
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

DANIEL REHFELDT , HANNES HOBBIE , DAVID
SCHÖNHEIT , AMBROS GLEIXNER , THORSTEN

KOCH , DOMINIK MÖST

A massively parallel
interior-point solver for linear

energy system models with block
structure

ZIB Report 19-41 (revised, October 2019)

https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-9416-6786
https://orcid.org/0000-0002-5484-0967
https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0001-7170-3596

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

A massively parallel interior-point

solver for linear energy system models

with block structure

Daniel Rehfeldt , Hannes Hobbie , David Schönheit ,
Ambros Gleixner , Thorsten Koch ,

and Dominik Möst

Zuse Institute Berlin, Department of Mathematical Optimization,

{rehfeldt,gleixner,koch}@zib.de

Technische Universität Dresden, Lehrstuhl für Energiewirtschaft,

{hannes.hobbie,david.schoenheit,dominik.moest}@tu-dresden.de

October 20, 2019

Abstract

Linear energy system models are often a crucial component of system
design and operations, as well as energy policy consulting. Such models
can lead to large-scale linear programs, which can be intractable even for
state-of-the-art commercial solvers—already the available memory on a
desktop machine might not be sufficient. Against this backdrop, this arti-
cle introduces an interior-point solver that exploits common structures of
linear energy system models to efficiently run in parallel on distributed-
memory systems. The solver is designed for linear programs with doubly-
bordered block-diagonal constraint matrix and makes use of a Schur com-
plement based decomposition. Special effort has been put into handling
large numbers of linking constraints and variables as commonly observed
in energy system models. In order to handle this strong linkage, a dis-
tributed preconditioning of the Schur complement is used. In addition, the
solver features a number of more generic techniques such as parallel ma-
trix scaling and structure-preserving presolving. The implementation is
based on the existing parallel interior-point solver PIPS-IPM. We evaluate
the computational performance on energy system models with up to 700
million non-zero entries in the constraint matrix—and with more than 200
million columns and 250 million rows. This article mainly concentrates on
the energy system model ELMOD, which is a linear optimization model
representing the European electricity markets by the use of a nodal pric-
ing market clearing. It has been widely applied in the literature on energy
system analyses during the recent years. However, it will be demonstrated
that the new solver is also applicable to other energy system models.

1

https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-9416-6786
https://orcid.org/0000-0002-5484-0967
https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0001-7170-3596

1 Introduction

Currently 80 % of the world’s energy supply is produced by fossil fuels and
there is no doubt this number has to change if we want to limit the amount
of CO2 emitted into the atmosphere. Therefore, many countries have started
an energy transition, switching towards renewable based energy sources, in par-
ticular wind and solar for electricity generation. With decentralizing power
generation, electricity networks gain in importance, not only to connect gen-
eration with demand locations, but also to provide for necessary flexibility for
renewable integration. Consequently, the transition towards a renewable based
electricity system comes with high amounts of electricity grid expansion between
single markets, but also within a country. In particular, the European network
topology can be characterized as highly meshed with more than 3000 trans-
mission grid nodes. Managing such electricity grids undergoes highly complex
planning and operation procedures.

Generally, energy system models try to capture, predict, and optimize coun-
try or even continental wide energy systems in order to ensure security of supply
while minimizing transition costs. It comes to no surprise that these models are
huge, as they have to capture spatial, temporal, and technological dimensions.
Today, many real-world energy system models (ESMs) are modeled as linear
programs (LPs).

There has been tremendous progress in general LP solvers during the last 30
years [4, 16]. Many LPs that were considered intractable two or three decades
ago can now be solved within seconds. Still, for large-scale LPs with hundreds of
millions of variables and constraints such as those arising from high-resolution
energy system models, even the best commercial solvers can take prohibitively
long to find an optimal solution. Moreover, such large-scale problems might
not even fit into the main memory of a modern desktop machine. One the
other hand, the increasing availability of distributed-memory parallel computers
offers a huge potential both for reducing solution time and avoiding memory
bottlenecks. Unfortunately, however, general state-of-the-art LP solvers cannot
(efficiently) run on distributed-memory systems. Therefore, one way forward is
to develop more specialized algorithms that are able to exploit the structure of
a given problem class for its distributed parallel solution. A typical structure
observed in linear energy system model is the so-called arrowhead or doubly
bordered block-diagonal form:

min

N∑
i=0

cTi xi

s.t. T0x0 = h0 (1)

T1x0 + W1x1 = h1 (2)

T2x0 + W2x2 = h2 (3)

...
. . .

...

TNx0 + WNxN = hN (4)

U0x0 + U1x1 + U2x2 · · · UNxN = hN+1 (5)

x0, x1, x2, · · · xN ≥ 0 (6)

2

where ci, xi ∈ Rni , Ti ∈ Rmi×n0 , Ui ∈ RmN+1×ni for i ∈ {0, 1, ..., N} and
Wi ∈ Rmi×ni for i ∈ {1, ..., N}, with ni,mi ∈ N0 for i ∈ {0, 1, ..., N} and
mN+1 ∈ N0.

This LP structure is quite general and can also be found in many applica-
tions beyond energy system modeling. Moreover, arrowhead LPs include im-
portant problem classes such as primal block-angular (no linking constraints),
dual block-angular (no linking variables), or staircase matrices [13]. Primal
block-angular matrices arise for instance from two-stage stochastic optimiza-
tion problems [20]. In particular for two-stage stochastic optimization problems
there has been much work on specialized (parallel) algorithms, see e.g. [3, 9, 19,
21], and powerful interior-point solvers for distributed-memory systems such as
OOPS [17] and PIPS-IPM [23] exist. This article will present an extension of
this work to arrowhead LPs.

A common feature of linear energy system models is the large number of link-
ing constraints and variables (often more than 100 000). This linkage renders
straightforward extensions of previous work on stochastic optimization problems
prohibitive. However, one often observes that the majority of linking constraints
and variables of energy system models only link two (or at least only few) con-
secutive diagonal blocks. A major contribution of this article is the development
and implementation of algorithms that exploit this property and can efficiently
handle problems with more than 300 000 linking constraints and variables. The
new algorithms are embedded within an interior-point method and the core is
constituted by a preconditioned Schur complement decomposition. The imple-
mentation of this framework is based on PIPS-IPM.

The computational evaluation of this article concentrates on one specific en-
ergy system model: ELMOD. This electricity market model assumes a nodal
pricing market regime and finds the cost optimal economic power plant dispatch
and transmission grid flows to serve the market’s nodal demand. In contrast
to a zonal pricing market models that focus only on commercial flows, nodal
pricing already includes physical transmission constraints at the stage of mar-
ket clearing to avoid redispatch activities arising from congestions in the grid
topology. Model-based representations of nodal pricing markets likely become
large-scale due to the inclusion of the entire high voltage grid, detailed technical
modeling of generation units, and a highly-resolved time dimension to represent
local diurnal and seasonal variations of renewable feed-in and electricity de-
mand. Consequently, the determination of the market equilibrium is a highly
complex task.

1.1 Preliminaries

Linking constraints, i.e. the constraints (5), that have only 0 entries in all U
matrices apart from possibly U0, Ui, Ui+1 for exactly one i ∈ {1, ..., N} will be
called local linking constraints. The remaining linking constraints will be called
global linking constraints. Linking variables are classified equivalently (with
respect to the T matrices).

While this article focuses on providing a mathematical description of new
parallel algorithms, the latter are based on the availability of distributed mem-
ory together with certain messaging protocols. The implementation for this
article relies on the de facto communication standard in distributed-memory
programming: MPI [7] (Message-Passing Interface). MPI provides implemen-

3

tations for most common actions and communications in parallel programming,
mostly for point-to-point and collective communication between the different
(parallel) processes. These processes are referred to as MPI processes. Each
MPI process is assigned a unique identifier in {0, ..., N − 1}, referred to as rank,
where N is the total number of MPI processes used—or rather the number of
MPI processes in a certain process group, but this distinction is not needed in
this article. In the following, the most important MPI operations are point-
to-point communication and the collective operation Reduce. Point-to-point
communication involves just two specific MPI processes. A typical operation is
Send, where one MPI process sends data to another one. Collective communi-
cation, on the other hand, involves all MPI processes (again, in general within
a certain process group). The collective communication Reduce takes data from
all MPI processes, performs an operation (such as summing up), and stores the
result on one specified MPI process. In this article, Reduce is commonly used
to sum up vectors and matrices stored on different MPI processes. A variation
of Reduce is Allreduce, where the result of the collective operation (e.g. the sum
of vectors) is stored on all MPI processes.

2 Modeling energy system problems as linear
programs

Linear programming is extensively used in a wide range of both research and
industry applications. This section shows that linear programming is also a pop-
ular tool for modeling energy system problems. It will also be demonstrated how
an arrowhead constraint matrix results from common energy system models.

2.1 ELMOD: Qualitative description

ELMOD can be classified as a linear optimization model representing the Euro-
pean electricity markets by the use of a nodal pricing market clearing. It serves
to investigate the interactions between power generation and grid infrastructure
in the electricity sector both, in terms of operation as well as investment needs.
For this purpose, the European transmission grid with its underlying genera-
tion fleet and demand structure is modeled and assigned to each transmission
grid node. In order to keep the model in a linear fashion and determine load
flows analytically, a DC load flow approach is utilized. In its basic version the
model is applied to analyze numerous questions about the impact of growing
shares of renewable energies on the operation of the European transmission grid
and the dispatch of conventional power plants. Subject of further research that
has been conducted relates to the design of electricity markets, such as optimal
market zone configuration, congestion management and security of supply with
a geographical focus on Europe.

The bottom-up model determines the optimal economic dispatch and power
flow to serve the nodal electricity demand. The necessary generation and trans-
port of electricity is subject to several dispatch and transmission constraints
that are related to the technological representation of power plants and physi-
cal characteristics of load flow. The underlying power plant fleet comprises con-
ventional generation, combined heat and power units, renewable energy based
generators as well as storage applications such as pumped storage plants and

4

reservoir storages. The entire model’s generation and transmission infrastruc-
ture is geographically referenced allowing for further applications with a strong
regional focus. Due to the high granularity of the model, as of now, it has been
applied with a reduced time dimension based on time aggregation methods, such
as utilizing typical days or time slices, or other simplifications that come with a
limited foresight, such as a rolling horizon approach. However, the underlying
database contains fundamental input data for 8760 hours of different reference
years.

2.2 ELMOD: Mathematical formulation

In the following, ELMOD is described mathematically.
ELMOD has the following indices and sets.

• Time steps t ∈ T := {1, 2, ..., 8760}
• Countries c ∈ C
• HVDC line d ∈ D
• Renewable technologies i ∈ I := {“Biomass”, “Geothermal”, “Landfill

gas”, “PV”, “Sewage gas”, “Wind offshore”, “Wind onshore”}
• AC line l ∈ L
• Grid nodes n ∈ N

Slack node/nodes k ∈ K ⊂ N
• Power plants p ∈ P

Renewable energy capacities r ∈ R ⊂ P
Pumped storage power plants (PSPs) s ∈ S ⊂ P
Reservoir power plants y ∈ Y ⊂ P

Note that while sets T and I remain the same for all ELMOD instances in
this analysis, set C, D, L, N and P depend on the geographical scope of each
instance.

ELMOD has the following parameters:

• Power plant characteristics:

Maximum power output (installed capacity in MW) gmax
p ∈ R>0

Availability of power plant at,p ∈ [0, 1]

Ramp rate up rupp ∈ [0, 1]

Ramp rate down rdown
p ∈ [0, 1]

Efficiency of power plant ηs ∈ [0, 1]

Maximum charging capacity of PSP (MW) gcharges ∈ R>0

Storage capacity (MWh) stors ∈ R>0

Full load hours of reservoirs (hours) fy ∈ R>0

• Costs (all in e/MWh):

Variable (generation) costs cvart,p ∈ R≥0
Lost load cVoLL ∈ R≥0
Dumped generation cDG ∈ R≥0
Curtailed renewable energy ccurt ∈ R≥0

5

• Power line characteristics:

Element of the line susceptance matrix H ∈ R|L|×|N]

Element of the nodal susceptance1 matrix B ∈ R|N |×|N]

Capacity limit of AC line (MW) capAC
l ∈ R>0

Capacity limit of HVDC line (MW) capHVDC
l ∈ R>0

• Exogenous time series (MW):

Available aggregated generation for renewable technologies in a coun-
try gt,c,i ∈ R≥0

Demand per node dt,n ∈ R≥0

ELMOD has the following variables:

• Total costs TC ∈ R≥0

• Generation costs CGt,c ∈ R≥0

• Infeasibility costs CIt,c ∈ R≥0

• Curtailment costs CCt,c ∈ R≥0

• Power plant generation Gt,p ∈ R≥0

• Power demanded by PSP PUMPt,s ∈ R

• Storage level SLt,n ∈ R≥0

• Summation of reservoir power generation Gsum
y ∈ R≥0

• Dumped demand DUMP dem
t,n ∈ R≥0

• Dumped generation DUMP gen
t,n ∈ R≥0

• Net injection INJt,n ∈ R

• Power flow on HVDC FHVDC
t,d ∈ R

• Power flow on AC line FAC
t,l ∈ R

• Voltage angle DELTAt,n ∈ R

The variables and constraints of ELMOD are described on the basis of the
following equation system 7. Equation 7a describes the objective function of
the model which is the minimization of total costs TC. The components of
the total costs are shown in Equation 7b - 7d. Each component is created for
every country and time step separately. The objective function sums up the
components for all countries and time steps.

The generation costs CGt,c are the summation of the generation of all power
plants Gt,p within the respective country (mp(c)), multiplied with the time- and
plant-dependent variable costs (7b). The infeasibility costs CIt,c are computed
by multiplying the amounts of dumped demand or generation, DUMP dem

t,n and

1In this analysis the susceptance values in matrix H and B already contain the squared
voltage levels of the respective lines. Thus power flows are calculated as a product of suscep-
tance and voltage angle differences (see Equations 7i and 7j).

6

DUMP gen
t,n , with the corresponding cost factors (7c).2 Curtailment costs CCt,c

only occur when the available aggregated generation for a renewable technology
in a country surpasses the sum of actual generation Gt,r for all renewable power
plants of a specific technology in that country (mp(c, i)) (7d).

Equation 7e describes the power balance for each node and time step. The
aggregated demand in addition to the net injection INJt,n have to be satis-
fied. The variables that contribute to meeting the left-hand side demand are
node-specific dumped demand and the generation of power plants at the respec-
tive node (mp(n)). Dumped generation as well as power demanded by PSPs
PUMPt,s connected to the node (mp(n)) contribute negatively to satisfying the
demand. How the positive or negative flows of HVDC lines FHVDC

t,d contribute
to the nodal balance depends on the start and end points of the line. All HVDC
lines that start at the node (mds(n)) contribute to the nodal balance with re-
versed sign of their flows. The opposite is true for all HVDC lines that end at
the node (mde(n)).

The generation of power plant is limited by the product of its maximum
capacity and a time- and plant-dependent availability factor (Equation 7f). For
PSPs Equation 7g is additionally imposed to limit the amount of pumped energy
to the charging capabilities of the plant. Also, the storage level of the PSP
cannot surpass its maximum storage capacity (Equation 7h).

The flows on AC power lines FAC
t,l and the net injections at each node are

computed according to Equation 7i and 7j. This represents a DC load flow
approach (cf. [27]). The voltage angles of all nodes DELTAt,n are endogenous
variables. The exception is the voltage angle of the slack node k that is auto-
matically set to zero (Equation 7k). The line flows of AC and HVDC lines are
limited according to their maximum capacity, both for positive and negative
flows (Equation 7l - 7o).

With the exception of the objective function, all equations described so far
can be distinctly ascribed to a diagonal block as they have no summations across
time steps or inter-temporal links.

The model has three different inter-temporal relationships (Equation7p - 7r).
The storage level of the current period takes into account the storage level of the
previous period SLt−1,s as well as the generated and pumped energy (Equation
7p). Equation 7s ensures that the storage level in the first and last period are
equal to half of the storage capacity. For conventional power plants, a restriction
for ramping up and down can apply. Equation 7q and 7r stipulate that the
change in generation between two time steps cannot exceed the allowable change
in output, the product of ramp rate and capacity. All three equations are local
linking constraints.

Lastly, the aggregated generation of a reservoir power plant Gsum
y is the

summation of its generation levels over all time steps (Equation 7t), which
makes it a global linking constraint. Total costs TC and Gsum

y are the only
global variables. In Equation 7u each variable Gsum

y is limited by the product
of full load hours, capacity and the fraction of considered time steps in relation
to the entire year. Because the equation limits a global variable it is assigned

2These variables are usually equal to zero. Values deviating from zero serve to identify
infeasibilities.

7

to the first stage.

min TC =
∑
t,c

(CGt,c + CIt,c + CCt,c) (7a)

s.t.

CGt,c =
∑

p∈mp(c)

Gt,p · cvart,p ∀t ∈ T ∀c ∈ C

(7b)

CIt,c =
∑

n∈mn(c)

(DUMP dem
t,n · cVoLL

+DUMP gen
t,n · cDG) ∀t ∈ T ∀c ∈ C

(7c)

CCt,c =
∑
i

[
(gt,c,i −

∑
r∈mp(c,i)

Gt,r) · ccurt
]

∀t ∈ T ∀c ∈ C

(7d)

dt,n + INJt,n =
∑

d∈mde(n)

FHVDC
t,d +DUMP dem

t,n

−
∑

d∈mds(n)

FHVDC
t,d −DUMP gen

t,n

−
∑

s∈mp(n)

PUMPt,s +
∑

p∈mp(n)

Gt,p ∀t ∈ T ∀n ∈ N

(7e)

Gt,p ≤ gmax
p · at,p ∀t ∈ T ∀p ∈ P

(7f)

PUMPt,s ≤ gcharges ∀t ∈ T ∀s ∈ S
(7g)

SLt,s ≤ stors ∀t ∈ T ∀s ∈ S
(7h)

FAC
t,l =

∑
n∈N

(hl,n ·DELTAt,n) ∀t ∈ T ∀l ∈ L

(7i)

INJt,n =
∑
q∈N

(bn,q ·DELTAt,q) ∀t ∈ T ∀n ∈ N

(7j)

DELTAt,k = 0 ∀t ∈ T ∀k ∈ K
(7k)

FAC
t,l ≤ capAC

l ∀t ∈ T ∀l ∈ L
(7l)

−FAC
t,l ≤ capAC

l ∀t ∈ T ∀l ∈ L
(7m)

FHVDC
t,d ≤ capHVDC

d ∀t ∈ T ∀d ∈ D
(7n)

8

−FHVDC
t,d ≤ capHVDC

d ∀t ∈ T ∀d ∈ D
(7o)

SLt,s = SLt−1,s + PUMPt,s · ηs −Gt,s ∀t ∈ T \ {1}, ∀s ∈ S
(7p)

Gt,p −Gt−1,p ≤ rupp · gmax
p ∀t ∈ T \ {1}, ∀p ∈ P

(7q)

−Gt,p +Gt−1,p ≤ rdown
p · gmax

p ∀t ∈ T \ {1}, ∀p ∈ P
(7r)

SLt,s = 0.5 · stors ∀t ∈ {1, 8760} ∀s ∈ S
(7s)

Gsum
y =

∑
t

Gt,y ∀y ∈ Y

(7t)

Gsum
y ≤ fy · gmax

y ∀y ∈ Y
(7u)

2.3 Arrowhead structure in other energy system models

The arrowhead structure of the constraint matrix is not a peculiarity of the
ELMOD model, but can also be observed in several other linear energy system
models. Indeed, it arises naturally if the model considers a discrete time horizon.
Moreover, one typically observes a large number of local linking constraints
(or variables), which for instance originate from modeling short term storages
between time steps such as pumped storages or batteries and further flexibility
options related to the demand side such as load shifting, but also from the
representation of technical power plant dispatch limitations such as ramping
constraints. Prominent examples of such linear energy system models are the
REMix [14] or the Balmorel [32] model.

State-of-the-art energy system models are usually highly complex—having
been developed over years or even decades by several people. This complexity
motivates the need for a simplified energy system model that maintains relevant
parts of the model structure that can be found in many energy system models,
but is at the same time compact and comprehensive. Within, the BEAM-ME
project3 modeling experts from GAMS4 together with energy system modelers
from the German Aerospace Center5 developed such a simplified, but represen-
tative, energy system model, called SIMPLE. While SIMPLE lacks many details
that are considered in full-fledged energy system models, it is easily adaptable in
size (e.g. number of variables or number of diagonal blocks) and thus highly use-
ful for testing new solution approaches. Also, it contains far less redundancies
than many large-scale energy system instances (caused by complex and highly
intricate models), which allows for a more revealing comparison of new solu-
tion methods with state-of-the-art general LP solvers—which include powerful
presolving routines that can already drastically reduce the run time.

3http://www.beam-me-projekt.de/beam-me/EN/Home/home node.html
4https://www.gams.com/
5https://www.dlr.de

9

http://www.beam-me-projekt.de/beam-me/EN/Home/home_node.html
https://www.gams.com/
https://www.dlr.de

A core concept of SIMPLE is the automatic generation of input data. The
SIMPLE models come with a data generator that can be parameterized to gen-
erate data instances of different size. All the data is computed by randomizing
standard basic time series that provide the corresponding data for a standard
region. In addition, the regions are placed on a 1000x1000 km grid and a net-
work of transmission links is computed that connects different regions under
consideration of distances between the regions. Note that even though there is
randomization involved in the automated data generation, the process is deter-
ministic. The data generator always produces data instances that cover an entire
year in hourly resolution. In addition, the SIMPLE models allow the user to
work with further customized model data. This includes the possibility to change
the time resolution, which means that hourly time steps from the input data
can be aggregated or disaggregated for the actual model data. Furthermore, the
time horizon to be considered can be controlled via parameters. Importantly,
any linear program created by SIMPLE shows an arrowhead structure. Note
that none of the authors of this article have been involved in the development of
SIMPLE and it should thus not be considered as a contribution of this article.
However, SIMPLE will be used to on the one hand demonstrate the scalability
of the newly developed solver and, on the other hand, the applicability of the
new solver beyond the ELMOD model.

3 Exploiting the structure: A specialized paral-
lel interior-point algorithm

For general LPs the two major algorithmic classes are simplex and interior-point
methods, see e.g. [30]. Interior-point methods are often more successful for
large problems, and they offer more potential for parallelization, since the main
computational effort usually goes into factorizing matrices. In this article we use
infeasible primal-dual interior-point methods [33]. The following describes the
linear systems to be solved within a primal-dual interior-point method. For a
derivation of these systems (and a detailed description of interior-point methods)
the reader is referred to [33]. Consider the following LP in standard form:

min cTx (8)

s.t. Ax = b (9)

x ≥ 0 (10)

with c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and its dual :

max bT y (11)

s.t. AT y + s = c (12)

s ≥ 0. (13)

If both exist, the optimal objective values of an LP (referred to as the pri-
mal) and its dual LP coincide [30]. Primal-dual interior-point methods provide
optimal solutions to both the primal and dual problem. In each iteration of a

10

primal-dual interior-point algorithm it is sufficient to solve the so-called aug-
mented system: [

−X−1S AT

A 0

] [
∆x
∆y

]
=

[
rx
ry

]
, (14)

where X and S denote diagonal matrices whose diagonals are equal to the cur-
rent iterates x and s, respectively. Note that the matrix is in general symmetric
indefinite. It is possible to bring any LP into standard form, but in an actual
implementation it is (for reasons of efficiency [2, 33]) preferable to keep an LP in
general form, including inequalities and variable bounds. For ease of presenta-
tion, however, in this article it will be assumed that an LP is given in standard
form.

3.1 Decomposing the problem: a parallel Schur comple-
ment approach

For the arrowhead LP from Section 1 the augmented system (14) takes the form

D0 TT
0 TT

1 · · · TT
N UT

0

D1 WT
1 UT

1

. . .
. . .

...
DN WT

N UT
N

T0
T1 W1

...
. . .

TN WN

U0 U1 · · · UN





∆x0
∆x1
...

∆xN
∆y0
∆y1
...

∆yN
∆yN+1


=



rx0

rx1

...
rxN

ry0

ry1

...
ryN

ryN+1


(15)

where Di := −X−1i Si for i ∈ {0, ..., N}. In the following, it will be shown how to
solve (15) in a distributed parallel fashion; by using a straightforward extension
of an approach that has been used for two-stage stochastic LPs (which have
a block-diagonal constraint matrix with linking variables, but without linking
constraints). For the latter approach see e.g. [23].

First, by applying a symmetric permutation one can write the augmented
system (15) as:

D1 WT
1 0 0 UT

1

W1 0 T1 0 0
. . .

...
...

...
DN WT

N 0 0 UT
N

WN 0 TN 0 0
0 TT

1 · · · 0 TT
N D0 TT

0 UT
0

0 0 · · · 0 0 T0 0 0
U1 0 · · · UN 0 U0 0 0





∆x1
∆y1
...

∆xN
∆yN
∆x0
∆y0

∆yN+1


=



rx1

ry1

...
rxN

ryN

rx0

ry0

ryN+1


(16)

This system again shows an arrowhead form, namely

11


K1 B1

. . .
...

KN BN

BT
1 · · · BT

N K0




∆z1
...

∆zN
∆z0

 =


b1
...
bN
b0

 (17)

where

Ki =

[
Di WT

i

Wi 0

]
, K0 =

D0 TT
0 UT

0

T0 0 0
U0 0 0

 , Bi =

[
0 0 UT

i

Ti 0 0

]
(18)

for i ∈ {1, ..., N} and the ∆zi and bi are set accordingly. This system can be
solved by the Schur complement approach [34] if one consider the entire system
as a (symmetric indefinite) saddle-point system with the (1, 1) block constituted
by the Ki matrices, the (1, 2) block by the Bi matrices, and the (2, 2) block by
K0. A perhaps more intuitive way is to think of a block-Gaussian elimination.
Assuming that all Ki have full rank, one obtains the following procedure:

1. Multiply each row i = 1, ..., N of (17) by −BT
i K

−1
i .

2. Sum up all rows.

3. Solve
(
K0 −

∑N
i=1B

T
i K

−1
i Bi

)
∆z0 = b0 −

∑N
i=1B

T
i K

−1
i bi.

4. For each row i = 1, ..., N insert ∆z0 and compute ∆zi.

Note that in this article (and in fact in arguably all computational sciences) the
inverse of a matrix is just used for ease of notation. For reasons of efficiency,
in the actual implementation a factorization of the matrix is used. Since the
Ki are symmetric, but indefinite, an LDLT factorization is used—with L lower
triangular, and D block-diagonal with blocks of dimension 1 × 1 or 2 × 2, see
also [33].

From a more computational (parallel) view the Schur complement approach
can also we written in the following form:

Vi = BT
i K

−1
i Bi i = 1, ..., N (19)

C = K0 −
N∑
i=1

Vi (20)

wi = BT
i K

−1
i bi i = 1, ..., N (21)

∆z0 = C−1(b0

N∑
i=1

wi) (22)

vi = Bi∆z0 i = 1, ..., N (23)

∆zi = K−1(bi − vi) i = 1, ..., N (24)

An important feature of the Schur complement decomposition is the pos-
sibility to distribute the LP (by blocks) among the MPI processes, with no
process needing to store the entire problem. For ease of presentation we will in
the following assume that N MPI processes are used. In this case each process

12

i ∈ {0, ..., N − 1} only needs to store and access the matrices and vectors with
index i + 1, and those with index 0. In this way one can tackle problems that
are too large to even be stored in the main memory of a single desktop machine.

3.2 Computing the global Schur complement

The Schur complement of system (17) is

C = K0 −
N∑
i=1

BT
i K

−1
i Bi, (25)

which is symmetric indefinite. Note that one can also consider each summand
in (25) as a Schur complement of a suitable (augmented) symmetric matrix [24].
Thus, we will also refer to (25) as the global Schur complement, and to each
BT

i K
−1
i Bi as a local Schur complement. If not noted otherwise, the term Schur

complement will refer to (25), however.
Considering the Schur complement decomposition algorithm, one observes

that the only tasks that are not performed independently are the formation (22)
of and the solve operation (23) with the Schur complement. Moreover, one
observes that the size of the Schur complement depends on the number of linking
constraints and linking variables. For some energy system models considered in
this article there are more than 300 000 linking constraints and variables, which
makes it intractable to compute and store the Schur complement as a dense
matrix, which is the common procedure for two-stage stochastic optimization
approaches. As already noticed, however, in many linear energy system models
the majority of linking constraints and variables are local. Indeed, as the number
of blocks grows (for instance by considering a longer time frame), the number of
local linking variables and constraints usually grow linearly, while the number of
global linking constraints and variables stays constant. For simplicity, only the
case of local linking constraints will be demonstrated, and it will be assumed
that there are few global linking constraints and few linking variables. Consider
again the block structure from Section 1, but split the linking constants in global
and local ones, namely:

min

N∑
i=0

cTxi

s.t. T0x0 = h0 (26)

T1x0 + W1x1 = h1 (27)

T2x0 + W2x2 = h2 (28)

...
. . .

...

TNx0 + WNxN = hN (29)

F0x0 + F1x1 + F2x2 · · · FNxN = hN+1 (30)

G0x0 + G1x1 + G2x2 · · · GNxN = hN+2 (31)

x0, x1, x2, · · · xN ≥ 0 (32)

such that Gi ∈ RmG×ni with arbitrary structure and Fi ∈ RmF×ni for all
i ∈ {0, 1, ..., N}; with mF ,mG ∈ N. Furthermore, for i ≥ 1 the Fi are assumed

13

to be of the form

F1 =


Z1

0
...

 , F2 =


Z ′1
Z2

0
...

 , F3 =


0
Z ′2
Z3

0
...

 , ..., FN =


0
...

Z ′N−1

 ,

with Zi ∈ Rli×ni , Z ′i ∈ Rli×ni+1 , li ∈ N0 for i ∈ {1, ..., N − 1}. By defining

Ui :=

[
Fi

Gi

]
for all i ∈ {1, ..., N}, one can apply the same Schur decomposition approach as
in Section 3.1. In the following it will be shown how the non-zero pattern of the
Fi matrices impacts the structure of the Schur complement (25). To this end,
consider for a i ∈ {1, ..., N} the matrix BT

i K
−1
i Bi. We write

K−1i =

[
K̃i

1,1 K̃i
1,2

K̃i
2,1 K̃i

2,2

]
such that the dimensions of the submatrices are conform with the following
operations. With this notation one obtains:

BT
i K

−1
i Bi =


0 TT

i

0 0
Fi 0
Gi 0

[K̃i
1,1 K̃i

1,2

K̃i
2,1 K̃i

2,2

] [
0 0 FT

i GT
i

Ti 0 0 0

]
(33)

=


0 TT

i

0 0
Fi 0
Gi 0

[K̃i
1,2Ti 0 K̃i

1,1F
T
i K̃i

1,1G
T
i

K̃i
2,2Ti 0 K̃i

2,1F
T
i K̃i

2,1G
T
i

]
(34)

=


TT
i K̃

i
2,2Ti 0 TT

i K̃
i
2,1F

T
i TT

i K̃
i
2,1G

T
i

0 0 0 0

FiK̃
i
1,2Ti 0 FiK̃

i
1,1F

T
i FiK̃

i
1,1G

T
i

GiK̃
i
1,2Ti 0 GiK̃

i
1,1F

T
i GiK̃

i
1,1G

T
i

 (35)

If (as we assume) most of the linking constraints are local and there are few
linking variables, the number of rows of Fi is close to the size of the local Schur
complement (35). Thus, the largest part of (35) is FiK̃

i
1,1F

T
i . For i > 1 the

structure of this matrix is as follows:

FiK̃
i
1,1F

T
i =



...
0

Z ′i−1
Zi

0
...


K̃i

1,1

[
· · · 0 Z ′Ti−1 ZT

i 0 · · ·
]

14

=



. . .
...

...
...

... . .
.

· · · 0 0 0 0 · · ·
· · · 0 Z ′i−1K̃

i
1,1Z

′T
i−1 Z ′i−1K̃

i
1,1Z

T
i 0 · · ·

· · · 0 ZiK̃
i
1,1Z

′T
i−1 ZiK̃

i
1,1Z

T
i 0 · · ·

· · · 0 0 0 0 · · ·

. .
. ...

...
...

...
. . .


Consequently, after suitable symmetric permutation, the global Schur com-

plement (17) without K0 is of symmetric, doubly bordered, block-tridiagonal
form. Thus there exists a permutation matrix P such that:

PT
(N∑
i=1

BT
i K

−1
i Bi

)
P =



M1 HT
1 ET

1 0
H1 M2 HT

2 ET
2 0

H2
. . .

. . .
...

...
. . . HT

N−2 ET
N−2 0

HN−2 MN−1 ET
N−1 0

E1 E2 · · · EN−1 EN−1 M0 0
0 0 · · · 0 0 0 0


(36)

where the submatrices are defined as follows. First, for i ∈ {1, ..., N − 1}:

Mi = ZiK̃
i
1,1Z

T
i + Z ′iK̃

i+1
1,1 Z

′T
i (37)

Ei =

[
GiK̃

i
1,1Z

T
i +Gi+1K̃

i+1
1,1 Z

′T
i

TT
i K̃

i
2,1Z

T
i + TT

i+1K̃
i+1
2,1 Z

′T
i

]
. (38)

Second, for i ∈ {1, ..., N − 2}:

Hi = Zi+1K̃
i+1
1,1 Z

′T
i . (39)

And finally

M0 =

N∑
i=1

[
GiK̃

i
1,1G

T
i GiK̃

i
1,2Ti

TT
i K̃

i
2,1G

T
i TT

i K̃
i
2,2Ti

]
. (40)

In a similar way, one can precompute the non-zero pattern for the case of
linking variables that link only two blocks—in this case there would be another
block-wise structure within the parts of (36) occupied by the Ei and M0 blocks.
Note that already for the case of both local equality and local inequality linking
constraints (which indeed occur for the energy system models considered in
this article), one obtains a different, more complicated structure of the Schur
complement. But still, this structure can be precomputed.

Unless there is an additional special structure within the Ti or Gi matrices,
the submatrices Ei, Hi and Mi in (36) are dense. Still, the matrix (36) can
be very sparse, as quantified by the following observation. While the actual
Schur complement also includes K0 (17), this matrix is assumed to be sparse
and is therefore neglected in the following. Recall that n0 denotes the number
of linking variables, and mG the number of global linking constraints.

15

Observation 1. The number of non-zeroes in (36) is at most

N−1∑
i=1

`2i + 2

N−2∑
i=1

`i`i+1 + 2

N−1∑
i=1

`i(mG + n0) + (mG + n0)2. (41)

In particular, if `1 = `2 = . . . = `N−1 =: `, then the number of non-zeroes
in (36) can be expressed as the affine map

f(N) := 3(N − 5
3)`2 + 2(N − 1)`(mG + n0) + (mG + n0)2. (42)

Proof. Follows from (37), (38), (39), and (40).

Note that in an actual implementation one only needs to compute and store
the upper or lower triangular part of the Schur complement, due to its being
symmetric. As already pointed out, typically the number of global linking con-
straints and variables does not increase if more blocks are considered. Only
the number of local linking constraints increases if one increases the number of
blocks—and this increase is linear. In this case, Observation 1 implies that the
number of non-zeroes of the Schur complement grows only linearly—compared
to the quadratic non-zeroes growth of a general (dense) matrix with its size.
While such a linear growth is an encouraging behavior, a large number of global
linking constraints (mG) or variables (n0), or a large number of local linking
constraints per block (`) might still render the number of non-zeroes in the
Schur complement prohibitively large even for a small number of blocks (N).

Knowing that sufficient sparsity exists, one should use a sparse (direct) linear
solver for the Schur complement, which can be significantly faster and requires
far less memory than a dense direct solver. However, the knowledge of the actual
non-zero pattern of the Schur complement is also highly important, as it allows
one to drastically reduce both the memory usage and the MPI communication.
Moreover, also the fact that all submatrices in (36) apart from M0 are the sum
of at most two submatrices (that can be computed independently by individual
MPI processes) will be put to use in the next section.

3.3 A distributed preconditioner for the Schur comple-
ment

If the number of linking constraints and variables is large, or if there are many
global linking constraints and variables, the factorization and solution of the
global Schur complement can still be prohibitively time-consuming (or even
impossible due to memory restrictions). One possible remedy is to not compute
the Schur complement explicitly, but to use an iterative approach, e.g. a Krylov
subspace method [26]. Iterative methods only require the result of matrix-vector
multiplications with the matrix of the linear system, which in the case of the
Schur complement (25) can be written as

(
K0 −

N∑
i=1

BT
i K

−1
i Bi

)
x = K0x−

N∑
i=1

BT
i K

−1
i Bix. (43)

Therefore, the Schur complement does not need to be formed explicitly; com-
puting the summands BT

i K
−1
i Bi is sufficient. However, the practical success of

16

iterative methods is usually highly dependent on effective preconditioning of the
linear system [31]. Even more so for linear systems occurring in interior-point
algorithms, which tend to become highly ill-conditioned during the later stages
of the solution phase (due to both very large and close to 0 entries on the di-
agonal). Efficient preconditioners are often tailored to a specific application or
model, but the aim of this article is to develop a solver that is also usable for
others linear energy system models (apart from ELMOD).

One observes that the diagonal elements of the global Schur complement(25)
are often large (in absolute values). However, they can also be 0, thus a sim-
ple diagonal preconditioning is not promising. However, a preconditioner for a
similar structure is suggested in [5]. The authors describe a Schur complement
based LU factorization of a linear system arising from circuit simulation. Al-
though in this application the Schur complement is dense and small (of size less
than 1000), it also shows many large diagonal entries. In [5] the authors suggest
a preconditioner based on discarding small elements of the Schur complement
C. The preconditioner C̃ is defined by

c̃ij :=

{
cij , if |cij | > tmax{|cii|, |cjj |}
0, otherwise

(44)

with t ∈ [0, 1); in [5] the value t := 0.02 is recommended, but we use more
conservative values, see Section 4.1. Note that to the best of the authors knowl-
edge this type of preconditioning has not been described in the literature in
the context of interior-point methods yet. Further, it is important to note that
since in this article the Schur complement matrix is symmetric, C̃ is symmetric
as well.

Considering the structure of the Schur complement matrix, one observes that
C̃ can be computed in a distributed fashion, without ever having to form (36)
explicitly: First, each MPI process i ∈ {0, ..., N − 2} computes Ei, Hi, and
Mi (except for M0) by using point-to-point communication with MPI process
i+ 1. Also, the local parts of T0, F0, and G0 are added. Second, one computes
the diagonal by using an Allreduce operation. Now the local parts of C̃ can
be computed by each MPI process individually and are gathered to process 0.
Finally, a Reduce operation is performed to obtain M0 and the remainder of C̃
is computed on process 0. Computationally, this distributed construction of C̃
is of crucial importance, since it not only reduces the MPI communication, but
also circumvents memory bottlenecks.

Yet another modification is to not use the preconditioner C̃ for solving the
Schur complement system, but to replace the Schur complement in (20) by
C̃ and thereby obtain a preconditioner for the entire augmented system. In
this context, one observes that an inexact solution to the Schur complement
system (22) has the same residual as the resulting inexact solution to the entire
system (17), up to a change of dimension. We formally state this observation in
the following. Although it might be considered folklore, we also provide a proof
since it will be used subsequently. For ease of presentation we write z instead
of ∆z.

Observation 2. Denote by Mz = b the system (17) and by C the corresponding

17

Schur complement (22), with C ∈ Rk×k. Let z̃0 ∈ Rk and let

r̃C := Cz̃0 − b0 +

N∑
i=1

BT
i K

−1
i bi (45)

be the resulting residual for the Schur complement system. Denote by z̃ =
(z̃0, z̃1, ..., z̃N)T the vector obtained from performing steps (23) and (24) with z̃0
(instead of ∆z0). It holds that

r̃ := Mz̃ − b = (0, 0, ..., 0, r̃C)T . (46)

Proof. First, one readily verifies that r̃ is 0 in all but (possibly) the last k entries.
To this end, let i ∈ {1, ..., N}. It follows that

Kiz̃i +Biz̃0 − bi = KiK
−1
i (bi −Biz̃0) +Biz̃0 − bi = 0. (47)

Second, the vector of the last k entries of r̃ is equal to

N∑
i=1

BT
i z̃i +K0z̃0 − b0 =

N∑
i=1

BT
i K

−1
i (bi −Biz̃0) +K0z̃0 − b0 (48)

= Cz̃0 − b0 +

N∑
i=1

BT
i K

−1
i bi (49)

(45)
= r̃C . (50)

Combining this result with (47) yields (46).

PIPS-IPM uses an incomplete factorization approach for directly computing
the local Schur complements [24], which adds some perturbation to the local
Schur complements to allow for more efficient pivoting during their computa-
tion. As can be seen from Observation 2, such a perturbation does not lead
to any non-zero residual entries apart from those corresponding to the global
Schur complement (at least in exact computation). However, also the factoriza-
tion of Ki (which can be implicitly obtained from the incomplete factorization
approach) is perturbed. In this case one verifies from (47) that even in exact
computation a non-zero residual outside the r̃C part occurs. Therefore, iterative
refinement needs to be applied for each solve operation with Ki—such a solve
operation is for example required for the matrix-vector multiplication (43), as
BT

i K
−1Bi is only available in perturbed form. Still, one would like to bound

the maximum number of iterative refinement steps to obtain a satisfactory load
balancing. Therefore, even if one can solve the Schur complement system to
sufficiently high precision, there can still be a considerable error in the resulting
solution to the entire augmented system. Indeed, the original PIPS-IPM already
applies a iterative method for the entire augmented system and uses the Schur
complement approach for implicit preconditioning. Consequently, per default
we do not use an iterative (preconditioned) approach for solving the Schur com-
plement system, but rather replace the Schur complement matrix C by C̃ in (20)
and let the error propagate. In this way, we obtain an implicit preconditioner
for the entire augmented system. This preconditioner is used for an iterative
method detailed in Section 4.1.

18

4 Implementation

As already mentioned, the implementations for this article are built on the par-
allel interior-point solver PIPS-IPM [23]. The parallelization mostly relies on
MPI—shared memory parallelization, via OpenMP [10], is only used within the
external linear solvers. In this article we use the sparse direct solver PARDISO
6.06 both for the computation of the local Schur complements (described in [24]
and [23]), and the factorization and solution of the preconditioning matrix C̃.
However, if the number of zeroes in the Schur complement is expected to be
small (which is estimated by a more general version of (41)), and the size of
the Schur complement is sufficiently small, a dense direct solver is used and
C̃ is not applied. Still, the Schur complement is sufficiently sparse for all LPs
considered in this article and thus only PARDISO 6.0 is used. Also, interfaces
to the sparse direct solvers MUMPS7 and Intel MKL PARDISO8 have been
implemented, but are not used in this article. This section also describes newly
implemented algorithms that are not directly related to the Schur complement
decomposition—but which are still essential for obtaining a competitive and ro-
bust performance. Also quantitatively, our implementation constitutes a major
extension of PIPS-IPM, with more than 50 000 lines of code having been added
or modified. Thus in the remainder of this article we will refer to our extension
of PIPS-IPM as PIPS-IPM++, or simply PIPS++ for short.

4.1 Interior-point algorithm

Most of the algorithmic efforts in this article so far have concentrated on effi-
ciently solving the linear system arising from an interior-point algorithm. How-
ever, of course also the interior-point algorithm itself is of high importance—to
achieve fast and robust convergence. Even more so since energy system models
are often numerically challenging (e.g., due to badly conditioned linear systems)
already for commercial LP solvers; ELMOD being no exception. Thus the pri-
mary aim of the implementations described in the following are robustness, even
at the cost of some performance. In the same way, we use more conservative
parameters, e.g., for step lengths, than other open-source interior-point solvers.

PIPS-IPM uses the classic predictor-corrector method from Mehrotra [22].
To improve robustness, we have replaced this method by the multiple centrality
correctors scheme of Colombo and Gondzio [8]. Moreover, since PIPS-IPM
has been developed to solve quadratic problems (which have a tighter coupling
between primal and dual variables than LPs in the KKT system), the same step
length for primal and dual variables is used. As this article is concerned with
LPs, different primal and dual step lengths, see e.g. [33], have been implemented
to achieve faster convergence.

PIPS-IPM includes the Krylov subspace method BiCGSTAB [28] for the
(preconditioned) iterative solution of the augmented system. We also use this
implementation, but with some minor changes, such as a checks for divergence
and stagnation. Also, we set a tight iteration limit of 75. The performance
of preconditioned Krylov subspace methods is usually highly dependent on the
preconditioner that is used. Therefore, especially the choice of the parameter

6https://www.pardiso-project.org/
7http://mumps.enseeiht.fr/index.php?page=home
8https://software.intel.com/en-us/mkl-developer-reference-fortran-intel-mkl-pardiso-parallel-direct-sparse-solver-interface

19

https://www.pardiso-project.org/
http://mumps.enseeiht.fr/index.php?page=home
https://software.intel.com/en-us/mkl-developer-reference-fortran-intel-mkl-pardiso-parallel-direct-sparse-solver-interface

t in the construction of matrix C̃ (44) has a major impact. We observed good
results with the following simple scheme: We initially set t to 10−3 and whenever
the BiCGSTAB method does not achieve sufficiently fast convergence we reduce
the value of t—but never below 10−6. In the computational experiments for this
article usually more than 95% of the non-zeroes in the Schur complement were
removed by this method.

One can readily think of more advanced methods, such as precomputing the
number of non-zeroes of C̃ before building it and also taking this value into
account. Also, one could increase the value of t again if the BiCGSTAB method
converges quickly in several consecutive interior-point iterations. However, since
the computational results of the simple scheme described above were already
satisfactory, we did not explore any such more intricate methods.

4.2 Scaling and presolving

In this section, LPs are considered in a slightly different form than (8), namely
with explicit variable bounds:

min{cTx : Ax = b, ` ≤ x ≤ u}. (51)

This notation allows for a better demonstration of the following scaling and
presolving techniques.

Scaling is widely used in linear programming solvers to improve the condition
of LPs [18, 25]. Scaling of (51) can be described by means of two diagonal ma-
trices R = (ri,j) and C = (ci,j) with positive diagonal elements. The diagonals
correspond to the row and column scaling factors respectively. Defining

Ã = RAC, b̃ = Rb, c̃ = Cc, ˜̀= C−1`, and ũ = C−1u

one obtains the scaled linear program

min{c̃Tx : Ãx = b̃, ˜̀≤ x ≤ ũ}. (52)

Each solution x̃ to (52) corresponds to a solution x = Cx̃ to (51) with the same
objective value. Note that scaling can be performed repetitively. A common
objective of scaling methods is to reduce the ratio of the (absolute) smallest
and largest entry in each row and column. For this article we have imple-
mented geometric scaling, equilibrium scaling, and a combination of both [11].
While equilibrium scaling divides all coefficients in each nonzero row and col-
umn of the constraint matrix by the absolute largest entry within this vector,
geometric scaling uses a simplified geometric mean of the absolute vector en-
tries as divisor: For each column Aj of the constraint matrix A the divisor is√

maxi:aij 6=0 |aij | ·mini:aij 6=0 |aij |, for each row ai· it is√
maxj:aij 6=0 |aij | ·minj:aij 6=0 |aij |. Geometric scaling is computationally more

expensive than equilibrium scaling, since it is applied iteratively (up to 10 times
in our implementation); equilibrium scaling on the other hand always converges
in one step. However, the arrowhead structure allows us to perform all scaling
methods efficiently in parallel. Therefore, the scaling run times are neglectable,
and geometric scaling is used as default.

Another important ingredient of state-of-the-art linear programming solvers
is presolving [1]. LPs resulting from a modeled application often contain redun-
dant information. Thus it is often advisable to apply presolving routines to the

20

LP in order to eliminate redundant parts. Presolving techniques for LPs aim to
reduce the number of variables, constraints, and non-zeroes. Their major goal is
to reduce the run time of the actual solver, but also the condition of the LP can
be improved. Due to the distributed storage of the problem data, implementing
presolving methods in the setting of this article is more complicated than for a
customary solver. Thus, so far only the following, well-known [1, 15], methods
have been implemented

• bound strengthening,

• singleton row presolving,

• parallel and nearly parallel row reduction.

Bound strengthening aims to find tighter variable bounds that are implicitly
given in the constraints. Singleton row presolving applies to constraints that
contain exactly one nonzero coefficients. Finally, parallel row reductions looks
for constrains that are multiples of other ones (nearly parallel row reductions
are a simple extension). All three methods have been implemented to run in
distributed parallel.

4.3 Communicating the structure

Automatic detection of block structures in models can be challenging [12], hence,
a processable block structure information based on the user’s understanding of
the model is often preferable. Note that there is no unique block structure in a
model, but that there are many of them, depending on how rows and columns
of the constraint matrix are permuted. The challenge is not mainly to find an
annotation that is correct in the mathematical sense, but to find one where the
decomposition approach described in this article is exploited best. A desirable
annotation would provide a block structure with many independent blocks of
similar size while the set of linking variables and linking constraints is small,
most importantly the global ones. Both ELMOD and SIMPLE rely on the
modeling language GAMS, which is widely used in the energy system modeling
community. For communicating the LP together with its arrowhead structure,
a callback interface between GAMS and PIPS++ has been implemented. Ad-
ditional substructures (such local constraints and variables) are detected and
exploited automatically by the solver—the user does not have to provide any
information about them. More detail on the model annotation with GAMS can
be found in [6]

Currently, model generation is a sequential process where GAMS generates
one constraint after the other. Usually, model generation is fast and the time
consumption is negligible compared to the time consumed to solve the actual
problem. However, with the specialized distributed parallel solver described
in this article—which takes only minutes even for problems with more than a
hundred million variables and constraints—the model generation time becomes
relevant. Hence, it is worthwhile to mention that the previously introduced an-
notation can also serve as a basis to generate the model in a distributed fashion.
Instead of generating one large monolithic model, the individual model blocks
can be generated in parallel to exploit the power of distributed-memory archi-
tectures already during model generation. This approach is to be implemented
within the near future.

21

For solving ELMOD instances, the model is annotated, which includes as-
signing each variable and constraint to a certain block. As detailed in Section
2.2, the vast majority of constraints and all but very few variables can be as-
signed to the diagonal blocks. The exceptions are global variables and all linking
constraints, most of which are local linking constraints.

A dynamic implementation of this annotation realizes the automatic assign-
ments. The total number of time steps and the time steps per diagonal block
are predefined by the user. The total number of diagonal blocks is computed
and variables and constraints are assigned.

Figure 1: Constraint matrix of small model instance, encompassing Germany
and a time frame of 40 hours.

Figure 1 displays the ensuing sorted structure of an exemplary small model
instance. The model includes a physical grid representation of Germany with
aggregated grids of its neighbors. A total of 40 hours are included, with ten
hours for each parallel block. The linking constraints are displayed on the very
bottom. The global variables are located on the left side of the structure. Upper
limits for these global variables appear on the very top of the structure.

5 Computational results

Most of the computational experiments were performed on the supercomputer
JUWELS at the Jülich Supercomputer Centre JUWELS is equipped with 2271
standard compute nodes (Dual Intel Xeon Platinum 8168), each with 96GB
memory and 2x24 cores at 2.7 GHz. JUWELS also includes 240 large memory
compute nodes with 192GB each (and otherwise the same configuration). The
nodes are connected via a Mellanox EDR InfiniBand high-speed network. Only
the standard compute nodes were used for PIPS++.

For comparison we use the state-of-the-art (commercial) LP solvers CPLEX

22

12.89, Gurobi 8.110, MOSEK 8.111, and Xpress 8.4.712. We always use the
interior-point algorithms of the respective solvers, since those achieve far better
results for the instances at hand than default LP solving, or the simplex method.
Also, crossover (which can considerably increase the run time) is turned off, as
this feature is not implemented in our solver. If not mentioned otherwise, 16
threads are used for the commercial solvers, since this number seems to be the
overall best one in terms of run time (with more threads usually a performance
degradation occurs). Note that none of the commercial solvers allow for dis-
tributed parallel solution of linear programs. The results of the commercial
solvers are given in anonymous form since these results are only supposed to
serve as a comparison with our method. Still, it is worth noticing that there
is no consistent ranking in terms of run-time among the commercial solvers for
the instances considered in the following. On the contrary, one observes a con-
siderable variation; the solver that performs best for the smallest instance is for
example not able to solve any of the largest instances.

To demonstrate the scalability of PIPS++, a (relatively) small-scale SIM-
PLE instance with 5.6 million variables, 5.1 million constraints, 20.4 million
non-zeroes, and 512 diagonal blocks is used. This instance can be handled with
a single MPI process in reasonable time by PIPS++. Also, the instance allows
for a customary power of 2 scaling plot. To achieve a good load-balancing,
the number of MPI processes should divide the number of blocks—in this way
each MPI process is assigned the same number of blocks. The scaling behavior
of the commercial LP solvers and PIPS++ (denoted by New solver) is shown
in Figure 2. Furthermore, the figure shows the scaling behavior of a reduced
version (denoted by New solver reduced) of PIPS++ that just uses the Schur
complement decomposition described in Section 3.1, but none of the additionally
implemented algorithms described in Sections 3.2, 3.3, 4.1, and 4.2. For each
MPI configuration of the new solver (including the reduced version) 2 OpenMP
threads were used.

Figure 2 shows that the commercial solvers using one thread are considerably
faster than PIPS++ using one MPI process (and two OpenMP threads)—by
a factor of 5 or more. However, the commercial solvers do not exhibit a good
scaling behavior. Three of the commercial solvers show a moderate speed-up up
until 12 threads, but with more threads the run-time even deteriorates. PIPS++
on the other hand scales well, and requires merely 23 seconds with the maxi-
mum number of 512 MPI processes—whereas no commercial solver achieves a
run-time below 400 seconds. Furthermore, the results of the reduced version of
PIPS++ demonstrate that the straightforward application of the Schur com-
plement decomposition without any additional techniques is not competitive.
Another notable observation is that PIPS++ is for this instance already on
a shared-memory architecture highly competitive with the commercial solvers:
On 32 cores (16 MPI processes, with two OpenMP threads each), PIPS++ is
as fast as any commercial solver—even if one looks at their best performance
on 1 to 48 cores.

To demonstrate the performance of PIPS++ on large-scale instances, two
different model configurations were utilized that vary in their grid configura-

9https://www.ibm.com/products/ilog-cplex-optimization-studio
10https://www.gurobi.com
11https://www.mosek.com/
12https://www.fico.com/en/products/fico-xpress-optimization

23

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com
https://www.mosek.com/
https://www.fico.com/en/products/fico-xpress-optimization

5122561286432168421
#Threads (comm. solvers) / #MPI tasks (New solver)

10

100

1000

10000

tim
e
to
 so

lu
tio

n[
se
c]

New solver
New solver reduced
commercial Solver 1
commercial Solver 2
commercial Solver 3
commercial Solver 4 adjusted

Figure 2: Scaling results of leading commercial LP solvers and PIPS++ on a
SIMPLE instance. PIPS++ was run with 2 OpenMP threads per MPI process.

tions. The modeling of power plants was always block-wise, as opposed to
aggregation by power plants, and both configurations encompass 8760 hours.
The first configuration comprises the entire transmission grid of the Central
Western European region which includes Germany, Austria, France, Belgium,
Netherlands and Luxembourg. This configuration was further extended to a set
of 19 European countries with detailed transmission grid representation. Neigh-
boring countries were modeled as aggregated nodes. Both configurations are
generated three times, based on the transmission and generation infrastructure
of the years 2014, 2015 and 2016. The configuration with resulting instances cor-
responding to the Central Western European region are named ELMOD CWE 13

and the instances from the extended configuration corresponding to the 19 Euro-
pean countries are called ELMOD EU. Notably, all ELMOD EU instances have
more than 300 000 linking constraints—but only a few (global) linking vari-
ables. Furthermore, two large-scale SIMPLE instances are used, which include
considerably more time steps than the SIMPLE instance used for the scaling
experiment above. In the following, these two instances are named SIMPLE2
and SIMPLE3.

In each run PIPS++ uses the maximum number of MPI processes (equal to
the number to blocks). Also, the PIPS++ uses two OpenMP threads for each

13Note that in a previous version of this technical report the ELMOD CWE were not
generated correctly and have thus been exchanged. Therefore, the sizes of the instances as
well as the run times of the solvers differ compared to the previous version of this report

24

MPI process. For the CWE instances the commercial solvers were run on the
large memory nodes of JUWELS, because the 96 GB of memory available on
the standard compute nodes were not sufficient, which caused all commercial
solvers to abort. For all other instances the commercial solvers ran out of
memory even on the large memory nodes of JUWELS. Thus, for those instances
the commercial solvers were run on a large shared-memory machine at Zuse
Institute Berlin14 (ZIB) with the following specifications: Intel Xeon CPU E7-
8880 v4 2.20GHz processor, 88 cores, and 2 TB memory. However, Solver 3,
which actually performed best in the scaling experiment, crashed for several of
the large-scale instances (and was always among the two slowest solvers for the
remaining ones). Thus, it has been excluded from the presented results and only
the other three commercial solvers are considered. The results on these large-
scale instances are presented in Table 1. The first column specifies the instance
name, and the next four columns provide the size of this instance, where Blocks
specifies the number of diagonal blocks of the constraint matrix. The last four
columns give the run time in seconds for PIPS++, as well as for the three
commercial solvers. The ? symbol marks that the corresponding instance could
not be solved within the optimality tolerances, but still with a relatively small
primal-dual gap: not more than 1%. NO, short for non-optimal, specifies that
the respective solver could not solve the instance within acceptable tolerances—
indeed the primal-dual gap on all results marked by NO was more than 100%.
TL signifies that the (hard) time limit of 24 hours on JUWELS was hit.

Table 1: Computational results for large-scale instances
Size Run time (seconds)

Instance Variables Constraints Non-zeroes Blocks PIPS++ Solver 1 Solver 2 Solver 4

SIMPLE2 227 060 381 206 036 266 818 449 005 1024 546 38 800 69 377? NO
SIMPLE3 1 150 014 619 1 044 894 025 4 174 953 472 1024 13 170 – – –
ELMOD CWE14 85 585 234 98 532 392 271 621 021 438 239 6 181? 3 937 21 442
ELMOD CWE15 85 646 554 98 646 274 271 875 064 438 181 6 321? 6 245 TL
ELMOD CWE16 85 883 074 98 909 074 272 602 144 438 216 6 984? 5 190 67 941
ELMOD EU14 223 898 044 253 201 191 709 588 006 876 1 220? NO 66 105 NO
ELMOD EU15 224 677 686 254 304 961 712 452 541 876 1 245? NO 83 715 NO
ELMOD EU16 226 061 766 256 284 723 717 436 984 876 1 119? NO 79 094 NO

Despite its large size, the SIMPLE2 instance can be solved within less than 10
minutes by PIPS++ (with 64 compute nodes and 3072 physical cores), compared
to more than 10 hours for the best commercial solver. However, one should keep
in mind that different machines needed to be used for this instance. The next
instance SIMPLE3 is about five times larger, with more than four billion non-
zeroes. Notably, this instances also has more than 100 000 linking variables
and constraints. Still PIPS++ is able to solve the instance within four hours
(with 128 compute nodes). Due to its huge size, this instance could not not be
generated my GAMS as a single LP file, thus we could not perform comparisons
with the commercial solvers.

The ELMOD CWE instances can be solved very quickly by PIPS++. How-
ever, also the best two commercial solvers can solve these instances relatively
fast, in two hours or less (on the same architecture as PIPS++). Still, the
speed-up of PIPS++ is significant. In particular, since far fewer MPI processes
than for the SIMPLE instances are used.

14www.zib.de

25

www.zib.de

Finally, all ELMOD EU instances are solved by PIPS++ in around 20 min-
utes. However, the instances can only be solved with a primal-dual gap (al-
though considerably less than 1%). Interestingly, tests on the large-memory
machine at ZIB revealed that this gap is not a result of our Schur complement
preconditioning: The gap stays almost the same if the preconditioning approach
is deactivated. Only one of the four commercial solver manages to solve the EU
instances (and only on the large-memory machine). The run-times are between
18 and 24 hours, while PIPS++ takes only around 20 minutes. We also tried
more aggressive numerical setting for the commercial solvers (in one case even
according to the advice of the vendor). However, while this allowed Solver 1
to solve the EU instances, in around 40 to 45 thousand seconds, the behavior
of Solver 4 did not change much, and Solver 2 even deteriorated in terms of
solution quality: only one instances could be solved within the optimality tol-
erances. No further tests of different parameter settings were performed due to
limited availability of the large-memory machine.

The results show that PIPS++ can considerably outperform even the best-
performing commercial LP solver—by a factor of up to 67. While the commercial
solvers are sequentially considerably faster (which is unsurprising, considering
the decades of development that has been invested into them), the key advan-
tage of the new approach is scalability. Notably, for the CWE instances only 19
compute nodes and for EU instances only 38 compute nodes were used. Com-
pared to the one compute node (which in some cases is even much larger) that
is occupied by each commercial solver, the run time per computing resources
is most of the times better than the respective best result of the commercial
solvers. Notably, PIPS++ is on most instances considered in this article al-
ready on shared-memory machines (both on JUWELS and the ZIB machine)
faster than the commercial solvers—by a factor of up to 4. Thus, in the com-
ing years PIPS++ might also considerably outperform the leading commercial
solvers on standard desktop machines. Already, desktop machines with 32 cores
are available15, and machines with hundreds of cores are expected to become
the standard in the near future.

6 Conclusion and outlook

This article has demonstrated how to exploit the power of distributed-memory
supercomputers to drastically accelerate the solution time of complex linear
energy system models as compared to the best commercial LP solvers. The
key has been the development and implementation of scalable algorithms that
can exploit the underlying structure of these problems. The algorithmic core
is constituted by methods to efficiently solve the Schur complement system
arising from the distributed decomposition approach used in this article. Still,
to outperform the powerful state-of-the-art linear solvers, and to achieve ro-
bust convergence, also several generic algorithms such as a multiple-corrector
scheme, scaling methods, and presolving techniques had to be implemented.
The distributed storage of the problem data made this implementation a non-
trivial endeavor, but also set the stage for efficient parallelization, and allowed
to overcome memory limitations.

15https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-2990wx

26

https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-2990wx

While the work described in this article already yields notable computational
improvements, there are several paths for further development. A natural one
is the implementation of additional presolving methods. Promising candidates
are substitution of variables and elimination of linearly dependent rows. To
improve robustness, also more aggressive scaling methods could be implemented.
For the same reason, we plan to implement the homogeneous self-dual interior-
point method [29]. Yet another extension, that is currently being implemented,
is a hierarchical approach, which splits the Schur complement decomposition
(and thus also the Schur complement) in several layers—with the aim to handle
energy system models with even stronger linkage than ELMOD or SIMPLE.
Finally, the authors plan to make the newly developed PIPS++ solver publicly
available and hope that this software will allow the energy system community
to overcome computational bottlenecks in the solution of their models.

7 Acknowledgments

The authors would like to thank Svenja Uslu for implementing parts of presolv-
ing and scaling routines and to Michael Bussieck, Fred Fiand and Manuel Wetzel
for providing the interface to GAMS and the SIMPLE model. Furthermore, the
authors would like to thank Cosmin Petra for several helpful discussions on
PIPS-IPM. Last, but not least, the authors thank Thomas Breuer for his sup-
port on running the experiments on JUWELS. This work was supported by the
BMWi project Realisierung von Beschleunigungsstrategien der anwendungsori-
entierten Mathematik und Informatik für optimierende Energiesystemmodelle -
BEAM-ME (fund number 03ET4023DE). The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding
this project by providing computing time through the John von Neumann In-
stitute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich
Supercomputing Centre (JSC).

References

[1] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and
Dieter Weninger. Presolve reductions in mixed integer programming. IN-
FORMS Journal on Computing, 2019. accepted for publication 2018-08-31.

[2] Erling D. Anderson, Jacek Gondzio, Csaba Mészáros, and Xiaojie Xu. Im-
plementation of Interior-Point Methods for Large Scale Linear Programs,
pages 189–252. Springer US, Boston, MA, 1996.

[3] Jason Barnett, Jean-Paul Watson, and David L. Woodruff. BBPH: using
progressive hedging within branch and bound to solve multi-stage stochas-
tic mixed integer programs. Oper. Res. Lett., 45(1):34–39, 2017.

[4] Robert E. Bixby. Solving real-world linear programs: A decade and more
of progress. Operations Research, 50(1):3–15, 2002.

[5] C. W. Bomhof and H. A. van der Vorst. A parallel linear system solver for
circuit simulation problems. Numerical Linear Algebra with Applications,
7(7-8):649–665, 2000.

27

[6] Thomas Breuer, Michael Bussieck, Karl-Kien Cao, Felix Cebulla, Frederik
Fiand, Hans Christian Gils, Ambros Gleixner, Dmitry Khabi, Thorsten
Koch, Daniel Rehfeldt, and Manuel Wetzel. Optimizing large-scale linear
energy system problems with block diagonal structure by using parallel
interior-point methods. In Operations Research Proceedings 2017, pages
641 – 647, 2018.

[7] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The mpi message pass-
ing interface standard. In Karsten M. Decker and René M. Rehmann, ed-
itors, Programming Environments for Massively Parallel Distributed Sys-
tems, pages 213–218, Basel, 1994. Birkhäuser Basel.

[8] Marco Colombo and Jacek Gondzio. Further development of multiple cen-
trality correctors for interior point methods. Computational Optimization
and Applications, 41(3):277–305, Dec 2008.

[9] Marco Colombo, Jacek Gondzio, and Andreas Grothey. A warm-start
approach for large-scale stochastic linear programs. Math. Program.,
127(2):371–397, 2011.

[10] B. R. de Supinski, T. R. W. Scogland, A. Duran, M. Klemm, S. M. Bellido,
S. L. Olivier, C. Terboven, and T. G. Mattson. The ongoing evolution of
openmp. Proceedings of the IEEE, 106(11):2004–2019, Nov 2018.

[11] Joseph M. Elble and Nikolaos V. Sahinidis. Scaling linear optimization
problems prior to application of the simplex method. Computational Opti-
mization and Applications, 52(2):345–371, 2012.

[12] Michael C. Ferris and Jeffrey D. Horn. Partitioning mathematical programs
for parallel solution. Mathematical Programming, 80(1):35–61, Jan 1998.

[13] R. Fourer. Staircase matrices and systems. SIAM Review, 26:1–71, 1984.

[14] Hans Christian Gils, Yvonne Scholz, Thomas Pregger, Diego Luca de Tena,
and Dominik Heide. Integrated modelling of variable renewable energy-
based power supply in Europe. Energy, 123:173–188, 2017.

[15] Jacek Gondzio. Presolve analysis of linear programs prior to applying an
interior point method. INFORMS Journal on Computing, 9(1):73–91, 1997.

[16] Jacek Gondzio. Interior point methods 25 years later. European Journal of
Operational Research, 218(3):587–601, 2012.

[17] Jacek Gondzio and Robert Sarkissian. Parallel interior-point solver for
structured linear programs. Mathematical Programming, 96(3):561–584,
Jun 2003.

[18] Jonathan D. Hogg and Jennifer A. Scott. On the effects of scaling on the
performance of Ipopt. CoRR, abs/1301.7283, 2013.

[19] Kibaek Kim, Cosmin G. Petra, and Victor M. Zavala. An asynchronous
bundle-trust-region method for dual decomposition of stochastic mixed-
integer programming. SIAM Journal on Optimization, 29(1):318–342, 2019.

28

[20] M. Lubin, C. G. Petra, M. Anitescu, and V. Zavala. Scalable stochastic
optimization of complex energy systems. In SC ’11: Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–10, Nov 2011.

[21] Miles Lubin, R. Kipp Martin, Cosmin G. Petra, and Burhaneddin Sandikçi.
On parallelizing dual decomposition in stochastic integer programming.
Oper. Res. Lett., 41(3):252–258, 2013.

[22] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. On implementing
Mehrotra’s predictor-corrector interior-point method for linear program-
ming. SIAM Journal on Optimization, 2(3):435–449, 1992.

[23] Cosmin G. Petra, Olaf Schenk, and Mihai Anitescu. Real-time stochastic
optimization of complex energy systems on high-performance computers.
Computing in Science & Engineering, 16:32–42, 2014.

[24] Cosmin G. Petra, Olaf Schenk, Miles Lubin, and Klaus Gärtner. An Aug-
mented Incomplete Factorization Approach for Computing the Schur Com-
plement in Stochastic Optimization. SIAM J. Scientific Computing, 36(2),
2014.

[25] Nikolaos Ploskas and Nikolaos Samaras. The impact of scaling on simplex
type algorithms. In Proceedings of the 6th Balkan Conference in Informat-
ics, BCI ’13, pages 17–22, New York, NY, USA, 2013. ACM.

[26] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[27] Heinz Stigler and Christian Todem. Optimization of the austrian electricity
sector (control zone of verbund apg) by nodal pricing. Central European
Journal of Operations Research, 13(2):105, 2005.

[28] H. A. van der Vorst. Bi-cgstab: A fast and smoothly converging variant of
bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 13(2):631–644, March 1992.

[29] Robert J. Vanderbei. The Homogeneous Self-Dual Method, pages 361–381.
Springer US, Boston, MA, 2008.

[30] Robert J. Vanderbei. Linear Programming: Foundations and Extensions.
Springer, 2014.

[31] A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015.

[32] Frauke Wiese, Rasmus Bramstoft, Hardi Koduvere, Amalia Pizarro Alonso,
Olexandr Balyk, Jon Gustav Kirkerud, Åsa Grytli Tveten, Torjus Folsland
Bolkesjø, Marie Münster, and Hans Ravn. Balmorel open source energy
system model. Energy Strategy Reviews, 20:26–34, 2018.

[33] Stephen J. Wright. Primal-Dual Interior-Points Methods. SIAM, Philadel-
phia, Pa, USA, 1997.

[34] Fuzhen Zhang. The Schur Complement and its Applications, volume 4 of
Numerical Methods and Algorithms. Springer, New York, 2005.

29

	Introduction
	Preliminaries

	Modeling energy system problems as linear programs
	ELMOD: Qualitative description
	ELMOD: Mathematical formulation
	Arrowhead structure in other energy system models

	Exploiting the structure: A specialized parallel interior-point algorithm
	Decomposing the problem: a parallel Schur complement approach
	Computing the global Schur complement
	A distributed preconditioner for the Schur complement

	Implementation
	Interior-point algorithm
	Scaling and presolving
	Communicating the structure

	Computational results
	Conclusion and outlook
	Acknowledgments

