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Abstract

Convex cones play an important role in nonlinear analysis and opti-
mization theory. In particular, specific normal cones and tangent cones
are known to be convex cones, and it is a crucial fact that they are
useful geometric objects for describing optimality conditions. As impor-
tant applications (especially, in the fields of optimal control with PDE
constraints, vector optimization and order theory) show, there are many
examples of convex cones with an empty (topological as well as algebraic)
interior. In such situations, generalized interiority notions can be useful.
In this article, we present new representations and properties of the rel-
ative algebraic interior (also known as intrinsic core) of relatively solid,
convex cones in real linear spaces (which are not necessarily endowed
with a topology) of both finite and infinite dimension. For proving our
main results, we are using new separation theorems where a relatively
solid, convex set (cone) is involved. For the intrinsic core of the dual
cone of a relatively solid, convex cone, we also state new representations
that involve the lineality space of the given convex cone. To empha-
size the importance of the derived results, some applications in vector
optimization are given.
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1 Introduction

In the last century, a lot of effort has been invested in deriving optimality conditions
for solutions of scalar optimization problems and corresponding generalizations given
by vector optimization problems. Clearly, the celebrated Karush-Kuhn-Tucker con-
ditions and the Fritz-John conditions have influenced many researchers in this field.
Due to the development of the field of convex analysis, certain useful geometric ob-
jects for describing optimality conditions has been proposed, such as tangent cones
and corresponding dual objects, namely the normal cones (see, e.g., Jahn [16, Ch. 4],
Khan, Tammer and Zălinescu [18, Ch. 4], Mordukhovich [22–24], Rockafellar [26],
Zălinescu [29]). It is well-known that certain normal and tangent cones are convex
cones. The notion of a convex cone (sometimes called “wedge”, see Holmes [14, p.
17], and Aliprantis and Tourky [5, Sec. 1.1]) also plays a significant role in vector
optimization and order theory (see, e.g., Jahn [17], Khan, Tammer and Zălinescu
[18] and Zălinescu [29]). For a given convex cone K ⊆ E (i.e., K is nonempty and
R+ ·K = K = K + K) in a real linear space E, one can define a preorder relation
≤K on E by the well-known equivalence

x 5K y :⇐⇒ x ∈ y −K,

where 5K is reflexive (since 0 ∈ K) and transitive (since K is convex).
In order to point out the role of convex cones in optimization theory, we collect

some important examples below:

• certain normal cones (e.g. normal cone of convex analysis) and tangent cones
(e.g., the sequential Clarke tangent cone; the sequential Bouligand tangent
cone, which is also known as contingent cone, if the involved set is nonempty
and convex);

• polar cone and dual cone of a nonempty set;

• recession cone and barrier cone of a nonempty, convex set;

• subspaces of linear spaces.

Assuming that E is actually a real linear topological space, in certain situations
both the topological interior and the topological relative interior of a nonempty set
Ω ⊆ E could be empty. For instance, in optimal control with PDE constraints,
cones with empty topological (relative) interior (e.g., in Lp spaces) are of interest
(see, e.g., Leugering and Schiel [20]). Generalized interiors such as the topological
notions of quasi-interior and quasi-relative interior as well as the algebraic notions
of algebraic interior (core) and relative algebraic interior (intrinsic core) are known
to be helpful in certain situations (see, e.g., Borwein and Lewis [10], Borwein and
Goebel [9] and Zălinescu [28, 30]). It is well-known that in a linear topological space
the topological interior of Ω is a subset of the algebraic interior of Ω, and both
coincide if Ω is convex and at least one of the following conditions is satisfied:

• the topological interior of Ω is nonempty (see Holmes [14, p. 59]);

• E is a Banach space and Ω is topological closed (see Barbu and Precupanu [8,
Rem. 1.24]);
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• E is separated and has finite dimension (see Barbu and Precupanu [8, Prop.
1.17].

Moreover, in a real linear topological space E, the topological relative interior of a
set Ω ⊆ E (i.e., the topological interior of Ω with respect to the affine hull of Ω)
is a subset of the intrinsic core of Ω (see, e.g., Zălinescu [28, p. 353]), and actually
equality holds if Ω is convex and one of the following conditions is true:

• E is a Banach space and both Ω and its affine hull are topological closed (see
Borwein and Goebel [9, Lem. 2.5]);

• E is separated and has finite dimension (see Barbu and Precupanu [8, Cor.
1.18]).

In this article, we completely concentrate on algebraic interiority notions, namely
core and intrinsic core of a convex cone K ⊆ E in a linear space E, where E must
not necessarily be endowed with a topology. It is well-known that the core of K is
always a subset of the intrinsic core of K. According to Holmes [14, p. 21], if E has
finite dimension, then the intrinsic core of K is always nonempty while the core of
K could be empty. For interesting works in this field, we refer the reader to Adán
and Novo [1–4], Bagdasar and Popovici [6], Bao and Mordukhovich [7], Hernández,
Jiménez and Novo [13], Holmes [14], Jahn [15, 17], Khan, Tammer and Zălinescu
[18], Luc [21], Popovici [25], Werner [27], Zalinescu [28, 29], and references therein.

The outline of the article is as follows. At the beginning of Section 2, we recall
important algebraic properties of convex sets and also more specifically for convex
cones in linear spaces. In many results, we will deal with relatively solid, convex
cones, and for proving some main theorems, we will work with separation techniques
in linear spaces that are based on algebraic notions (for instance the support theorem
by Holmes [14, p. 21] based on the intrinsic core notion). Thus, in Section 2.4, we
present certain new versions of separation results for relatively solid, convex sets in
linear spaces using algebraic notions. Moreover, we state two main auxiliary results
in Proposition 2.11 and Proposition 2.13 which are using important facts from Adán
and Novo [4, Prop. 2.2] and Popovici [25, Lem. 2.1], respectively.

In Section 3, we present new algebraic characterizations and properties of convex
cones, in particular representations of the intrinsic core of a relatively solid, convex
cone (see Theorems 3.1 and 3.5).

New algebraic characterizations and properties of dual cones of convex cones are
stated in Section 4. Specifically, we present new representations for the intrinsic
core of the dual cone of a relatively solid, convex cone (see Theorems 4.1 and 4.7).

In Section 5, we study vector optimization problems involving relatively solid,
convex cones which are not necessarily pointed. By using our results derived in
the previous sections, we show that certain monotone linear functions can be used
to generate Pareto efficient and weakly Pareto efficient solutions of the considered
problems.

This article concludes with a brief summary and an outlook to future work in
Section 6.
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2 Preliminaries in linear spaces

Throughout the article, let E be a real linear space, and let E′ be its algebraic dual
space, which is given by

E′ = {x′ : E → R | x′ is linear}.

It is convenient to define, for any two points x and x in E, the closed, the open, the
half-open line segments by

[x, x] := {(1− λ)x+ λx | λ ∈ [0, 1]}, (x, x) := [x, x] \ {x, x},
[x, x) := [x, x] \ {x}, (x, x] := [x, x] \ {x}.

Consider any set Ω ⊆ E. The smallest affine subspace of E containing Ω is denoted
by aff Ω while the smallest linear subspace of E containing Ω is given by span Ω.
Following Zălinescu [29, p. 2], the algebraic interior of Ω with respect to a linear
space M ⊆ E is defined by

aintM Ω := {x ∈ Ω | ∀ v ∈M ∃ δ > 0 : x+ [0, δ] · v ⊆ Ω}.

It is easy to check that the following properties for aintM Ω hold:

1◦ If aintM Ω 6= ∅, then M ⊆ aff(Ω− Ω) (see Zălinescu [29, p. 2]).

2◦ If Ω is a convex set, then aintM Ω is convex as well.

Two special cases will be of interest (c.f. Holmes [14, pp. 7-8]), namely the algebraic
interior (or the core) of Ω, which is given as

cor Ω := aintE Ω,

and the relative algebraic interior (or the intrinsic core) of Ω, which is defined by

icor Ω := aintaff(Ω−Ω) Ω.

Using all linearly accessible points of Ω (c.f. Holmes [14, p. 9]), i.e., the set

lina Ω := {x ∈ E | ∃x ∈ Ω \ {x} : [x, x) ⊆ Ω},

we can define an algebraic closure of Ω by

acl Ω := Ω ∪ lina Ω.

As usual, the set Ω ⊆ E is said to be algebraically closed if acl Ω = Ω; (algebraically)
solid if cor Ω 6= ∅; relatively (algebraically) solid if icor Ω 6= ∅.

The following facts for sets in the linear space E are well-known (see, e.g., Zălinescu
[29, pp. 2-3]):

Lemma 2.1 Consider a nonempty set Ω ⊆ E. The following assertions hold:

1◦ For any ω ∈ Ω, we have cor Ω ⊆ icor Ω ⊆ Ω ⊆ acl Ω ⊆ aff Ω = ω + aff(Ω− Ω).

2◦ x ∈ cor Ω if and only if aff Ω = E and x ∈ icor Ω.
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3◦ If Ω is solid, then E = aff(Ω− Ω) = aff Ω and cor Ω = icor Ω.

4◦ If 0 ∈ Ω, then aff Ω = aff(Ω− Ω) = span(Ω− Ω) = span Ω.

Let us define, for any nonempty set Ω ⊆ E, the cone generated by the set Ω,

cone Ω := {λω ∈ E | λ ≥ 0, ω ∈ Ω}.

2.1 Algebraic properties of convex sets

The next lemma recalls useful known properties of cor Ω, icor Ω, acl Ω and aff Ω for
any nonempty, convex set Ω ⊆ E (see, e.g., Adán and Novo [3, Prop. 3 and 4] and
Zălinescu [29, p. 3]).

Lemma 2.2 Consider a nonempty, convex set Ω ⊆ E. Then, the following hold:

1◦ cor Ω = {x ∈ Ω | cone(Ω− x) = E}.
2◦ icor Ω = {x ∈ Ω | cone(Ω− x) is a linear subspace of E}

= {x ∈ Ω | cone(Ω− x) = cone(Ω− Ω)}.
3◦ If Ω is relatively solid, then icor(acl Ω) = icor Ω and acl(icor Ω) = acl Ω =

acl(acl Ω).

4◦ For all x ∈ icor Ω and all x ∈ acl Ω, we have [x, x) ⊆ icor Ω.

Remark 2.3 According to Holmes [14, p. 9], any finite dimensional convex set in
a linear space has a nonempty intrinsic core. However, it is known that an infinite
dimensional convex set in a linear space can have empty intrinsic core. In view of
Lemma 2.1 (2◦), for any nonempty, relatively solid set Ω ⊆ E in a linear space E,
we have cor Ω 6= ∅ if and only if aff Ω = E. Thus, we get a theorem (in which E has
finite dimension and Ω is convex) by Holmes [14, p. 9] as a corollary of the above
facts. Moreover, due to Holmes’ remark [14, p. 9] we also know that the relative
solidness of Ω is essential (also under convexity assumption on Ω).

According to Adán and Novo [4, Def. 1], for any nonempty set Ω ⊆ E, the
vectorial closure of Ω is defined as

vcl Ω := {x ∈ E | ∃ v ∈ E ∀ δ > 0 ∃ δ′ ∈ (0, δ] : x+ δ′v ∈ Ω}.

Remark 2.4 Notice, for any nonempty set Ω ⊆ E, we have Ω ⊆ acl Ω ⊆ vcl Ω,
which means that the vectorial closure is a weaker closure of algebraic type (see
Adán and Novo [3, p. 643]). As already mentioned by Adán and Novo [4, p. 517],
the vectorial closure vcl Ω is exactly the algebraic closure acl Ω for any convex set
Ω ⊆ E. However, for a nonconvex set, this result may fail, as pointed out in [3, Ex.
1].

Because of the equality vcl Ω = acl Ω for any convex set Ω ⊆ E, in our upcoming
results we will only deal with the algebraic closure notion for convex cones in E.
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2.2 Algebraic properties of convex cones

Assume that R+ denote the nonnegative real numbers and R++ the positive real
numbers. Recall that a cone K ⊆ E (i.e., K is nonempty and 0 ∈ K = R+ ·K) is
nontrivial if {0} 6= K 6= E; pointed if K ∩ (−K) = {0}; convex if K +K = K.

In the next lemma, we recall some important properties for the intrinsic core of
a convex cone K ⊆ E (see, e.g., Adán and Novo [4, p. 517], [3, Prop. 6, (ii)] and
Popovici [25, p. 105]).

Lemma 2.5 Assume that K ⊆ E is a convex cone. Then, we have:

1◦ (icorK) ∪ {0} is a convex cone in E.

2◦ icorK = aclK + icorK = K + icorK = icor(icorK).

3◦ aff(K −K) = aff K = spanK = cone(K −K).

For deriving some representations of the intrinsic core of a convex cone K ⊆ E,
we will use the notion of the lineality space of K,

l(K) := K ∩ (−K).

Notice that l(K) is the largest linear subspace contained in K, while, in contrast,
aff K is the smallest linear subspace containing K. Thus, we have the following
bounds given by linear subspaces, l(K) ⊆ K ⊆ aff K. Moreover, K is a linear
subspace of E if and only if K = l(K) if and only if K = aff K.

The next lemma states useful properties of the sets K \ l(K) and icorK.

Lemma 2.6 Assume that K ⊆ E is a convex cone. Then, the following hold:

1◦ K \ l(K) is a convex set.

2◦ For all x ∈ K \ l(K) and all x ∈ l(K) we have [x, x) ⊆ K \ l(K).

3◦ If K 6= l(K), then K ⊆ acl(K \ l(K)).

4◦ If K 6= l(K), then icorK ⊆ K \ l(K).

5◦ If K = l(K), then icorK = aff K = l(K) = K.

6◦ K 6= l(K) if and only if (icorK) ∩ l(K) = ∅ if any only if 0 /∈ icorK.

Proof:

1◦ Take k1, k2 ∈ K \ l(K) and α ∈ (0, 1). Clearly, x := αk1 + (1 − α)k2 ∈ K by
the convexity of K. Assuming by the contrary that x ∈ l(K), i.e., −x ∈ K,
then −k1 ∈ 1−α

α k2 + 1
αK ⊆ K, a contradiction to k1 /∈ −K.

2◦ Consider x ∈ l(K) and take some x ∈ K\l(K). SinceK is convex and x, x ∈ K,
it follows [x, x] ⊆ K. Assume by the contrary there exists x̃ ∈ (x, x) with
x̃ ∈ l(K). More precisely, we have x̃ = αx+(1−α)x for some α ∈ (0, 1). Then,
since l(K) is a linear subspace and x, x̃ ∈ l(K), we have x = 1

α x̃−
1−α
α x ∈ l(K),

a contradiction to x ∈ K \ l(K).

3◦ Follows immediately by the property in assertion 2◦ of this lemma.
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4◦ Assume that K 6= l(K). Take some k ∈ icorK ⊆ K. Assuming by the
contrary that k ∈ −K, by Lemmas 2.2 (2◦) and 2.5 (3◦), we have aff K =
cone(K −K) = cone(K − k) ⊆ cone(K +K) = coneK = K, hence K = l(K),
a contradiction.

5◦ First, notice that K = l(K) implies K = aff K. Moreover, since also K =
aff(K − K) and K is a convex cone, the equality K = icorK can easily be
derived.

6◦ If K 6= l(K), then (icorK) ∩ l(K) = ∅ by assertion 4◦ of this lemma. Con-
versely, suppose (icorK)∩l(K) = ∅. Assuming by the contrary that K = l(K),
we get icorK = l(K) = K 6= ∅ by assertion 5◦ of this lemma, which is a con-
tradiction.

Now, assume that 0 /∈ icorK. Suppose by the contrary that (icorK)∩ l(K) 6=
∅. Clearly, then assertion 4◦ of this lemma ensures that K = l(K), hence
icorK = K by assertion 5◦ of this lemma. Since K is a cone, we have 0 ∈
K = icorK, a contradiction.

�
Also for the algebraic interior of the convex cone K, we get similar properties.

Lemma 2.7 Assume that K ⊆ E is a convex cone. Then, the following hold:

1◦ If K 6= E, then corK ⊆ K \ l(K).

2◦ If K = l(K) 6= E, then corK = ∅.
3◦ K 6= E if and only if (corK) ∩ l(K) = ∅ if and only if 0 /∈ corK.

Proof:

1◦ Assume that K 6= E. Take some k ∈ corK ⊆ K. Suppose by the contrary
that k ∈ −K. Then, by Lemma 2.2 (1◦) and since K is a convex cone, we have
E = cone(K − k) ⊆ cone(K +K) = coneK = K, which is a contradiction to
K 6= E.

2◦ It is a direct consequence of assertion 1◦ in this lemma.

3◦ Assume that K 6= E. Then, by assertion 1◦ of this lemma, we get (corK) ∩
l(K) = ∅. Conversely, suppose that (corK) ∩ l(K) = ∅. Assuming by the
contrary that K = E, we infer K = E = l(K) and K = E = corK, which is
a contradiction.

As a consequence of 0 ∈ corK if and only if K = coneK = E by Lemma 2.2
(1◦), we get the remaining equivalence.

�

Remark 2.8 Notice that assertion 1◦ and parts of 3◦ in Lemma 2.7 are already
stated in Bagdasar and Popovici [6, Lem. 5 (1◦, 2◦)] for the case K 6= l(K).

Let us consider a convex cone K ⊆ E. Assume that

K ′ := {y′ ∈ E′ | ∀ k ∈ K : y′(k) ≥ 0}
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is the (algebraic) dual cone of K, and define

K ′+ := {y′ ∈ E′ | ∀ k ∈ K \ {0} : y′(k) > 0} ⊆ K ′.

In particular, the following set

K ′⊕ := {y′ ∈ E′ | ∀ k ∈ K \ l(K) : y′(k) > 0}

will be of special interest in this article.

Remark 2.9 In the book by Jahn [17], the set K ′+ is called the quasi-interior of the
algebraic dual cone K ′. In view of some known results in this topic, for instance
the result by Bot, Grad and Wanka [11, Prop. 2.1.1] (in a topological setting), the
name quasi-interior of K ′ seems to be a good choice for the set K ′+.

Notice that the set K ′⊕ already appears in the literature, for instance in Luc [21,
p. 7], or Khan, Tammer and Zălinescu [18, p. 40] (in a topological setting), but
usually without giving a name for this object.

The next lemma collects some useful relationships between a convex cone K and
its dual cone K ′ (see, e.g., Hernández, Jiménez and Novo [13, Lem. 3.8], and Jahn
[17, Lem. 1.27]).

Lemma 2.10 Assume that K ⊆ E is a convex cone. Then, we have:

1◦ K ′ is always algebraically closed.

2◦ If K is relatively solid, then K ′ = ((icorK) ∪ {0})′.
3◦ If K is solid, then K ′ is pointed.

4◦ If K ′+ 6= ∅, then K is pointed.

The following convex cone

K ′′ := {x ∈ E | ∀x′ ∈ K ′ : x′(x) ≥ 0},

which contains the convex cone K ⊆ E, will play an important role in our article.
The next result is a consequence of Remark 2.4 and the result by Adán and Novo

[4, Prop. 2.2], and states an important relationship between the cones K and K ′′.

Proposition 2.11 If K ⊆ E is a relatively solid, convex cone, then aclK = K ′′.

It is convenient to introduce the following two sets

K ′′+ := {x ∈ E | ∀x′ ∈ K ′ \ {0} : x′(x) > 0};
K ′′⊕ := {x ∈ E | ∀x′ ∈ K ′ \ l(K ′) : x′(x) > 0}.

Remark 2.12 Notice that K ′′+ ⊆ K ′′⊕ ∪ K ′′ ⊆ E. The fact in Proposition 2.11
motivates the use of the name “algebraic (positive) bipolar cone” or “algebraic double
dual cone” for the set K ′′ (in analogy to the definition of bipolar cones / double dual
cones of convex cones in a topological setting). It is interesting to mention that
Aliprantis and Tourky [5, Sec. 2.2] call the convex cone K as a “wedge”, its dual
cone K ′ as “dual wedge” and the set K ′′ as “double dual wedge” while the elements
of K ∩K ′′+ are called K-strictly positive.
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Using Popovici’s interesting result [25, Lem. 2.1], we get the next proposition,
which will play a key role for deriving representations of generalized interiors of K
and K ′.

Proposition 2.13 Assume that K ⊆ E is a relatively solid, convex cone. Then,
the following assertions hold:

1◦ For any k ∈ icorK,

icorK =
⋃
α>0

(αk +K) =
⋃
α>0

(αk + aclK) =
⋃
α>0

(αk +K ′′).

2◦ For any k ∈ icorK,

K ′′ = aclK =
⋂
β<0

(βk + icorK).

3◦ For any k ∈ icorK,

aff K =
⋃
α>0

(αk −K) =
⋃
α>0

(αk − aclK) =
⋃
α>0

(αk −K ′′).

Proof:

1◦ The equality icorK =
⋃
α>0(αk + K) is proven by Popovici [25, Lem. 2.1].

By taking a look on the proof in [25, Lem. 2.1], one can also derive icorK =⋃
α>0(αk+aclK). The third equality follows directly by applying Proposition

2.11.

2◦ By Popovici [25, Lem. 2.1], we have vclK =
⋂
β<0(βk + icorK). Thus, the

result follows by using the equality vclK = aclK and the fact in Proposition
2.11.

3◦ We are going to prove aff K =
⋃
α>0(αk −K). The inclusion “⊇” holds since

{k}∪K ⊆ aff K and aff K is a linear subspace of E. For proving the converse
inclusion “⊆”, let x ∈ aff K = aff(K − K). Since k ∈ icorK, there exists a
real number ε > 0 such that k + ε(−x) ∈ K, which yields

x ∈ k
ε
− 1

ε
K ⊆ k

ε
−K ⊆

⋃
α>0

(αk −K).

Notice that

aff K =
⋃
α>0

(αk −K) ⊆
⋃
α>0

(αk − aclK) ⊆ aff K.

The remaining third equality follows now by using Proposition 2.11.

�
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2.3 Properties of the canonical embedding function

Let us define the second algebraic dual space of E by E′′ := (E′)′. The linear map
JE : E → E′′, defined, for any x ∈ E, by

JE(x) : E′ → R, x′ 7→ JE(x)(x′) := x′(x),

is known as the canonical embedding.

Remark 2.14 The map JE is always linear and injective. As mentioned by Holmes
[14, p. 3], JE is surjective if and only if E has finite dimension.

In order to present further properties of JE in the next lemma, we need, for any
set Ω ⊆ E, the image of JE over Ω,

JE [Ω] := {JE(x) ∈ E′′ | x ∈ Ω}.

Proposition 2.15 Assume that K ⊆ E is a convex cone. Then,

1◦ We have acl (K ′)′ = (K ′)′ ⊇ JE [K ′′] ⊇ JE [aclK] and (K ′)′+ ⊇ JE [K ′′+] as well
as (K ′)′⊕ ⊇ JE [K ′′⊕].

Now, if E has finite dimension, then the following assertions hold:

2◦ (K ′)′ = JE [K ′′] = JE [aclK] = aclJE [K] = aclJE [icorK].

3◦ icor (K ′)′ = icor JE [aclK] = icorJE [K] = JE [icorK].

4◦ (K ′)′+ = JE [K ′′+] and (K ′)′⊕ = JE [K ′′⊕].

Proof:

1◦ Clearly, the set (K ′)′ is algebraically closed, and we have

(K ′)′ = {y′′ ∈ E′′ | ∀ k′ ∈ K ′ : y′′(k′) ≥ 0}
⊇ JE [{y ∈ E | ∀ k′ ∈ K ′ : k′(y) ≥ 0}] = JE [K ′′].

Moreover, since aclK ⊆ K ′′ we have JE [K ′′] ⊇ JE [aclK].

The proofs of the inclusions (K ′)′+ ⊇ JE [K ′′+] and (K ′)′⊕ ⊇ JE [K ′′⊕] are similar
to the proof of (K ′)′ ⊇ JE [K ′′].

2◦, 3◦ At first, notice, if E has finite dimension, then the convex cone K is relatively
solid by Remark 2.3. The equalities (K ′)′ = JE [K ′′] = JE [aclK] follow by 1◦

of this lemma, by the surjectivity of JE (since E has finite dimension), and by
Proposition 2.11. In view of Hernández, Jiménez and Novo [13, Prop. 3.17],
we have

JE [icorS] = icorJE [S] if S ⊆ E is a relatively solid, convex set. (1)

Then, using (1) for S := aclK, and Lemma 2.2 (3◦), we have JE [icorK] =
JE [icor(aclK)] = icor JE [aclK] = icor (K ′)′. Due to (1) for S := K, we infer
JE [icorK] = icor JE [K]. Now, we get (K ′)′ = acl (K ′)′ = acl JE [icorK] by
JE [icorK] = icor (K ′)′ and Lemmas 2.2 (3◦) and 2.10 (1◦). Moreover, recalling
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that JE [icorK] = icorJE [K] and applying Lemma 2.2 (3◦) (notice that JE [K]
is a relatively solid, convex set), we have aclJE [icorK] = acl(icor JE [K]) =
acl JE [K].

4◦ Since E has finite dimension, the canonical embedding JE is surjective. Then,
similar ideas as in the proof of 1◦ of this lemma show that (K ′)′+ = JE [K ′′+]
and (K ′)′⊕ = JE [K ′′⊕].

�

2.4 Separation theorems in linear spaces using algebraic notions

In order to prove some of our main theorems, we will apply algebraic versions of
separation results for convex sets in linear spaces. The following result is well-known
and can be found in a similar form in Holmes [14, p. 15], Jahn [15, 17, Th. 3.14],
Kirsch, Warth and Werner [19, 1.8 Satz], and Werner [27, Cor. 3.1.10].

Proposition 2.16 Assume that Ω1,Ω2 ⊆ E are nonempty, convex sets, and Ω1 is
solid (i.e., cor Ω1 6= ∅). Then, Ω2 ∩ cor Ω1 = ∅ if and only if there is x′ ∈ E′ \ {0}
and a real number α with

x′(ω2) ≤ α ≤ x′(ω1) for all ω1 ∈ acl Ω1 and ω2 ∈ acl Ω2; (2)

α < x′(ω1) for all ω1 ∈ cor Ω1. (3)

Remark 2.17 We like to point out two important facts, which are not so known in
the literature related to algebraic versions of separation theorems, but already used
in the book by Werner [27, Cor. 3.1.10]:

(a) Consider two points x, x ∈ E and x′ ∈ E′. Assume that, there is β ∈ R such
that for all γ ∈ (0, 1] we have x′(γx+ (1− γ)x) ≤ β. Then, observing

γx′(x) + (1− γ)x′(x) = x′(γx+ (1− γ)x) ≤ β,

we get for γ → 0 the condition x′(x) ≤ β, by using the continuity of the linear
operations (addition and scalar multiplication) in the real linear topological
space R (both x′(x) and x′(x) are fixed values in R). This justifies to write the
algebraic closures acl Ω1 and acl Ω2 instead of Ω1 and Ω2 in (2) of Proposition
2.16.

(b) Take x ∈ E and two linear maps x′, x′ ∈ E′. Suppose that there is β ∈ R such
that for all γ ∈ (0, 1] we have (γx′ + (1− γ)x′)(x) ≤ β. Now, due to

γx′(x) + (1− γ)x′(x) = (γx′ + (1− γ)x′)(x) ≤ β,

the limit γ → 0 yields x′(x) ≤ β (by using similar arguments as above).

Remark 2.18 Separation theorems for two convex sets in a linear space, where
one of them is assumed to be relatively solid, are already given in the literature,
for instance by Adán and Novo [2–4], Holmes [14, p. 21], Khan, Tammer and
Zălinescu [18, p. 259], and Werner [27, Th. 3.1.12]. In our article, we are in
particular interested in separation results where a (relatively) solid convex cone is

11



involved. Notice that the proof of Theorem 3.6 as well as of our main results in
Theorems 3.1 and 4.1 are using separation techniques shown in Theorem 2.21 and
Corollary 2.23.

The next result is known, see Werner [27, Th. 3.1.12], but we give a different and
more simple proof using the well-known support theorem by Holmes [14, p. 21].

Proposition 2.19 Assume that Ω ⊆ E is a relatively solid, convex set, and x ∈ E.
Then, x /∈ icor Ω if and only if there is x′ ∈ E′ \ {0} and α ∈ R with

x′(x) ≤ α ≤ x′(ω) for all ω ∈ acl Ω; (4)

α < x′(ω) for all ω ∈ icor Ω. (5)

Proof: First, assume that x /∈ icor Ω. By Holmes [14, p. 21], we get x′ ∈ E′ \ {0}
and α := x′(x) such that (5) holds. Due to the property acl(icor Ω) = acl Ω in view
of Lemma 2.2 (3◦), we conclude (4) taking into account Remark 2.17.

Conversely, the validity of both (4) and (5) for some x′ ∈ E′\{0} implies x /∈ icor Ω.
. �

The following separation property is well-known, however we present a simple
proof that is based on the separation theorem for relatively solid, convex sets.

Corollary 2.20 The dual space E′ separates elements in the linear space E (i.e.,
two different elements in E can be separated by a hyperplane).

Proof: Take two points x, x ∈ E with x 6= x. Consider the convex set Ω := {x}.
It is easy to see that x /∈ icor Ω = {x}. Then, applying Proposition 2.19, there are
x′ ∈ E′ \ {0} and α ∈ R such that x′(x) ≤ α < x′(x). �

The following theorem will play a key role for deriving our main results related
to the intrinsic core of convex cones.

Theorem 2.21 Assume that K ⊆ E is a relatively solid, convex cone and x ∈ aclK.
Then, x /∈ icorK if and only if there is x′ ∈ K ′ \ l(K ′) with

x′(x) = 0 ≤ x′(k) for all k ∈ aclK; (6)

0 < x′(k) for all k ∈ icorK. (7)

Proof: Assume that x /∈ icorK. By Proposition 2.19, there is x′ ∈ E′ \ {0} and
α ∈ R such that (4) and (5) are satisfied.

Let us first show that α = 0. Indeed, since x ∈ aclK, 0 ∈ K and R+ ·{x} ⊆ aclK,
we get by (4) that x′(x) ≤ α ≤ 0 ≤ x′(x), which means x′(x) = α = 0.

Now, we show that x′ ∈ K ′ \ l(K ′). By (4) (with α = 0 and Ω := K) we directly
get x′ ∈ K ′. Assuming by the contrary that x′ ∈ l(K ′), then x′(k) = 0 for all k ∈ K,
a contradiction to (5) (with α = 0 and Ω := K).

We conclude that x′ ∈ K ′ \ l(K ′) satisfies (6) and (7).
Clearly, under the validity of (6) and (7) one has x /∈ icorK. �
Notice that for x ∈ E \ (aclK) the result given in Theorem 2.21 must not hold,

as the following example shows.
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Example 2.22 Consider the linear space E := R2 and the relatively solid, convex
cone

K := {x = (x1, x2) ∈ R2 | x1 = 0} = icorK = aclK = l(K).

Notice that K is not solid and also not pointed. Consider the point x := (−1, 0) ∈
E \ (aclK). Assume by the contrary that there is x′ ∈ E′ \ {0} such that

x′(x) = 0 < x′(k) for all k ∈ icorK = K.

This directly contradicts the conditions x′(0) = 0 and 0 ∈ K. Thus, the assumption
x ∈ aclK in Theorem 2.21 is essential.

Corollary 2.23 Assume that K ⊆ E is a solid, convex cone and x ∈ aclK. Then,
x /∈ corK if and only if there is x′ ∈ K ′ \ {0} with

x′(x) = 0 ≤ x′(k) for all k ∈ aclK;

0 < x′(k) for all k ∈ corK.

The case to separate an arbitrarily point x ∈ E \ corK from the solid, convex
cone K ⊆ E is studied in the next result.

Theorem 2.24 Assume that K ⊆ E is a solid, convex cone and x ∈ E. Then,
x /∈ corK if and only if there is x′ ∈ K ′ \ {0} with

x′(x) ≤ 0 ≤ x′(k) for all k ∈ aclK; (8)

0 < x′(k) for all k ∈ corK. (9)

Proof: Suppose that x /∈ corK. We consider two cases:
Case 1: Assume that x ∈ aclK. The result follows by Corollary 2.23.
Case 2: Assume that x ∈ E \ aclK. Take some k ∈ corK. It is not hard to

check that there is x̃ ∈ (x, k) such that x̃ ∈ (aclK) \ corK. By Case 1, there is
x′ ∈ K ′ \ {0} such that

x′(x̃) = 0 ≤ x′(k) for all k ∈ aclK; (10)

0 < x′(k) for all k ∈ corK. (11)

We now show that x′(x) ≤ 0. Assume by the contrary that x′(x) > 0. Clearly, since
x′(k) > 0 by (11), then x′(y) > 0 for all y ∈ [x, k]. Thus, in particular for x̃ ∈ (x, k)
we have x′(x̃) > 0, a contradiction to (10).

We conclude that (8) and (9) hold.
Notice that the validity of both (8) and (9) for some x′ ∈ K ′\{0} implies x /∈ corK.

. �

3 New algebraic properties of convex cones

In this section, we derive new algebraic properties of convex cones. We start by
presenting characterizations of the core and the intrinsic core of a convex cone in E
in the next theorem.
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Theorem 3.1 Assume that K ⊆ E is a convex cone. Then, the following hold:

1◦ If K is solid, then

corK = {y ∈ E | ∀ y′ ∈ K ′ \ {0} : y′(y) > 0} = K ′′+ = corK ′′.

2◦ If K is relatively solid and K ⊆ Ω ⊆ aclK, then

icorK = {y ∈ Ω | ∀ y′ ∈ K ′ \ l(K ′) : y′(y) > 0} = K ′′⊕ ∩ Ω = icorK ′′.

Proof:

1◦ The equality corK = K ′′+ is well-known (see, e.g., Jahn [17, Lem. 3.21, (b)]).
The remaining equality corK ′′ = corK is a consequence of Lemma 2.2 (3◦)
and Proposition 2.11.

2◦ We start by proving the equality icorK = K ′′⊕ ∩ Ω.

Consider k ∈ icorK. Suppose by the contrary, it exists y′ ∈ K ′ \ l(K ′) with
y′(k) = 0. Notice, since y′ ∈ K ′, for all x ∈ K, we have y′(x) ≥ 0, and
y′(x) > 0 for some x ∈ K. Since k ∈ icorK and x ∈ K ⊆ aclK, there exists
δ > 0 such that k′ := k−δx ∈ K. Thus, y′(k′) = y′(k)−δy′(x) = −δy′(x) < 0,
a contradiction to y′(k′) ≥ 0.

Now, assume icorK 6= ∅. Take some y ∈ Ω which satisfies y′(y) > 0 for
every y′ ∈ K ′ \ l(K ′). Assume by the contrary that y /∈ icorK. Then, by
Theorem 2.21, there is x′ ∈ K ′ \ l(K ′) with x′(y) = 0 ≤ x′(k) for all k ∈ K, a
contradiction.

The remaining equality icorK = icorK ′′ follows by Lemma 2.2 (3◦) and Propo-
sition 2.11.

�
In preparation of the next lemma, which states important properties of K ′, K ′′,

K ′′+ andK ′′⊕, respectively, it is convenient to introduce, for any nonempty set Ω′ ⊆ E′,

(Ω′)⊥ := {x ∈ E | ∀x′ ∈ Ω′ : x′(x) = 0}.

Lemma 3.2 Assume that K ⊆ E is a convex cone. The following assertions hold:

1◦ If K is relatively solid, then K ′′⊕ 6= ∅.
2◦ K ⊆ K ′′ ⊆ {x ∈ E | ∀x′ ∈ l(K ′) : x′(x) = 0} = (l(K ′))⊥.

3◦ If K is relatively solid and K ′ = l(K ′), then K = l(K) = aclK = (K ′)⊥ = K ′′.

4◦ If K ′ is not pointed, then K ′′+ = ∅.
5◦ K ′ = l(K ′) if and only if K ′′⊕ = E if and only if K ′′⊕ is a cone.

6◦ K ′ = {0} if and only if K ′′+ = E if and only if K ′′ = E if and only if K ′′+ is a
cone.

7◦ If K is relatively solid, then K ′ = {0} if and only if K = E.
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Proof:

1◦ By Theorem 3.1 (2◦), we have ∅ 6= icorK = K ′′⊕ ∩K ⊆ K ′′⊕.

2◦ Clearly, K ⊆ K ′′. Take some x ∈ K ′′. Then, in particular we have x′(x) ≥ 0
for all x′ ∈ l(K ′) ⊆ K ′. Hence, (−x′)(x) ≥ 0 for all x′ ∈ l(K ′) as well, i.e.,
x ∈ (l(K ′))⊥.

3◦ By Theorem 3.1 (2◦) and due to K ′′⊕ = E (see also 5◦ of this lemma), we
have icorK = K ′′⊕ ∩K = K. In view of Lemma 2.6 (6◦), we infer K = l(K).
Moreover, it is easy to see that we have (K ′)⊥ = K ′′, while by Proposition
2.11, we get K ′′ = aclK. Thus, we conclude aclK ⊇ K = l(K) = aff K ⊇
aclK = K ′′ = (K ′)⊥, hence the assertion follows directly.

4◦ Suppose that K ′ is not pointed. Assuming by the contrary that K ′′+ 6= ∅, then
there exist x ∈ K ′′+ and x′ ∈ l(K ′) ⊆ K ′ with x′(x) > 0. In contrast, in
view of 2◦ of this lemma, we have K ′′+ ⊆ K ′′ ⊆ (l(K ′))⊥, hence x′(x) = 0, a
contradiction.

5◦ Obviously, K ′ = l(K ′) yields K ′′⊕ = E. Now, assume that K ′′⊕ = E. Suppose
by the contrary that there exists x′ ∈ K ′ \ l(K ′). Then, for any x ∈ K ′′⊕ = E,
we have x′(x) > 0. This in particular means that x′(0) > 0, a contradiction.

Clearly, K ′′⊕ = E is a cone. Conversely, assume that K ′′⊕ is a cone, which in
particular means that 0 ∈ K ′′⊕. Taking a look on the definition of K ′′⊕, we infer
K ′ = l(K).

6◦ The proof is quite similar to the proof of 5◦ by replacing K ′′⊕ by K ′′+ as well as
l(K ′) by {0}. Furthermore, notice that K ′′+ = E implies K ′′ = E. Conversely,
by K ′′ = E we get E = (K ′)⊥, hence K ′ = {0} can easily be derived.

7◦ It is easy to observe by the definition of K ′ that K = E implies K ′ = {0}
(actually without assuming the relative solidness of K). Now, assume that
K ′ = {0}. Observing that K ′ = l(K ′), in view of assertion 3◦ of this lemma,
we conclude K = K ′′. Due to the assumption K ′ = {0}, we can also infer that
K ′′ = E by assertion 6◦ of this lemma. Thus, K = E holds true.

�

Remark 3.3 Notice that Lemma 3.2 (7◦) extends a result (if K 6= E is a solid,
convex cone, then K ′ 6= {0}) derived by Holmes [14, p. 18].

In order to state relationships between the cones K, K ′ and K ′′ in the next lemma,
it is convenient to introduce the following sets:

CE′ := (K ′ \ l(K ′)) ∪ {0},
CE := {x ∈ E | ∀x′ ∈ CE′ : x′(x) ≥ 0},
DE := {x ∈ E | ∀x′ ∈ l(K ′) \ {0} : x′(x) > 0}.

Lemma 3.4 Assume that K ⊆ E is a convex cone. The following assertions hold:

1◦ CE′ is a pointed, convex cone in E′.

2◦ K ′′+ ⊆ K ′′ = CE ∩ (l(K ′))⊥ ⊆ CE.
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3◦ K ′′+ = K ′′⊕ ∩DE ⊆ K ′′⊕ = (CE)+ ⊆ CE.

4◦ K ′ 6= l(K ′) or K ′ = {0} if and only if K ′′⊕ ⊆ K ′′ if and only if CE ⊆ K ′′.
5◦ If K ′′⊕ 6= ∅, then K ′ 6= l(K ′) if and only if K ′′⊕ ⊆ K ′′ \ l(K ′′).
6◦ If K is relatively solid, then K ′ is pointed if and only if K ′′+ ⊇ K ′′⊕ if and only

if K ′′+ 6= ∅.

Proof:

1◦ The proof of this assertion is easy by using Lemma 2.6 (1◦).

2◦ The inclusion K ′′+ ⊆ K ′′ is clear. Moreover, since K ′ = CE′ ∪ l(K ′), we get
that K ′′ = CE ∩ (l(K ′))⊥ ⊆ CE .

3◦ If K ′ is pointed, then K ′′+ = K ′′⊕ as well as K ′′⊕ ∩ DE = K ′′⊕ ∩ E = K ′′⊕.
Otherwise, if K ′ is not pointed, then K ′′+ = ∅ in view of Lemma 3.2 (4◦), as
well as K ′′⊕ ∩DE = K ′′⊕ ∩ ∅ = ∅ in view of the definition of DE . We conclude
that K ′′+ = K ′′⊕ ∩ DE . Moreover, K ′′⊕ = (CE)+ and the other inclusions are
obvious.

4◦ Assume that K ′ 6= l(K ′) or K ′ = {0}. We prove that CE ⊆ K ′′. Consider
some c ∈ CE . Now, we know that x′(c) ≥ 0 for all x′ ∈ CE′ . Thus, it is
enough to show that x′(c) ≥ 0 for all x′ ∈ l(K ′) in order to conclude c ∈ K ′′.
Take some x′ ∈ l(K ′). By Lemma 2.6 (3◦) there is x̃′ ∈ K ′ \ l(K ′) such that
[x̃′, x′) ⊆ K ′ \ l(K ′). Now, for any α ∈ (0, 1], we have αx̃′(c) + (1− α)x′(c) =
(αx̃′ + (1 − α)x′)(c) ≥ 0, which yields for α → 0 as requested x′(c) ≥ 0 (see
also Remark 2.17 (b)).

Now, suppose that CE ⊆ K ′′. Due to assertion 3◦ of this lemma, we have
K ′′⊕ = (CE)+ ⊆ CE ⊆ K ′′.
Finally, letK ′′⊕ ⊆ K ′′ be satisfied. Assume by the contrary thatK ′ = l(K ′) and
K ′ 6= {0}. By Lemma 3.2 (5◦) we have K ′′⊕ = E, hence K ′′ = E. Consequently,
by Lemma 3.2 (6◦), we get K ′ = {0}, which is a contradiction.

5◦ Assuming K ′ 6= l(K ′), we get K ′′⊕ ⊆ K ′′ by 4◦ of this lemma. More precisely,
we have K ′′⊕ ⊆ K ′′ \ l(K ′′), since otherwise x′(k) = 0 for some x′ ∈ K ′ \ l(K ′)
and k ∈ K ′′⊕, which is a contradiction.

Assume that K ′′⊕ ⊆ K ′′ \ l(K ′′) ⊆ K ′′. Thus, in view of 4◦ of this lemma,
we obtain K ′ 6= l(K ′) or K ′ = {0}. Suppose by the contrary that K ′ = {0}.
Then, K ′′ = E = l(K ′′) by Lemma 3.2 (6◦), which contradicts K ′′ \ l(K ′′) 6= ∅.
Thus, we conclude K ′ 6= l(K ′).

6◦ Assume that K is relatively solid. If K ′ is pointed, then K ′′+ = K ′′⊕ ∩E = K ′′⊕
by assertion 3◦. Now, let K ′′+ ⊇ K ′′⊕ be satisfied. Assuming by the contrary
that K ′ is not pointed, then K ′′+ = ∅ by Lemma 3.2 (4◦), while K ′′⊕ 6= ∅ by
Lemma 3.2 (1◦), a contradiction to K ′′+ ⊇ K ′′⊕.

The second equivalence is a consequence of the first equivalence taking into
account Lemma 3.2 (1◦, 4◦).

�
The next main theorem gives further characterizations of the core, the intrinsic

core, the algebraic closure, and the affine hull of a relatively solid, convex cone in E.
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Theorem 3.5 Assume that K ⊆ E is a relatively solid, convex cone. Then, the
following assertions hold:

1◦ If either K ′ 6= l(K ′) or K ′ = {0}, then

icorK = {x ∈ E | ∀x′ ∈ K ′ \ l(K ′) : x′(x) > 0} = K ′′⊕.

2◦ For any k ∈ icorK,

icorK =
⋃
α>0

{x ∈ E | ∀x′ ∈ K ′ : x′(x) ≥ αx′(k)}.

3◦ If either K ′ 6= l(K ′) or K ′ = {0}, then, for any k ∈ icorK,

icorK =
⋃
α>0

{x ∈ E | ∀x′ ∈ K ′ \ l(K ′) : x′(x) ≥ αx′(k)}.

4◦ If either K ′ 6= l(K ′) or K ′ = {0}, then, for any k ∈ icorK,

aclK =
⋂
β<0

{x ∈ E | ∀x′ ∈ K ′ \ l(K ′) : x′(x) > βx′(k)}.

5◦ For any k ∈ icorK,

aff K =
⋃
α>0

{x ∈ E | ∀x′ ∈ K ′ : x′(x) ≤ αx′(k)}.

Proof:

1◦ By Theorem 3.1 (2◦) applied for Ω := aclK, Lemma 3.4 (4◦), and Proposition
2.11, we have icorK = K ′′⊕ ∩ aclK = K ′′⊕ ∩K ′′ = K ′′⊕.

2◦ Take some k ∈ icorK. By Proposition 2.13 (1◦), we infer

icorK =
⋃
α>0

(αk +K ′′) =
⋃
α>0

(αk + {x ∈ E | ∀x′ ∈ K ′ : x′(x) ≥ 0})

=
⋃
α>0

{x ∈ E | ∀x′ ∈ K ′ : x′(x) ≥ αx′(k)}.

3◦ Consider k ∈ icorK and assume that either K ′ 6= l(K ′) or K ′ = {0}. By
assertion 2◦ of this theorem, and due to K ′ \ l(K ′) ⊆ K ′, we have

icorK =
⋃
α>0

{x ∈ E | ∀x′ ∈ K ′ : x′(x) ≥ αx′(k)}

⊆
⋃
α>0

{x ∈ E | ∀x′ ∈ K ′ \ l(K ′) : x′(x) ≥ αx′(k)}. (12)

Moreover, in view of assertion 1◦ of this theorem, for k ∈ icorK, we have
x′(k) > 0 for all x′ ∈ K ′ \ l(K ′). Thus, an upper set for all sets involved
in (12) is given by K ′′⊕. Now, Lemma 3.2 (2◦) and Lemma 3.4 (4◦) yield
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K ′′⊕ ⊆ K ′′ ⊆ (l(K ′))⊥. We are going to show the reverse inclusion in (12).
Consider some x ∈ E and α > 0 such that for all x′ ∈ K ′ \ l(K ′) we have
x′(x) ≥ αx′(k). It remains to show that x′(x) ≥ αx′(k) for all x′ ∈ l(K ′)
and α > 0. The above analysis shows that x, k ∈ (l(K ′))⊥, hence, for any
x′ ∈ l(K ′) and α > 0, we have x′(x) = 0 = αx′(k).

Consequently, the inclusion “⊆” in (12) is actually an equality.

4◦ Take some k ∈ icorK. Due to Proposition 2.13 (2◦) and assertion 1◦ of this
theorem, we have

aclK =
⋂
β<0

(βk + icorK)

=
⋂
β<0

(βk + {x ∈ E | ∀x′ ∈ K ′ \ l(K ′) : x′(x) > 0})

=
⋂
β<0

{x ∈ E | ∀x′ ∈ K ′ \ l(K ′) : x′(x) > βx′(k)}.

5◦ By Proposition 2.13 (3◦), for any k ∈ icorK, we have

aff K =
⋃
α>0

(αk −K ′′) =
⋃
α>0

{x ∈ E | ∀x′ ∈ K ′ : x′(x) ≤ αx′(k)}.

�
Using the separation results given in Theorem 2.21, we can derive further prop-

erties for the convex cone K.

Theorem 3.6 The following assertions hold:

1◦

E \ {0} = {x ∈ E | ∃x′ ∈ E′ : x′(x) 6= 0}.

2◦ If K ⊆ E is a relatively solid, algebraically closed, convex cone, then

K \ l(K) = {x ∈ K | ∃x′ ∈ K ′ \ l(K ′) : x′(x) > 0}.

Proof:

1◦ This result, which is a direct consequence of Corollary 2.20, is well-known.

2◦ The inclusion “⊇” is obvious. Let us show the reverse inclusion “⊆”. Assume
by the contrary that there is x ∈ K \ l(K) such that x′(x) = 0 for every
x′ ∈ K ′ \ l(K ′). We consider two cases:

Case 1: Let x ∈ icorK. In view of Lemma 2.6 (6◦), we have 0 ∈ K \ icorK.
By the separation condition in Theorem 2.21, there is x′ ∈ K ′ \ l(K ′) with
x′(0) = 0 < x′(k) for all k ∈ icorK. In particular, we get 0 < x′(x), which is
a contradiction.

Case 2: Let x /∈ icorK. Since K is relatively solid, we can fix some x ∈ icorK.
Now, observe that v := −x − x ∈ span {x, x} ⊆ aff K. We are going to show
that there is y ∈ (−x, x) with y ∈ K \ icorK.
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Since x ∈ icorK and v ∈ aff K, there is ε > 0 such that x+ εv ∈ K. Clearly,
since −x /∈ K, we must have ε ∈ (0, 1). Furthermore, due to −x /∈ K = aclK
and the convexity of K, there must be a ε ∈ (0, 1) with y := x+ εv ∈ K and
x+ δv /∈ K for all δ ∈ (ε, 1]. As requested we get that y ∈ K \ icorK.

Now, by the separation condition in Theorem 2.21, there is x′ ∈ K ′\l(K ′) with
x′(y) = 0 < x′(k) for all k ∈ icorK. Thus, in particular we have x′(x) > 0.
Moreover, from the above analysis, it is easy to verify that x = α1x + α2y ∈
span {x, y} for α1 := ε

1−ε and α2 := 1
1−ε . Recalling that x′(x) = 0 = x′(y), we

infer 0 < x′(x) = α1x
′(x) + α2x

′(y) = 0, which is a contradiction.

�
The algebraic closedness assumption of the relatively solid, convex cone in Theo-

rem 3.6 (2◦) is essential, as the next example shows.

Example 3.7 Consider the lexicographic cone in a Euclidean space R2,

K := {k = (k1, k2) ∈ R2 | k1 > 0 } ∪ [{0} × R+] .

It is easy to see that K is pointed (i.e., l(K) = {0}), convex and solid but not
algebraically closed. Moreover, the corresponding dual cone can be stated as

K ′ = {x′ ∈ (R2)′ | ∃ v ∈ R+ × {0} : x′(·) = 〈v, ·〉},

where 〈·, ·〉 is the Euclidean scalar product defined on R2. It is easy to observe that
K ′ is pointed (i.e., l(K ′) = {0}) as well. Now, for the point k := (0, 1) ∈ K \ l(K),
we have x′(k) = 0 for all x′ ∈ K ′. Thus, the conclusion in Theorem 3.6 (2◦) does
not hold in this example, which shows that the algebraic closedness assumption on
K is essential.

4 New algebraic properties of dual cones of convex
cones

In this section, we derive new algebraic properties of dual cones of convex cones in
linear spaces. We directly start by presenting one main theorem where important
facts related to generalized interiors of the dual cone K ′ are given.

Theorem 4.1 Assume that K is a convex cone. Then, the following hold:

1◦

corK ′ ⊆ {y′ ∈ E′ | ∀ y ∈ K \ {0} : y′(y) > 0} = K ′+.

2◦ If E has finite dimension, K ′ is solid and K is algebraically closed, then

corK ′ = {y′ ∈ E′ | ∀ y ∈ K \ {0} : y′(y) > 0} = K ′+.

3◦ If K is relatively solid and algebraically closed, then

icorK ′ ⊆ {y′ ∈ E′ | ∀ y ∈ K \ l(K) : y′(y) > 0} = K ′⊕.
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4◦ If E has finite dimension and K is algebraically closed, then

icorK ′ = {y′ ∈ K ′ | ∀ y ∈ K \ l(K) : y′(y) > 0} = K ′ ∩K ′⊕.

Proof:

1◦ Assertion 1◦ is known, see Jahn [17, Lem. 1.25].

2◦ The inclusion “⊆” is given in 1◦. Assume that K ′ is solid and K is algebraically
closed. In order to show the reverse inclusion “⊇”, let x′ ∈ E′ such that
x′(k) > 0 for all k ∈ K \ {0}. Clearly, we have x′ ∈ K ′. Assume by the
contrary that x′ /∈ corK ′. By Corollary 2.23, there is x′′ ∈ E′′ \ {0} such
that x′′(x′) = 0 ≤ x′′(k′) for all k′ ∈ K ′. Since E has finite dimension, in
view of Remark 2.14, we know that the canonical embedding function JE is
surjective. Thus, there exists x̃ ∈ E such that JE(x̃) = x′′. Notice that x̃ 6= 0
due to the fact that JE is linear and x′′ 6= 0. We infer x′(x̃) = 0 ≤ k′(x̃) for all
k′ ∈ K ′, which actually means that x̃ ∈ K ′′. By Remark 2.3, since E has finite
dimension, K is relatively solid. Then, applying Proposition 2.11, we obtain
x̃ ∈ K ′′ = aclK = K. Consequently, we have x̃ ∈ K \ {0}, hence x′(x̃) > 0 by
our assumption that x′ ∈ K ′+, a contradiction to x′(x̃) = 0.

3◦ Consider x′ ∈ icorK ′ ⊆ K ′. Assume by the contrary that there is k ∈ K \ l(K)
such that x′(k) ≤ 0. Because of x′ ∈ K ′, we actually have x′(k) = 0. In view
of the Theorem 3.6 (2◦), there is y′ ∈ K ′ \ l(K ′) such that y′(k) > 0. Since
x′ ∈ icorK ′ and −y′ ∈ aff K ′ = aff(K ′ − K ′), there exists ε > 0 such that
z′ := x′ + ε(−y′) ∈ K ′. We conclude z′(k) = x′(k) − εy′(k) < 0, which
contradicts the condition that, for any k ∈ K, we have z′(k) ≥ 0.

4◦ The inclusion “⊆” is given in 3◦. In order to show the reverse inclusion “⊇”,
assume that K is algebraically closed and let x′ ∈ K ′ such that x′(y) > 0 for
all y ∈ K \ l(K). Notice that K and K ′ are relatively solid in by Remark
2.3 (since both E and E′ have finite dimension). Suppose by the contrary
that x′ /∈ icorK ′. Due to the separation condition in Theorem 2.21, there is
x′′ ∈ E′′ \ {0} such that x′′(x′) = 0 ≤ x′′(k′) for all k′ ∈ K ′; and 0 < x′′(k′)
for all k′ ∈ icorK ′. Since E has finite dimension, in view of Remark 2.14,
we know that the canonical embedding function JE is surjective. Thus, there
exists x̃ ∈ E such that JE(x̃) = x′′. We infer

x′(x̃) = 0 ≤ k′(x̃) for all k′ ∈ K ′; (13)

0 < k′(x̃) for all k′ ∈ icorK ′. (14)

Due to Proposition 2.11 and condition (13), we have x̃ ∈ K ′′ = aclK = K.
More precisely, (14) ensures that we have x̃ /∈ l(K) (otherwise k′(x̃) = 0 for
k′ ∈ icorK ′, which is a contradiction). Thus, we get x̃ ∈ K \ l(K), hence
x′(x̃) > 0 taking into account that x′ ∈ K ′⊕. This contradicts the fact that
x′(x̃) = 0 given in (13).

�
Also in Theorem 4.1 (3◦), the algebraic closedness assumption of the convex cone

K is essential, as shown in the following example.
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Example 4.2 We consider again the simple Example 3.7 where the lexicographic
cone in R2 is studied. Taking a look on K ′, one can see that

icorK ′ = {x′ ∈ (R2)′ | ∃ v ∈ R++ × {0} : x′(·) = 〈v, ·〉}.

Now, for the point k = (0, 1) ∈ K \ l(K) we have x′(k) = 0 for all x′ ∈ icorK ′, while
K ′⊕ = ∅. Consequently, K ′⊕ ∩ icorK ′ = ∅, which shows that the algebraic closedness
assumption on K in Theorem 4.1 (3◦) is essential.

Remark 4.3 Notice, if E has finite dimension (hence also E′), both K and K ′ are
relatively solid by Remark 2.3. We mention that some ideas in the proof of Adán
and Novo [4, Prop. 2.3] (the proposition states that K is relatively solid if and only
if K ′ is relatively solid) seem to be not valid by taking a closer look on Theorem 4.1
(4◦) and the upcoming Theorems 4.7 (4◦) and 4.8 (2◦). Thus, it is an open question
whether the fact stated in [4, Prop. 2.3] is true in the infinite dimensional case.

In order to state the next lemma, where important properties of the sets K ′, K ′+
and K ′⊕, respectively, are given, it is convenient to introduce, for any Ω ⊆ E, the
annihilator of Ω,

(Ω)⊥ := {x′ ∈ E′ | ∀x ∈ Ω : x′(x) = 0}.

Lemma 4.4 Assume that K ⊆ E is a convex cone. Then, the following hold:

1◦ If K is relatively solid and algebraically closed, and K ′ is relatively solid, then
K ′⊕ 6= ∅.

2◦ K ′ ⊆ {y′ ∈ E′ | ∀ k ∈ l(K) : y′(k) = 0} = (l(K))⊥ = (l(K))′.

3◦ If K = l(K), then K ′ = (K)⊥ = l(K ′).

4◦ K = l(K) if and only if K ′⊕ = E′ if and only if K ′⊕ is a cone.

5◦ K = {0} if and only if K ′+ = E′ if and only if K ′ = E′ if and only if K ′+ is a
cone.

Proof:

1◦ This result follows by Theorem 4.1 (3◦).

2◦ Consider some x′ ∈ K ′. Then, we have in particular x′(k) ≥ 0 for all k ∈
l(K) ⊆ K. Hence, −x′(k) = x′(−k) ≥ 0 for all k ∈ l(K) as well. Thus,
K ′ ⊆ (l(K))⊥. The remaining equality (l(K))⊥ = (l(K))′ is easy to see.

3◦ Assume that K = l(K). By assertion 2◦, we have K ′ ⊆ (l(K))⊥ = (l(K))′ =
K ′, hence K ′ = (l(K))⊥ = (K)⊥. Moreover, it is easy to check that (K)⊥ =
l(K ′).

4◦ Obviously, K = l(K) yields K ′⊕ = E′. Now, suppose that K ′⊕ = E′. Assuming
by the contrary that there exists k ∈ K \ l(K). Then, in particular for x′ :=
0 ∈ E′ = K ′⊕, we have x′(k) > 0, which is a contradiction.

Clearly, K ′⊕ = E′ is a cone. Conversely, assume that K ′⊕ is a cone, which in
particular means that 0 ∈ K ′⊕. Thus, taking a look on the definition of K ′⊕,
we conclude K = l(K).
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5◦ The proof is analogous to the proof of 4◦ by replacing K ′⊕ by K ′+ as well as
l(K) by {0}. Furthermore, it is easy to see that K ′+ = E′ implies K ′ = E′.
Now, assume that K ′ = E′. Then, it is easy to check that E′ = (K)⊥. To
prove K = {0}, suppose by the contrary that there is k ∈ K \ {0}. Thus, for
any x′ ∈ E′, x′(k) = 0, a contradiction to Theorem 3.6 (1◦).

�

Remark 4.5 Notice that in 1◦ of Lemma 4.4 the algebraical closedness assumption
concerning K is essential, as Examples 3.7 and 4.2 show.

In the next proposition, we will state some further properties of the dual cone of
K and its generalized interiors. It is convenient to introduce the following set

C := (K \ l(K)) ∪ {0} ⊆ K.

Now, we are able to analyze relationships between the dual cones K ′ and C ′, and
the sets K ′+, K ′⊕ and C ′+.

Lemma 4.6 Assume that K ⊆ E is a convex cone. Then, the following hold:

1◦ C is a pointed, convex cone in E.

2◦ K ′+ ⊆ K ′ = C ′ ∩ (l(K))′ ⊆ C ′.
3◦ K ′+ = K ′⊕ ∩ (l(K))′+ ⊆ K ′⊕ = C ′+ ⊆ C ′

4◦ K 6= l(K) or K = {0} if and only if K ′⊕ ⊆ K ′ if and only if C ′ ⊆ K ′.
5◦ If K ′⊕ 6= ∅, then K 6= l(K) if and only if K ′⊕ ⊆ K ′ \ l(K ′).
6◦ If K is relatively solid and algebraically closed, and K ′ is relatively solid, then

K is pointed if and only if K ′+ ⊇ K ′⊕ if and only if K ′+ 6= ∅.

Proof:

1◦ The proof is straightforward by using Lemma 2.6.

2◦ Clearly, K ′+ ⊆ K ′. Moreover, since K = C∪ l(K) we have K ′ = C ′∩ (l(K))′ ⊆
C ′ by Jahn [17, Lem. 1.24].

3◦ If K is pointed, then K ′+ = K ′⊕ as well as K ′⊕ ∩ ({0})′+ = K ′⊕ ∩ E = K ′⊕.
Otherwise, if K is not pointed, then K ′+ = ∅ in view of Lemma 2.10 (4◦), as
well as K ′⊕ ∩ (l(K))′+ = K ′⊕ ∩∅ = ∅, again by Lemma 2.10 (4◦) applied for the
not pointed cone l(K) in the role of K. We conclude that K ′+ = K ′⊕∩(l(K))′+.
Moreover, K ′⊕ = C ′+ and the other inclusions are obvious.

4◦ Assume that K 6= l(K) or K = {0}. We prove that C ′ ⊆ K ′. Consider some
x′ ∈ C ′. Now, we know that x′(c) ≥ 0 for all c ∈ C. Thus, it is enough to
show that x′(k) ≥ 0 for all k ∈ l(K) in order to conclude x′ ∈ K ′. Take some
k ∈ l(K). By Lemma 2.6 (3◦) there is k̃ ∈ K \ l(K) such that [k̃, k) ⊆ K \ l(K).
Now, for any α ∈ (0, 1], we have αx′(k̃)+(1−α)x′(k) = x′(αk̃+(1−α)k) ≥ 0,
which yields for α→ 0 as requested x′(k) ≥ 0 (see also Remark 2.17 (a)).

Now, suppose that C ′ ⊆ K ′. Due to assertion 3◦ of this lemma, we have
K ′⊕ = C ′+ ⊆ C ′ ⊆ K ′.
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Finally, let K ′⊕ ⊆ K ′ be satisfied. Assume by the contrary that K = l(K) and
K 6= {0}. By Lemma 4.4 (4◦) we have K ′⊕ = E′, hence K ′ = E′. Consequently,
by Lemma 4.4 (5◦), we get K = {0}, a contradiction.

5◦ By 4◦ of this lemma, we get that K 6= l(K) implies K ′⊕ ⊆ K ′. Actually we
have K ′⊕ ⊆ K ′ \ l(K ′), since otherwise x′(k) = 0 for some k ∈ K \ l(K) and
x′ ∈ K ′⊕, a contradiction.

Assume that K ′⊕ ⊆ K ′ \ l(K ′) ⊆ K ′. Thus, in view of 4◦ of this lemma,
we obtain K = l(K) or K = {0}. However, K = {0} implies K ′ = E′ and
l(K ′) = E′ by Lemma 4.4 (5◦), which contradicts K ′ \ l(K ′) 6= ∅.

6◦ Assume that K is relatively solid and algebraically closed, and K ′ is relatively
solid. If K is pointed, then K ′+ = K ′⊕∩({0})′+ = K ′⊕ by assertion 3◦. Now, let
K ′+ ⊇ K ′⊕ be satisfied. Assuming by the contrary that K is not pointed, then
K ′+ = ∅ by Lemma 2.10 (4◦), while K ′⊕ 6= ∅ by Lemma 4.4 (1◦), a contradiction
to K ′+ ⊇ K ′⊕.

The second equivalence is a consequence of the first equivalence taking into
account Lemmas 4.4 (1◦) and 2.10 (4◦).

�
We are ready to state some more results for the intrinsic core of the dual cone. It

should be mentioned that assertions 1◦ and 2◦ in the next Theorem 4.7 present rep-
resentations of icorK ′ which are also true in the case that E has infinite dimension.

Theorem 4.7 Assume that K ⊆ E is a convex cone. Then, the following assertions
hold:

1◦ For any k′ ∈ icorK ′,

icorK ′ =
⋃
α>0

{x′ ∈ E′ | ∀ k ∈ K : x′(k) ≥ αk′(k)}.

2◦ If K is relatively solid and algebraically closed, and either K 6= l(K) or K =
{0}, then, for any k′ ∈ icorK ′, we have

icorK ′ =

[⋃
α>0

{x′ ∈ E′ | ∀ k ∈ K \ l(K) : x′(k) ≥ αk′(k)}

]
⊆ K ′⊕.

3◦ For any k′ ∈ icorK ′,

aff K ′ =
⋃
α>0

{x′ ∈ E′ | ∀ k ∈ K : x′(k) ≤ αx′(k)}.

Now, assume that E has finite dimension, K is algebraically closed, and either
K 6= l(K) or K = {0}. Then, we have:

4◦ It holds that

icorK ′ = {x′ ∈ E′ | ∀ k ∈ K \ l(K) : x′(k) > 0} = K ′⊕.
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5◦ For any k′ ∈ icorK ′,

K ′ =
⋂
β<0

{x′ ∈ E′ | ∀ k ∈ K \ l(K) : x′(k) > βk′(k)}.

Proof:

1◦ Take some k′ ∈ icorK ′. By Proposition 2.13 (1◦), we know that

icorK ′ =
⋃
α>0

(αk′ +K ′) =
⋃
α>0

(αk′ + {x′ ∈ E′ | ∀ k ∈ K : x′(k) ≥ 0})

=
⋃
α>0

{x′ ∈ E′ | ∀ k ∈ K : x′(k) ≥ αk′(k)}.

2◦ Consider k′ ∈ icorK ′ and assume that either K 6= l(K) or K = {0}. By
assertion 1◦ of this theorem and due to K \ l(K) ⊆ K, we have

icorK ′ =
⋃
α>0

{x′ ∈ E′ | ∀ k ∈ K : x′(k) ≥ αk′(k)}

⊆
⋃
α>0

{x′ ∈ E′ | ∀ k ∈ K \ l(K) : x′(k) ≥ αk′(k)}. (15)

Moreover, in view of Theorem 4.1 (3◦), for k ∈ K \ l(K), we have k′(k) > 0.
Thus, an upper set for all sets involved in (15) is given by K ′⊕. Now, Lemma
4.4 (2◦) and Lemma 4.6 (4◦) yield K ′⊕ ⊆ K ′ ⊆ (l(K))⊥. We are going to show
the reverse inclusion in (15). Consider some x′ ∈ E′ and α > 0 such that for all
k ∈ K\l(K) we have x′(k) ≥ αk′(k). It remains to show that x′(k) ≥ αk′(k) for
all k ∈ l(K) and α > 0. From the above analysis, we get that x′, k′ ∈ (l(K))⊥.
Thus, for any k ∈ l(K) and α > 0, we have x′(k) = 0 = αk′(k).

Therefore, we actually have equality in (15).

3◦ By Proposition 2.13 (3◦), for any k′ ∈ icorK ′, we have

aff K ′ =
⋃
α>0

(αk′ −K ′) =
⋃
α>0

{x′ ∈ E′ | ∀x ∈ K : x′(x) ≤ αx′(k)}.

4◦ Follows directly by Theorem 4.1 (4◦) and Lemma 4.6 (4◦).

5◦ Take some k′ ∈ icorK ′. Due to Lemma 2.10 (1◦), Proposition 2.13 (2◦) and
assertion 4◦ of this theorem, we have

K ′ = aclK ′ =
⋂
β<0

(βk′ + icorK ′)

=
⋂
β<0

(βk′ + {x′ ∈ E′ | ∀ k ∈ K \ l(K) : x′(k) > 0})

=
⋂
β<0

{x′ ∈ E′ | ∀ k ∈ K \ l(K) : x′(k) > βk′(k)}.

�
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Further properties of the dual cone K ′ are given in the next theorem.

Theorem 4.8 Suppose that K ⊆ E is a convex cone. Then, the following hold:

1◦ Assume that K is solid. Then,

K ′ \ {0} = {x′ ∈ E′ | ∀ k ∈ corK : x′(k) > 0},

and the latter set is nonempty if and only if K 6= l(K).

2◦ Assume that K is relatively solid. Then,

K ′ \ l(K ′) = {x′ ∈ E′ | ∀ k ∈ icorK : x′(k) > 0},

and the latter set is nonempty if and only if K 6= l(K).

Proof:

1◦ First of all, notice that the quality in assertion 1◦ is a direct consequence of the
corresponding equality in 2◦. This is due to the facts that corK 6= ∅ implies
corK = icorK by Lemma 2.1 (3◦), and K ′ is pointed (i.e., l(K ′) = {0}) by
Lemma 2.10 (3◦).

Moreover, by Lemma 3.2 (7◦) we know that K 6= E if and only if K ′ 6= {0}.
Notice, since K is solid, we infer that K = E or K 6= l(K) by Lemma 2.7
(2◦). Thus, under the assumption K ′ 6= {0}, we get K 6= E, hence K 6= l(K).
Conversely, K 6= l(K) implies K 6= E, which yields K ′ 6= {0}.

2◦ In order to show the inclusion “⊆”, let x′ ∈ K ′ \ l(K ′). Assume by the
contrary that there is k ∈ icorK such that x′(k) ≤ 0, which actually means
that x′(k) = 0. This directly contradicts Theorem 3.1 (2◦).

Conversely, for proving “⊇”, let x′ ∈ E′ such that for all k ∈ icorK we have
x′(k) > 0. By Lemma 2.2 (3◦), we have acl(icorK) = aclK ⊇ K. Thus, in
view of Remark 2.17, we infer x′(k) ≥ 0 for all k ∈ K, which yields x′ ∈ K ′.
Moreover, since there is k ∈ icorK with x′(k) > 0, we have −x′ /∈ K ′.
Finally, by Lemmas 3.2 (3◦) and 4.4 (3◦), we conclude K ′ 6= l(K ′) if and only
if K 6= l(K).

�

Corollary 4.9 Assume that K ⊆ E is a convex cone. Then, we have:

1◦ If K is solid and E 6= {0}, then

K ′ \ {0} = ((corK) ∪ {0})′+.

2◦ If K is relatively solid and K 6= {0}, then

K ′ \ l(K ′) = ((icorK) ∪ {0})′+.
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Proof:

1◦ Clearly, ((corK) ∪ {0})′+ = {x′ ∈ E′ | ∀ k ∈ (corK) \ {0} : x′(k) > 0} holds
true. Hence, in view of Theorem 4.8 (1◦) it is easy to see that K ′ \ {0} ⊆
((corK) ∪ {0})′+. We consider two cases:

Case 1: In the case K 6= E (which implies E 6= {0}), we have 0 /∈ corK by
Lemma 2.7 (3◦), hence (corK) \ {0} = corK. Thus, we conclude the reverse
inclusion.

Case 2: Assume that K = E 6= {0}. Notice that K = E implies corK = E.
Now, since E ∪ {0} is a not pointed, convex cone, we infer (E ∪ {0})′+ = ∅ by
Lemma 2.10 (4◦). Thus, K ′ \ {0} = ∅ holds true as well.

2◦ Here we have ((icorK) ∪ {0})′+ = {x′ ∈ E′ | ∀ k ∈ (icorK) \ {0} : x′(k) > 0},
and K ′ \ l(K ′) ⊆ ((icorK) ∪ {0})′+ by Theorem 4.8 (2◦). Let us consider two
cases:

Case 1: In the case K 6= l(K) (which implies K 6= {0}), we have 0 /∈ icorK by
Lemma 2.6 (6◦), hence (icorK)\{0} = icorK. Therefore, the reverse inclusion
holds.

Case 2: Assume that K = l(K) 6= {0}. By Lemma 2.6 (6◦), we get K =
l(K) = icorK. Since l(K) ∪ {0} is a not pointed, convex cone, we infer
(l(K) ∪ {0})′+ = ∅ by Lemma 2.10 (4◦). Thus, K ′ \ l(K ′) = ∅.

�

Remark 4.10 Suppose that K 6= {0} is a relatively solid, convex cone. By Lemma
2.10 (2◦) one can also directly derive

((icorK) ∪ {0})′+ ⊆ ((icorK) ∪ {0})′ = K ′.

It should be mentioned that Hernández, Jiménez and Novo [13, Rem. 3.14] observed
the equality

K ′ = (K)⊥ ∪
[
((icorK) ∪ {0})′+ ∩K ′

]
.

Notice that (K)⊥ = l(K ′). In Hernández, Jiménez and Novo [13, Cor. 3.15] the
inclusions K ′ \ {0} ⊆ ((corK) ∪ {0})′+ and K ′ \ l(K ′) ⊆ ((icorK) ∪ {0})′+ of our
Corollary 4.9 are stated.

Corollary 4.11 Assume that K ⊆ E is a convex cone with K 6= l(K). Then, the
following assertions hold:

1◦ If K is solid, then

corK ′ ⊆ K ′+ ⊆ K ′ \ {0} = ((corK) ∪ {0})′+.

2◦ If K is relatively solid and algebraically closed, then we have

icorK ′ ⊆ K ′⊕ ⊆ K ′ \ l(K ′) = ((icorK) ∪ {0})′+.
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Proof:

1◦ Follows by Corollary 4.9 (1◦), Theorem 4.1 (1◦) and the fact that 0 /∈ K ′+ for
K 6= {0}, see Lemma 4.4 (5◦).

2◦ This assertion is a consequence of Corollary 4.9 (2◦), Theorem 4.1 (3◦), Lem-
mas 4.4 (1◦) and 4.6 (5◦).

�

5 Application to vector optimization problems

Given two real linear spaces X and E, a nonempty feasible set Ω ⊆ X, and a vector-
valued objective function f : X → E, we consider the following vector optimization
problem: {

f(x)→ min w.r.t. K

x ∈ Ω,
(P)

where E is preordered by the convex cone K ⊆ E. More precisely, K induces on E
a preorder relation 5K defined, for any two points y, y ∈ E, by

y 5K y :⇐⇒ y ∈ y −K.

For notational convenience, we further define, for any two points y, y ∈ E, the
following three binary relations

y ≤0
K y :⇐⇒ y ∈ y −K \ {0},

y ≤K y :⇐⇒ y ∈ y −K \ l(K),

y <K y :⇐⇒ y ∈ y − (icorK) \ l(K).

Notice, in view of Lemma 2.6 (5◦, 6◦), we have

(icorK) \ l(K) =

{
icorK if K 6= l(K),

∅ if K = l(K).

Solutions of the problem (P) are defined according to the next two definitions
(see, e.g., Bagdasar and Popovici [6, Sec. 2.2], Jahn [17, Def. 4.1] and Luc [21, Def.
2.1]).

Definition 5.1 (Pareto efficiency) A point x ∈ Ω is said to be a Pareto efficient
solution if for any x ∈ Ω the condition f(x) 5K f(x) implies f(x) 5K f(x). The
set of all Pareto efficient solutions of (P) is denoted by

Eff(Ω | f,K) := {x ∈ Ω | ∀x ∈ Ω : f(x) 5K f(x) ⇒ f(x) 5K f(x)}.

The following assertions are well known:

1◦ Eff(Ω | f,K) = {x ∈ Ω |6 ∃x ∈ Ω : f(x) ≤K f(x)}.
2◦ If K = l(K), then Eff(Ω | f,K) = Ω.

3◦ If K is pointed, then Eff(Ω | f,K) = {x ∈ Ω |6 ∃x ∈ Ω : f(x) ≤0
K f(x)}.
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To define a weaker solution concept for the problem (P), the intrinsic core of the
convex cone K will be used in the next definition.

Definition 5.2 (Weak Pareto efficiency) A point x ∈ Ω is said to be a weakly
Pareto efficient solution if there is no x ∈ Ω such that f(x) <K f(x). The set of all
weakly Pareto efficient solutions of (P) is denoted by

WEff(Ω | f,K) := {x ∈ Ω |6 ∃x ∈ Ω : f(x) <K f(x)}.

By using Definitions 5.1 and 5.2 as well as Lemma 2.6 (4◦, 5◦, 6◦), we get the
following properties for sets of (weakly) Pareto efficient solutions:

1◦ If K 6= l(K), then Eff(Ω | f,K) ⊆WEff(Ω | f,K).

2◦ If K = l(K), then Eff(Ω | f,K) = Ω = WEff(Ω | f,K).

3◦ If icorK ⊆ l(K), then WEff(Ω | f,K) = Ω.

Remark 5.3 Some authors already defined weak solution concepts for vector op-
timization problems by using certain generalized interiority notions. For instance,
Jahn [17, Def. 4.12] used the algebraic interior of K while Grad and Pop [12]
used the quasi-interior of K, and Bao and Mordukhovich [7], Zălinescu [30], stud-
ied (beside other concepts) the quasi-relative interior of K in a topological setting.
Assuming K 6= l(K), then our Definition 5.2 is in accordance with the definition
by Adán and Novo [3, Def. 5] and Bao and Mordukhovich [7, p. 303]. Following
the “Intrinsic Relative Minimizer Concept” by Bao and Mordukhovich [7] (see also
Mordukhovich [24, Def. 9.3]), the weak solution concept considered in Definition
5.2 could also be called “Intrinsic Relative Pareto Efficiency”. For more details, we
refer the reader to the above-mentioned works and the references therein.

Let us consider some monotonicity concepts for real-valued functions (c.f. Jahn
[17, Def. 5.1]). Given binary relations ∼E∈ {5K ,≤0

K ,≤K , <K} and ∼R∈ {<,≤},
a function ϕ : E → R is said to be (∼E , ∼R)-increasing if for any y, y ∈ E with
y ∼E y we have ϕ(y) ∼R ϕ(y).

Remark 5.4 Every (≤0
K , <)-increasing function is (5K , ≤)-increasing as well.

Assume that K 6= l(K). Since icorK ⊆ K \ l(K) by Lemma 2.6 (4◦), any (≤K ,
<)-increasing function is (<K , <)-increasing as well.

Lemma 5.5 The following assertions hold:

1◦ Any x′ ∈ K ′ is (5K , ≤)-increasing.

2◦ Assume that K is relatively solid. Any x′ ∈ K ′ \ l(K ′) is (<K , <)-increasing.

3◦ Any x′ ∈ K ′⊕ is (≤K , <)-increasing.

4◦ Any x′ ∈ K ′+ is (≤0
K , <)-increasing.
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Proof:

1◦ See Jahn [17, Ex. 5.2 (a)].

2◦ In view of Theorem 4.8 (2◦), we haveK 6= l(K). The equality given in Theorem
4.8 (2◦) ensures now that, for any y, y ∈ E with y <K y, we have x′(y) < x′(y).
Consequently, x′ is a (<K , <)-increasing function.

3◦ By the definition of K ′⊕, for any y, y ∈ E with y ≤K y, we have x′(y) < x′(y),
i.e., x′ is a (≤K , <)-increasing function.

4◦ See Jahn [17, Ex. 5.2 (a)].

�
Next, we present some scalarazitaion results for the vector optimization problem

(P) by using increasing scalarization functions.

Lemma 5.6 Consider a real-valued function ϕ : E → R. Then, the following as-
sertions hold:

1◦ If ϕ is (<K , <)-increasing, then argminx∈Ω (ϕ ◦ f)(x) ⊆WEff(Ω | f,K).

2◦ If ϕ is (≤K , <)-increasing, then argminx∈Ω (ϕ ◦ f)(x) ⊆ Eff(Ω | f,K).

3◦ If ϕ is (≤K , ≤)-increasing, and argminx∈Ω (ϕ ◦ f)(x) = {x} for some x ∈ Ω,
then x ∈ Eff(Ω | f,K).

Proof:

1◦ Consider any x ∈ argminx∈Ω (ϕ ◦ f)(x). Assume the contrary holds, i.e.,
x /∈ WEff(Ω | f,K). Then, there exists y ∈ Ω with f(y) <K f(x). If ϕ is
(<K , <)-increasing, then ϕ(f(y)) < ϕ(f(x)), a contradiction to (ϕ ◦ f)(x) ≤
(ϕ ◦ f)(y).

2◦ Let x ∈ argminx∈Ω (ϕ ◦ f)(x). Assume the contrary holds, i.e., x /∈ Eff(Ω |
f,K). Thus, there exists y ∈ Ω with f(y) ≤K f(x). If ϕ is (≤K , <)-increasing,
then ϕ(f(y)) < ϕ(f(x)), a contradiction to (ϕ ◦ f)(x) ≤ (ϕ ◦ f)(y).

3◦ Now, consider any x ∈ Ω with {x} = argminx∈Ω (ϕ ◦ f)(x). Suppose by the
contrary that x /∈ Eff(Ω | f,K). Then, there exists y ∈ Ω \ {x} with f(y) ≤K
f(x). If ϕ is (≤K , ≤)-increasing, then ϕ(f(y)) ≤ ϕ(f(x)), a contradiction to
the fact that x is the unique minimizer of ϕ ◦ f on Ω.

�
Notice that the convex cone K considered in Lemma 5.6 is neither assumed to be

pointed nor solid, in contrast to the known results by Jahn [17, Lem. 5.14 and 5.24].
For the linear scalarization case, we directly derive by combining Lemma 5.5 and

Lemma 5.6 the following assertions:

Theorem 5.7 The following assertions hold:

1◦ For any x′ ∈ K ′ \ l(K ′), we have argminx∈Ω (x′ ◦ f)(x) ⊆WEff(Ω | f,K).

2◦ For any x′ ∈ K ′⊕, we have argminx∈Ω (x′ ◦ f)(x) ⊆ Eff(Ω | f,K).
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3◦ For any x′ ∈ K ′ with argminx∈Ω (x′ ◦ f)(x) = {x} for some x ∈ Ω, we have
x ∈ Eff(Ω | f,K).

4◦ Assume that K is pointed. For any x′ ∈ K ′+, we have argminx∈Ω (x′ ◦ f)(x) ⊆
Eff(Ω | f,K).

Remark 5.8 Notice that corK ′ ⊆ K ′+ by Theorem 4.1 (1◦), and if K is relatively
solid and algebraically closed, then icorK ′ ⊆ K ′⊕ by Theorem 4.1 (3◦).

It should be mentioned that assertion 1◦ in Theorem 5.7 is exactly the result by
Adan and Novo [3, Th. 2 (ii)] since

K ′ \ l(K ′) = {x′ ∈ E′ | ∀ k ∈ icorK : x′(k) > 0}
= {x′ ∈ K ′ \ {0} | ∃ k ∈ icorK : x′(k) > 0}

for a relatively solid, convex cone K ⊆ E in view of Theorem 4.8 (2◦) and the proof
of Adán and Novo [3, Th. 2 (ii)]. In the case that K is solid (i.e., corK = icorK
and K ′ is pointed, l(K ′) = {0}), we recover from assertion 1◦ the result by Jahn
[17, Th. 5.28]. Moreover, assertion 3◦ in Theorem 5.7 is comparable to Jahn [17,
Th. 5.18 (a)] (however no pointedness of K is needed in our result) while assertion
4◦ in Theorem 5.7 is exactly the result by Jahn [17, Th. 5.18 (b)]. Thus, the novel
result in Theorem 5.7 is given by assertion 2◦.

6 Conclusions

Convex cones play a fundamental role in nonlinear analysis and optimization theory.
In particular, tangent cones as well as normal cones have turned out to be important
geometric objects for describing optimality conditions. This article contributed to
the understanding of the algebraic interior (core) and the relative algebraic interior
(intrinsic core) of convex cones in real liner spaces (which are not necessarily endowed
with a topology). Using interesting facts from the field of analysis and optimization
under an algebraic setting including specific separation theorems (where a relatively
solid, convex set is involved), we derived new representations and properties of the
intrinsic core of relatively solid, convex cones in linear spaces (see Sections 3 and 4).
In particular, we were able to derive new representations of the intrinsic core of the
dual cone of a relatively solid, convex cone in linear spaces.

In forthcoming works, we aim to point out relationships between generalized alge-
braic interiority notions and corresponding generalized topological interiority notions
(such as quasi interiority and quasi-relative interiority notions). Moreover, we aim
to extend the results derived in Section 5 for vector optimization problems involving
relatively solid, convex cones which are not necessarily pointed.
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