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ABSTRACT
We first introduce the notion of weak sharpness for the solution sets of variational
inequality problems (in short, VIP) on Hadamard spaces. We then study the fi-
nite convergence property of sequences generated by the inexact proximal point
algorithm with different error terms for solving VIP under weak sharpness of the
solution set. We also give an upper bound on the number of iterations by which
the sequence generated by exact proximal point algorithm converges to a solution
of VIP. An example is also given to illustrate our results.
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1. Introduction

Ferris [1] introduced the notion of weak sharp minima for a convex optimization prob-
lem which is a generalization of the notion of sharp minima due to Polyak [2] to
include the case of non-singleton sets of solutions. This notion was later extensively
investigated by many researcher because it plays an important role in sensitivity anal-
ysis, error bounds and (finite) convergence analysis of a large number of optimization
algorithms, see, e.g., [3–6] and the references therein. Here, the finite convergence of
an algorithm means that the sequence generated by the algorithm terminates after
a finite number of iterations. Extending this notion, Patricksson [7] introduced the
notion of weak sharp solutions for variational inequality problems. Marcotte and Zhu
[8] established the necessary and sufficient condition for a solution set to be weakly
sharp in term of its dual gap function and also studied finite convergence of the se-
quences generated by some algorithms for solving VIP under the weak sharpness of
solution sets. Afterwards, weak sharpness of the solution set and its applications to
the finite convergence property of various algorithms for solving (generalized) varia-
tional inequality problems have been investigated by many authors, see, e.g., [9–16]
and references therein.

During the last decade, many important concepts and results in nonlinear analysis
and optimization theory have been extended from Euclidean spaces to the setting of
manifolds. For example, theory of subdifferential calculus for nonsmooth functions on
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Riemannian manifolds is developed in [17–19]. Various numerical methods for solving
variational inequalities, equilibrium problems, optimization problems, etc. on mani-
folds can be found in, e.g., [20–26] and references therein. The notion of monotonicity
in linear spaces were extended to manifold setting and have been studied intensively in
[23,27–29] and references therein. We refer the reader to [30,31] for the study of weak
sharp minima for constrained optimization problems on Riemannian manifolds and
to [26,32] for the study of finite convergence of proximal point algorithms for solving
optimization problems and for finding singular points of multivalued vector fields on
Hadamard manifolds under weak sharp minima-like conditions. The main advantages
of these extensions from Euclidean spaces to Riemannian manifolds are that noncon-
vex (constrained, nonmonotone, respectively) problems can be transformed to convex
(unconstrained, monotone, respectively) problems from Riemannian point of view.
Therefore, the extension of the concepts, techniques and results about weak sharpness
and finite convergence for variational inequality problems from Euclidean spaces to
Riemannian manifolds is natural and interesting.

Variational inequality problems on manifolds were first introduced and established
by Németh in [33] for single-valued vector fields on Hadamard manifolds. The results
were extended to Riemannian manifolds in [34] by Li et al. and to the set-valued vector
fields on Riemannian manifolds in [35] by Li and Yao. Numerical methods for solving
variational inequality problems on manifolds can be seen, for instances, in [23,35–38]
and references therein. The purpose of this paper is to introduce the notion of weak
sharp solution for variational inequality problems on Hadamard manifolds and study
the finite convergence of the inexact proximal point algorithms for solving monotone
variational inequalities under weak sharpness of the solution set extending some re-
sults from linear context to manifold context. More precisely, we extend the notion
of weak sharp solution for variational inequality problems from Euclidean setting to
Hadamard manifolds and present an abstract result on finite termination for the in-
exact proximal point algorithm under weak sharpness of the solution set. We then
present finite convergence results with different error terms. Finally, we give an upper
bound for number of iterations by which the sequence generated by the exact proxi-
mal point algorithm converges to a solution of VIP. An example is also presented to
illustrate the latter result.

2. Preliminaries

In this section we recall some basic definitions and notations of Riemannian geometry
which can be found in, for instances, [39–41].

Let M be a connected m-dimensional manifolds. If M is endowed with a Riemannian
metric 〈·, ·〉, with the corresponding norm denoted by || · ||, then M is a Riemannian
manifold. Let p ∈M . The tangent space of M at p is denoted by TpM and the tangent
bundle of M by TM = ∪x∈MTpM which is naturally a manifold. We denote by Bp the
closed unit ball of TpM , i.e.,

Bp := {v ∈ TpM : ||v|| ≤ 1}.

For a piecewise smooth curve γ : [a, b]→M joining p to q (i.e., γ(a) = p and γ(b) = q),
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we define the length of γ by using the metric as

L(γ) :=

∫ b

a
||γ′(t)||dt.

The Riemannian distance d(p, q) is defined by minimizing this length functional over
the set of all such curves joining p and q. This distance induces the original topology
on M . Given a nonempty set S ⊂M , the distance from p ∈M to S is defined by

d(p, S) := inf{d(p, q) : q ∈ S}.

Let ∇ be the Levi-Civita connection associated to (M, 〈·, ·〉) and γ be a smooth curve
in M . A vector filed V is said to be parallel along γ if ∇γ′V = 0. If γ′ itself is parallel
along γ, we say that γ is a geodesic and in this case ||γ′|| is constant. If ||γ′|| = 1,
then we say that γ is normalized. A geodesic joining p to q is said to be minimal if its
length equals d(p, q) and this geodesic is called a minimizing geodesic. A Riemannian
manifold is complete if geodesic is defined for all −∞ < t < +∞. The Hopf-Rinow
theorem asserts that if M is complete then any pair of points in M can be joined by
a minimal geodesic. Moreover, (M,d) is a complete metric space and bounded closed
subsets are compact.

Assume that M is complete. The exponential map expx : TpM →M at p is defined
by exppv := γv(1, p) for each v ∈ TpM , where γv(·, p) is the geodesic starting from p
with velocity v, that is, γ(0) = p and γ′(0) = v. It is easy to see that expptv = γv(t, p)
for any real number t and expp0 = γv(0, p) = p, where 0 is the zero tangent vector.
Note that the map expp is differentiable on TpM for any p ∈ M . Moreover, for any

p, q ∈M , we have d(p, q) = ||exp−1p q||.
A complete, simply connected Riemannian manifold of non-positive sectional curva-

ture is called a Hadamard manifolds. Throughout this paper, unless otherwise stated,
we always assume that M is an m-dimensional Hadamard manifold. Let p ∈ M . It
is known that the map exp : TpM → M is a diffeomorphism and for any two point
p, q ∈M , there exists a unique normalized geodesic joining p to q which is , in fact, a
minimal geodesic. Furthermore, for Hadamard manifolds, one of the most important
properties is the following comparison result which is taken from Proposition 4.5 of
[40] and will be useful in the sequel. Recall that a geodesic triangle ∆(p1p2p3) of a
Riemannian manifold is a set consisting of three points p1, p2 and p3 and three minimal
geodesics joining these points.

Proposition 2.1. (Comparison result for triangle geodesic). Let ∆(p1p2p3) be a
geodesic triangle. Denote, for each i = 1, 2, 3(mod 3), by γi : [0, `i] → M the geodesic
joining pi to pi+1, and set `i = L(γi) and αi = ∠(γ′i(0),−γ′i−1(`i−1)). Then

(i) α1 + α2 + α3 ≤ π;
(ii) `2i + `2i+1 − 2`i`i+1 cosαi+1 ≤ `2i−1;

(iii) `i+1 cosαi+2 + `i cosαi ≥ `i+2.

In terms of the distance and the exponential map, the inequality (ii) of Proposition
2.1 can be rewritten as follows

d2(pi, pi+1) + d2(pi+1, pi+2)− 2〈exp−1pi+1
pi, exp−1pi+1

pi+2〉 ≤ d2(pi−1, pi) (1)
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since

〈exp−1pi+1
pi, exp−1pi+1

pi+2〉 = d(pi, pi+1)d(pi+1, pi+2) cosαi+1.

A subset K ⊂M is said to be convex if for any two point p and q in K, the geodesic
joining p to q is contained in K, that is, if γ : [a, b] → M is a geodesic such that
γ(a) = p and γ(b) = q, then γ(ta+ (1− t)b) ∈ K for all t ∈ [0, 1]. The projection of a
point x ∈M onto a subset K of a Hadamard manifold M is defined by

P (x,K) := {p ∈ K : d(x, p) = d(x,K)}.

Proposition 2.2. [42] Let K be a closed convex subset of a Hadamard manifold M .
Then, for any x ∈ M , P (x,K) is a singleton set. Also, for any p ∈ M , the following
assertions are equivalent:

(i) y = P (p,K);
(ii) 〈exp−1y p, exp−1y q〉 ≤ 0 for all q ∈ K.

We now recall a definition of the normal cone and the tangent cone to a closed
convex subset of a Hadamard manifold; for more details see [18]. Let K be a closed
convex subset of M and let x ∈ K. The normal cone to K at x, denoted by NK(x), is
defined by

NK(x) = {v ∈ TxM : 〈v, exp−1x y〉 ≤ 0 for all y ∈ K}.

The tangent cone to K at x, denoted by TK(x), is defined by

TK(x) = {v ∈ TxM : 〈v, w〉 ≤ 0 for all w ∈ NK(x)}.

That is, TK(x) = [NK(x)]◦. Recalling that, if Z is a Hilbert space with inner product
〈·, ·〉 and S is subset of Z, then the polar S◦ of S is defined by S◦ = {v ∈ Z : 〈v, w〉 ≤
0 ∀w ∈ S}. If C be a closed convex subset of Z and x ∈ C, the normal cone to C at
x and the tangent cone to C at x are defined, respectively, by

NC(x) = {v ∈ Z : 〈v, y − x〉 ≤ 0 ∀y ∈ C},

and TC(x) = [NC(x)]◦.
Let X (M) denote the set of all univalued vector fields V : M → TM such that

V (x) ∈ TxM for each x ∈M .

Definition 2.3. Let M be a Hadamard manifold and X be a convex subset of M . A
vector field V ∈ X (M) is said to be monotone on X if for any x, y ∈ X, it holds

〈V (x), exp−1x y〉+ ≤ 〈V (y),−exp−1y x〉.

Let V ∈ X (M) and X be a closed convex subset of M . Németh [33] introduced the
variational inequality problem on Hadamard manifolds: find x ∈ X such that

〈V (x), exp−1x y〉 ≥ 0 for all y ∈ X. (2)

We denote by X∗ the solution set of VIP (2). Throughout this paper, we always assume
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that X∗ is nonempty. For nonemptiness of the solution set of variational inequality
problems on manifolds, we refer the reader to, for instance, [33–35]. Note that the
variational inequality problem (2) on Hadamard manifolds is an extension of classical
variational inequality problems. More precisely, if M = Rm, then (2) reduces to

find x ∈ X : 〈V (x), y − x〉 ≥ 0, for all y ∈ X. (3)

From [35, Corollary 4.7], we have the following result about the convexity of the
solution set of (2).

Proposition 2.4. If the vector field V is monotone on X, then the solution set X∗

of (2) is convex.

To conclude this section, we recall the following result which will be useful in the
sequel.

Lemma 2.5. [43] Suppose that {an} and {bn} are two sequences of nonnegative num-
bers such that an+1 ≤ an + bn for all n ≥ 1. If

∑∞
n=1 bn <∞, then limn→∞ an exists.

3. Weak sharpness and finite convergence results

In this section, we introduce the notion of weak sharpness for the solution set of vari-
ational inequality problems on Hadamard manifolds and study the finite convergence
of sequences generated by proximal point algorithm.

Definition 3.1. The solution set X∗ of VIP (2) is said to be weakly sharp if there is
a constant α > 0 such that

αBz ⊂ V (z) + [TX(z) ∩NX∗(z)]
◦, for each z ∈ X∗. (4)

The constant α is called the modulus of the weak sharpness of X∗.

Remark 1. When M = Rn, then (4) reduces to

αB ⊂ V (z) + [TX(z) ∩NX∗(z)]
◦, for each z ∈ X∗, (5)

where B is the closed unit ball in Rn. In this linear setting, if X∗ is weakly in the sense
of Marcotte and Zhu [8], i.e.,

−V (z) ∈ int

( ⋂
x∈X∗

[TX(x) ∩NX∗(x)]◦

)
, ∀z ∈ X∗,

then (5) holds.

Proposition 3.2. If X∗ is weakly sharp with modulus α > 0, then

〈V (P (x,X∗)), exp−1P (x,X∗)x〉 ≥ αd(x,X∗), for all x ∈ X. (6)
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If, in addition, V is monotone on X, then

−〈V (x), exp−1x P (x,X∗)〉 ≥ αd(x,X∗), for all x ∈ X. (7)

Proof. Let x ∈ X and set z = P (x,X∗). If x ∈ X∗, i.e., z = x, then (6) holds. Assume
that x 6∈ X∗. By the convexity of X and X∗, we have

exp−1z x ∈ TX(z) ∩NX∗(z) and d(x, z) = d(x,X∗) > 0.

Set

w =
exp−1z x

d(x, z)
.

Then, w ∈ Bz. By (4), one has αw − V (z) ∈ [TX(z) ∩NX∗(z)]
◦. Thus,

〈αw − V (z), exp−1z x〉 ≤ 0,

or, equivalently,

〈V (z), exp−1z x〉 ≥ 〈αw, exp−1z x〉 =

〈
α

exp−1z x〉
d(x, z)

, exp−1z x

〉
= α

||exp−1z x||2

d(x, z)
= αd(x, z) = αd(x,X∗).

Hence, (6) holds. If V is monotone, then

−〈V (x), exp−1x P (x,X∗)〉 ≥ 〈V (P (x,X∗)), exp−1P (x,X∗)x〉 ≥ αd(x,X∗),

i.e., (7) holds. This ends the proof.

Remark 2. In the linear case, i.e., when M = Rn, then (6) and (7) reduce respectively
to

〈V (P (x,X∗)), x− P (x,X∗)〉 ≥ αd(x,X∗), ∀x ∈ X, (8)

and

〈V (x), x− P (x,X∗)〉 ≥ αd(x,X∗), ∀x ∈ X. (9)

As in [10], if V is continuous, then both (8) and (9) imply (5). So it is natural to
rise the following open question: Does (6) (or, (7)) imply the weak sharpness of the
solution set X∗?

We are now going to study the finite convergence for sequences generated by the
proximal point algorithm. Consider the following inexact proximal point algorithm (in
short, IPPA): let x0 ∈ X and for each n ≥ 0,

〈λnV (xn+1)− (en+1 + exp−1xn+1
xn), exp−1xn+1

y〉 ≥ 0, ∀ y ∈ X, (10)
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where {en+1} is regarded as an error sequence and {λn} ⊂ (0,∞) is a stepsize sequence.
We note that when V is monotone, then the algorithm (10) is well defined (see, e.g.,
[24, Remark 3.2]).

We first present a result on the finite convergence of the above IPPA under an
abstract condition when the solution set of VIP (2) is weakly sharp.

Proposition 3.3. Let V be monotone and {xn} be a sequence generated by (10).
Assume that

lim
n→∞

d(xn, xn+1) + ||en+1||
λn

= 0. (11)

If X∗ is weakly sharp, then xn ∈ X∗ for all n sufficiently large.

Proof. Let z be a solution of the variational inequality problem (2). By (10) we have

〈λnV (xn+1)− (en+1 + exp−1xn+1
xn), exp−1xn+1

z〉 ≥ 0,

which implies that

−〈V (xn+1), exp−1xn+1
z〉 ≤ − 1

λn

(
〈en+1 + exp−1xn+1

xn, exp−1xn+1
z〉
)

≤ 1

λn

(
||en+1||+ ||exp−1xn+1

xn||
)
.||exp−1xn+1

z||

=
1

λn
(||en+1||+ d(xn+1, xn)) .d(xn+1, z) (12)

Assume that the conclusion is not true. Then, there is a subsequence {xnk} of {xn}
such that xnk 6∈ X∗ for all k. For each k, set znk = P (xnk , X

∗). Then, d(xnk , znk) =
d(xnk , X

∗) > 0. By Proposition 3.2, one has

−〈V (xnk), exp−1xnk znk〉 ≥ αd(xnk , X
∗) = αd(xnk , znk).

This, together with (12), yields

αd(xnk , znk) ≤
1

λnk−1
(||enk ||+ d(xnk , xnk−1)) .d(xnk , znk),

and then

α ≤ 1

λnk−1
(||enk ||+ d(xnk , xnk−1)) .

Letting k →∞ and using (11), one obtains that α ≤ 0. This is a contradiction. Thus,
xn ∈ X∗ for all n sufficiently large.

Remark 3. We can replace the condition (11) by the following stronger conditions:

lim inf
n→∞

λn > 0, and lim
n→∞

d(xn, xn+1) = lim
n→∞

||en+1|| = 0.

We next consider some special cases of the error terms. The first case is when the
sequence {||en||} is summable (see [14] for an analogous result in Hilbert spaces).
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Theorem 3.4. Let V be monotone and {xn} be a sequence generated by the IPPA
(10) with

lim inf
n→∞

λn > 0 and

∞∑
n=1

||en|| <∞ (13)

If X∗ is weakly sharp, then xn ∈ X∗ for all n sufficiently large.

Proof. Since {||en||} is summable, limn→∞ ||en|| = 0. By Proposition 3.3 and the
condition (13), it is enough to show that

lim
n→∞

d(xn, xn+1) = 0.

Let z be a solution of VIP (2). We have

〈V (z), exp−1z xn+1〉 ≥ 0.

Then, by the monotonicity of V ,

〈V (xn+1),−exp−1xn+1
z〉 ≥ 〈V (z), exp−1z xn+1〉 ≥ 0.

Since λn > 0, it follows from (10) that

〈en+1 + exp−1xn+1
xn,−exp−1xn+1

z〉 ≥ 〈V (xn+1),−exp−1xn+1
z〉 ≥ 0.

Hence,

〈exp−1xn+1
xn, exp−1xn+1

z〉 ≤ 〈en+1,−exp−1xn+1
z〉. (14)

Consider the geodesic triangle ∆(xnxn+1z). By (1), we have

d2(xn+1, xn) + d2(xn+1, z)− 2〈exp−1xn+1
xn, exp−1xn+1

z〉 ≤ d2(xn, z).

Combining with (14), one gets

d2(xn+1, z) ≤ d2(xn, z)− d2(xn+1, xn) + 2〈exp−1xn+1
xn, exp−1xn+1

z〉
≤ d2(xn, z)− d2(xn+1, xn) + 2〈en+1,−exp−1xn+1

z〉. (15)

This implies that

d2(xn+1, z)− d2(xn, z) ≤ 2〈en+1,−exp−1xn+1
z〉 (16)

We will show that

d(xn+1, z)− d(xn, z) ≤ 2||en+1|| for all n. (17)

Indeed, if exp−1xn+1
z = 0, i.e. d(xn+1, z) = 0, for some n, then (17) holds for that n.
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Assume now that exp−1xn+1
z 6= 0. It follows from (16) that

d2(xn+1, z)− d2(xn, z) ≤ 2||en+1||.||exp−1xn+1
z|| = 2||en+1||d(xn+1, z).

Equivalently,

(d(xn+1, z)− d(xn, z))

(
1 +

d(xn, z)

d(xn+1, z)

)
≤ 2||en+1||.

This implies that

d(xn+1, z)− d(xn, z) ≤ 2||en+1||,

that is, (17) holds. Then, by the assumption on {en} and Lemma 2.5, there exists
δ > 0 such that

lim
n→∞

d(xn, z) = δ.

Moreover, from (15), one has

d2(xn+1, xn) ≤ d2(xn, z)− d2(xn+1, z) + 2〈en+1,−exp−1xn+1
, z〉

≤ d2(xn, z)− d2(xn+1, z) + 2||en+1||.d(xn+1, z).

Letting n→∞, we obtain

lim
n→∞

d(xn+1, xn) = 0.

This ends the proof.

We now consider the case when en+1 conforms to the following condition

||en+1|| ≤ ηnd(xn+1, xn) with

∞∑
n=0

η2n <∞. (18)

For discussions on this condition, we refer the reader to [24] and references therein.

Theorem 3.5. Let V be monotone on X and {xn} and {en} be sequences generated
by the algorithm (10) and (18) with lim infn→∞ λn > 0. If X∗ is weakly sharp, then
xn ∈ X∗ for all n sufficiently large.

Proof. It is proved in [24], for a more general setting, that

lim
n→∞

d(xn+1, xn) = 0.

By (18), we also have that

lim
n→∞

||en|| = 0.

Applying Proposition 3.3, we conclude that xn ∈ X∗ for all n sufficiently large.
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Finally, we consider the case when en = 0 for all n. In this case, (10) reduces to the
(exact) proximal point algorithm: let x0 ∈ X and for each n ≥ 0,

〈λnV (xn+1)− exp−1xn+1
xn, exp−1xn+1

y〉 ≥ 0, ∀ y ∈ X. (19)

In this case, following the idea used in [10], one can obtain an upper bound for the
number of iterations for which a sequence generated by (19) reaches the solution set
of (2).

Theorem 3.6. Let {xn} be a sequence generated by (19) with λn ∈ [θ,∞) for some
θ > 0. If V is monotone and X∗ is weakly sharp with modulus α > 0, then {xn}
converges to a point in X∗ in at most κ+ 1 iterations with

κ ≤ d2(x0, X
∗)

α2θ2
.

Proof. Let z ∈ X∗. Using (15) with en+1 = 0, we have

d2(xn+1, z) ≤ d2(xn, z)− d2(xn+1, xn).

Then, for 1 ≤ N ∈ N, we have

d2(x0, z) ≥ d2(x1, z) + d2(x1, x0)

≥ d2(x2, z) + d2(x2, x1) + d2(x1, x0)

...

≥ d2(xN+1, z) +

N∑
k=0

d2(xk+1, xk)

≥
N∑
k=0

d2(xk+1, xk)

Thus, for all N ≥ 1, one has

d2(x0, X
∗) = inf

z∈X∗
d2(x0, z) ≥

N∑
k=0

d2(xk+1, xk). (20)

As in the proof of Theorem 3.4, it holds that

lim
n→∞

d(xn+1, xn) = 0.

Let κ be the smallest integer such that

d(xκ+1, xκ) < αθ. (21)

Assume that xκ+1 6∈ X∗, set zκ+1 = P (xκ+1, X
∗). It follows from Proposition 3.2 and
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(19) that

αd(xκ+1, zκ+1) = αd(xκ+1, X
∗)

≤ −〈V (xκ+1), exp−1xκ+1
zκ+1〉

≤ − 1

λκ
〈exp−1xκ+1xκ, exp−1xκ+1

zκ+1〉

≤ 1

λκ
||exp−1xκ+1xκ||.||exp−1xκ+1

zκ+1||

=
1

λκ
d(xκ+1, xκ).d(xκ+1, zκ+1).

Since d(xκ+1, zκ+1) > 0, using (21) and having in mind that λn ≥ θ for all n, we have

α ≤ 1

λκ
d(xκ+1, xκ) <

1

θ
.αθ = α,

which is a contradiction. Thus, xκ+1 ∈ X∗. By (20),

d2(x0, X
∗) ≥

κ−1∑
i=0

d2(xi+1, xi) ≥ κα2θ2.

Then,

κ ≤ d2(x0, X
∗)

α2θ2
.

This ends the proof.

Remark 4. It follows from Theorem 3.6 that if the stepsizes are large enough, i.e., θ
is large enough, then the PPA terminates after one iteration.

To conclude this paper, we present an example to illustrate our result.

Example 3.7. Let R++ = {x ∈ R : x > 0} and M = (R++, 〈·, ·〉) be the Riemannian
manifold with the Riemannian metric

〈u, v〉 :=
1

x2
uv, for x ∈M, and u, v ∈ TxM.

The Riemannian distance d : M ×M → R+ is given by

d(x, y) =

∣∣∣∣ln(xy
)∣∣∣∣ for all x, y ∈M.

The sectional curvature of M is zero and it holds that M is a Hadamard manifold. For
each x ∈M , the tangent plane TxM at x equals to R. The unique geodesic γ starting
from x = γ(0) ∈M with velocity v = γ′(0) ∈ TxM is defined by

γ(t) = xe(
v

x)t.
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Thus,

expxtv = xe(
v

x)t.

Moreover, for any x, y ∈M , we have

y = expx

(
d(x, y)

exp−1x y

d(x, y)

)
= xe

exp
−1
x y

xd(x,y)
d(x,y)

= xe
exp
−1
x y

x .

Hence, the inverse of exponential map is defined as

exp−1x y = x ln
(y
x

)
.

Let X = [1, 2], then X is a closed convex subset of M . Let α > 0 be a positive
number. We consider the vector field V : M → TM defined by

V (x) = −αx, for all x ∈M.

Let X∗ be the solution set of the variational inequality (2). Then, x ∈ X∗ if and only
if

〈V (x), exp−1x y〉 ≥ 0 for all y ∈ S.

Equivalently,

1

x2
(−αx).x ln

(y
x

)
≥ 0 for all y ∈ [1, 2].

This is equivalent to x = 2. Thus, X∗ = {2}. It is easy to see that NX∗(2) = R and
TX(2) = R− and

V (2) + [TX(2) ∩NX∗(2)]◦ = [−2α,+∞).

Thus,

2αB2 ⊂ V (2) + [TX(2) ∩NX∗(2)]◦,

i.e., X∗ is weakly sharp with modulus 2α.
Moreover, for any x, y ∈M , it holds that

〈V (x), exp−1x y〉 =
1

x2
(−αx).x ln

(y
x

)
= − 1

y2
(−αy).y ln

(
x

y

)
= 〈V (y),−exp−1y x〉.

Thus, V is monotone on M .
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λn = (n+ 1)/5(n+ 2) λn = 1/4 λn = 1

x0 1 1.5 1 1.5 1 1.5

x1 1.105171 1.657756 1.284025 1.926038 2 2

x2 1.262802 1.894203 1.648721 2 2 2

x3 1.467167 2 2 2 2 2

x4 1.721736 2 2 2 2 2

x5 2 2 2 2 2 2

x6 2 2 2 2 2 2

Table 1. Finite convergence for PPA

Now, we let α = 1 and consider the proximal point algorithm (19). In this case, (
19) is equivalent to

0 ≤ 1

x2n+1

(
λnV (xn+1)− exp−1xn+1

xn
)

exp−1xn+1
y

=
1

x2n+1

(
−λnxn+1 − xn+1 ln

(
xn
xn+1

))
xn+1 ln

(
y

xn+1

)
= −

[
λn + ln

(
xn
xn+1

)]
ln

(
y

xn+1

)
, for all y ∈ [1, 2].

Thus, [
λn + ln

(
xn
xn+1

)]
ln

(
y

xn+1

)
≤ 0, for all y ∈ [1, 2].

Therefore,

xn+1 =

{
eλnxn if eλnxn < 2,

2 otherwise
.

The finite convergence results with different stepsizes {λn} and different initial
point x0 are given in Table 1. One can see that the algorithm with suitable stepsize
terminates after one iteration.

Remark 5. It is easy to see that the map V in Example 3.7 is not monotone in the
Euclidean sense. Hence, we cannot apply existence results, for instances, [10,14], to
get finite convergence of the proximal point algorithm for solving the corresponding
variational inequality in the Euclidean setting.
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