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Abstract

Optimization problems with multiple objectives which are expensive, i. e. where
function evaluations are time consuming, are difficult to solve. Finding at least one
locally optimal solution is already a difficult task. In case only one of the objective
functions is expensive while the others are cheap, for instance analytically given, this
can be used in the optimization procedure. Using a trust-region approach and the
Tammer-Weidner-functional for finding descent directions, in [19] an algorithm was
proposed which makes use of the heterogeneity of the objective functions. In this
paper, we present three heuristic approaches which allow to find additional optimal
solutions of the multiobjective optimization problem and by that representations at
least of parts of the Pareto front. We present the related theoretical results as well
as numerical results on some test instances.

Key Words: multi-objective optimization, heterogeneous optimization, Tammer-Weidner-
functional, trust region algorithm

1 Introduction

In multi-objective optimization one studies optimization problems with several competing
objectives. An optimal solution for such problems is a feasible point such that there exists
no other feasible solution which satisfies all objective functions at least equally good and
which is better w.r.t. at least one objective function. Based on this optimality concept,
in general an infinite number of optimal solutions, called efficient, exist. The images of
these efficient points in the image space are denoted as nondominated, and the set of
nondominated points are also known as Pareto front. This set is then also in general not
a singleton. Determining even just representations of this Pareto front is known to be a
difficult task.
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In many applications multi-objective optimization problems arise with expensive black-
box functions, i.e. one or several objective functions are not given analytically, but for
example by a time-consuming simulation. Solving such problems is a challenge as it is
not possible to evaluate the expensive objective functions too often. In case only some
of the objective functions are expensive, but the others are cheap, we call such problems
heterogeneous, and this heterogeneity can be used in a numerical approach.

The trust region algorithm presented in [19, 18, 20] and called MHT is designed to
consider such multi-objective heterogeneous optimization problems where one of the ob-
jectives is an expensive black-box function. The simulation only gives function values.
Derivative information is not available with reasonable effort and therefore not used. The
other objective functions are so-called cheap functions which are analytically given, easy to
compute, and derivatives are easily available. The general optimization problem is given
by

min
x∈Rn

f(x) (MOP )

with f : Rn → Rq and f(x) = (f1(x), . . . , fq(x))>. The objective functions fi : Rn → R are
assumed to be twice continuously differentiable for all i = 1, 2, . . . , q and maxi=1,...,q fi(x)
is assumed to be bounded from below. The function f1 is an expensive function, and
the objective functions fi, i = 2, 3, . . . , q, are assumed to be cheap functions. While the
problem is stated here as an unconstrained problem, box constraints can also be handled,
see [18]. Based on a trust-region approach a sequence of points is generated. Thereby,
the descent directions are calculated by finding a point within the trust region which is as
close as possible to a local ideal point. This leads to single-objective subproblems, which
have to be solved, which have the structure of the well-known Tammer-Weidner functional
[11].

However, the algorithm MHT proposed in [19, 20] calculates only one efficient solution,
to be more concrete, accumulation points of the generated sequence of iteration points
satisfy a necessary optimality criteria to be a locally optimal solution. The method is not
designed to find a representation of the Pareto front. It is the topic of this paper to find
representations of the Pareto front, at least of parts of the Pareto front, starting from
single solutions generated by MHT . Thereby, the heterogeneity of the objective functions
is used.

In section 2 the basic definitions and the algorithm MHT are stated. Three heuristic
approaches based on MHT are described in section 3 which all aim on finding represen-
tations (of parts) of the Pareto front. The results of numerical tests are summarized in
section 4. The results presented here are all based on [18].

2 Basic Definitions and Algorithm MHT

We first shortly recall the necessary definitions used in this paper. Then we present the
algorithm MHT on which we base our approaches for a representation of the Pareto front.
For the basic concepts in vector optimization see for instance the book [12], or the book
chapters [7, 8].

A point x ∈ Rn is called efficient for (MOP ) if there exists no point x ∈ Rn with
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fi(x) ≤ fi(x) for all i ∈ {1, 2, . . . , q} and f(x) 6= f(x). The image of an efficient point
is called nondominated. The set of all nondominated points is also known as Pareto
front. For theoretical purposes we also need a weaker concept: a point x ∈ Rn is called
weakly efficient for (MOP ) if there exists no point x ∈ Rn with fi(x) < fi(x) for all
i ∈ {1, 2, . . . , q}. Both concepts can be restricted to local areas. Accordingly, a point
x ∈ Rn is called locally (weakly) efficient for (MOP ) if there exists a neighborhood
U ⊂ Rn with x ∈ U such that x is (weakly) efficient for (MOP ) in U .

Obviously every efficient point is weakly efficient. The above concepts use the compo-
nentwise partial ordering in the image space Rq. In the following we will use the inequality
relations < and ≤ for vectors in such a componentwise manner. Hence, for a, b ∈ Rn we
write a ≤ b if it holds ai ≤ bi for all i ∈ {1, 2, . . . , n}, and the same for <.

The following concept gives a necessary condition for weak efficiency, see for example
[10].

Definition 2.1 Let fi : Rn → R, i = 1, 2, . . . , q, be continuously differentiable functions.
A point x̄ ∈ Rn is called Pareto critical for (MOP ), if for every vector d ∈ Rn there exists
an index j ∈ {1, 2, . . . , q} such that it holds ∇fj(x̄)>d ≥ 0.

This concept is a generalization of the stationarity notion for scalar optimization prob-
lems, i.e. ∇f(x) = 0n for q = 1. The following lemma shows that Pareto criticality is a
necessary condition for local weak efficiency, see for example [9, 12].

Lemma 2.2 Let fi : Rn → R, i = 1, 2, . . . , q, be continuously differentiable functions. If
x̄ ∈ Rn is locally weakly efficient for (MOP ), then it is Pareto critical for (MOP ).

The following lemma gives a characterization of Pareto critical points and comes from
multi-objective descent methods [4, 9, 10]. This characterization is a main tool in the
convergence proof of MHT in [19].

Lemma 2.3 [10, Lem. 3] Let fi : Rn → R, i = 1, 2, . . . , q, be continuously differentiable
functions. For the function

ω(x) := −min
‖d‖≤1

max
i=1,...,q

∇fi(x)>d (1)

the following statements hold.

(i) ω is continuous.

(ii) It holds ω(x) ≥ 0 for all x ∈ Rn.

(iii) A point x ∈ Rn is Pareto critical for (MOP ) if and only if it holds ω(x) = 0.

The multi-objective heterogeneous trust region algorithm MHT is based on the trust
region approach and generalizes it to multi-objective problems. Following the trust region
concept, the computations are restricted to a local area in every iteration and the functions
are replaced by local models. The search direction is generated in the image space and
local ideal points of the model functions are used. The local area called trust region is
defined as

Bk =
{
x ∈ Rn |

∥∥x− xk∥∥ ≤ δk
}

(2)
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with xk the current iteration point, δk > 0 the radius and ‖·‖ a norm. We consider
‖·‖ := ‖·‖2 the Euclidean norm and a compatible matrix norm.

Within each trust region, the original functions are replaced by suitable local model
functions mk

i , i = 1, 2, . . . , q, defined in Bk. For the analytically given functions fi, i =
2, 3, . . . , q, the Taylor model of second order is used since it is standardly used in trust
region methods. It requires derivative information and can therefore not be used for the
expensive function f1. Instead, an interpolation model based on Lagrange polynomials is
used. The interpolation points are supposed to fulfill the criterion of poisedness [2, 3] to
guarantee a good interpolation model. For the implementation, function evaluations for
f1 can be saved by reusing former interpolation points if possible.

As a search direction the local ideal point pk = (pk1, p
k
2, . . . , p

k
q)
> defined by

pki = min
x∈Bk

mk
i (x) (3)

for i = 1, 2, . . . , q is used. The trial point xk+, the candidate for the next iteration point, is
computed by moving into the search direction determined by the point pk. This is realized
by solving the auxiliary problem

min
{
t ∈ R | f(xk) + t rk −mk(x) ∈ Rq

+, x ∈ Bk

}
(TW )

with
rk := f(xk)− pk ∈ Rq

+

and pk defined in (3). Hence, we minimize here the well-known Tammer-Weidner-functional
[11, 14] which has many important properties, see for instance [17] and which turns out
to be very useful in many theoretical and numerical approaches to multi-objective opti-
mization. It is also the base of a very general scalarization in multiobjective optimization
and covers several other scalarizations as special cases, see [5] and the recent review [1].

Let (tk+, xk+)> be a solution of (TW ). If xk is not weakly efficient for minx∈Bk
mk(x)

with mk(x) = (mk
1(x), . . . ,mk

q(x))>, it can be proved that it holds tk+ ∈ [−1, 0), see [19,
Lem.3.3]. Whether xk+ is chosen as next iteration point or not is decided by the trial
point acceptance test. For this purpose, the auxiliary functions

φ(x) := max
i=1,...,q

fi(x) and φkm(x) := max
i=1,...,q

mk
i (x) (4)

are considered and the quotient

ρkφ :=
φ(xk)− φ(xk+)

φkm(xk)− φkm(xk+)
(5)

is computed. If it holds ρkφ ≥ η, η ∈ [0, 1], the trial point generates a descent for at least
one objective function and it is accepted as next iteration point. The resulting trust region
algorithm is stated in Algorithm 1 according to [19, Alg. 3.1].

For obtaining theoretical results for this algorithm, several assumptions are required
which are listed in Appendix A. Most of them are analogous to the assumptions used in
trust region approaches and in methods for expensive functions. Differences are caused
by the heterogeneity of the objective functions and the search direction. The following
theorem states the main result about the convergence behavior of MHT.
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Algorithm 1 MHT: multi-objective heterogeneous trust region algorithm

Input: Functions f1, f2, . . . , fq, initial point x0, initial trust region radius δ0, parameters
0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1
Step 0: Initialization

Set k = 0 and compute initial model functions mk
i for i = 1, 2, . . . , q.

Step 1: Ideal point
Compute pk = (pk1, p

k
2 . . . , p

k
q)
> by pki = minx∈Bk

mk
i (x) for i = 1, 2, . . . , q.

Step 2: Trial point
If rki = fi(x

k)− pki > 0 holds for all i ∈ {1, 2, . . . , q}, compute (tk+, xk+)> by
solving (TW ) : min

{
t ∈ R | f(xk) + t rk −mk(x) ∈ Rq

+, x ∈ Bk

}
.

Otherwise, set (tk+, xk+)> = (0, xk).
Step 3: Trial point acceptance test

If tk+ = 0 or φkm(xk)− φkm(xk+) = 0, set ρkφ = 0.

Otherwise, compute fi(x
k+), i = 1, 2, . . . , q, and ρkφ = φ(xk)−φ(xk+)

φkm(xk)−φkm(xk+)
.

If ρkφ ≥ η1, set xk+1 = xk+. Otherwise, set xk+1 = xk.
Step 4: Trust region update

Set δk+1 ∈


[γ1δk, γ2δk] , if ρkφ < η1

[γ2δk, δk] , if η1 ≤ ρkφ < η2

[δk,∞) , if ρkφ ≥ η2

.

Step 5: Model update
Compute new model mk+1

i for i = 1, 2, . . . , q, set k = k + 1 and go to Step 1.

Theorem 2.4 [19, Th. 4.21] Suppose Assumptions A.1 to A.11 hold. Then MHT (Al-
gorithm 1) produces a sequence of iterates

{
xk
}
k

with limk→∞ ω(xk) = 0. If the sequence
{xk}k has accumulation points, then all these points are Pareto critical for (MOP ).

Next to the standard version of MHT as presented above, also modifications are of
interest. In standard trust region methods a second order Taylor model for analytically
given functions is used for making the subproblems easier to solve. For the heterogeneous
problems, the evaluation of the expensive functions is such time consuming that this is not
so important any more. For that reason, instead of surrogate models for the analytically
given functions fi, i = 2, 3, . . . , q, it can be an advantage to directly use these functions
themselves in MHT.

Assumption 2.5 Let mk
i ≡ fi be for all i ∈ {2, 3, . . . , q} and for all k ∈ N.

It can be proved that Theorem 2.4 still holds if Assumption 2.5 is assumed to hold,
see [18, Sec. 4.6.4]. Moreover, if Assumption 2.5 holds, the constraints of (TW ) imply
f2(x

k) ≤ f2(x
k+) for all iterations k ∈ N.

Besides, it is possible to use a stricter trial point acceptance test in step 3 of MHT.
Instead of ρkφ, the quotients

ρki =
fi(x

k)− fi(xk+)

mk
i (x

k)−mk
i (x

k+)
for i = 1, 2, . . . , q (6)
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can be considered. The trial point xk+ is accepted as next iteration point xk+1 if it holds
ρki ≥ η1 for all i ∈ {1, 2, . . . , q}. In this case, the trial point provides a descent for every
objective function. This realization of the trial point acceptance test is for example used
in [16] and it is stricter than the trial point acceptance test used in MHT:

Lemma 2.6 [18, Lem. 4.23] Let k ∈ N be an arbitrary index, η1 ∈ (0, 1) a constant and
let Assumption A.4 hold. Furthermore, let ρkφ and ρki , i = 1, 2, . . . , q, be defined as in (5)

and (6). If ρki ≥ η1 holds for all i ∈ {1, 2, . . . , q}, then it holds ρkφ ≥ η1.

The influence of the trial point acceptance test and its effects are discussed in detail in
[18] where also numerical results are presented for the different versions of the acceptance
test. It can be of interest to use this stricter test from an application point of view, see
[15], as it guarantees a descent in all objective function in each iteration.

Furthermore, it is possible to modify the search direction of MHT and replace pk by a
lower bound

p̃ki ≤ pki for all i ∈ {1, 2, . . . , q} . (7)

It is proved in [18, Sec. 4.6.2] that the theoretical results of MHT still hold if this modifi-
cation is done, i.e. Theorem 2.4 holds.

3 Representation of Pareto Front

The algorithm MHT is designed to compute one Pareto critical point for (MOP ). This is
reasonable since due to the high numerical effort associated with the expensive function
f1, approximating the whole set of efficient points is often not realizable. However, it
is possible to obtain several Pareto critical points by exploiting the heterogeneity of the
objective functions further. In the next subsections, we present three heuristic approaches
for this which are motivated by ideas for bi-objective optimization problems. Thus, we
consider in the following the general bi-objective optimization problem

min
x∈Rn

f(x) = min
x∈Rn

(f1(x), f2(x)) (BOP )

with f : Rn → R2, i.e. (MOP ) with q = 2. We also describe shortly for every approach
the applicability for optimization problems (MOP ) with q ≥ 3. Moreover, we discuss for
every modification if the convergence results of MHT from Theorem 2.4 can be transferred.
The aim is to find a representation, at least in local areas, of the Pareto front. Thereby,
we aim on spreading the additional points on the Pareto front, and it is not the aim to
use any continuation method, i.e. it is not the aim to find points too close to the already
found Pareto critical points.

In subsections 3.1 and 3.2 two approaches are presented which are combined in sub-
section 3.3. The approaches are based on the assumption that the objective function f2 is
analytically given and - compared to the expensive function f1 - minimizing or maximiz-
ing it, even globally or w.r.t. some constraints as on a trust region, can be realized with
reasonable numerical effort.

For that purpose we impose Assumption 3.1. Unlike the standard version of MHT
where the function φ : Rn → R with φ(x) = maxi=1,2 fi(x) is assumed to be bounded from
below, see Assumption A.2, it is necessary to assume f2 being bounded from below.
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Assumption 3.1 Let the cheap objective function f2 : Rn → R of (BOP ) be bounded
from below and let minx∈Rn f2(x) = infx∈Rn f2(x).

3.1 Spreading via Individual Minima

The first approach starts after one initial run of MHT with the thereby generated point
x̄ ∈ Rn. According to Theorem 2.4, this point is Pareto critical for (BOP ). Starting from
x̄, further Pareto critical points are computed by spreading in a certain direction. The
overall search direction is given by the function value of a global individual minimum of
the cheap function f2 which is assumed to exist according to Assumption 3.1. Moreover,
minima of f2 in certain areas are also considered.

Let xglob ∈ Rn be a global individual minimum of the function f2 defined by

xglob ∈ argmin
x∈Rn

f2(x). (8)

It follows immediately from the definition of weak efficiency that xglob is weakly efficient
for (BOP ). If f2 is convex, then a local solution method can be applied to obtain xglob.
Otherwise, a global solution method is required.

Moreover, we consider a closed ball around x̄ with radius δ > 0 defined by

Bloc := B
(
x̄, δ̄
)

=
{
x ∈ Rn | ‖x̄− x‖ ≤ δ̄

}
. (9)

Such balls have already be considered within the trust region method MHT. An individual
minimum of function f2 in this area is then defined by

xloc ∈ argmin
x∈Bloc

f2(x). (10)

Although no general statement about the connection of xloc and Pareto critical or
weakly efficient points can be made, Lemma 3.2 states some special cases. They will be
used for formulating an algorithm later in this section.

Lemma 3.2 Let x̄ ∈ Rn be Pareto critical for (BOP ) and let xglob, Bloc, xloc be defined
as in (8)–(10).

(i) If xloc ∈ intBloc, i.e. ‖x̄− xloc‖ < δ̄, then xloc is locally weakly efficient for (BOP ).

(ii) If f2 (xloc) = f2 (xglob), then xloc is weakly efficient for (BOP ).

Proof. First, let xloc ∈ intBloc. Then there exists a neighborhood U(xloc) ⊆ Bloc of xloc
and it holds f2 (xloc) ≤ f2(x) for all x ∈ U(xloc). Thus, there exists no vector x ∈ U(xloc)
such that it holds fi(x) < fi(xloc) for i = 1, 2 and statement (i) follows. Statement (ii)
follows from the definition of xglob and weak efficiency.

The idea of the heuristic approach of spreading is to minimize the cheap objective
function f2 on moving local areas defined analogously to Bloc and thereby to generate
good starting points for further runs of MHT. The idea is illustrated schematically in
Figure 1.
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f(B1
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f2
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f(Rn)

f(x̄1)
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f(xglob)
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loc)

f2
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f(Rn)
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f(x̄2) f(x2
loc)

f(x̄3) f(xglob)

Figure 1: Illustration of spreading approach using individual minima of f2

For the first step of the spreading approach, let x̄1 ∈ Rn be the result of an initial
run of MHT and therefore Pareto critical for (BOP ). For the illustration in Figure 1 it is
depicted as an efficient point. Now, the cheap function f2 is minimized in

B1
loc = B

(
x̄1, δ̄

)
=
{
x ∈ Rn |

∥∥x̄1 − x∥∥ ≤ δ̄
}
.

If the resulting point x1loc ∈ argmin {f2(x) | x ∈ B1
loc} lies on the boundary of B1

loc and
if it holds f2(x

1
loc) 6= f2(xglob), it is used as a starting point for a new run of MHT. Let

x̄2 ∈ Rn be the point obtained by MHT, then it is a Pareto critical point for (BOP ).
Otherwise, that is it holds x1loc ∈ intB1

loc or f2(x
1
loc) = f2(xglob), the point x1loc is locally

weakly efficient for (BOP ), see Lemma 3.2, and we set x̄2 = x1loc. Thus, in both cases a
Pareto critical point x̄2 is obtained. The left figure of Figure 1 illustrates the case that
f(x1loc) can be a nondominated point.

The same strategy can be applied again, this time to x̄2 by minimizing f2 in

B2
loc := B

(
x̄2, δ̄

)
=
{
x ∈ Rn |

∥∥x̄2 − x∥∥ ≤ δ̄
}
.

Again, the resulting point x2loc ∈ argmin {f2(x) | x ∈ B2
loc} can be locally weakly efficient

or a good starting point for another run of MHT. The latter case is depicted in the right
figure of Figure 1. The image of the point x̄3 ∈ Rn obtained by MHT is marked red.

This spreading strategy can be iterated; the approach is described in Algorithm 2 and
referred to as MHTspread. As input, a radius δ0 > 0, the spreading distance, and a starting
point x0 are required. The point x0 can be the result of a run of MHT or any Pareto
critical point obtained otherwise. The constant δ0 functions as a step size control since
it defines the size of the areas Bk

loc, k ∈ N, in which the individual minima of f2 are
computed.

Remark 3.3 Let k ∈ N be an iteration of MHTspread. It is possible that it holds xk+1 = xk

and f2(x
k+1) > f2(xglob), i.e. xk is a local minimum of f2. To avoid an infinite loop

with xj = xk for all j ≥ k + 1, the value of δ is increased, i.e. the considered local area
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Algorithm 2 MHTspread: Generating further Pareto critical points

Input: Functions f1 (expensive), f2 (cheap), spreading distance δ0, Pareto critical point
x0, e.g. as result of MHT.
Compute xglob ∈ argminx∈Rnf2(x), set X = {x0, xglob}, δ = δ0 and k = 0.
while f2(x

k) > f2(xglob) do
Compute xloc ∈ argminx∈Bk

loc
f2(x) with Bk

loc =
{
x ∈ Rn |

∥∥xk − x∥∥ ≤ δ
}

.

if
∥∥xk − xloc∥∥ = δ and f2 (xloc) 6= f2(xglob) then
Execute MHT with xloc and δ: xk+1 = MHT(xloc, δ).

else
Set xk+1 = xloc.
if
∥∥xk+1 − xk

∥∥ = 0 then
Set δ = 2δ.

else
Set δ = δ0.

end if
end if
Set X = X ∪

{
xk+1

}
and k = k + 1.

end while
Output: X

is increased. Furthermore, the subproblems minx∈Bj
loc
f2(x) need to be solved by a global

method for every j ≥ k + 1. This is assumed to be realizable with acceptable numerical
effort compared to the numerical effort associated with the expensive function f1. The
radius δ is increased until a point y is obtained with either y 6= xk or f2(y) = f2(xglob).

The strategy of computing the individual minima in MHTspread is iterated until f2(y) =
f2(xglob) holds for a point y obtained during the spreading procedure, i.e. until a global
minimum of f2 is reached. According to Remark 3.3, an infinite loop with xk = xk+j for
j ≥ k is not possible. MHTspread is guaranteed to terminate after finitely many iterations
if it holds

f2(x
i+1) < f2(x

i) for all i = 1, 2, 3 . . . , (11)

i.e. if the distance to the value f2(xglob) decreases in every iteration. This can be guaranteed
by using the strict version of the acceptance test in MHT or by setting mk

2 ≡ f2 for all
iterations k ∈ N in MHT.

For every run of MHT in MHTspread new function evaluations for the expensive function
f1 are caused since reliable model functions are required. Potential savings can be in
reusing previous interpolation points as described for MHT in section 2. Thereby and by
the choice of the starting points for the runs of MHT it is expected that every further run
of MHT needs only few function evaluations.

All points generated by the heuristic search method MHTspread are Pareto critical for
(BOP ):

Lemma 3.4 Suppose Assumptions A.1 to A.11 hold. Then every point of the set X
produced by MHTspread (Algorithm 2) is Pareto critical for (BOP ).
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Proof. The proof follows from Theorem 2.4 and Lemmas 3.2 and 2.2.

For the implementation of MHTspread the cheap function f2 is not replaced by a model
function, i.e. Assumption 2.5 holds. In this case, Lemma 3.4 still holds since Theorem 2.4
still holds, see [18, Sec. 4.6.4, 5.1].

The spreading technique of MHTspread can be transferred to multi-objective uncon-
strained optimization problems (MOP ) with q ≥ 3 objective functions. For this purpose,
one of the cheap functions fi, i ∈ {2, 3, . . . , q}, needs to be chosen. MHTspread is then
applied with fi defined as the function realizing the spreading approach. The other cheap
functions fj, j ∈ {2, 3, . . . , q} \ {i}, are fixed. By this, only one of the cheap functions is
used for this spreading approach. To make use of all cheap functions, MHTspread needs
to be executed with all functions fi, i = 2, 3, . . . , q, separately. Since these runs are
independent from each other, they could be parallelized.

3.2 Image Space Split

Another approach to exploit the heterogeneity of the objective functions further and to
compute further Pareto critical points is to use the cheap function f2 to split the image
space. Distinct search areas can be generated - in the image space - in which a modified
version of MHT is applied. For all methods in this section f2 is not replaced by a model
function, that is Assumption 2.5 is fulfilled and it holds mk

2 ≡ f2 for all k ∈ N. As
mentioned above, the convergence results of MHT and therefore Theorem 2.4 still hold
for this modification.

In subsection 3.2.1 we describe how lower bounds defined in the image space can be
handled in MHT. Due to these constraints the convergence results for MHT cannot be
transferred. In subsection 3.2.2 we give an overview of the theoretical results that hold
for this approach. In subsection 3.2.3 an approach is presented to restrict the search area
in the image space after one initial run of MHT. Next, subsection 3.2.4 introduces an
approach for an upfront image space split. Finally, the choice of suitable starting points
is described in subsection 3.2.5.

3.2.1 MHT with Lower Bound in the Image Space

In the following we discuss how a lower bound in the image space for the cheap function
f2 of the form

f2(x) ≥ C (12)

with C ∈ R in the bi-objective optimization problem (BOP ) can be handled by MHT.
Integrating such a nonlinear constraint poses of course additional numerical effort. How-
ever, the numerical effort is assumed to be acceptable in comparison with the expensive
function f1. To ensure that the constraint (12) is reasonable, we impose Assumption 3.5.

Assumption 3.5 Let Assumption 3.1 hold and let C ∈ R be a constant with C ≥
minx∈Rn f2(x). If supx∈Rn f2(x) <∞ holds, we suppose furthermore C ≤ supx∈Rn f2(x).

Trivially, if it holds C < minx∈Rn f2(x), the standard version of MHT can be used.
To consider (12), several modifications are necessary in MHT. The resulting algorithm is
formulated in Algorithm 3.

10



Including the lower bound f2(x) ≥ C into MHT results in an additional constraint
for computing the ideal point pk in step 1 of the algorithm and a modified problem for
determining the descent direction in step 2. All other steps in MHT remain unchanged.

Let k ∈ N be an iteration index. The modified ideal point p̃k =
(
p̃k1, p̃

k
2

)>
is defined by

p̃k1 := min
{
mk

1(x) | x ∈ Bk

}
= pk1, (13)

p̃k2 := min {f2(x) | x ∈ Bk and f2(x) ≥ C} = max
{
pk2, C

}
. (14)

It is not necessary to integrate the additional constraint f2(x) ≥ C for p̃k1 since it is
defined by the function mk

1. Furthermore, the aim is to be as close as possible to the
original version of MHT and therefore p̃k1 is defined as pk1. If C ≤ pk2 = minx∈Bk

f2(x)
holds, then it follows p̃k2 = pk2 and p̃k = pk. If C > minx∈Bk

f2(x) holds, i.e. C is defined
as a non-trivial lower bound, the additional constraint induced by (12) affects the ideal
point and therefore also the computation of the trial point.

The modified version of the problem (TW ) is given by

min
{
t ∈ R | f(xk) + t r̃k −mk(x) ∈ R2

+, x ∈ Bk, f2(x) ≥ C
}

(T̃WC)

with r̃ = f(xk) − p̃k ∈ R2
+ and p̃k as defined in (13) and (14). Hence, we make use of

the Tammer-Weidner-functional also in this modification. The case of a nontrivial lower
bound C is illustrated schematically in Figure 2. The search area restricted in the image
space is depicted as gray shaded area. The figure illustrates the different search directions
rk and r̃k obtained by the different ideal points pk and p̃k.

f2

f1

f(Bk)

f(xk)

C

pk

rkp̃k

r̃k

Figure 2: Restricted search area and modified ideal point

The constraint f2(x) ≥ C needs to be integrated explicitly into (T̃WC) to ensure

f2(x̄) ≥ C for all minimal solutions (t̄, x̄)> ∈ R1+n of (T̃WC). It is not sufficient to adapt
only the determination of the ideal point as described in (13) and (14), see e.g. [18, Ex.
5.5]. The algorithm resulting from including this additional constraint into MHT is given
in Algorithm 3 and referred to as MHTlb.

As in MHT for the implementation of MHTlb the model function mk
1 is updated in

iteration k only if necessary. If it holds ρkφ < η1 in the trial point acceptance test, the

11



Algorithm 3 MHTlb: MHT with lower bound in image space

Input: Functions f1 (expensive), f2 (cheap), lower bound C ∈ R with C ≥
minx∈Rn f2(x), initial point x0 with f2(x

0) ≥ C, initial trust region radius δ0, parameters
0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1
Step 0: Initialization

Set k = 0, compute initial model mk
1 and set mk

2 ≡ f2.
Step 1: Ideal point

Compute p̃k = (p̃k1, p̃
k
2)> and pk = (pk1, p

k
2)>:

p̃k1 = pk1 = min
{
mk

1(x) | x ∈ Bk

}
,

pk2 = min {f2(x) | x ∈ Bk},
p̃k2 = max{pk2, C}
and set r̃k = f(xk)− p̃k and rk = f(xk)− pk.

Step 2: Trial point
If rki > 0 holds for i = 1, 2, compute (tk+, xk+)> by solving (T̃WC) :
min

{
t ∈ R | f(xk) + t r̃k −mk(x) ∈ R2

+, x ∈ Bk, f2(x) ≥ C
}

.
Otherwise, set (tk+, xk+)> = (0, xk).

Step 3: Trial point acceptance test
If tk+ = 0 or φkm(xk)− φkm(xk+) = 0, set ρkφ = 0.

Otherwise, compute f1(x
k+) and ρkφ = φ(xk)−φ(xk+)

φkm(xk)−φkm(xk+)
.

If ρkφ ≥ η1, set xk+1 = xk+, else set xk+1 = xk.
Step 4: Trust region update

Set δk+1 ∈


[γ1δk, γ2δk] , if ρkφ < η1

[γ2δk, δk] , if η1 ≤ ρkφ < η2

[δk,∞) , if ρkφ ≥ η2

.

Step 5: Model update
Compute new model mk+1

1 , set mk+1
2 ≡ f2, set k = k + 1 and go to Step 1.

model function mk
1 is recomputed, otherwise the old model is reused in the next iteration.

Note that for the computation of the interpolation points for mk
1 the additional constraint

f2(x) ≥ C is not considered; the interpolation points are still chosen from the whole trust
region Bk in every iteration k ∈ N.

Moreover, note that the criterion for considering (T̃WC) in step 2 is the same as in
step 2 of MHT. Thus, it is only tested if it holds r̃k1 = rk1 = 0. In this case, it follows

f1(x
k) = p̃k1 = pk1 and xk is weakly efficient for minx∈Bk

mk(x). Analogous to MHT, (T̃WC)
is not considered in this case in step 2 of MHTlb. Instead, tk+ = 0 and xk+ = xk is set
directly.

In addition to that, if rki > 0 holds for i = 1, 2, (T̃WC) is considered. Thus, (T̃WC)
is also considered if it holds r̃k1 > 0 and r̃k2 = 0 since the latter does not imply that xk

is weakly efficient for minx∈Bk
mk(x). Instead, it can be possible to obtain a trial point

which provides a decrease for mk
1, see Lemma 3.8 in subsection 3.2.2.
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3.2.2 Theoretical Results

The convergence results for MHT are not transferable for MHTlb due to the additional
constraint, i.e. Theorem 2.4 does not hold. Still, some properties can be proved which
show that the approach is reasonable. We impose Assumptions 2.5 and 3.5, i.e. it holds
mk

2 ≡ f2 for all iterations k ∈ N and f2 is bounded from below and a constant C ∈ R is
given with minx∈Rn f2(x) ≤ C. Two aspects prevent the applicability of the theoretical
results for MHT: the modified ideal point p̃k and the additional constraint f2(x) ≥ C in

the problem (T̃WC). For the modified version of the problem (T̃WC) analogous results
to the results for (TW ) hold, see [19, Lem. 3.2,3.3]. We summarize the most important
results in Lemma 3.6. For this purpose, we define for k ∈ N the optimization problem

min
{
mk(x) | x ∈ Bk and f2(x) ≥ C

}
. (BOP k

m,C)

Lemma 3.6 Let Assumptions 2.5, 3.5 and A.4 hold and let k ∈ N be an iteration of
MHTlb. Consider the problem (T̃WC) with r̃k = f(xk) − p̃k ∈ R2

+ and p̃k as defined in

(13) and (14). Let (t̄, x̄)> ∈ R1+n be a minimal solution of (T̃WC).

(i) It holds t̄ ≤ 0.

(ii) It holds mk
1(x̄) ≤ mk

1(xk) and f2(x̄) ≤ f2(x
k).

(iii) If xk is not weakly efficient for (BOP k
m,C), then it holds r̃ki > 0 for i = 1, 2 and

t̄ ∈ [−1, 0).

(iv) If xk is weakly efficient for (BOP k
m,C) and r̃k ∈ int(R2

+), then (0, xk) is a minimal

solution of (T̃WC).

(v) If xk is efficient for (BOP k
m,C) and r̃k 6= 0, then (0, xk) is a minimal solution of

(T̃WC).

Proof. Statement (i) follows since (0, xk)> is feasible for (T̃WC). Since r̃k ∈ R2
+ holds for

all k ∈ N, it follows mk
i (x

k)−mk
i (x̄) ≥ −t̄ r̃ki ≥ 0 for i = 1, 2. This implies together with

Assumption 2.5 statement (ii). To prove statement (iii), let xk be not weakly efficient
for (BOP k

m,C). Then there exists a vector x ∈ Bk with f2(x) ≥ C such that it holds
mk
i (x) < mk

i (x
k) for i = 1, 2. This implies r̃ki > 0 for i = 1, 2. The rest of the proof

is analogous to the proof of [19, Lem.3.3]. Statements (iv) and (v) follow from [6, Th.
2.1].

This lemma shows that if the current iteration point xk is not weakly efficient for the
trust region subproblem (BOP k

m,C), a minimal solution (tk+, xk+)> ∈ R1+n of (T̃WC)
with tk+ < 0 is computed in step 2 of MHTlb. Thus, it also holds xk+ 6= xk. If the
approximation of the model function mk

1 is accurate enough, this trial point is accepted
as next iteration point and it holds xk+1 6= xk. However, no general statement about the
outcome of the trial point acceptance test in step 3 of MHTlb can be made.

Besides these general properties of (T̃WC) which are analogous to the properties of
(TW ) of the original version of MHT, in some iterations the modified ideal point p̃k can
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be replaced by a vector y with y ≤ pk, i.e. a lower bound for the original ideal point. This
surrogate vector is constructed in Lemma 3.7. In MHT, this modification is permitted
and does not affect the convergence results. Therefore, for some iterations, a stronger
connection to the original algorithm MHT respectively a modification of it which does not
affect the convergence results can be made since the only difference then is the additional
constraint f2(x) ≥ C in (T̃WC).

Lemma 3.7 Let Assumptions 2.5 and 3.5 hold and let C > minx∈Rn f2(x). Furthermore,
let k ∈ N be an iteration of MHTlb with r̃ki > 0 for i = 1, 2. We define

p̂k := f(xk) + λ̂r̃k with λ̂ := −f2(x
k)− pk2

f2(xk)− p̃k2
(15)

with pk and p̃k the ideal points of (TW ) and (T̃WC). Moreover, we define the problem

min
{
t ∈ R | f(xk) + t r̂k −mk(x) ∈ R2

+, x ∈ Bk, f(x) ≥ C
}

( ˆTW )

with r̂k := f(xk)− p̂k. The following statements hold:

(i) It holds λ̂ ≤ −1, p̂k ≤ pk, and r̂k = −λ̂r̃k.

(ii) Let (t̄, x̄) ∈ R1+n be a minimal solution of (T̃WC). Then (−t̄/λ̂, x̄) is a minimal
solution of ( ˆTW ).

(iii) Let (t̄, x̄) ∈ R1+n be a minimal solution of ( ˆTW ). Then (−λ̂ t̄, x̄) is a minimal

solution of (T̃WC).

The construction of the vector p̂k out of pk and p̃k is illustrated schematically in Figure 3.
The search area generated by f2(x) ≥ C is depicted as gray shaded area.

f2

f1

f(Bk)

f(xk)

C

pk

p̃k

p̂k

Figure 3: Modified ideal points p̂k and p̃k
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Proof. Let k ∈ N be an arbitrary iteration. To prove item (i), note that it holds p̃k2 ≥ pk2.
Together with the precondition r̃k2 > 0 this implies 0 < f2(x

k) − p̃k2 ≤ f2(x
k) − pk2 and

therefore it holds λ̂ ≤ −1. Due to the definition of p̂k in (15) it holds

p̂k1 = f1(x
k) + λ̂

(
f1(x

k)− p̃k1
)
≤ f1(x

k)−
(
f1(x

k)− p̃k1
)

= p̃k1 = pk1 and

p̂k2 = f2(x
k)− f2(x

k)− pk2
f2(xk)− p̃k2

(
f2(x

k)− p̃k2
)

= pk2.

It follows p̂k ≤ pk and, furthermore, it holds

r̂k = f(xk)− p̂k = f(xk)−
(
f(xk) + λ̂r̃k

)
= −λ̂r̃k.

To prove statement (ii), let (t̄, x̄) ∈ R1+n be a minimal solution of (T̃WC). Then it holds
x̄ ∈ Bk and f(x̄) ≥ C, and together with (i) it follows

0 ≤ f(xk) + t̄ r̃k −mk(x̄) = f(xk)− t̄

λ̂
r̂k −mk(x̄).

Thus, (−t̄/λ̂, x̄) is feasible for ( ˆTW ). Note that it holds λ̂ ≤ −1. Assume there exists a
vector (t, x) feasible for ( ˆTW ) with t < −t̄/λ̂. Then it holds again due to (i)

0 ≤ f(xk) + t r̂k −mk(x) = f(xk)− t λ̂ r̃k −mk(x).

and (−t λ̂, x) is feasible for (T̃WC) with −t λ̂ < t̄. This contradicts (t̄, x̄) being a minimal

solution of (T̃WC). Therefore, (−t̄/λ̂, x̄) is a minimal solution of ( ˆTW ). Statement (iii)
follows analogously to statement (ii).

Given Lemma 3.7, in some iterations it is possible to circumvent the difficulty caused by
the modified trial point. Still, the additional constraint f2(x) ≥ C needs to be considered

in (T̃WC). Therefore, the second aspect preventing the convergence results from being
transferred is still given.

The most important precondition of Lemma 3.7 is r̃k2 > 0. This is fulfilled if it holds

f2(x
k) > p̃k2 = min {f2(x) | x ∈ Bk, f2(x) ≥ C} = max

{
pk2, C

}
,

i.e. if it holds f2(x
k) > C and xk is not an individual minimum of f2 in Bk. In this case

and if rk1 > 0, the vector p̃k can be replaced by p̂k.
If r̃k2 = 0 holds, then either the constraint f2(x) ≥ C is active or it holds f2(x

k) = pk2.
The latter implies xk being weakly efficient for minx∈Bk

mk(x). In this case, it holds rk2 = 0
and the trial point is defined as xk+ = xk, see step 2 of MHTlb. Thus, in this case the
additional constraint f2(x) ≥ C has no effect.

If f2(x
k) = C holds in iteration k, i.e. the additional constraint is active, some general

properties for the subsequent iterations can be proved:

Lemma 3.8 Let Assumptions 2.5, 3.5 and A.4 and C > minx∈Rn f2(x) hold. Let k ∈ N be
the first iteration of MHTlb (Algorithm 3) with f2(x

k) = C. Moreover, let rki > 0 hold for

i = 1, 2 and let (tk+, xk+) ∈ R1+n be the minimal solution of (T̃WC) computed in iteration
k. The following statements hold:
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(i) For every feasible vector (t, x)> ∈ R1+n of (T̃WC) it holds f2(x) = C.

(ii) It holds f2(x
l) = f2(x

k) = C for all l ≥ k.

(iii) If there exists a vector x ∈ Bk with

f2(x) = C and mk
1(x) < mk

1(xk), (16)

then it holds tk+ < 0 and xk+ 6= xk.

(iv) If for all vectors x ∈ Bk \
{
xk
}

it holds

f2(x) > f2(x
k) = C or mk

1(x) ≥ mk
1(xk), (17)

then it holds xk+1 = xk.

Proof. Consider the problem (T̃WC) with r̃k = f(xk)− p̃k and p̃k defined in (13) and (14).
Since it holds f2(x

k) = C, this implies p̃k2 = C and r̃k2 = 0. According to Assumption 2.5,
it holds mk

2 ≡ f2 for all k ∈ N. Thus, it holds for every feasible vector (t, x)> ∈ R1+n of

(T̃WC)
0 ≤ f2(x

k) + t r̃k2 −mk
2(x) = C − f2(x).

Since it also holds f2(x) ≥ C, this implies f2(x) = C.
To prove statement (ii), note that xk+1 is either defined as xk or as the trial point

xk+. According to statement (i), it holds f2(x
k+) = C. Thus, in both cases f2(x

k+1) = C
follows. With this line of argument statement (ii) follows by induction.

To prove statement (iii), let x ∈ Bk be with f2(x) = C and mk
1(x) < mk

1(xk). According
to the proof of (i), it holds r̃k2 = 0 and f2(x

k) + t r̃k2 −mk
2(x) ≥ 0 for all t ∈ R. According

to Assumption A.4, it holds

f1(x
k)−mk

1(x) = mk
1(xk)−mk

1(x) > 0.

Since r̃k1 > 0 holds, there exists a vector t ∈ (−∞, 0) such that (t, x) is feasible for (T̃WC).

Then it follows tk+ < 0 and (0, xk)> cannot be a minimal solution of (T̃WC). This implies
xk+ 6= xk.

Now let the preconditions of statement (iv) be fulfilled. Note that (0, xk) is always

feasible for (T̃WC). Now let x ∈ Bk \
{
xk
}

be arbitrarily chosen. If the first part of (17)
is fulfilled then by (i) there exists no t ∈ R such that (t, x) is feasible. If the second part
of (17) is fulfilled, it holds mk

1(xk) −mk
1(x) ≤ 0 . Since r̃k1 > 0 holds, it follows t ≥ 0 for

all (t, x) feasible for (T̃WC). This implies tk+ = 0 for the minimal value in both cases.
According to the trial point acceptance test in step 3 of MHTlb, it holds xk+1 = xk in both
cases.

This lemma shows that whenever the additional constraint f2(x) ≥ C is active for an
iteration k ∈ N, it is active for all subsequent iterations l ≥ k. However, this does not
imply xl = xk for all l ≥ k. In some cases, a trial point xk+ distinct from xk can still
be obtained by (T̃WC). Whether it is accepted as next iteration point depends on the
quality of the model function and the trial point acceptance test.
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Furthermore, in the case (iv) of Lemma 3.8 it holds tk+ = 0 and therefore ρkφ = 0. In

this case, the model function mk
1 is updated for iteration k + 1 and a new model mk+1

1

is computed. Therefore, the precondition of (iv) does not need to be fulfilled in iteration
k + 1. Thus, no general statement is possible on whether the iteration point will change
in subsequent iterations, since it depends on the quality of the model function for f1.

For the considerations in the following subsections also constraints of the form f2(x) ≤
D with D ∈ R are considered. Analogous to MHTlb, a modification of MHT could be
formulated that handles such a constraint. However, this is not necessary since it is fulfilled
for all iteration points of MHT if the starting point x0 fulfills it and if Assumption 2.5
holds, i.e. f2 ≡ mk

2 for all k ∈ N. This is stated in the following two lemmata.

Lemma 3.9 Consider MHT (Algorithm 1) applied to (BOP ) and let Assumptions 3.1,
2.5 and A.4 hold. Let D ∈ R be a scalar with minx∈Rn f2(x) ≤ D and let x0 ∈ Rn be the
starting point of MHT with f2(x

0) ≤ D. Then it holds f2(x
k) ≤ D for all iterations k ∈ N.

Proof. The statement follows by induction from Assumption 2.5, the constraints of (TW )
and from the fact that it holds tk+ ≤ 0 for every solution (tk+, xk+)> of (TW ).

Lemma 3.10 Consider MHTlb (Algorithm 3) applied to (BOP ) and let Assumptions 2.5,
3.5 and A.4 hold. Let D ∈ R be a scalar with minx∈Rn f2(x) ≤ D and C ≤ D with C from

Assumption 3.5. Moreover, let
(
tk+, xk+

)> ∈ R1+n be the minimal solution of (T̃WC) for
every iteration k ∈ N with rki > 0, i = 1, 2. Let x0 ∈ Rn be the starting point of MHTlb

with f2(x
0) ≤ D. Then it holds f2(x

k) ≤ D for all iterations k ∈ N.

Proof. The statement follows by induction from Assumption 2.5, the constraints of (T̃WC)
and Lemma 3.6.

3.2.3 Subsequent Image Space Split

Now we use the above results to generate further Pareto critical points. Let x̄ ∈ Rn be
a Pareto critical point for (BOP ). The aim is to find additional points which are not
too close to the current point f(x̄), but which spread over the Pareto front. MHT resp.
MHTlb can be used to compute such Pareto critical points avoiding the area around f(x̄).
The idea is to subsequently split the image space into two search areas defined by

A+ := {x ∈ Rn | f2(x) ≥ f2(x̄) + ε} and

A− := {x ∈ Rn | f2(x) ≤ f2(x̄)− ε} (18)

with ε > 0 a suitable positive constant. The two search areas A+ and A− are schematically
illustrated in Figure 4. They are depicted as gray shaded areas.

The search for another Pareto critical point in the area A+ can – at least heuristically
– be realized by applying MHTlb with the lower bound C = f2(x̄) + ε. The problem of
finding a well located starting point for executing MHTlb is addressed in subsection 3.2.5.
To realize a search for further Pareto critical points in the area A−, MHT can be applied
with a starting point x0 ∈ A−. According to Lemma 3.9, it then holds f2(x

k) ≤ f2(x̄)− ε
for all iterations k ≥ 1 in MHT. Thus, the additional constraint induced by the search
area A− does not need to be handled explicitly, but is inherently fulfilled for all iteration
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f2(x̄) − ε
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Figure 4: Search areas A+ and A− in the image space

points xk produced by MHT. Figure 4 also shows that a so-called taboo-region is generated
around f(x̄). This area is ignored for runs with MHTlb respectively MHT in A+ and A−.
By varying the size of the constant ε the size of the taboo-region can be varied.

The approach of subsequently splitting the image space after one run of MHT is also
applicable for optimization problems (MOP ) with q ≥ 3 objective functions. Let again
x̄ ∈ Rn be the result of an initial run of MHT. It is possible to choose one function fj,
j ∈ {2, 3, . . . , q}, and define the search areas A+ and A− as in (18) with this function fj.
Alternatively, it is possible to consider all cheap functions. For this purpose, define areas
Ai, i ∈ {2, 3, . . . , q}, either as

Ai = A+
i := {x ∈ Rn | fi(x) ≥ fi(x̄) + ε} or

Ai = A−i := {x ∈ Rn | fi(x) ≤ fi(x̄)− ε}

with ε > 0 a suitable positive constant. The set A :=
⋂q
i=2Ai is then the search area for a

new run of MHTlb. In case Ai = A−i for all i ∈ {2, 3, . . . , q}, MHT can be applied with a
starting point x0 ∈ A. Analogously to Lemma 3.9, it can be proved that then the upper
bounds do not need to be considered explicitly, but are fulfilled for every iteration point
of MHT. If it holds Ai = A+

i for some indices i ∈ {2, 3, . . . , q}, the induced lower bounds
need to be integrated into the algorithm analogous to MHTlb.

3.2.4 Upfront Image Space Split

It is also possible to split the image space into several disjoint search areas before applying
any version of MHT. For defining the search areas, we assume that f2 is bounded from
below and from above. In this case we define fmin

2 and fmax
2 by

fmin
2 := min

x∈Rn
f2(x) and fmax

2 := max
x∈Rn

f2(x). (19)

Again, it needs to be regarded that these optimization problems are global problems. If
f2 is not bounded from above, fmax

2 can be defined as fmax
2 := E ∈ R with E > fmin

2 .
fmin
2 and fmax

2 give an upper and a lower bound for the search area in the image space. A
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number p of distinct search areas Aj with j = 1, 2, . . . , p can then be obtained by defining

Aj := {x ∈ Rn | aj−1 ≤ f2(x) ≤ aj} (20)

with a0 = fmin
2 and aj = fmin

2 + j
fmax
2 − fmin

2

p
(21)

This is illustrated schematically in Figure 5 for different values of p. Figure 5 indicates
that not in every search area Aj, j = 1, 2, . . . , p, a weakly efficient point needs to exist.

f2

f1

f(Rn)
a4

a0

a3
f(A3)

a2

aj−1a1

f2

f1

f(Rn)
ap

a0

aj
aj−1

f(Aj)

...

Figure 5: Image space splits with different values for p

To realize the splitting idea, the optimization problems

min
x∈Aj

f(x) = min
x∈Aj

(f1(x), f2(x))> (BOPj)

for j = 1, 2, . . . , p need to be considered. Thus, MHTlb is executed for every optimization
problem (BOPj), j = 1, 2, . . . , p. The location of the starting point for MHTlb is impor-
tant; an approach to generate well located starting points for the areasAj, j ∈ {1, 2, . . . , p},
is presented in subsection 3.2.5. The numerical tests confirm that the splitting approach
described in this subsection is a useful heuristic.

MHTlb needs as input a lower bound C. It is given by the set Aj as C = Cj = aj−1 for
all j ∈ {1, 2, . . . , p}. Note that the upper bounds given in Aj do not need to be included
explicitly if x0 ∈ Aj holds, see Lemmas 3.9 and 3.10. Moreover, MHT can be applied for
j = 1, since the lower bound a0 = fmin

2 is trivially fulfilled.
As the examples for the image space splits depicted in Figure 5 illustrate, not in every

area Aj, j ∈ {1, 2, . . . , p}, a weakly efficient point for (BOP ) needs to exist. Also, not
in every area Aj a Pareto critical point for (BOP ) needs to exist. To avoid unnecessary
function evaluations and runs of MHTlb in areas not containing Pareto critical points
for (BOP ), a heuristic strategy is used in our implementation. The runs of MHTlb are
executed consecutively and the search areas are considered in the order A1, A2, . . . , Ap.
This is illustrated in Figure 6 with Bi = f(Ai), i = 1, 2, . . . , p.

At first, (BOP1) and A1 are considered. Since the constraint f2(x) ≥ a0 in A1 is
trivially fulfilled, MHT can be applied to (BOP1). Let x̄1 ∈ Rn be the result of this
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Figure 6: MHT resp. MHTlb applied in A1 and A2

run. The search areas Aj are then considered in ascending order of j. Thus, in the
subsequent runs search areas with increasing distance to a0, the global minimal value of
f2, are considered. For all search areas Aj with j ≥ 2 MHTlb needs to be used to handle
the lower bound given in Aj. Let x̄j be the point obtained by MHTlb applied to (BOPj)
and Aj with j ∈ {2, 3, . . . , p}. It is not guaranteed that x̄j, j ∈ {2, 3, . . . , p}, is Pareto
critical for (BOP ), see subsection 3.2.2. It is possible to start MHT with x̄j as starting
point to obtain a Pareto critical point of (BOP ). However, for the implementation of the
splitting approach this is not done in order to save function evaluations.

After every run of MHTlb in a search area Aj, j ∈ {2, 3, . . . , p}, it is tested if the
computed solution x̄j is dominated by the previous solutions x̄l, l = 1, 2, . . . , j − 1, gen-
erated in the search areas Al. In this case, the splitting procedure is terminated. This is
illustrated schematically in Figure 7. We assume that no further nondominated points will
be computed when considering the search areas Aj+1, Aj+2, . . . , Ap located further from
the global minimum of the cheap function. This is only a heuristic strategy and gives no
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Figure 7: Heuristic strategy to terminate splitting approach
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guarantee to only terminate the splitting approach if no Pareto critical points exist in the
remaining search areas. However, in the numerical tests it worked well.

The algorithm realizing the image space split with consecutive runs of MHTlb and the
heuristic stopping criterion is described in Algorithm 4 and referred to as MHTsplit.

Algorithm 4 MHTsplit: Image space split

Input: Functions f1 (expensive) f2 (cheap), number p of search areas, initial trust
region radius δ0, values for the parameters 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1
Step 0: Initialization

Compute fmax
2 = maxx∈Rn f2(x) and

x0 ∈ argminx∈Rnf2(x) and set fmin
2 = minx∈Rn f2(x).

Set X = {x0} and k = 1.
Step 1: Search areas

Define ai = fmin
2 + i

fmax
2 −fmin

2

p
for i = 0, 1, . . . , p.

Define search areas Ai = {x ∈ Rn | ai−1 ≤ f2(x) ≤ ai} for i = 1, 2, . . . , p.
Compute starting points x0i ∈ Ai for i = 1, 2, . . . , p (subsection 3.2.5).

Step 2: Consecutive runs of MHTlb (Algorithm 3)
Compute xk = MHTlb (x0k, C) with C = ak−1.
If it holds f(xk) ≥ f(xj) for an index j ∈ {1, 2, . . . , k − 1}, STOP.
Otherwise, set X = X ∪

{
xk
}

, k = k + 1 and go to Step 2.
Output: X

It is possible to apply this heuristic approach also for optimization problems (MOP )
with q ≥ 3. For this purpose, one of the cheap functions fi, i ∈ {2, 3, . . . , q}, needs to be
chosen to apply MHTsplit.

3.2.5 Choice of Starting Points

For the splitting approaches from subsections 3.2.3 and 3.2.4 suitable starting points are
required. Let f2 be bounded from below. We consider the general unconstrained bi-
objective optimization problem (BOP ) and the general search area

A := {x ∈ Rn | C ≤ f2(x) ≤ D}

with C,D ∈ R, minx∈Rn f2(x) ≤ C ≤ D.
The aim is not only to guarantee feasibility, but also to compute a well located starting

point. As outlined in Lemmas 3.9 and 3.10 in subsection 3.2.2, the constraint f2(x) ≤ D
does not complicate the computations in MHT respectively MHTlb, only the constraint
f2(x) ≥ C changes the computations in the iterations. If f2(x

0) = C holds, it is pos-
sible that MHTlb stops with x0 also if it is not a Pareto critical point for (BOP ), see
subsection 3.2.2.

For the approaches of splitting the image space it is assumed that it holds mk
2 ≡ f2

for all iterations k ∈ N, see Assumption 2.5. Thus, it holds f2(x
k+1) ≤ f2(x

k) for all
k ∈ N. Considering the distance d(k) := f2(x

k) − C for an iteration k ∈ N, it follows
d(k+ 1) ≤ d(k) for all k ∈ N. Due to the definition of the set A it holds d(k) ≤ D−C for
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all k ∈ N. We assume that the bigger the value of d(0), i.e. the distance for the starting
point, the more iterations in MHTlb can be executed until it terminates.

Therefore, we define x0 as a minimal solution of the optimization problem

min {f2(x) | x ∈ A and f2(x) ≥ D − ε} (22)

with ε > 0 a suitable positive constant. This generates a point x0 with d(0) = f2(x
0)−C ≥

D−C−ε, i.e. with a large value for d(0). Instead of minimizing f2 in (22), it is possible to
choose any function g : Rn → R which is easy to minimize locally, e.g. a constant function.
This would generate a feasible point in A as well. By choosing f2 in (22), x0 minimizes
one of the objective functions of (BOP ) in the search area A∩ {x ∈ Rn | f2(x) ≥ D − ε}.
The hope is that the obtained point x0 is closer to the set of Pareto critical points than by
using any arbitrary function g in (22). The numerical experiments presented in section 4
confirm the usefulness of this approach.

3.3 Combination of Image Space Split and Spreading

The splitting and spreading techniques can be combined to a heuristic approach to approx-
imate the set of Pareto critical points of (BOP ). At first, MHTsplit from subsection 3.2.4
is applied and the image space is split into p areas A1, A2, . . . , Ap. Let

X̄ :=
{
x̄1, x̄2, . . . , x̄k

}
(23)

with k ≤ p be the set of points resulting from MHTsplit. MHTsplit uses a heuristic stop-
ping criterion to save function evaluations. As a result, it is possible that not all areas
A1, A2, . . . , Ap are considered, but only the areas A1, A2, . . . , Ak up to an index k ≤ p.
This is illustrated schematically for p = 5 in Figure 8. The left figure shows all obtained
points until the splitting approach is terminated. The point x̄5 is dominated by x̄4 and
therefore not included in the list X̄ = {x̄1, x̄2, x̄3, x̄4} given as output by MHTsplit.
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Figure 8: Step 1: Image space split with MHTsplit

For all points in X̄ the spreading technique from subsection 3.1 is then used to compute
further Pareto critical points. We use a slightly modified version of MHTspread given in
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Algorithm 5 and referred to as MHTb
spread. As in MHTspread, the cheap objective function

f2 is minimized subsequently on moving local areas. However, instead of doing so until
the global minimal value f2(xglob) = minx∈Rn f2(x) is reached, a lower bound b with b ≥
f2(xglob) is used. If it holds f2(y) = b for a point y obtained by the spreading approach, it
is terminated.

Algorithm 5 MHTb
spread: MHTspread (Algorithm 2) on bounded area

Input: Functions f1 (expensive), f2 (cheap), spreading distance δ0, starting point x0,
lower bound b ∈ R with minx∈Rn f2(x) ≤ b ≤ f2(x

0)
Compute xglob ∈ argminx∈Rnf2(x), set X = {x0}, δ = δ0 and k = 1.
while f2(x

k) > b do
Compute xloc ∈ argminx∈Bk

loc
f2(x) with Bk

loc =
{
x ∈ Rn |

∥∥xk − x∥∥ ≤ δ
}

.

if
∥∥xk − xloc∥∥ = δ and f2 (xloc) 6= f2 (xglob) then
Execute MHT with xloc and δ: xk+1 = MHT(xloc, δ).

else
Set xk+1 = xloc.
if
∥∥xk+1 − xk

∥∥ = 0 then
Set δ = 2δ.

else
Set δ = δ0.

end if
end if
Set X = X ∪

{
xk+1

}
and k = k + 1.

end while
Output: X

Note that in the while-loop it is possible to obtain a point xk with f2(x
k) < b either

as xk = xloc ∈ argminx∈Bk
loc
f2(x) or as xk = MHT(xloc, δ). Nevertheless, this point is

contained in the set X which is the output of MHTb
spread since it is found to be a Pareto

critical point for (BOP ), see Lemma 3.2 in subsection 3.1. This is also stated in the
following lemma which holds analogously to Lemma 3.4 from subsection 3.1. The proof is
analogous and therefore omitted.

Lemma 3.11 Suppose Assumptions A.1 to A.11 hold. Consider MHTb
spread (Algorithm 5)

with the starting point x0. Let X be the output of MHTb
spread. Then every point contained

in the set X \ {x0} is Pareto critical for (BOP ).

In the overall procedure to approximate the set of Pareto critical points of (BOP )
MHTb

spread is applied for all points contained in X̄, the output of MHTsplit from (23). For
this purpose and without loss of generality, let the points in X̄ be sorted according to
function f2 such that it holds

f2(x̄
1) ≤ f2(x̄

2) ≤ . . . ≤ f2(x̄
k).

Let x̄j with j ∈ {2, 3, . . . , k} be the starting point of MHTb
spread. The lower bound b for

termination is chosen as
b = bj = f2(x̄

j−1) (24)
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given by the preceding point from X̄. For x̄1 MHTspread is applied. Applying MHTb
spread

respectively MHTspread to the points of X̄ is illustrated schematically in Figure 9. All
points obtained by the spreading approach are marked gray. The left figure shows the
result of MHTb

spread with x0 = x̄2 and b = f2(x̄
1) and the right figure the result for all

points of X̄.
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Figure 9: Step 2: Spreading with MHTb
spread resp. MHTspread

The complete procedure combining the described steps and various runs of MHT with
different modifications is given in Algorithm 6 and referred to as MHTcombi. The output
of MHTcombi are the sets X̄ and Y . According to Lemma 3.11, all points contained in
Y \ X̄ are Pareto critical for (BOP ). Since Pareto criticality is only a necessary condition
for local weak efficiency, it is possible that the points obtained by MHTcombi contained in
the set Z := X̄ ∪ Y are not all nondominated in this set. Thus, it is reasonable to include
a method to extract the nondominated points from Z. This also applies for the set of
points obtained as output of the heuristic approach MHTspread from subsection 3.1. For
the implementation this is realized by a pairwise comparison since the obtained sets of
points are small. However, more sophisticated methods to find the nondominated points
in a finite set are for example the Graef-Younes method, see [13].

4 Results of Numerical Tests

The heuristic approaches from section 3 have been implemented in Matlab R2017a and
tested on 20 test problems from [19, Tab. 1], [20]: BK1, CL1, IM1, T1, LE1, Schaffer2,
VU1, FF (n=2,3,4,5), Jin1 (n=2,3,5), lovison1 (constrained and unconstrained), lovison4
(constrained and unconstrained) and T4 (n=2,3). For reasons of comparison, the test
problems do not contain expensive black box functions, but are all given analytically.
For evaluating the results, one of the objectives is defined as expensive function and
the number of function evaluations is counted. We summarize the findings and present
individual results exemplarily. For more details on numerical tests for the method MHT
and the test instances see [19, 20].
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Algorithm 6 MHTcombi: Heuristic approximation of the set of Pareto critical points

Input: Functions f1 (expensive), f2 (cheap), number p of search areas, spreading dis-
tance δ0, values for the parameters 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1
Step 1: Image space split with MHTsplit

Compute X̄ =
{
x̄1, x̄2, . . . , x̄k

}
= MHTsplit (p).

Step 2: Sorting X̄
Sort X̄ such that f2(x̄

i) ≤ f2(x̄
i+1) holds for all i = 1, 2, . . . , k − 1.

Step 3: Spreading with MHTb
spread and MHTspread

Compute Y1 = MHTspread (x̄1).
Compute Yi = MHTb

spread (x̄i, f2(x̄
i−1)) for i = 2, 3, . . . , k.

Set Y =
⋃k
i=1 Yi.

Output: X̄, Y

4.1 Results of Spreading

The results of MHTspread depend on the location of the first Pareto critical point x̄ com-
puted by an initial run of MHT and on the spreading distance δ0. The closer f2(x̄) is to
the global minimal value of f2, the less points can be computed. The larger the spreading
distance δ0, the bigger is the distance between the computed points and the less points
can be computed. To illustrate this, we consider at first the convex test problem

min
x∈[−5,10]2

(
x21 + x22

(x1 − 5)2 + (x2 − 5)2

)
(BK1)

with f1 declared as expensive function.
Figure 10 shows the result of MHTspread with the spreading distance δ = 0.5. The

left figure shows the domain and the right figure the image space. The starting point
x0 = (2.38, 7.39)> is marked blue, the point resulting from the initial run of MHT is
marked orange and the points resulting from the spreading approach are marked black.
All points that are evaluated during the procedure are depicted as unfilled circles. In total,
MHTspread requires 35 function evaluations to compute 6 efficient points.

The influence of the initial run of MHT is illustrated by comparing Figure 10 to Fig-
ure 11. The latter shows the result of MHTspread with the same spreading distance δ = 0.5,
but with a different starting point x0 = (7.65,−3.69)>. In this run, 9 efficient points are
computed with 56 function evaluations.

The influence of different values for the spreading distance is illustrated for the non-
convex test problem

min
x∈[−5,10]2

(
8
√
x21 + x22

4
√

(x1 − 0.5)2 + (x2 − 0.5)2

)
(LE1)

with f1 declared as expensive function. Figure 12 shows four runs of MHTspread with the
same starting point x0 = (1.47, 8.66)> but with different spreading distances δ.

The top left figure in Figure 12 shows the result for δ = 1. In this case, the spreading
distance is too large and besides the result of the initial run of MHT only the global minimal
value of f2 and a point very close to it are computed. They cannot be distinguished in the
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Figure 10: MHTspread applied to (BK1) (domain left, image space right)
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Figure 11: MHTspread applied to (BK1) (domain left, image space right)

figure. Since the global minimal value of f2 defines the stopping criterion of MHTspread, it
is computed in every run of MHTspread. In total, 27 function evaluations of f1 are required
to compute three efficient points. Using the smaller spreading distance δ = 0.5 as depicted
in the top right figure, 4 efficient points are computed with a total amount of 34 function
evaluations. Again and as for all runs with (LE1), one point is very close to the global
minimal value of f2 such that they cannot be distinguished in the figure. By choosing
smaller spreading distances, the number of efficient points increases. This is illustrated
in the bottom figures. The left figure shows the result for δ = 0.2 (5 efficient points,
40 function evaluations) and the right figure the result for δ = 0.1 (8 efficient points, 70
function evaluations).

4.2 Results of Image Space Split

The difficulty of applying MHTsplit lies in choosing an appropriate number p of split regions.
In general, the higher the splitting number p is, the more efficient points are computed
and the more function evaluations are required. However, this does not always apply.
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Figure 12: MHTspread applied to (LE1) with spreading distances δ = 1 (top left), δ = 0.5
(top right), δ = 0.2 (bottom left), δ = 0.1 (bottom right)

To illustrate this, we consider again the test problem (BK1). The result of MHTsplitwith
p = 8 is depicted in Figure 13. The starting points are marked blue and the computed
solutions orange. The global minimum of the cheap function f2 is marked black. All points
evaluated during the procedure are depicted as unfilled circles. The left figure shows all
obtained solutions and the right figure the solutions that remain after the dominated points
are deleted. This illustrates that not every run of MHTlb produces a nondominated point.
Moreover, the left figure shows that MHTlb is not executed in every search region. After
the run in the fourth search area, the splitting approach is terminated since the obtained
point in this run is dominated by the previously computed solution. By this, function
evaluations are saved since no (weakly) efficient points are contained in the remaining
search areas. In total, three efficient points are computed after 30 function evaluations.

By choosing larger values for p, more search regions are considered and thus also more
efficient points are computed. However, the more search areas are considered, the more
the number of function evaluations increases. Figure 14 shows the result of the splitting
approach with p = 22 search areas. The domain is depicted in the left figure and the
image space in the right figure. In this test of MHTsplit, 7 efficient points are computed
with 46 function evaluations.
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Figure 13: MHTsplit applied to (BK1) with p = 8 regions: all computed solutions (left)
and nondominated solutions (right)
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Figure 14: MHTsplit applied to (BK1) with p = 22 (domain left, image space right)

Besides, these test runs illustrate that the splitting approach does in general not com-
pute points that are equally distributed on the Pareto front. In contrast, the distance both
in the domain and in the image space can vary. By choosing higher numbers of p, the dis-
tance can be reduced. However, an equal distribution cannot be guaranteed. Furthermore,
a higher number of p also correlates with a higher number of function evaluations. The
general tendency of increasing function evaluations is confirmed by Table 1 which gives
an overview of the number n1 of obtained efficient points and the number n2 of required
function evaluations for different values of p.

p 2 4 6 8 10 12 14 16 18 20 22
n1 2 3 3 4 5 4 4 5 3 4 7
n2 21 25 31 30 42 34 38 37 26 49 46

Table 1: MHTsplit: Numbers n1 of efficient points and n2 of function evaluations for (BK1)
for different splitting numbers p
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For some instances, the number of function evaluations or efficient points also decreases
even though p increases. The reason is the location of the search areas and the position
of the starting points. Not all search areas contain (weakly) efficient points and some
starting points are already close to efficient points.

4.3 Results of the Combination of Splitting and Spreading

The difficulty for the combination of splitting and spreading is to choose appropriate values
for the splitting number p and the spreading distance δ. As illustrated in subsection 4.2,
the higher the number p is, the more solutions are computed by MHTsplit. However, this
correlates with the number of function evaluations. In general, the more search regions are
considered, the more function evaluations are required. As illustrated in subsection 4.1,
the smaller the value of δ is chosen, the more solutions are computed by MHTspread and
the more function evaluations are required. In the following, we give an overview of the
interaction of these two parameters and the quality of the approximation of the Pareto
front obtained by MHTcombi.

In MHTcombi the p runs of MHTlb due to the image space split are executed first.
They are executed consecutively and the splitting approach is terminated if one of the
computed solutions is dominated by the others. Thus, it is possible that not all search
areas are considered. Then, MHTspread is applied for all the solutions obtained by MHTsplit.

To illustrate the procedure of MHTcombi, we consider again the test problem (LE1).
Figure 15 shows the result of MHTcombi with p = 10 and δ = 0.1. The left figure shows the
splitting areas and all resulting points from the splitting approach. The starting points
are marked blue and the obtained solutions are marked orange. All evaluated points are
marked as unfilled circles. The black marked points are the result of the spreading with
MHTspread. The right figure shows the remaining points after the dominated points among
the solutions are deleted.

Figure 15: MHTcombi applied to (LE1) with p = 10 and δ = 0.1

With this choice of parameters, a good approximation of the Pareto front is computed.
In total, 10 efficient points are computed and 144 function evaluations are required. Table 2
gives an overview of the number of obtained efficient points n1 and required function
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evaluations n2 for (LE1) with different values for the parameters p and δ. The entries of
the cells are given in the order n1/n2.

δ
p

2 4 6 8 10

0.5 3/71 5/177 4/90 6/136 5/137
0.2 6/89 7/184 5/92 7/136 7/145
0.1 8/97 10/202 8/104 9/140 10/144

Table 2: MHTcombi: Number of efficient points / number of function evaluations for (LE1)
depending on splitting number p and spreading distance δ

These results show that the expected correlation between the values of the parameters
p and δ and the number of computed efficient points and required function evaluations
does not always apply. A higher number of split regions can also cause a lower number of
efficient points or a lower number of function evaluations, as for example for p = 4 and
p = 6 in Table 2. The reasons are the splitting procedure, the location of the search areas
and the location of the therein computed solutions. The latter influences, together with
the spreading distance δ, the number of efficient points that are computed by MHTcombi.

This is exemplarily illustrated for two runs of MHTcombi in Figure 16. The left figure
shows the result of splitting and spreading for p = 4 and δ = 0.5 and on the right the
result for p = 6 and δ = 0.5. The bounds of the search areas are depicted as dotted lines,
the results of the splitting approach are marked orange and the results of the spreading
approach are marked black. For illustration reasons, the dominated points among the
solutions of the image space split are also depicted.

Figure 16: MHTcombi applied to (LE1) with δ = 0.5 and p = 4 (left) and p = 6 (right)

As the two figures illustrate, for p = 4 only one search area contains nondominated
points, whereas for p = 6 two search areas contain nondominated points. Moreover, for
p = 4 three of four search areas are considered until the splitting approach is terminated
because the latest computed solution is dominated by the other solutions. The splitting
approach with p = 6 is already terminated after two search areas since the second com-
puted solution is dominated by the first. This also illustrates the local search character of
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MHT and the influence of the lower bound in the image space used in MHTlb. Although
there exist nondominated points in the second search area for p = 6, MHTlb computes
a dominated point which is situated on the boundary of the search area. Thus, it is a
weakly efficient point for the auxiliary optimization problem including this lower bound
and it is reasonable that MHTlb terminates.

Additionally, Figure 16 shows that the spreading parameter δ = 0.5 is not a good
choice for the test problem (LE1) since only few black marked points – the results of the
spreading with MHTspread – are depicted in the figures.

5 Conclusions

This paper presents three approaches based on the algorithm MHT from [19] that make
additional use of the heterogeneity of the objective functions and compute several Pareto
critical points. They are based on ideas for bi-objective optimization problems and on
the assumption that minimizing or maximizing the analytically given functions on cer-
tain areas is realizable with acceptable numerical effort. The heuristic approaches have
been implemented and first numerical tests with 20 test problems have been executed.
These first tests show the usefulness and applicability of the approaches. However, no
general statement can be made which approach gives the best results. The difficulty lies
in choosing appropriate values for the parameters p for the splitting approach and δ for the
spreading approach. An extensive parameter study is necessary to obtain reliable recom-
mendations for the choice of the parameters for a given specific optimization problem. The
presented heuristic approaches are formulated for bi-objective optimization problems, but
can be transferred to optimization problems with three or more objective functions. More
sophisticated strategies to include all cheap functions for the spreading idea are subject
to future research.

A Assumptions

Assumptions A.1 to A.11 as required for Theorem 2.4.

Assumption A.1 The objective functions fi : Rn → R are twice continuously differen-
tiable for all i ∈ {1, 2, . . . , q}.

Assumption A.2 The function φ : Rn → R with φ(x) = maxi=1,2,...,q fi(x) is bounded
from below.

Assumption A.3 The model functions mk
i : Rn → R are quadratic for all k ∈ N and

i ∈ {1, 2, . . . , q}.

Assumption A.4 The model functions mk
i are exact at the current iteration point, that

is it holds
mk
i (x

k) = fi(x
k) for all i ∈ {1, 2, . . . , q} and k ∈ N.
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Assumption A.5 The gradients of the model functions mk
i , i ∈ {2, 3, . . . , q}, for the cheap

functions fi coincide with the original gradients in the current iteration point, that is it
holds

∇mk
i (x

k) = ∇fi(xk) for all i ∈ {2, 3, . . . , q} and for all k ∈ N.

Assumption A.6 For every function fi, i ∈ {1, 2, . . . , q}, the Hessian of fi is uniformly
bounded, that is there exists a constant κuhfi > 1 fulfilling

‖∇xxfi(x)‖F ≤ κuhfi − 1

for all x ∈ Rn. The index ’uhfi’ stands for upper bound on the Hessian of fi.

Assumption A.7 For every function mk
i , i ∈ {1, 2, . . . , q}, the Hessian of mk

i is uniformly
bounded for all iterations k ∈ N, that is there exists a constant κuhmi

> 1 independent of
k fulfilling ∥∥∇xxm

k
i (x)

∥∥
F
≤ κuhmi

− 1

for all x ∈ Bk. The index ’uhmi’ stands for upper bound on the Hessian of mk
i .

Assumption A.8 In every iteration k ∈ N the model mk
1 is valid for the function f1 in

Bk, that is there exists a constant κem1 > 0 independent of k such that it holds for all
x ∈ Bk ∣∣f1(x)−mk

1(x)
∣∣ ≤ κem1δ

2
k.

Assumption A.9 There exists a constant κω > 0 such that it holds for every iteration
k ∈ N ∣∣ωm(xk)− ω(xk)

∣∣ ≤ κω ωm(xk).

Assumption A.10 There exists a constant κr ∈ (0, 1] such that it holds for every iteration
k ∈ N with xk not Pareto critical for minx∈Rn mk(x)

min
i=1,...,q

rki

max
j=1,...,q

rkj
≥ κr. (25)

Assumption A.11 There exists a constant κφ ∈ (0, 1) such that it holds for every iteration
k ∈ N

φkm(xk)− φkm(xk+) ≥ κφω(xk) min

{
ω(xk)

βkφ
, δk

}
with βkφ = maxi=1,...,q

∥∥∇xxm
k
i (x

k)
∥∥
F

+ 1.
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