solve the MIPS instances to bilevel optimality and verify the near-optimal
robustness of the obtained solutions. We use various tolerance values:

δ = max(0.05, δr × opt(L))

with opt(L) the lower-level objective value at the found solution and

δr ∈ (0.01, 0.05, 0.1, 0.5, 3.0).

Out of the 100 instances, 57 have canonical solutions that are not robust to
even the smallest near-optimal deviation 0.01opt(L). Twelve more instances
that have a near-optimal robust solution with the lowest tolerance are not
near-optimal robust when the tolerance is increased to 3opt(L) Out of the 57
instances that are not near-optimal robust with the lowest tolerance, 40 have
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exactly one upper-level constraint that is violated by near-optimal deviations
of the lower level and 17 that have more than one. Finally, we observe that the
number of violated constraints changes across the range of tolerance values
for 31 out of 100 instances. For the other 69 instances, the number of violated
upper-level constraints remains identical for all tolerance values.
Table 1 summarizes the number of infeasible instances for di�erent values of
δ. As δ increases, so does the proportion of infeasible problems. This is due to
the increase in the left-hand side in constraints (31).

δ 0.01 0.1 0.2 1 3 5 7 10 12
Small (/1000) 366 423 466 595 658 670 672 674 676
Medium (/200) 78 88 95 118 122 123 123 123 123

Table 1 Number of infeasible problems for various tolerance levels δ

In Fig. 6, we present the runtime di�erence between the canonical bilevel
problem and its near-optimal robust counterpart.

Fig. 6 Runtime cost of adding near-optimality robustness constraints.

Scaling up the dimension of the tackled problems is limited not only due
to high computation time but also due to memory requirements since the for-
mulation of the problem requires allocating binary variables and a disjunctive
constraint over all vertices of the dual polyhedron of each of the k ∈ [[mu]]
subproblems.

These runtime pro�les highlight the fact that near-optimality robustness
implemented using the extended formulation adds a signi�cant runtime cost
to the resolution of linear-linear bilevel problems. Nonetheless, the study of
near-optimal lower-level decisions on optimistic solutions shows that these op-
timistic solutions are not robust, even for small tolerance values. This time
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di�erence also motivates the design of Algorithm 1. Indeed, since the opti-
mistic bilevel problem is solved in a much shorter time, it is interesting to
verify its feasibility before solving the near-optimal robust version.

5.5 Computational time of Algorithm 1

Statistics on the computation times of the two phases of Algorithm 1 for each
instance size are provided in Table 2 and Table 3.

Size mean 10% quant. 50% quant. 90% quant.
Small 0.023 0.014 0.019 0.046

Medium 1.098 0.424 0.956 2.148
MIPS 21.061 0.231 3.545 65.004

Table 2 Runtime statistics for the vertex enumeration (s).

Instance type # optimized mean 10% quant. 50% quant. 90% quant.
Small 577 0.205 0.004 0.064 0.596

Medium 106 207.399 0.797 14.451 317.624
MIPS 70 909.302 57.592 344.202 2613.404

Table 3 Runtime statistics for the optimization phase (s).

The solution time, corresponding to Steps 2-4 of Algorithm 1, is greater
than the vertex enumeration phase, corresponding to Step 1, but does not
dominate it completely for any of the problem sizes.

Figure 7 shows the distribution of the upper-level objective values across
small and medium-sized instances. The number of problems solved to opti-
mality monotonically decreases when δ increases (Table 1); greater δ values
indeed make reduce the set of feasible solutions to NORBiP. The optimal val-
ues only slightly increase with δ and the lower-level objective value does not
vary signi�cantly with δ.

Even though more instances become infeasible as δ increases, the degra-
dation of the objective value is in general insigni�cant for the optimal near-
optimal robust solution compared to the optimistic solution.

5.6 Implementation of valid inequalities

In the last group of experiments, we implement and investigate the impact of
the valid inequalities de�ned in Section 4.4.
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Fig. 7 Violin plots of the upper objective value distributions versus δ.

On the 200 medium-sized instances, adding the valid inequality (33) is
enough to prove the infeasibility of 61 instances out of 68 that are infeasible
but possess a feasible high-point relaxation. On 100 large instances, adding
the valid inequality proves the infeasibility of 29 out of 45 infeasible instances
for which the high-point relaxation is feasible. For all medium and large in-
stances, a non-trivial valid inequality i.e. where all A+

i are �nite was computed.

These results highlight the improvement of the model tightness with the
addition of the valid inequalities, compared to the high-point relaxation where
primal and dual variables are subject to distinct groups of constraints. These
inequalities thus discard infeasible instances without the need to solve the
complete MILP reformulation. In Fig. 8, the distribution of the number of
iterations of the inequality-�nding procedure is presented for the medium and
large instances. For the majority of instances of both sizes (about 80% and 60%
of instances for the medium and large instances), a single iteration is su�cient
to �nd the best valid inequality (33). The number of iteration, however, goes
up to 40 and 50 for the medium and large instances respectively (truncated
on the graph for clarity).

Fig. 8 Distribution of the number of iterations for the computation of valid inequalities.
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In Fig. 9, we compare the total runtime for MIPS and medium instances
under near-optimality robustness constraints using δ = 0.1 with and with-
out valid inequalities for all instances solved to optimality. The runtime for
instances with valid inequalities includes the runtime of the inequality com-
putation.

Fig. 9 Runtime for MIPS and medium instances with and without valid inequalities.

Valid inequalities do not improve the runtime for NORBiP in either group
of instances, This result is similar to the observations in [34] for instances of
the canonical bilevel linear problem without near-optimality robustness.

We next study the inequalities based on the upper-level constraints on the
small, medium and MIPS instances.

Fig. 10 Runtime for small, medium and MIPS instances with and without upper-level
constraints.

As shown in Fig. 10, the addition of primal upper-level constraints accelerates
the resolution of the MIPS and medium instances and dominates the standard
extended formulation. For the small instances, we observe smaller runtimes for
the �rst instances solved. This can be due to the upper-level constraints making
the linear relaxation larger by adding constraints, thus creating overhead for
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smaller problems. This overhead is compensated for instances that are harder
to optimize, i.e. that require more than 0.02 seconds to solve.

6 Conclusion

In this work, we introduce near-optimal robust bilevel optimization, a speci�c
formulation of the bilevel optimization problem where the upper-level con-
straints are protected from deviations of the lower level from optimality. Near-
optimality robustness challenges the assumption that the lower-level problem
is solved to optimality, resulting in a generalized, more conservative formula-
tion including the optimistic and pessimistic bilevel problems as special cases.
We formulate NORBiP in the dependent case, i.e. where the upper- and lower-
level constraints depend on both upper- and lower-level variables, thus o�ering
a framework applicable to many bilevel problems of practical interest.

We derive a closed-form, single-level expression of NORBiP for convex
lower-level problems, based on dual adversarial certi�cates to guarantee near-
optimality robustness. In the linear case, we derive an extended formulation
that can be represented as a MILP with indicator constraints. Numerical ex-
periments highlight the e�ciency of the extended method compared to the
compact bilinear formulation and the impact of some valid inequalities on
both solution time and tightness of the linear relaxation.
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