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Abstract

This paper studies a two-stage distributionally robust stochastic linear program under the type-∞
Wasserstein ball by providing sufficient conditions under which the program can be efficiently computed
via a tractable convex program. By exploring the properties of binary variables, the developed reformu-
lation techniques are extended to those with mixed binary random parameters. The main tractable refor-
mulations are projected into the original decision space. The complexity analysis demonstrates that these
tractable results are tight under the setting of this paper.
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1. Introduction

1.1. Setting
Consider the two-stage distributionally robust stochastic linear program of the form [25]:

v∗ = min
x

{
c⊤x+ Z(x) : x ∈ X , Z(x) = sup

P∈P
EP[Z(x, ξ̃)]

}
. (1)

Above, set X ⊆ Rn1 denotes the feasible region of the here-and-now decisions x, the vector c ∈ Rn1

denotes the here-and-now objective coefficients, and the function Z(x) denotes the worst-case expected
piecewise convex wait-and-see cost function Z(x, ξ̃) (also known as, recourse function) specified by random
parameters ξ̃ ∈ Ξ, where its probability distribution P comes from a family of distributions, denoted by
ambiguity set P .

Following the notation in [1, 6, 49], given a realization ξ of ξ̃, we consider the following recourse func-
tion:

Z(x, ξ) = min
y

{
(Qξq + q)⊤y : T (x)ξT +Wy ≥ h(x),y ∈ Rn2

}
. (2)

where y represents the second-stage wait-and-see decisions, ξ = (ξq, ξT ) ∈ Rm1 × Rm2 , q ∈ Rn2 and there
are two affine mappings- right-hand mapping h : Rn1 → Rℓ and technology mapping T : Rn1 → Rℓ×m2 .
Similar to many two-stage stochastic program [6, 49], throughout this paper, we assume that

• (Fixed Recourse) The recourse matrix W ∈ Rℓ×n2 is fixed; and

• (Separable Uncertainty) The support Ξ = Ξq × ΞT , where Ξq ⊆ Rm1 ,ΞT ⊆ Rm2 .

Both assumptions are quite standard and have appeared in many stochastic programming applications, for
example, power systems [16, 23], logistics and supply chain [32, 36], inventory and production [29, 59],
agriculture [35], and many others.

The following example illustrates problem (1).
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Example 1. (Reliable Facility Location Problem (RFLP) under Probabilistic Disruptions) Let us consider

a two-stage facility location problem with random demands and probabilistic disruptions, an extension of

the work [15, 36]. Suppose a warehousing company needs to build facilities at candidate locations indexed

by [n1], which are required to serve customers at locations indexed by [ℓ]. Each facility s ∈ [n1] bears a

setup cost cs and due to catastrophic events (e.g., hurricane, power outage, etc.), it might be disrupted,

thus, we use δ̃s ∈ {0, 1} to denote its status, i.e., δ̃s = 1 if it will function well, 0, otherwise. We suppose that

each customer t ∈ [ℓ] has a stochastic demand d̃t and incurs a unit transportation cost for a shipment from

facility s ∈ [n1], denoted by ĉts. The random parameters ξ̃ = (δ̃, d̃), where its joint probability distribution

is usually difficult to characterize. Suppose there are N empirical data points available, denoted by {ζj :=

(δ̂j , d̂j)}j∈[N ].

To ensure the feasibility of the model, similar to [15, 36], we assume that there is an emergency (or

dummy) facility indexed by n1 + 1, which will be never disrupted, and its unit transportation cost for each

customer t ∈ [ℓ] is ĉt(n1+1) = M , where M is a large number. Under this setting, distributionally robust

RFLP (DR-RFLP) can be formulated as

v∗ = min
x

{
c⊤x+ Z(x) : x ∈ {0, 1}n1 ,Z(x) = sup

P∈P
EP[Z(x, ξ̃)]

}
, (3a)

where the recourse function is

Z(x, ξ) = min
y

∑
t∈[ℓ]

∑
s∈[n1+1]

ĉtsdtyts :
∑

s∈[n1+1]

yts = 1, yts ≤ δsxs,∀t ∈ [ℓ],∀s ∈ [n1],y ∈ Rℓ×n1
+

 . (3b)

1.2. Ambiguity Set
In this paper, we consider ∞−Wasserstein ambiguity set P , which is defined as

P =
{
P : P

{
ξ̃ ∈ Ξ

}
= 1,W∞

(
P,Pζ̃

)
≤ θ

}
, (4)

where ∞−Wasserstein distance [7, 21] is defined as

W∞ (P1,P2) = inf
Q

{
ess.sup∥ξ1 − ξ2∥pQ(dξ1, dξ2) :

Q is a joint distribution of ξ̃1 and ξ̃2
with marginals P1 and P2, respectively

}
,

ess.sup(·) denotes essential supremum (see [45]), norm ∥ · ∥p denotes reference distance with p ∈ [1,∞] and
Pζ̃ denotes a discrete empirical distribution of ζ̃ generated by i.i.d. samples Z = {ζj := (ζj

q , ζ
j
T )}j∈[N ] ⊆ Ξ

from the true distribution P∞, i.e., its point mass function is Pζ̃

{
ζ̃ = ζj

}
= 1

N , θ ≥ 0 denotes the Wasser-
stein radius, and p ≥ 1. Many recent works also studied τ−Wasserstein ambiguity set with τ ∈ [1,∞),
where in (4), we replace the ∞−Wasserstein distance by the following τ−Wasserstein distance

W τ (P1,P2) = inf
Q

{
τ

√∫
Ξ×Ξ

∥ξ1 − ξ2∥τpQ(dξ1, dξ2) :
Q is a joint distribution of ξ̃1 and ξ̃2
with marginals P1 and P2, respectively

}
.

Clearly, according to [21], τ−Wasserstein distance converges to ∞−Wasserstein distance as τ → ∞. Differ-
ent types of Wasserstein ambiguity set might provide different tractable results. The results of this paper
reveal that ∞−Wasserstein ambiguity set indeed delivers more tractable results for problem (1) and it still
exhibits attractive convergent properties.

The discussions on advantages of Wasserstein ambiguity sets can be found in [39, 20, 7], which are
briefly summarized below: (i) Data-Driven. When the number of observed empirical data points grows,
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the Wasserstein radius shrinks under mild conditions, and thus, the corresponding problem (1) eventu-
ally converges to the true two-stage stochastic programming as N → ∞; (ii) Finite. It has been shown in
[39, 20, 11] that as long as the number of empirical data points is finite, the worst-case probability distri-
bution of the corresponding problem (1) is also finitely supported; and (iii) Tractability. There have been
many successful developments on tractable reformulations of distributionally robust optimization with
Wasserstein ambiguity set, see, for example, [39, 20, 11, 10, 19, 14]. However, for problem (1), the tractable
results are quite limited. It is shown that the rate of convergence in τ -Wasserstein distance with τ ∈ [1,∞)
of the empirical distribution [18] is similar to that of ∞-Wasserstein distance [50], where the latter requires
more restrictive assumption of compact support. On the other hand, if we focus on the convergence of the
optimal value v∗ to the true optimal one, then the rate of convergence of different Wasserstein distances
are similar (see, e.g., [58]). A recent work [58] shows that distributionally robust optimization under ∞-
Wasserstein ambiguity set exhibits computational advantages over that under τ -Wasserstein ambiguity set
with τ ∈ [1,∞), while by choosing proper Wasserstein radii, different types of ambiguity set are of similar
conservatism. Therefore, this paper focuses on developing tractable representations of problem (1) under
∞−Wasserstein ambiguity set P , in particular, it focuses on the tractable representations of the worst-case
expected wait-and-see cost (i.e., the function Z(x)).

1.3. Related Literature
Distributionally robust optimization (DRO) has been used as an alternative modeling paradigm for

optimization under uncertainty, where the probability distributions of random parameters are not fully
known. Interested readers are referred to [43] for a complete literature review of DRO. Recently, there
are several interesting works on exact tractable reformulations of the function Z(x) under three types of
ambiguity sets, namely, under moment ambiguity set, phi-divergence based ambiguity set, and Wasserstein
ambiguity set.

(i) Moment ambiguity set is specified by the acquired knowledge of some moments (e.g., known first two
moments), and has been successfully applied to many different settings (see, for example, [17, 6, 22, 9,
52, 26, 27, 40, 34, 55, 56, 60, 42]). In [17], the authors showed that if the first two moments are known or
bounded from above, and the recourse function can be expressed as piecewise maximum of a finite num-
ber of functions which are convex in x and concave in the random parameters ξ̃, then the function Z(x)
have a tractable representation. In [6], the authors showed that if first two moments are known, then the
function Z(x) with only objective uncertainty (i.e., ξ̃T is deterministic) can be formulated as a tractable
semidefinite program (SDP). The work [40] further showed that if first two moments are known, then the
function Z(x) with objective uncertainty and any known support can be reformulated as an SDP, where
the positive semidefinite matrix comes from a convex hull of rank-one matrices, and, although computa-
tionally intractable in general, the authors were able to establish sufficient conditions under which this SDP
formulation becomes tractable.

(ii) Phi-divergence based ambiguity set is specified by the bounded distance between a nominal distribu-
tion and true distribution via phi-divergence [2, 3, 28, 30, 31]. In particular, the work [31] showed that
for problem (1) with the phi-divergence based ambiguity set can be equivalently reformulated as a convex
combination of conditional-value-at-risk and worst-case risk cost, where the tractability follows when both
risk measures are tractable.

(iii) Wasserstein ambiguity set is specified by the bounded distance between a nominal distribution and
true distribution via Wasserstein metric [39, 11, 10, 12, 13, 14, 20, 19, 25, 7, 37, 54, 57, 61]. In [39] , the
authors showed that for problem (1) under 1−Wasserstein ambiguity set, if the recourse function can be ex-
pressed as piecewise maximum of a finite number of functions which are bi-affine in the decision variables
x and the random parameters ξ̃, then the function Z(x) has a tractable representation. In [25], the authors
extended the tractable results into problem (1) with constraint uncertainty (i.e., ξ̃q is deterministic) and
1−Wasserstein ambiguity set, where the reference distance ∥ · ∥1 and support ΞT = Rm2 , and proved that
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for the general problem (1) under Wasserstein ambiguity set, it is in general NP-hard to evaluate the func-
tion Z(x). Thereby, the authors proposed a hierarchy of SDP representations to approximate the function
Z(x) under 2−Wasserstein ambiguity set.

Different from [25], this paper focuses on ∞−Wasserstein ambiguity set, providing sufficient conditions
under which the function Z(x) can be tractable, even with both objective and constraint uncertainties, and
further extending the tractable results to the cases where random parameters are mixed binary. As far
as the author is concerned, only two works studied ∞−Wasserstein ambiguity set, i.e., [7, 8]. The work
[7] provided fundamental convergence analysis of ∞−Wasserstein ambiguity set, and studied adaptive ap-
proximation schemes for the data-driven multi-stage linear program, while the work [8] studied robust two-
stage sampling problem with constraint uncertainty and proved that under certain conditions, the proposed
multi-policy approximation scheme is asymptotically optimal. Different from these two works, this paper
studies problem (1) by exploring exact tractable reformulations of the function Z(x) with ∞−Wasserstein
ambiguity set and providing the complexity analysis to demonstrate the sharpness of the tractable results,
i.e., these tractable results are tight under the setting of this paper.

1.4. Contributions
This paper studies exact reformulations of the worst-case expected wait-and-see cost (i.e., function Z(x))

in problem (1) under ∞−Wasserstein ambiguity set. The main contributions are highlighted as below.

(i) When random parameters (ξ̃q, ξ̃T ) are continuous, we derive exact tractable reformulations for the
function Z(x) with uncertainties in both objective function and constraint system, with objective un-
certainty only, as well as with constraint uncertainty only. We prove that our tractable results are
sharp.

(ii) When either of random parameters (ξ̃q, ξ̃T ) are binary, by exploring the binary variables in the refor-
mulation, we are able to derive exact tractable reformulations for the function Z(x) under sufficient
conditions. Our complexity results show that the tractable results are sharp.

(iii) The main tractable reformulations in this paper are projected to the original decision space, and thus
have straightforward interpretations of robustness.

(iv) We demonstrate that if the conditions provided in the above results do not hold, then the proposed
reformulations become tractable upper bound and will become exact if the Wasserstein radius goes
to zero, i.e., they are asymptotically optimal.

Notation: The following notation is used throughout the paper. We use bold-letters (e.g., x,A) to denote
vectors or matrices, and use corresponding non-bold letters to denote their components. We let e be the
all-one vector or matrix whenever necessary, let 0 be the all-zero vector or matrix whenever necessary,
and we let ei be the ith standard basis vector. Given an integer n, we let [n] := {1, 2, . . . , n}, and use
Rn

+ := {x ∈ Rn : xl ≥ 0,∀l ∈ [n]} and Rn
− := {x ∈ Rn : xl ≤ 0,∀l ∈ [n]}. Given a real number t, we let

(t)+ := max{t, 0}. Given a finite set I , we let |I| denote its cardinality. We let ξ̃ denote a random vector
with support Ξ and denote one of its realization by ξ. Given a real-valued random variable ξ̃ : Ω → R with
probability distribution P, its ess.sup(X) := inf{c : P{ω : ξ̃(ω) > c} = 1}. Given a set R, the characteristic
function χR(x) = 0 if x ∈ R, and ∞, otherwise, while the indicator function I(x ∈ R) =1 if x ∈ R,
and 0, otherwise. We let In denote n × n identify matrix. For a vector a, we let |a| denote the result by
taking element-wise absolute and let (a)+ = max{a, 0} by taking element-wise maximum. For a matrix
A, we let |A| denote the result by taking element-wise absolute, let (A)+ = max{A, 0} by taking element-
wise maximum, and let ∥A∥p denote its element-wise p-norm with p ∈ [1,∞]. Additional notation will be
introduced as needed.
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2. Preliminaries

Similar to [25], we will make the following assumption throughout this paper.

• (Sufficiently Expensive Recourse) For any x ∈ X , the dual of the second-stage problem (2) is feasible
for all ξ ∈ Ξ.

Note that this assumption is used to ensure that the strong duality of the second-stage problem (2) always
holds. If this assumption does not hold, then the proposed reformulations in this paper might not be exact.

It has been shown in [7] that

Lemma 1. (Proposition 3 in [7]) the ∞−Wasserstein ambiguity set P∞ has the following equivalent form

P =

 1

N

∑
k∈[N ]

∆((ξ̃q, ξ̃T )− (ξkq , ξ
k
T )) : ∃(ξkq , ξkT ), ∥(ξkq , ξkT )− (ζk

q , ζ
k
T )∥p ≤ θ,∀k ∈ [N ]

 , (5)

where ∆(·) is the Dirac delta function.

This representation has the following interpretation, i.e., worst-case distributions are also supported by
N points and each point can only deviate θ from one of the empirical data {(ζk

q , ζ
k
T )}k∈[N ].

According to the strong duality of distributionally robust optimization with ∞−Wasserstein ambiguity
set [7], we observe that the function Z(x) can be equivalently represented as the following bilinear program.

Lemma 2. The function Z(x) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

sup
(ξq,ξT )∈Ξ,π∈Rℓ

+

{
(h(x)− T (x)ξT )

⊤π : ∥(ξq, ξT )− (ζj
q , ζ

j
T )∥p ≤ θ,W⊤π = Qξq + q

}
. (6)

Proof: According to equivalent representation (5) of P , Z(x) = supP∈P EP[Z(x, ξ̃)] is equivalent to

Z(x) =
1

N

∑
j∈[N ]

sup
ξ

{
Z(x, ξ) : ξ ∈ Ξ, ∥ξ − ζj∥p ≤ θ

}
. (7a)

Suppose π is the dual vector associated with constraints (2) then we can equivalently represent Z(x, ξ) as
Z(x, ξ) = max

π

{
(h(x)− T (x)ξT )

⊤π : W⊤π = Qξq + q,π ∈ Rℓ
+

}
. (7b)

Substituting (7b) into (7a) and using the fact that ξ = (ξq, ξT ) and ζj = (ζj
q , ζ

j
T ), we arrive at (6).

□
Note that (i) the inner supremum of (6) is to maximize bilinear objective function over convex constraints,
which is often difficult to solve. Therefore, the main focus of this paper is to study the complexity of eval-
uating the function Z(x) and provide sufficient conditions under which the inner supremum is efficiently
solvable; and (ii) The proof of Lemma 2 inspires that if Z(x, ξ) is Lipschitz continuous, then v∗ is lower
and upper bounded by its sampling average approximation (SAA) counterparts. Thus, the rate of conver-
gence results for SAA [49, 24] simply apply to problem (1) if we choose θ = O(N−1/2). This observation is
summarized below.

Proposition 1. Suppose that |Z(x, ξ)− Z(x, ζ)| ≤ L∥ξ − ζ∥p for all x ∈ X, ξ, ζ ∈ Ξ. Then, we have

vSAA ≤ v∗ ≤ vSAA + Lθ

where vSAA := minx∈X c⊤x +
∑

k∈[N ] Z(x, ζk). Thus, the rate of convergence results for SAA [49, 24] simply

apply to problem (1) if we choose θ = O(N−1/2).
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Proof: As empirical distribution Pζ̃ is feasible to P , thus in problem (1), we must have vSAA ≤ v∗.
According to (7a) and the assumption that |Z(x, ξ) − Z(x, ζ)| ≤ L∥ξ − ζ∥p for all x ∈ X, ξ, ζ ∈ Ξ, we

have

Z(x) ≤ 1

N

∑
j∈[N ]

Z(x, ζj) +
1

N

∑
j∈[N ]

sup
ξ∈Ξ

{
L∥ξ − ζj∥p : ∥ξ − ζj∥p ≤ θ

}
≤ vSAA + Lθ,

where the second inequality is due to ∥ξ − ζj∥p ≤ θ. □
Other useful tools that this paper relies on are summarized below.

Property 1. (i) (Dual Norm, [44]) For any norm ∥ · ∥p with p ∈ [1,∞], its dual norm is

∥r∥p∗ = max
s

{
r⊤s : ∥s∥p ≤ 1

}
,

where p∗ = p
p−1 ;

(ii) (Integral Polyhedron, [46]) Given a rational polyhedron P = {r ∈ Rn : Ar ≥ b} is integral if and only if

P = conv(P ∩ Zn);

(iii) (Tractability, [4]) We say the function Z(x) has a tractable representation, if for any given x ∈ Rn1 , there

exists an efficient algorithm which can evaluate the function Z(x) in time polynomial in n1, n2,m2,m2, ℓ,N .

3. Continuous Support: Tractable Reformulations and Complexity Analysis

In this section, we consider the random parameters to be continuous, i.e., both ξ̃q, ξ̃T are continuous.
For example, in the newsvendor problem studied by [41], the authors considered random supply and de-
mand, where both are continuous. We first provide the tractable representations of the function Z(x) under
various settings and then show that in general, it is NP-hard to evaluate the function Z(x). We split this sec-
tion into four parts, which include tractable reformulations of general problem (1), special problem (1) with
objective uncertainty only, special problem (1) with constraint uncertainty only, and complexity analysis.

3.1. Tractable Reformulation I: General Problem (1) with L∞ Reference Distance
For the general problem (1), we show that the function Z(x) has a tractable representation given that

the reference distance is ∥·∥p = ∥·∥∞ (i.e., p = ∞) and the image of the technology mapping T (x) is always
non-negative or non-positive.

Theorem 1. Suppose that Ξ = Rm1 × Rm2 . If p = ∞ and T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− , then the function

Z(x) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + θ∥Q⊤y∥1 : T (x)ζj
T +Wy − θ|T (x)|e ≥ h(x)

}
. (8)

Proof: Since Ξ = Rm1 × Rm2 and p = ∞, thus (6) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq,ξT

{
(h(x)− T (x)ξT )

⊤π : ∥ξq − ζj
q∥∞ ≤ θ, ∥ξT − ζj

T ∥∞ ≤ θ,W⊤π = Qξq + q
}
.

Above, optimizing ξT and using the dual norm of ∥ · ∥∞, we have

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq

{
(h(x)− T (x)ζj

T )
⊤π + θ∥T (x)⊤π∥1 : ∥ξq − ζj

q∥∞ ≤ θ,W⊤π = Qξq + q
}
. (9)
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Note that since T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− , thus ∥T (x)⊤π∥1 = e⊤|T (x)|⊤π. Let y denote the dual
variables of the constraints W⊤π = Qξq + q. Then according to the strong duality of linear programming,
(9) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

min
y∈Rn2

sup
π∈Rℓ

+,ξq

{
(h(x)− T (x)ζj

T )
⊤π + θe⊤|T (x)|⊤π + y⊤(Qξq + q −W⊤π) :

∥ξq − ζj
q∥∞ ≤ θ

}
,

which is equivalent to (8) by optimizing over (ξq,π). □
We make the following remarks about Theorem 1 and its corresponding formulation (8).

(i) We can introduce auxiliary variables to linearize the terms ∥Q⊤y∥1, |T (x)| and reformulate the mini-
mization problem (8) as a linear program;

(ii) If θ = 0, i.e., if the empirical distribution is sufficient to describe the probability of random parameters,
then Z(x) = 1/N

∑
j∈[N ] Z(x, ζj);

(iii) The extra terms, θ∥Q⊤y∥1 in the objective and −θ|T (x)|1e in the constraints, enforce the robustness
of the proposed formulation due to ambiguous distributional information. These terms will vanish
if more and more observations have been made to drive the Wasserstein radius to be 0. The extra
term θ∥Q⊤y∥1 in the objective can be also interpreted as a “regularizer”, which has been discovered
in [19, 10] for DRO under τ - Wasserstein balls. For more discussions about asymptotic behavior of
Wasserstein ambiguity sets, interested readers are referred to [8, 7, 11, 39, 25, 54];

(iv) If the assumption that T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− does not hold, then (8) provides an upper
bound for Z(x) due to the triangle inequality θ∥T (x)⊤π∥1 ≤ θe⊤|T (x)|⊤π and this upper bound
will become exact when θ → 0 since this approximation term is associated with Wasserstein radius θ
and thus will vanish as θ → 0 ; and

(v) Similarly, if the reference distance is defined by other norm ∥ · ∥p such that p ∈ [1,∞), then according
to the following formula

∥ξ∥p ≤ p
√
m1 +m2∥ξ∥∞.

Thus, (8) provides an upper bound for Z(x) by inflating θ to p
√
m1 +m2θ and this upper bound will

become exact when θ → 0.

According to the representation result in Theorem 1, we provide the following equivalent deterministic
reformulation of problem (1).

Proposition 2. Suppose that Ξ = Rm1 × Rm2 . If p = ∞ and T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− , then problem (1)

is equivalent to

v∗ = min
x,y

c⊤x+
1

N

∑
j∈[N ]

[(Qζj
q + q)⊤yj + θ∥Q⊤yj∥1], (10a)

s.t. T (x)ζj
T +Wyj − θ|T (x)|e ≥ h(x),∀j ∈ [N ], (10b)

x ∈ X ,yj ∈ Rn2 ,∀j ∈ [N ]. (10c)

The following example illustrates how to use the proposed formulation in DR-RFLP.

Example 2. Consider DR-RFLP in Example 1. Suppose the reference distance is ∥ · ∥∞ and the support of

ξ̃ is Rn1 × Rℓ. Since the coefficients of uncertain parameters δ̃ in the constraints (3b) always have the same
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sign, according to Proposition 2, DR-RFLP can be equivalently formulated as the following mixed integer

linear program (MILP):

v∗ = min
x,y

c⊤x+
1

N

∑
j∈[N ]

∑
t∈[ℓ]

∑
s∈[n1+1]

ĉts(d̂
j
t + θ)yjts, (11a)

s.t.
∑

s∈[n1+1]

yjts = 1,∀j ∈ [N ],∀t ∈ [ℓ], (11b)

yjts ≤ (δ̂js − θ)xs,∀j ∈ [N ],∀t ∈ [ℓ],∀s ∈ [n1], (11c)

x ∈ {0, 1}n1 ,yj ∈ Rℓ×n1
+ ,∀j ∈ [N ]. (11d)

3.2. Tractable Reformulation II: With Objective Uncertainty Only
If there are only objective uncertainty involved in problem (1), then the function Z(x) always has a

tractable representation provided that the reference distance is ∥ · ∥p for any p ∈ [1,∞].

Theorem 2. Suppose that Ξ = Rm1 × {ξT }. Then for any p ∈ [1,∞], the function Z(x) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + θ∥Q⊤y∥p∗ : T (x)ξT +Wy ≥ h(x)
}
, (12)

where ∥ · ∥p∗ denotes the dual norm of ∥ · ∥p with p∗ = p
p−1 .

Proof: Since Ξ = Rm1 × {ξT }, (6) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq

{
(h(x)− T (x)ξT )

⊤π : ∥ξq − ζj
q∥p ≤ θ,W⊤π = Qξq + q

}
. (13)

Let y denote the dual variables of the constraints W⊤π = Qξq + q. Since the inner supremum of (13) is
essentially strictly feasible, according to the strong duality of conic programming [5], (13) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

min
y∈Rn2

sup
π∈Rℓ

+,ξq

{
(h(x)− T (x)ξT )

⊤π + y⊤(Qξq + q −W⊤π) : ∥ξq − ζj
q∥p ≤ θ

}
,

which is further equivalent to (12) by optimizing over (π, ξq). □
We make the following remarks about Theorem 2 and its corresponding formulation (12).

(i) For any rational p ∈ [1,∞], the penalty term θ∥Q⊤y∥p∗ is second order conic representable [5]. There-
fore, (12) can be further reformulated as a second order conic program; and

(ii) The penalty term, θ∥Q⊤y∥p∗ in the objective, enforces the robustness of the proposed model due to
ambiguous distributional information, which has been observed by [19, 10, 47, 48] for DRO under τ -
Wasserstein balls. This term will vanish if more and more observations have been made to drive the
Wasserstein radius to 0.

We provide the following equivalent deterministic reformulation of problem (1) with objective uncer-
tainty only.

Proposition 3. Suppose that Ξ = Rm1 × {ξT }. Then for any p ∈ [1,∞], problem (1) is equivalent to

v∗ = min
x,y

c⊤x+
1

N

∑
j∈[N ]

[
(Qζj

q + q)⊤yj + θ∥Q⊤yj∥p∗
]
, (14a)

s.t. T (x)ξT +Wyj ≥ h(x),∀j ∈ [N ], (14b)

x ∈ X ,yj ∈ Rn2 ,∀j ∈ [N ]. (14c)
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3.3. Tractable Reformulation III: With Constraint Uncertainty Only
If there are only constraint uncertainty involved in problem (1), then the function Z(x) can have a

tractable representation given that the reference distance when p = 1.

Theorem 3. Suppose that Ξ = {ξq} × Rm2 and p = 1. Then the function Z(x) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

max
r∈{−1,1}

max
i∈[m2]

min
y∈Rn2

{
(Qξq + q)⊤y : T (x)ζj

T +Wy − θrT (x)ei ≥ h(x)
}
. (15)

Proof: See Appendix A.1. □
We make the following remarks about Theorem 3 and its corresponding formulation (15).

(i) Clearly, since problem (1) with constraint uncertainty only is a special case of general problem (1),
thus the result from Theorem 1 directly follows and is not listed here;

(ii) In [25], the authors also proved that under the setting of Theorem 3, problem (1) with 1-Wasserstein
ambiguity set is tractable. However, our formulation and required proof technique are quite different
from theirs;

(iii) To obtain Z(x), one needs to solve 2m1 linear programs for each j ∈ [N ];

(iv) If T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− , then due to monotonicity, we must have optimal r∗ = 1 or r∗ = −1,
respectively. Thus, for these cases, one only needs to solve m1 linear programs instead of 2m1 for each
j ∈ [N ]; and

(v) The penalty term, −θrT (x)ei in the constraints, enforces the robustness of the proposed model due
to ambiguous distributional information.

In view of the result in Theorem 3, we provide the following equivalent deterministic reformulation of
problem (1).

Proposition 4. Suppose that Ξ = {ξq} × Rm2 and p = 1. Then problem (1) is equivalent to

v∗ = min
x,η

c⊤x+
1

N

∑
j∈[N ]

ηj ,

s.t. ηj ≥ (Qξjq + q)⊤yijr,∀j ∈ [N ],∀i ∈ [m1],∀r ∈ {−1, 1},

T (x)ζj
T +Wyijr − θrT (x)ei ≥ h(x),∀j ∈ [N ],∀i ∈ [m1],∀r ∈ {−1, 1},

x ∈ X ,yijr ∈ Rn2 ,∀j ∈ [N ],∀i ∈ [m1],∀r ∈ {−1, 1}.

Another special case of problem (1) without objective uncertainty is that the dual constraint system
of (2) is bounded and has a small number of extreme points. In this case, equivalently, we can represent
the recourse function in the form of piece-wise max of a finite number of affine functions in the random
parameters, and obtain the tractable reformulation for any reference distance ∥ · ∥p for any p ∈ [1,∞]. This
result is summarized below.

Proposition 5. Suppose that Ξ = Rτ and z(x) = supP∈P EP[maxi∈[m]{ai(x)
⊤ξ + di(x)}] with affine functions

ai(x) : Rn1 → Rτ and di(x) : Rn1 → R for each i ∈ [m]. Then

• Function z(x) is equivalent to

z(x) =
1

N

∑
j∈[N ]

max
i∈[m]

[
ai(x)

⊤ζ̂j + di + θ∥ai(x)∥p∗
]
. (16)
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• Problem (1) is equivalent to

v∗ = min
x,η

c⊤x+
1

N

∑
j∈[N ]

ηj : ηj ≥ ai(x)
⊤ζ̂j + di + θ∥ai(x)∥p∗,∀j ∈ [N ],∀i ∈ [m],x ∈ X

 . (17)

Proof: Since Ξ = Rτ and Z(x, ξ) = maxi∈[m]{ai(x)
⊤ξ + di(x)}, (7a) becomes

Z(x) =
1

N

∑
j∈[N ]

max
i∈[m]

sup
ξ

{
ai(x)

⊤ξ + di(x) : ∥ξ − ζj∥p ≤ θ
}
,

Above, optimizing ξ using dual norm of ∥ · ∥p, we arrive at (16).
The formulation (17) follows from a straightforward linearization. □

3.4. Complexity Analysis
We close this section by showing that for general reference distance ∥ · ∥p with p ∈ (1,∞], computing the

function Z(x) with N = 1 is NP-hard.

Proposition 6. Computing Z(x) is NP-hard whenever the reference distance is ∥ · ∥p with any p ∈ (1,∞], N = 1,

Ξ = {ξq} × Rm2 , h(x) = 0, ζ1
T = 0, and Wasserstein radius θ > 0.

Proof: See Appendix A.2. □
This complexity result suggests that the tractable results obtained in this section are the best we can get.

4. Binary Support: Tractable Reformulations and Complexity Analysis

In this section, we consider one of the random parameters to be continuous, i.e., either of ξ̃q, ξ̃T is
continuous. Some practical stochastic programming applications might involve binary random parameters.
For instance, in the reliable facility location problem with probabilistic disruptions [15, 36], the disruption
parameters are in fact binary, i.e., P{δ̃ ∈ {0, 1}n1} = 1; in the stochastic power systems with contingencies
[51, 53], the availability of a system component is also binary supported. Motivated by these applications, in
this section, we explore the tractable representations of the function Z(x) when one of random parameters
ξ̃q, ξ̃T is binary, i.e., we consider either ξ̃q ∈ {0, 1}m1 or ξ̃T ∈ {0, 1}m2 , and the other random parameters
are continuous. Our complexity analysis shows that it is unlikely to obtain any tractable results when both
random parameters ξ̃q, ξ̃T are binary, and thus we leave it to interested readers. Note that different from
the setting of this paper, robust programs with the mixed-integer uncertainty set were studied in a recent
work [38].

4.1. Tractable Reformulation I: General Problem (1) with L∞ Reference Distance
For the general problem (1) with objective uncertainty, the function Z(x) has a tractable representation

given that the reference distance is ∥ · ∥p = ∥ · ∥∞ (i.e., p = ∞).

Theorem 4. Suppose p = ∞ and T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− .

(i) If Ξ = Rm1 × {0, 1}m2 , then the function Z(x) is equivalent to

Z(x) =


1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + θ∥Q⊤y∥1 : −(−T (x))+e+Wy ≥ h(x)
}
, if θ ≥ 1

1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + θ∥Q⊤y∥1 : T (x)ζj
T +Wy ≥ h(x)

}
, if θ < 1

; (18)
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(ii) If Ξ = {0, 1}m1 × Rm2 and the polyhedron
{
(π, ξq) ∈ Rℓ

+ × [0, 1]m1 : W⊤π = Qξq + q
}

is integral, then

the function Z(x) is equivalent to

Z(x) =


1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y : T (x)ζj
T +Wy − θ|T (x)|e ≥ h(x)

}
, if θ ≥ 1

1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + e⊤(Q⊤y)+ : T (x)ζj
T +Wy − θ|T (x)|e ≥ h(x)

}
, if θ < 1

.

(19)

Proof: See Appendix A.3. □
We make the following remarks about Theorem 4 and its corresponding formulations (18) and (19).

(i) We can introduce auxiliary variables to linearize the terms ∥Q⊤y∥1, |T (x)|, (Q⊤y)+ and reformulate
the minimization problems (18) and (19) as linear programs;

(ii) The function Z(x) depends on whether the Wasserstein radius θ is greater than 1 or not. Particu-
larly, when θ < 1, the radius is too small to generate any new adversarial samples, as the support is
restricted to the binary points;

(iii) If the assumption that T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− does not hold, then (18) provides an upper
bound for Z(x) and this upper bound will become exact when θ → 0; and

(iv) If one of assumptions that (1) T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− ; and (2) the polyhedron {(π, ξq) ∈
Rℓ

+ × [0, 1]m1 : W⊤π = Qξq + q} is integral, does not hold, then (19) provides an upper bound for
Z(x) and this upper bound will become exact when θ → 0.

According to the representation results in Theorem 4, we provide the following equivalent deterministic
reformulation of problem (1).

Proposition 7. Suppose p = ∞, and T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− .

(i) If Ξ = Rm1 × {0, 1}m2 , then problem (1) is equivalent to

v∗ = min
x,y

c⊤x+
1

N

∑
j∈[N ]

[(Qζj
q + q)⊤yj + θ∥Q⊤yj∥1], (20a)

s.t.
−(−T (x))+e+Wyj ≥ h(x),∀j ∈ [N ], if θ ≥ 1

T (x)ζj
T +Wyj ≥ h(x),∀j ∈ [N ], if θ < 1

, (20b)

x ∈ X ,yj ∈ Rn2 ,∀j ∈ [N ]. (20c)

(ii) If Ξ = {0, 1}m1 × Rm2 and the polyhedron
{
(π, ξq) ∈ Rℓ

+ × [0, 1]m1 : W⊤π = Qξq + q
}

is integral, then

RTSP (1) is equivalent to

v∗ = min
x,y,σ

c⊤x+
1

N

∑
j∈[N ]

[(Qζj
q + q)⊤yj + I(θ > 1)e⊤(Q⊤yj)+],

s.t. T (x)ζj
T +Wyj − θ|T (x)|e ≥ h(x),∀j ∈ [N ],

σj ≥ Q⊤yj ,∀j ∈ [N ],

x ∈ X ,yj ∈ Rn2 ,∀j ∈ [N ].
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We next illustrate the proposed formulation (20) using Example 1, where we realize the fact that support
of disruption risks is binary, i.e., δ̃ ∈ {0, 1}n1 .

Example 3. Following the notation in Example 1, let us consider DR-RFLP with both demand and dis-

ruption uncertainties. We further suppose that the reference distance is ∥ · ∥∞ and the support of ξ̃ is

{0, 1}n1 × Rℓ. Since the coefficients of uncertain parameters in the constraints (3b) have the same sign,

according to Proposition 7, DR-RFLP can be equivalently formulated as the following MILP:

v∗ = min
x,y

c⊤x+
1

N

∑
j∈[N ]

∑
t∈[ℓ]

∑
s∈[n1+1]

ĉts(d̂
j
t + θ)yjts, (21a)

s.t.
∑

s∈[n1+1]

yjts = 1,∀j ∈ [N ],∀t ∈ [ℓ], (21b)

yjts ≤ I(θ < 1)δ̂jsxs,∀j ∈ [N ],∀t ∈ [ℓ],∀s ∈ [n1], (21c)

x ∈ {0, 1}n1 ,yj ∈ Rℓ×n1
+ ,∀j ∈ [N ]. (21d)

Clearly, formulation (21) is less conservative than (11), since the right-hand sides of constraints (21c) are no

smaller than those in (11c). This demonstrates that exploring binary support can indeed help reduce the

conservatism of the distributionally robust models. □

4.2. Tractable Reformulation II: With Objective Uncertainty Only
Unlike Theorem 2, in general, we cannot provide tractable reformulations for the problem (1) with only

binary objective uncertainty, and its complexity analysis is postponed to Section 4.4. Instead, we provide a
special case where the tractable reformulation can be derived.

Theorem 5. Suppose that Ξ = {0, 1}m1 × {ξT } and the polyhedron(π, ξq) ∈ Rℓ
+ × [0, 1]m1 : W⊤π = Qξq + q,

∑
t∈C0(ζ

j
q)

ξqt +
∑

t∈C1(ζ
j
q)

(1− ξqt) ≤ κ


is integral for all j ∈ [N ] and integer κ ∈ Z+, where sets C0(ζj

q ) := {t ∈ [m1] : ζ
j
qt = 0} and C1(ζj

q ) := {t ∈ [m1] :

ζjqt = 1}. Then for any p ∈ [1,∞), the function Z(x) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

min
y∈Rn2 ,λ∈R+,σ∈Rm1

+

{
(Qζj

q + q)⊤y + ⌊θp⌋λ+ e⊤σ : T (x)ξT +Wy ≥ h(x),

λ+ σt ≥ (Q⊤y)t,∀t ∈ C0(ζj
q ), λ+ σt ≥ −(Q⊤y)t,∀t ∈ C1(ζj

q )
}
. (22)

Proof: Since p ∈ [1,∞) and Ξ = {0, 1}m1 × {ξT }, thus (6) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq∈{0,1}m1

{
(h(x)− T (x)ξT )

⊤π : ∥ξq − ζj
q∥p ≤ θ,W⊤π = Qξq + q

}
. (23a)

Since both ξq, ζ
j
q ∈ {0, 1}m1 , let sets C0(ζj

q ) := {t ∈ [m1] : ζ
j
qt = 0} and C1(ζj

q ) := {t ∈ [m1] : ζ
j
qt = 1}.

Therefore, we have the following linearization results:

∥ξq − ζj
q∥pp =

∑
t∈C0(ζ

j
q)

ξqt +
∑

t∈C1(ζ
j
q)

(1− ξqt). (23b)
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Thus, (23a) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq∈{0,1}m1

{
(h(x)− T (x)ξT )

⊤π :

∑
t∈C0(ζ

j
q)

ξqt +
∑

t∈C1(ζ
j
q)

(1− ξqt) ≤ ⌊θp⌋,W⊤π = Qξq + q

 . (23c)

Since the constraint system of the inner supremum (23c) is integral according to our assumption, thus, we
can relax the binary variables to be continuous. Thus, we have

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq∈[0,1]m1

{
(h(x)− T (x)ξT )

⊤π :

∑
t∈C0(ζ

j
q)

ξqt +
∑

t∈C1(ζ
j
q)

(1− ξqt) ≤ ⌊θp⌋,W⊤π = Qζj
q +Q(ξq − ζj

q ) + q

 . (23d)

Let y denote the dual variables of the constraints W⊤π = Qζj
q +Q(ξq − ζj

q ) + q, λ be the dual variable of
constraint

∑
t∈C0(ζ

j
q)
ξqt +

∑
t∈C1(ζ

j
q)
(1− ξqt) ≤ ⌊θp⌋, and σ be the dual variables of constraints ξq ≤ e. Then

according to the strong duality of linear programming due to sufficiently expensive recourse assumption,
(23d) is equivalent to (22). □

We make the following remarks about Theorem 5 and its corresponding formulation (22).

(i) Clearly, since problem (1) with objective uncertainty only is a special case of general problem (1), thus
the result of Theorem 4 directly follows and is not listed here;

(ii) The penalty term ⌊θp⌋λ + e⊤σ with auxiliary variables λ, δ is used to enforce the robustness of the
formulation. This penalty term becomes∑

t∈C0(ζ
j
q)

((Q⊤y)t)+ +
∑

t∈C1(ζ
j
q)

(−(Q⊤y)t)+

if θp ≥ m1; and

(iii) If the integrality assumption of the polyhedra in Theorem 5 does not hold, then (22) provides an upper
bound for the function Z(x) and this upper bound will become exact when θ → 0.

According to the representation results in Theorem 5, we provide the following equivalent deterministic
reformulation of problem (1).

Proposition 8. Suppose that Ξ = {0, 1}m1 × {ξT } and the polyhedron(π, ξq) ∈ Rℓ
+ × [0, 1]m1 : W⊤π = Qξq + q,

∑
t∈C0(ζ

j
q)

ξqt +
∑

t∈C1(ζ
j
q)

(1− ξqt) ≤ κ


is integral for all j ∈ [N ] and integer κ ∈ Z+, where sets C0(ζj

q ) := {t ∈ [m1] : ζ
j
qt = 0} and C1(ζj

q ) := {t ∈ [m1] :

ζjqt = 1}. Then for any p ∈ [1,∞), problem (1) is equivalent to

v∗ = min
x,y

c⊤x+
1

N

∑
j∈[N ]

[(Qζj
q + q)⊤yj + ⌊θp⌋λj + e⊤σj ],

s.t. T (x)ξT +Wyj ≥ h(x),∀j ∈ [N ],

λj + σj
t ≥ (Q⊤yj)t,∀j ∈ [N ],∀t ∈ C0(ζj

q ),

λj + σj
t ≥ −(Q⊤yj)t,∀j ∈ [N ],∀t ∈ C1(ζj

q ),
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x ∈ X ,yj ∈ Rn2 , λj ,σj ∈ Rm1 ,∀j ∈ [N ].

4.3. Tractable Reformulation III: With Constraint Uncertainty Only
Similarly, we provide special cases of problem (1) with only binary constraint uncertainty such that the

tractable reformulations can be derived.

Theorem 6. Suppose that Ξ = {ξq}×{0, 1}m2 , p ∈ [1,∞), and θ ∈ [1, p
√
2). Then the function Z(x) is equivalent

to

Z(x) =
1

N

∑
j∈[N ]

max
i∈[m2+1]

min
y∈Rn2

{
(Qξjq + q)⊤y : T (x)ζ̂ij

T +Wy ≥ h(x)
}
, (24)

where for each i ∈ [m2 + 1] and ζ̂ij
T = ζj

T +


0, if i = m2 + 1

ei, if i ∈ C0(ζj
T )

−ei, if i ∈ C1(ζj
T )

, and sets C0(ζj
T ) := {t ∈ [m2] : ζ

j
T t = 0} and

C1(ζj
T ) := {t ∈ [m2] : ζ

j
T t = 1}.

Proof: See Appendix A.4. □
We make the following remarks about Theorem 6 and its corresponding formulation (24).

(i) To evaluate the function Z(x), one needs to solve m1 + 1 linear programs for each j ∈ [N ];

(ii) If θ ∈ [0, 1), then according to the proof of Theorem 6,

Z(x) =
1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qξjq + q)⊤y : T (x)ζj

T +Wy ≥ h(x)
}
,

i.e., the function Z(x) is equivalent to its sampling average approximation counterpart.

Below provides an equivalent deterministic reformulation of problem (1).

Proposition 9. Suppose that Ξ = {ξq} × {0, 1}m2 , p ∈ [1,∞), and θ ∈ [1, p
√
2). Then problem (1) is equivalent to

v∗ = min
x,η

c⊤x+
1

N

∑
j∈[N ]

ηj ,

s.t. ηj ≥ (Qξq + q)⊤yij ,∀j ∈ [N ],∀i ∈ [m2 + 1],

T (x)ζ̂ij
T +Wyij ≥ h(x),∀j ∈ [N ],∀i ∈ [m2 + 1],

x ∈ X ,yij ∈ Rn2 ,∀j ∈ [N ], i ∈ [m2 + 1],

where {ζ̂ij
T }i∈[m2+1],j∈[N ] are defined in Theorem 6.

We note that if the number of the extreme points of dual constraint system of (2) is small, then equiva-
lently, we can represent the recourse function in the form of piece-wise max of affine functions in the ran-
dom parameters, and the tractable reformulation can be extended to the case with any reference distance
∥ · ∥p such that p ∈ [1,∞).

Proposition 10. Suppose that Ξ = {0, 1}τ , p ∈ [1,∞), and z(x) = supP∈P EP[maxi∈[m]{ai(x)
⊤ξ+ di(x)}] with

affine functions ai(x) : Rn1 → Rτ and di(x) : Rn1 → R for each i ∈ [m]. Then
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• Function z(x) is equivalent to

z(x) =
1

N

∑
j∈[N ]

max
i∈[m]

sup
ξ∈[0,1]τ

ai(x)
⊤ξ + di(x) :

∑
t∈C0(ζj)

ξt +
∑

t∈C1(ζj)

(1− ξt) ≤ ⌊θp⌋

 , (25)

where sets C0(ζj) := {t ∈ [τ ] : ζjt = 0} and C1(ζj) := {t ∈ [τ ] : ζjt = 1}; and

• Problem (1) is equivalent to

v∗ = min
x,η,λ,σ

c⊤x+
1

N

∑
j∈[N ]

ηj , (26a)

s.t. ηj ≥ λij⌊θp⌋+ ai(x)
⊤ζj + di(x),∀j ∈ [N ],∀i ∈ [m], (26b)

λij + σij
t ≥ ait(x),∀j ∈ [N ],∀i ∈ [m],∀t ∈ C0(ζj), (26c)

λij + σij
t ≥ −ait(x),∀j ∈ [N ],∀i ∈ [m],∀t ∈ C1(ζj), (26d)

x ∈ X , λij ∈ R+,σ
ij ∈ Rτ

+,∀j ∈ [N ],∀i ∈ [m]. (26e)

Proof: See Appendix A.5. □
We will illustrate the proposed formulation in Proposition 9 using Example 1, where we consider that

there is no demand uncertainty, i.e., the only uncertain parameters are facility disruptions, and the support
of random disruptions is {0, 1}n1 .

Example 4. Following the notation in Example 1, let us consider DR-RFLP with only disruption risks, i.e.,

the demand is deterministic satisfying P{d̃ = d} = 1.

Suppose the reference distance is ∥ · ∥1, the support of ξ̃ is {0, 1}n1 × {d}, and the Wasserstein radius

θ ∈ [1, p
√
2). According to Proposition 9, DR-FRLP with disruption risks can be equivalently formulated as

the following MILP:

v∗ = min
x,y

c⊤x+
1

N

∑
j∈[N ]

ηj , (27a)

s.t. ηj ≥
∑
t∈[ℓ]

∑
s∈[n1+1]

ĉtsdty
ij
ts,∀j ∈ [N ],∀i ∈ [n1 + 1], (27b)

∑
s∈[n1+1]

yijts = 1,∀j ∈ [N ],∀t ∈ [ℓ],∀i ∈ [n1 + 1], (27c)

yijts ≤ δ̄ijs xs,∀j ∈ [N ],∀t ∈ [ℓ],∀i ∈ [n1 + 1],∀s ∈ [n1], (27d)

x ∈ {0, 1}n1 ,yij ∈ Rℓ×n1
+ ,∀j ∈ [N ],∀i ∈ [n1 + 1], . (27e)

where for each i ∈ [n1 + 1] and δ̄ijT = δ̂j +


0, if i = n1 + 1

ei, if i ∈ C0(δ̂j)

−ei, if i ∈ C1(δ̂j)

. □

4.4. Complexity Analysis
Finally, we close this section by showing that for general reference distance ∥ · ∥p with p ∈ [1,∞], either

with objective uncertainty only or with constraint uncertainty only, computing the function Z(x) with
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N = 1 can be NP-hard.

Proposition 11. Computing Z(x) is NP-hard for any p ∈ [1,∞] whenever

(i) (Without Constraint Uncertainty) N = 1, Ξ = {0, 1}m1 × {ξT }, h(x) = 0,T (x) = 0, and Wasserstein

radius θ ≥ p
√
m1; or

(ii) (Without Objective Uncertainty) N = 1, Ξ = {ξq} × {0, 1}m2 , h(x) = 0,T (x) = const., and Wasserstein

radius θ ≥ p
√
m2.

Proof: See Appendix A.6. □
The results in Proposition 11 clearly imply that computing the optimal value of problem (1) is also NP-

hard.

Corollary 1. Computing the optimal value of problem (1) is NP-hard for any p ∈ [1,∞] whenever

(i) (Without Constraint Uncertainty) N = 1, Ξ = {0, 1}m1 × {ξT }, h(x) = 0,T (x) = 0, and Wasserstein

radius θ ≥ p
√
m1; or

(ii) (Without Objective Uncertainty) N = 1, Ξ = {ξq} × {0, 1}m2 , h(x) = 0,T (x) = const., and Wasserstein

radius θ ≥ p
√
m2.

5. Numerical Illustration

In this section, we present a numerical study to demonstrate the effectiveness of the proposed formula-
tions and also show how to use cross-validation to choose a proper Wasserstein radius θ.

For the demonstration purpose, we studied two models, i.e, Model (11) and Model (21) from Example 1
and Example 3, respectively. We used normalized 49-node instances provided in [15], and thus in these two
models, ℓ = n1 = 49. The fixed cost and coordinates of candidate locations can be found at the following
link https://drive.google.com/file/d/11-oc9xX2-tTlSxkNuZhZ-qZlo7xQq80J/view?usp=
sharing. We assumed that disruption happens independently and each location has a probability of
p ∈ {0.01, 0.05} to be disrupted, i.e., P{δ̃i = 0} = p and P{δ̃i = 1} = 1 − p. To ensure the consistency
between random vectors δ̃ and d̃, we normalized d̃ such that for each t ∈ [ℓ] follows i.i.d uniform distribu-
tion in the range between 0.05 and 1.0. We also computed the unit transportation cost

ĉts = 100× Euclidean distance between locations t ∈ [ℓ] and j ∈ [n1].

Finally, for the emergency facility (i.e., dummy facility), we assumed that its unit transportation cost is
M = 10, 000.

To test these two models, we generate N = 100 samples of (δ̃, d̃), where the computational results are
displayed in Table 1. In Table 1, the Wasserstein radius θ varies from 0 to 0.18, where θ = 0, both models
are reduced to their sampling average approximation counterpart (SAA model) and for each model, we use
Opt.Val., Time, and Built Facilities to denote optimal values, computational time, and built facilities output
by the model, respectively. To evaluate the robustness of the solution and choose a proper Wasserstein
radius, we generated 100 additional samples, evaluated their corresponding objective function values, and
computed the 95% confidence intervals of their mean values, which are displayed in the columns titled
“Confidence Interval”. All the tested instances were executed on a MacBook Pro with a 2.80 GHz processor
and 16GB RAM with a call of the commercial solver Gurobi (version 7.5, with default settings).

From Table 1, we see that all the instances can be solved to the optimality within 1 minute, where Model
(21) takes a slightly shorter time. We see that when θ = 0, the SAA model underestimates the cost, where
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the underestimation mainly comes from the expected transportation cost (i.e., wait-and-see cost). When
the Wasserstein radius θ increases, the total cost of both Model (11) and Model (21) increase. However,
it is seen that for the same θ > 0, the total cost of Model (21) is significantly smaller than that of Model
(11). This demonstrates that exploring support information of random parameters can help reduce the risk
of distributional uncertainty. In addition, we also see that the set of built facilities of Model (21) does not
change when θ grows to 0.16. This demonstrates that the first-stage results from SAA can be robust. When
the probability of disruptions Pd increases from 0.01 to 0.05, we see that Model (11) does not allow us to
build any facility due to disruptions when θ > 0, while Model (21) still works and finds appropriate facility
locations. This further demonstrates the less conservatism of Model (21).

To choose a proper Wasserstein radius, we suggest to select the smallest θ such that its corresponding
total cost is beyond the confidence interval. For example, when Pd = 0.01, the best Wasserstein radii of
Model (11) and Model (21) are θ = 0.02, while when Pd = 0.05, the best Wasserstein radius of Model (21)
are θ = 0.06.

Table 1: Numerical results of Model (11) and Model (21) from Example 1 and Example 3, where N = 100, ℓ = n1 = 49.

Pd θ
Model (11) Model (21)

Opt.Val. Time Built Facilities Confidence Interval Opt.Val. Time Built Facilities Confidence Interval

0.01

0.00 7288.04 7.78 [4, 25, 31, 35, 45] [7232.33, 7379.25] 7288.04 7.74

[4, 25, 31, 35, 45] [7232.33, 7379.25]

0.02 7998.84 10.72
[13, 16, 25, 31] [7641.80, 7862.95]

7453.31 7.07

0.04 8344.45 18.82 7618.58 7.59

0.06 8673.85 17.64
[13, 16, 21, 30, 31] [7748.27, 7963.70]

7783.85 8.37

0.08 8995.13 24.35 7949.12 7.26

0.10 9295.40 41.71

[13, 16, 19, 21, 30, 31] [7986.44, 8123.68]

8113.81 13.71

0.12 9568.05 30.45 8279.66 12.70

0.14 9846.47 30.16 8444.93 13.38

0.16 10130.65 30.44 8610.20 15.21

0.18 10420.59 30.60 8769.09 14.53 [4, 21, 30, 31, 35, 45] [7335.91, 7470.26]

0.05

0.00 7498.95 9.75 [4, 25, 31, 35, 45] [7550.51, 7946.76] 7498.95 9.90

[4, 25, 31, 35, 45] [7550.51, 7946.76]

0.02 —-1 0.78 [] —- 7672.22 8.57

0.04 —- 0.81 [] —- 7845.49 8.04

0.06 —- 0.78 [] —- 8018.76 16.38

0.08 —- 1.34 [] —- 8192.03 18.62

0.10 —- 1.33 [] —- 8365.30 19.51

0.12 —- 1.29 [] —- 8538.57 19.77

0.14 —- 1.30 [] —- 8711.84 21.04

0.16 —- 0.85 [] —- 8885.11 15.68

0.18 —- 0.76 [] —- 9052.87 19.61 [4, 21, 30, 31, 35, 45] [7547.08, 7864.01]
1 —- means that all the customers will be served by the emergency facility.
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[2] Güzin Bayraksan and David K Love. Data-driven stochastic programming using phi-divergences. In
The Operations Research Revolution, pages 1–19. INFORMS, 2015.

[3] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. Robust
solutions of optimization problems affected by uncertain probabilities. Management Science, 59(2):341–
357, 2013.

[4] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28. Princeton
University Press, 2009.

[5] Ahron Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and
engineering applications, volume 2. SIAM, 2001.

[6] Dimitris Bertsimas, Xuan Vinh Doan, Karthik Natarajan, and Chung-Piaw Teo. Models for mini-
max stochastic linear optimization problems with risk aversion. Mathematics of Operations Research,
35(3):580–602, 2010.

[7] Dimitris Bertsimas, Shimrit Shtern, and Bradley Sturt. A data-driven approach for multi-stage linear
optimization. Available at Optimization Online, 2018.

[8] Dimitris Bertsimas, Shimrit Shtern, and Bradley Sturt. Two-stage sample robust optimization. arXiv
preprint arXiv:1907.07142, 2019.

[9] Dimitris Bertsimas, Melvyn Sim, and Meilin Zhang. Adaptive distributionally robust optimization.
Management Science, 65(2):604–618, 2018.

[10] Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust wasserstein profile inference and applications
to machine learning. arXiv preprint arXiv:1610.05627, 2016.

[11] Jose Blanchet and Karthyek Murthy. Quantifying distributional model risk via optimal transport.
Mathematics of Operations Research, 44(2):565–600, 2019.

[12] Zhi Chen, Daniel Kuhn, and Wolfram Wiesemann. Data-driven chance constrained programs over
wasserstein balls. arXiv preprint arXiv:1809.00210, 2018.

[13] Zhi Chen, Melvyn Sim, and Peng Xiong. Robust stochastic optimization. Available at Optimization
Online, 2019.

[14] Zhi Chen and Weijun Xie. Sharing the value-at-risk under distributional ambiguity. Available at
Optimization Online, 2019.

[15] T. Cui, Y. Ouyang, and Zuo-Jun Max Shen. Reliable facility location under the risk of disruptions.
Operations Research, 58(4):998–1011, 2010.

[16] Ting Dai and Wei Qiao. Trading wind power in a competitive electricity market using stochastic pro-
graming and game theory. IEEE Transactions on Sustainable Energy, 4(3):805–815, 2013.

[17] Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty with
application to data-driven problems. Operations Research, 58(3):595–612, 2010.

[18] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the em-
pirical measure. Probability Theory and Related Fields, 162(3-4):707–738, 2015.

18



[19] Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein distributional robustness and regularization in
statistical learning. arXiv preprint arXiv:1712.06050, 2017.

[20] Rui Gao and Anton J Kleywegt. Distributionally robust stochastic optimization with wasserstein dis-
tance. arXiv preprint arXiv:1604.02199, 2016.

[21] Clark R Givens, Rae Michael Shortt, et al. A class of wasserstein metrics for probability distributions.
The Michigan Mathematical Journal, 31(2):231–240, 1984.

[22] Joel Goh and Melvyn Sim. Distributionally robust optimization and its tractable approximations. Op-
erations research, 58(4-part-1):902–917, 2010.

[23] Mehdi Golari, Neng Fan, and Jianhui Wang. Two-stage stochastic optimal islanding operations under
severe multiple contingencies in power grids. Electric Power Systems Research, 114:68–77, 2014.

[24] Vincent Guigues, Anatoli Juditsky, and Arkadi Nemirovski. Non-asymptotic confidence bounds for
the optimal value of a stochastic program. Optimization Methods and Software, 32(5):1033–1058, 2017.

[25] Grani A Hanasusanto and Daniel Kuhn. Conic programming reformulations of two-stage distribu-
tionally robust linear programs over wasserstein balls. Operations Research, 66(3):849–869, 2018.

[26] Grani A Hanasusanto, Vladimir Roitch, Daniel Kuhn, and Wolfram Wiesemann. A distributionally
robust perspective on uncertainty quantification and chance constrained programming. Mathematical
Programming, 151:35–62, 2015.

[27] Grani A Hanasusanto, Vladimir Roitch, Daniel Kuhn, and Wolfram Wiesemann. Ambiguous joint
chance constraints under mean and dispersion information. Operations Research, 65(3):751–767, 2017.

[28] Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust optimiza-
tion. Available at http://www.optimization-online.org/DB_FILE/2012/11/3677.pdf,
2012.

[29] Zhengyang Hu and Guiping Hu. A two-stage stochastic programming model for lot-sizing and
scheduling under uncertainty. International Journal of Production Economics, 180:198–207, 2016.

[30] Ruiwei Jiang and Yongpei Guan. Data-driven chance constrained stochastic program. Mathematical
Programming, 158:291–327, 2016.

[31] Ruiwei Jiang and Yongpei Guan. Risk-averse two-stage stochastic program with distributional ambi-
guity. Operations Research, 66(5):1390–1405, 2018.

[32] S Soner Kara and S Onut. A stochastic optimization approach for paper recycling reverse logistics
network design under uncertainty. International Journal of Environmental Science & Technology, 7(4):717–
730, 2010.

[33] Richard M Karp. Reducibility among combinatorial problems, complexity of computer computations
(proc. sympos., ibm thomas j. watson res. center, yorktown heights, ny, 1972). Ò, 36:85–103, 1972.
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Appendix A. Proofs

A.1 Proof of Theorem 3

Theorem 3. Suppose that Ξ = {ξq} × Rm2 and p = 1. Then the function Z(x) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

max
r∈{−1,1}

max
i∈[m2]

min
y∈Rn2

{
(Qξq + q)⊤y : T (x)ζj

T +Wy − θrT (x)ei ≥ h(x)
}
. (15)

Proof: Since Ξ = {ξq} × Rm2 and p = 1, (6) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξT

{
(h(x)− T (x)ξT )

⊤π : ∥ξT − ζj
T ∥1 ≤ θ,W⊤π = Qξq + q

}
,

Above, optimizing ξT involving dual norm of ∥ · ∥1, we have

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+

{
(h(x)− T (x)ζj

T )
⊤π + θ∥T (x)⊤π∥∞ : W⊤π = Qξq + q

}
. (28)

Since
∥T (x)⊤π∥∞ = max

i∈[m2]
max{(T (x)⊤π)i,−(T (x)⊤π)i}

thus, (28) is further equivalent to

Z(x) =
1

N

∑
j∈[N ]

max
r∈{−1,1}

max
i∈[m2]

sup
π∈Rℓ

+

{
(h(x)− T (x)ζj

T )
⊤π + θre⊤i T (x)⊤π : W⊤π = Qξq + q

}
,

Taking the dual of inner supremum and using strong duality of linear programming, we arrive at (15). □

A.2 Proof of Proposition 6

Proposition 6. Computing Z(x) is NP-hard whenever the reference distance is ∥ · ∥p with any p ∈ (1,∞], N = 1,

Ξ = {ξq} × Rm2 , h(x) = 0, ζ1
T = 0, and Wasserstein radius θ > 0.

Proof: Let us first consider the NP-complete problem - feasibility problem of a general binary program [33]
which asks

(Feasibility problem of a general binary program) Given a rational matrix A ∈ Rt1×t2 and a
rational vector b ∈ Rt1 , is there exists a binary vector r ∈ {0, 1}t2 such that Ar = b?

In the representation (6) of the function Z(x), let ℓ = 2t2, n2 = m2 = t1 + t2, and T (x) =

[
It2
−It2

]
,W⊤ =[

A 0
It2 It2

]
,Q = 0, q =

(
b
e

)
,π =

(
r
s

)
. Since N = 1, Ξ = {ξq} × Rm2 , ζ1

T = 0, and θ > 0, according to the

proof of Theorem 3, Z(x) becomes

Z(x) = sup
r∈Rt2

+ ,s∈Rt2
+

{
θ
∥∥(r − s

)∥∥
p∗ : Ar = b, r + s = e

}
.

Since p ∈ (1,∞] and p∗ = p
p−1 ∈ [1,∞), thus clearly, Z(x) = θ p∗

√
t2 if and only if there exists a binary

feasible solution (r, s) ∈ {0, 1}t2 × {0, 1}t2 such that Ar = b, r + s = e, i.e., the binary program {r ∈
{0, 1}t2 : Ar = b} is feasible.

□
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A.3 Proof of Theorem 4

Theorem 4. Suppose p = ∞ and T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− .

(i) If Ξ = Rm1 × {0, 1}m2 , then the function Z(x) is equivalent to

Z(x) =


1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + θ∥Q⊤y∥1 : −(−T (x))+e+Wy ≥ h(x)
}
, if θ ≥ 1

1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + θ∥Q⊤y∥1 : T (x)ζj
T +Wy ≥ h(x)

}
, if θ < 1

; (18)

(ii) If Ξ = {0, 1}m1 × Rm2 and the polyhedron
{
(π, ξq) ∈ Rℓ

+ × [0, 1]m1 : W⊤π = Qξq + q
}

is integral, then

the function Z(x) is equivalent to

Z(x) =


1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y : T (x)ζj
T +Wy − θ|T (x)|e ≥ h(x)

}
, if θ ≥ 1

1

N

∑
j∈[N ]

min
y∈Rn2

{
(Qζj

q + q)⊤y + e⊤(Q⊤y)+ : T (x)ζj
T +Wy − θ|T (x)|e ≥ h(x)

}
, if θ < 1

.

(19)

Proof: We will split the proof into two parts.

(i) Since p = ∞ and Ξ = Rm1 × {0, 1}m2 , thus (6) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+

sup
ξT∈{0,1}m2 ,ξq

{
(h(x)− T (x)ξT )

⊤π :

∥ξq − ζj
q∥∞ ≤ θ, ∥ξT − ζj

T ∥∞ ≤ θ,W⊤π = Qξq + q
}
. (29a)

Above, ξT , ζ
j
T ∈ {0, 1}m2 and ∥ξT − ζj

T ∥∞ ≤ θ imply that if θ ≥ 1, then ξT ∈ {0, 1}m2 ; otherwise,
ξT = ζj

T . Hence, using the assumption that T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− , (29a) further reduces to

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq

{
(h(x)− I(θ < 1)T (x)ζj

T + I(θ ≥ 1)(−T (x))+e)
⊤π :

∥ξq − ζj
q∥∞ ≤ θ,W⊤π = Qξq + q

}
.

Following the similar linearization and dualization steps in Theorem 4, we arrive at (18).

(ii) Since p = ∞ and Ξ = {0, 1}m1 × Rm2 , thus (6) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+

sup
ξq∈{0,1}m1 ,ξT

{
(h(x)− T (x)ξT )

⊤π :

∥ξq − ζj
q∥∞ ≤ θ, ∥ξT − ζj

T ∥∞ ≤ θ,W⊤π = Qξq + q
}
. (29b)

Optimizing over ξT and using the assumption that T (x) ∈ Rℓ×m1
+ or T (x) ∈ Rℓ×m1

− , (29b) is now
equivalent to

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+

sup
ξq∈{0,1}m1

{
(h(x)− T (x)ζj

T )
⊤π + θe⊤|T (x)|⊤π :

∥ξq − ζj
q∥∞ ≤ θ,W⊤π = Qξq + q

}
. (29c)

Above, ξq, ζj
q ∈ {0, 1}m1 and ∥ξq − ζj

q∥∞ ≤ θ implies that if θ ≥ 1, then ξq ∈ {0, 1}m1 ; otherwise,
ξq = ζj

q . Thus, there are two sub-cases.
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(a) If θ < 1, then (29c) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+

{
(h(x)− T (x)ζj

T )
⊤π + θe⊤|T (x)|⊤π : W⊤π = Qζj

q + q
}
.

Let y denote the dual variables of constraints W⊤π = Qζj
q + q. Then according to the strong

duality of linear programming due to sufficiently expensive recourse assumption, we arrive at
the first part of (19);

(b) If θ ≥ 1, then (29c) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq∈{0,1}m1

{
(h(x)− T (x)ζj

T )
⊤π + θe⊤|T (x)|⊤π : W⊤π = Qξq + q

}
,

(29d)
Since the constraint system in (29d) is assumed to be integral, thus (29d) is equivalent to its
continuous relaxation

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξq∈[0,1]m1

{
(h(x)− T (x)ζj

T )
⊤π + θe⊤|T (x)|⊤π : W⊤π = Qξq + q

}
,

Let y denote the dual variables of constraints W⊤π = Qζj
q + q. Then according to strong

duality of linear programming due to sufficiently expensive recourse assumption, we arrive at
the second part of (19).

□

A.4 Proof of Theorem 6

Theorem 6. Suppose that Ξ = {ξq}×{0, 1}m2 , p ∈ [1,∞), and θ ∈ [1, p
√
2). Then the function Z(x) is equivalent

to

Z(x) =
1

N

∑
j∈[N ]

max
i∈[m2+1]

min
y∈Rn2

{
(Qξjq + q)⊤y : T (x)ζ̂ij

T +Wy ≥ h(x)
}
, (24)

where for each i ∈ [m2 + 1] and ζ̂ij
T = ζj

T +


0, if i = m2 + 1

ei, if i ∈ C0(ζj
T )

−ei, if i ∈ C1(ζj
T )

, and sets C0(ζj
T ) := {t ∈ [m2] : ζ

j
T t = 0} and

C1(ζj
T ) := {t ∈ [m2] : ζ

j
T t = 1}.

Proof: Since p ∈ [1,∞) and Ξ = {ξq} × {0, 1}m2 , (6) becomes

Z(x) =
1

N

∑
j∈[N ]

sup
π∈Rℓ

+,ξT∈{0,1}m2

{
(h(x)− T (x)ξT )

⊤π : ∥ξT − ζj
T ∥p ≤ θ,W⊤π = Qξq + q

}
, (30a)

According to (23b), and the fact that θ ∈ [1, p
√
2), we know that{

ξT ∈ {0, 1}m2 : ∥ξT − ζj
T ∥p ≤ θ

}
= {0} ∪ {ζj

T + ei}i∈C0(ζ
j
T ) ∪ {ζj

T − ei}i∈C1(ζ
j
T ) := {ζ̂ij

T }i∈[m2+1]

Hence, optimizing ξT first, we arrive at

Z(x) =
1

N

∑
j∈[N ]

max
i∈[m2+1]

sup
π∈Rℓ

+

{
(h(x)− T (x)ζ̂ij

T )⊤π : W⊤π = Qξq + q
}
, (30b)

Taking the dual of inner supremum and using strong duality of linear programming due to sufficiently
expensive recourse assumption, we arrive at (24). □
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A.5 Proof of Proposition 10

Proposition 10. Suppose that Ξ = {0, 1}τ , p ∈ [1,∞), and z(x) = supP∈P EP[maxi∈[m]{ai(x)
⊤ξ+ di(x)}] with

affine functions ai(x) : Rn1 → Rτ and di(x) : Rn1 → R for each i ∈ [m]. Then

• Function z(x) is equivalent to

z(x) =
1

N

∑
j∈[N ]

max
i∈[m]

sup
ξ∈[0,1]τ

ai(x)
⊤ξ + di(x) :

∑
t∈C0(ζj)

ξt +
∑

t∈C1(ζj)

(1− ξt) ≤ ⌊θp⌋

 , (25)

where sets C0(ζj) := {t ∈ [τ ] : ζjt = 0} and C1(ζj) := {t ∈ [τ ] : ζjt = 1}; and

• Problem (1) is equivalent to

v∗ = min
x,η,λ,σ

c⊤x+
1

N

∑
j∈[N ]

ηj , (26a)

s.t. ηj ≥ λij⌊θp⌋+ ai(x)
⊤ζj + di(x),∀j ∈ [N ],∀i ∈ [m], (26b)

λij + σij
t ≥ ait(x),∀j ∈ [N ],∀i ∈ [m],∀t ∈ C0(ζj), (26c)

λij + σij
t ≥ −ait(x),∀j ∈ [N ],∀i ∈ [m],∀t ∈ C1(ζj), (26d)

x ∈ X , λij ∈ R+,σ
ij ∈ Rτ

+,∀j ∈ [N ],∀i ∈ [m]. (26e)

Proof: Since Ξ = {0, 1}τ and Z(x, ξ) = maxi∈[m]{ai(x)
⊤ξ + di(x)}, (7a) becomes

Z(x) =
1

N

∑
j∈[N ]

max
i∈[m]

sup
ξ∈{0,1}τ

{
ai(x)

⊤ξ + di(x) : ∥ξ − ζj∥p ≤ θ
}
. (31a)

According to (23b), (31a) becomes

Z(x) =
1

N

∑
j∈[N ]

max
i∈[m]

sup
ξ∈{0,1}τ

ai(x)
⊤ξ + di(x) :

∑
t∈C0(ζj)

ξt +
∑

t∈C1(ζj)

(1− ξt) ≤ ⌊θp⌋

 . (31b)

Since the feasible region defined by cardinality constraint is integral, thus, we can relax the binary variables
in the inner supremum of (31b) to be continuous. Thus, we arrive at (25).

To derive the formulation (26), let us first take the dual of inner supremum with dual variables λ,σ and
use the strong duality of linear programming which holds due to sufficiently expensive recourse assump-
tion. Thus, (25) is equivalent to

Z(x) =
1

N

∑
j∈[N ]

max
i∈[m]

min
λ∈R+,σ∈Rm2

+

{
λ⌊θp⌋+ ai(x)

⊤ζj + di(x) :

λ+ σt ≥ ait(x),∀t ∈ C0(ζj), λ+ σt ≥ −ait(x),∀t ∈ C1(ζj)
}
.

Then the conclusion follows from a straightforward linearization. □

A.6 Proof of Proposition 11

Proposition 11. Computing Z(x) is NP-hard for any p ∈ [1,∞] whenever

(i) (Without Constraint Uncertainty) N = 1, Ξ = {0, 1}m1 × {ξT }, h(x) = 0,T (x) = 0, and Wasserstein

radius θ ≥ p
√
m1; or
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(ii) (Without Objective Uncertainty) N = 1, Ξ = {ξq} × {0, 1}m2 , h(x) = 0,T (x) = const., and Wasserstein

radius θ ≥ p
√
m2.

Proof: Similar to Proposition 6, we will prove the complexity result by reducing the problem to a well-
known NP-complete problem - feasibility problem of a general binary program [33].

Next, we split the proof into two cases- when Ξ = {0, 1}m1 × {ξT } and when Ξ = {ξT } × {0, 1}m2 .

(i) When N = 1,Ξ = {0, 1}m1 ×{ξT }, let h(x) = 0,T (x) = 0, W⊤ =

[
A
It2

]
,Q =

[
0
It2

]
, q =

(
b
0

)
,π = r,

and ℓ = t2,m1 = t2, n2 = t1 + t2. As θ ≥ p
√
m1, thus (6) becomes

Z(x) = sup
r∈Rt2

+ ,ξq

{
0 : ξq ∈ {0, 1}t2 ,Ar = b, r = ξq

}
.

Clearly, Z(x) = 0 if and only if the binary program {r ∈ {0, 1}t2 : Ar = b} is feasible.

(ii) When N = 1,Ξ = {ξq} × {0, 1}m2 , let h(x) = 0,T (x) = [et2+1 − e1, . . . , e2t2 − et2 , e1 − et2+1, . . . ,

et2 − e2t2 ], W⊤ =

[
A 0
It2 It2

]
,Q = 0, q =

(
b
e

)
,π =

(
r
s

)
, and ℓ = 2t2,m2 = 2t2, n2 = t1 + t2. As

θ ≥ p
√
m2, thus (6) becomes

Z(x) = sup
r∈Rt2

+ ,s∈Rt2
+ ,ξq

 ∑
i∈[t2]

(ξqi − ξq(t2+i))(ri − si) : ξq ∈ {0, 1}2t2 ,Ar = b, r + s = e

 ,

which is equivalent to

Z(x) = sup
r∈Rt2

+ ,s∈Rt2
+

 ∑
i∈[t2]

|(ri − si)| : Ar = b, r + s = e

 .

Above, Z(x) = t2 if and only if there exists a binary vector (r, s) ∈ {0, 1}m1 × {0, 1}m1 such that
Ar = b, r + s = e. Thus, Z(x) = t2 if and only if the binary program {r ∈ {0, 1}t2 : Ar = b} is
feasible.

□
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