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Abstract Cutting planes from the Boolean Quadric Polytope (BQP) can be
used to reduce the optimality gap of the NP-hard nonconvex quadratic pro-
gram with box constraints (BoxQP). It is known that all cuts of the Chvátal-
Gomory closure of the BQP are A-odd cycle inequalities. We obtain a compact
extended relaxation of all A-odd cycle inequalities, which permits to optimize
over the Chvátal-Gomory closure without repeated calls to separation algo-
rithms. In a computational study, we verify the strength of this relaxation and
show that we can provide very strong bounds for the BoxQP, even with a plain
linear program.
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1 Introduction

In their article Globally solving nonconvex quadratic programming problems
with box constraints via integer programming methods [3], Bonami, Günlük,
and Linderoth show how to solve the NP-hard nonconvex quadratic program
with box constraints, i.e.,

min
1

2
xTQx+ cTx

s.t. l ≤ x ≤ u, (BoxQP)

Q ∈ Rn×n, Q symmetric,

effectively via linear programming techniques. Without loss of generality we
assume l = 0 and u = 1, because l and u are finite. They first obtain a convex
relaxation of the BoxQP with a linear objective function. This linearization
induces nonlinear constraints, which are replaced by the so-called McCormick
inequalities [8]. We denote the resulting weak linear relaxation of the BoxQP
by LPM, see Section 4.

However, cutting planes from the Boolean Quadric Polytope

BQP = conv
(

BQPLP ∩ Zn × Z|E|
)
,

where

BQPLP =
{

(x,X) ∈ Rn × R|E||min{xi, xj} ≥ Xij ≥ max{0, xi + xj − 1}

∀ {i, j} ∈ E
}
,

can be used to turn it into a very strong relaxation of the BoxQP. In particular,
these efficient cuts are Chvátal-Gomory cuts

αTAx ≥ dαT be, α ∈ Rm
+ .

Furthermore, they prove that all Chvátal-Gomory cuts for the BQP are 0 −
1
2−Chvátal-Gomory cuts (i.e., α ∈ {0, 12}

m). Caprara and Fischetti [6] show
that separating these cuts is NP-hard in general. However, Koster, Zymolka
and Kutschka [7] study ways to separate them effectively in practice. Fortu-
nately for our purposes, all 0 − 1

2−Chvátal-Gomory cuts of the BQP can be
separated in polynomial time, as they are all dominated by the A-odd cycle
inequalities, see [3].

2 A-Odd Cycle Inequalities for the BQP

Let N denote the set {1, . . . , n} and

E :=
{
{i, j} ∈ N ×N | i 6= j, Qij 6= 0

}
.
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Fig. 1: An odd cycle with respect to |EA|.

Notice that if the ordered pair {i, j} is in E, then {j, i} ∈ E because of the
symmetry of Q. The McCormick inequalities, cf. [8], for the BQPLP imply

0 ≤ xi ≤ 1 ∀ i ∈ N,

since 0 ≤ Xij ≤ xi and xi + xj − 1 ≤ xj for all {i, j} ∈ E. Moreover, if we
combine the McCormick inequalities Xij ≥ 0 and Xij ≥ xi + xj − 1, we have

2Xij − xi − xj + 1 ≥ 0. (Aij)

Analogously, adding up xi ≥ Xij and xj ≥ Xij yields

−2Xij + xi + xj ≥ 0. (Bij)

To obtain additional cuts for the BQP, combinations of (Aij)- and (Bij)-
inequalities can be useful. Let EA ⊆ E be the set of all {i, j} for which we
use inequality (Aij). Define the set ÊA as the set that contains an edge ij for

every {i, j} ∈ EA. The sets EB and ÊB are defined analogously. We combine
(Aij)- and (Bij)-inequalities such that |EA| is odd and ÊA ∪̇ ÊB is a simple
cycle. Let

NA ⊆ N : vertices incident to exactly two edges in ÊA,

NB ⊆ N : vertices incident to exactly two edges in ÊB .

Remark 2.1 Adding inequality (Aij) to (Bjk) eliminates variable xj.

Example 2.2 Let {g, h}, {h, i}, {i, j}, {j, k}, {k, g} ∈ E. If we add up (Agh),
(Ahi), (Aij), (Bjk), and (Bkg), see Figure 1, we get

2(Xgh +Xhi +Xij −Xjk −Xkg)− 2(xh + xi) + 2xk + 3 ≥ 0.

Subtracting 3 and dividing by 2 yields

Xgh +Xhi +Xij −Xjk −Xkg − xh − xi + xk ≥ −
3

2
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and as all variables on the left hand side are integral, we are able to round up
the fractional constant on the right hand side to

Xgh +Xhi +Xij −Xjk −Xkg − xh − xi + xk ≥ −1.

In general, adding up inequalities for a simple cycle ÊA ∪̇ ÊB yields

2

 ∑
{i,j}∈EA

Xij −
∑

{i,j}∈EB

Xij −
∑
i∈NA

xi +
∑
i∈NB

xi

+ |EA| ≥ 0.

Subtracting |EA| and dividing by 2 yields∑
{i,j}∈EA

Xij −
∑

{i,j}∈EB

Xij −
∑
i∈NA

xi +
∑
i∈NB

xi ≥ −
|EA|

2
.

In the case |EA| is odd, we can strengthen this inequality (cf. [3]) to∑
{i,j}∈EA

Xij −
∑

{i,j}∈EB

Xij −
∑
i∈NA

xi +
∑
i∈NB

xi ≥
⌈
− |E

A|
2

⌉
,

which is equivalent to∑
{i,j}∈EA

Xij −
∑

{i,j}∈EB

Xij −
∑
i∈NA

xi +
∑
i∈NB

xi ≥ −
|EA|

2
+

1

2
,

and yields after another transformation

2

 ∑
{i,j}∈EA

(
Xij + 1

2

)
−

∑
{i,j}∈EB

Xij −
∑
i∈NA

xi +
∑
i∈NB

xi

 ≥ 1. (1)

We call cycle inequality (1) A-odd, since |EA| must be odd, but the cycle
given by ÊA ∪̇ ÊB may be of arbitrary parity.

3 Separation and Extended Formulation

For inequalities (Aij) and (Bij), we define

wA
ij = 2Xij − xi − xj + 1, (2)

wB
ij = −2Xij + xi + xj . (3)

Notice that wA
ij and wB

ij do not depend on some particular x̄ or X̄. They are
variables restricted by the given equations and obviously nonnegative. We can
interpret them as the slack of inequalities (Aij) and (Bij).

The following construction is similar to the separation algorithm presented
by Barahona, Jünger, and Reinelt [2]. Let G = (VG, EG) be the simple graph
with VG = N and EG =

{
ij | {i, j}, {j, i} ∈ E

}
.
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Fig. 2: Digraph F .

Consider the digraph F = (VF , AF ) with vertex set VF = {0, 1} and arc
set AF =

{
(0, 0), (0, 1), (1, 0), (1, 1)

}
as given in Figure 2. The direct graph

product H = (VG·F , AG·F ) of G and F is given by the vertex set VG·F =
N × {0, 1} and the arc set AG·F =

{
((i, r), (j, s)) : ij ∈ EG and (r, s) ∈ AF

}
.

Now we assign arc variable wA
ij to the arcs ((i, r), (j, 1−r)) ∈ AG·F and wB

ij

to the arcs ((i, r), (j, r)) ∈ AG·F for all r ∈ {0, 1}. Figure 3 shows the structure
of H for a given edge ij ∈ EG.

i,0

i,1

j,0

j,1

wij
B

wij
Awij

A

wij
B

Fig. 3: Graph product of an edge ij and F .

Whenever we use an (Aij)-inequality for an edge ij ∈ EG, an arc with arc
variable wA

ij in the product graph H is used and the second index of a vertex
in H changes from 0 to 1 or from 1 to 0. Otherwise, using a (Bij)-inequality
for an edge ij ∈ EG corresponds to an arc with arc variable wB

ij in H and the
second index does not change. We call a walk and a path, respectively, A-odd
if the number of arcs ij with assigned arc variable wA

ij is odd.

Lemma 3.1 Every (u, r)-(v, s)-walk in H corresponds to an A-odd u-v-walk
in G if and only if r 6= s.

Proof Let r, s ∈ {0, 1} with r 6= s. Then for every (u, r)-(v, s)-walk in H, the
sum over all arc variables includes an odd number of variables wA

ij since the

second index does not change when using variables wB
ij . The construction of

variables wA
ij that relate to inequalities (Aij) yields that the corresponding u-

v-walk in G is A-odd. Analogously, the corresponding u-v-walk in G is A-even
if r = s.
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Lemma 3.2 Let (u, r) 6= (v, s). If a shortest (u, r)-(v, s)-walk in H has weight
l, then there exists a (u, r)-(v, s)-path in H of weight l.

Proof Let P be a shortest A-odd (u, r)-(v, s)-walk in H with weight l. If P is
a path, then there is nothing to show. Otherwise, there exists a closed walk
through some vertex (w, t) in P with weight ≤ 0. Since all the edge variables
in H are nonnegative, this closed walk has weight 0. Notice that it is A-even,
since for every walk starting and ending in vertex (w, t), the second index
alternates an even number of times between 0 and 1. Therefore, removing this
walk from P does not change l or the parity of EA. Removing all closed walks
from P yields an A-odd (u, r)-(v, s)-path in H of weight l.

Lemma 3.3 The weight of a shortest A-odd cycle in G is equal to the weight
of a shortest (i, 0)-(i, 1)-path in H among all i ∈ N .

Proof Notice first that the weight of a shortest (i, 0)-(i, 1)-path in H is equal to
the weight of a shortest (i, 1)-(i, 0)-path in H because of arcs and arc weights
being symmetric. Let P be a shortest (i, 0)-(i, 1)-path of all (i, 0)-(i, 1)-paths
in H with i ∈ N . If the first index of all vertices except (i, 0) and (i, 1), which
serve as start and end point, on P is different, then there is nothing to show.
Otherwise, if for some j both vertices (j, 0) and (j, 1) lie on P , the subpath
between (j, 0) and (j, 1) cannot have more weight than P as we do not have
negative arc weights. Conversely, the subpath between (j, 0) and (j, 1) cannot
have less weight than P by the assumption of P being one of the shortest of all
(i, 0)-(i, 1)-paths in H with i ∈ N . Without loss of generality we can update
P by a shortest (j, 0)-(j, 1)-path. Successively, we end up in the first case.

Lemma 3.4 Given (x̄, X̄) ∈ BQPLP . Then (x̄, X̄) violates an A-odd cycle
inequality if and only if there exists a path P from (i, 0) to (i, 1) in H for
some i ∈ N of w̄-weight less than 1.

Proof Let ÊA ∪̇ ÊB be the edge set of a simple cycle C in G whose A-odd
cycle inequality is violated by (x̄, X̄). Then

2

 ∑
{i,j}∈EA

(
X̄ij + 1

2

)
−

∑
{i,j}∈EB

X̄ij −
∑
i∈NA

x̄i +
∑
i∈NB

x̄i

 < 1.

by inequality (1). The left hand side can be transformed to∑
{i,j}∈EA

(
2X̄ij + 1− x̄i − x̄j

)
+

∑
{i,j}∈EB

(
−2X̄ij + x̄i + x̄j

)
,

since x̄j is eliminated for all edge pairs ij and jk, where one of these edges

appears in ÊA and the other in ÊB , see Remark 2.1. This equals∑
{i,j}∈EA

w̄A
ij +

∑
{i,j}∈EB

w̄B
ij
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and because |EA| is odd, there exist two paths from (i, 0) to (i, 1) and from
(i, 1) to (i, 0) in H for all i ∈ C, that add up the same w̄A

ij and w̄B
ij as given

above. Thus, the weight of each of these paths is less than 1.
For the converse, consider a path from (i, 0) to (i, 1) in H with weight less

than 1. Analogously, there exists an A-odd cycle in G of equal weight.

With Lemmas 3.1, 3.2, 3.3, 3.4 and the separation algorithm presented in
[2], we can state the following theorem:

Theorem 3.5 For fixed (x̄, X̄), the separation problem for the A-odd cycle
inequalities of the BQP can be solved by computing the weight of a shortest
odd path from (i, 0) to (i, 1) in H for every i ∈ N . If every and hence the
shortest of these paths has weight at least 1, then (x̄, X̄) does not violate any
A-odd cycle inequality.

Theorem 3.5 allows us to solve the separation problem for the A-odd cycle
inequalities of the BQP with a linear program. Ahuja et al. [1, Chapter 9.4]
show how shortest path problems can be solved by a special case of the dual
minimum cost flow problem. We apply their technique and consider for fixed
i ∈ N the LP

max fi0i1

s.t. fi0i0 = 0,

fi0js ≤ fi0kt + w̄A
kj ∀ {k, j} ∈ E, s, t ∈ {0, 1}, s 6= t,

fi0js ≤ fi0kt + w̄B
kj ∀ {k, j} ∈ E, s, t ∈ {0, 1}, s = t,

with

w̄A
kj = 2X̄kj − x̄k − x̄j + 1,

w̄B
kj = −2X̄kj + x̄k + x̄j .

If the objective value of a solution of this LP is greater or equal than 1 for
every i ∈ N , then (x̄, X̄) fulfills all A-odd cycle inequalities of the BQP.

Using this idea, we obtain the following compact extended formulation
that enforces all A-odd cycle inequalities. Notice that x and X as well as w
are variables in contrast to what we have in the separation LP from above.

Theorem 3.6 The linear system

firir = 0 ∀ i ∈ N, r ∈ {0, 1}, (4)

firjs ≤ firkt + wA
kj ∀ {k, j} ∈ E, i ∈ N, r, s, t ∈ {0, 1}, s 6= t, (5)

firjs ≤ firkt + wB
kj ∀ {k, j} ∈ E, i ∈ N, r, s, t ∈ {0, 1}, s = t, (6)

fi0i1 ≥ 1 ∀ i ∈ N, (7)

together with equations (2) and (3) is an extended formulation of the (poten-
tially exponentially many) A-odd cycle inequalities of the BQP and therefore
provides a relaxation for the BQP.
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Proof Let (x̄, X̄) ∈ BQPLP . Then the weights w̄A and w̄B are explicitly given
by equations (2) and (3).

We first show that if inequalities (1) are fulfilled by (x̄, X̄), then for every
pair (i, r) and (j, s) in VG·F there exists f̄irjs such that (x̄, X̄, f̄) is feasible for
inequalities (4)–(7). Define f̄irjs as the weight of a shortest (i, r)-(j, s)-path in
H if such a path exists. Otherwise, assign a large value to f̄irjs. Inequalities
(4) are obviously fulfilled, as shortest paths from a vertex to itself have weight
0 in digraphs where all arc weights are nonnegative. Inequalities (5) and (6)
express that the weight of a shortest (i, r)-(j, s)-path cannot exceed the weight
of an (i, r)-(j, s)-path where the last arc is fixed, which is always true. Finally,
Lemma 3.4 ensures that inequalities (7) are fulfilled.

Conversely, let (x̄, X̄, f̄) be feasible for inequalities (4)–(7). Then f̄irir = 0
for every i ∈ N and r ∈ {0, 1} by equations (4), which is equal to the weight of
a shortest path from vertex (i, r) in H to itself. Consider the case (k, t) = (i, r)
in inequalities (5) and (6). For every {i, j} ∈ E, variables firjs are bounded
from above by arc variables wA

ij if r 6= s. Moreover, variables firjs are bounded

from above by arc variables wB
ij if r = s. Taking those cases for inequalities

(5) and (6) into account, where (k, t) 6= (i, r), every variable firjs is bounded
from above by the weight of a shortest path from (i, r) to (j, s) in H. Thus,
for every vertex pair (i, r) and (j, s) in H, the value f̄irjs is lower or equal
than the weight of a shortest path from (i, r) to (j, s) in H. Since f̄i0i1 is lower
or equal than the weight of a shortest (i, 0)-(i, 1)-path in H and f̄i0i1 ≥ 1 for
i ∈ N , every shortest (i, 0)-(i, 1)-path in H has weight at least 1. This holds
for every i ∈ N and therefore all A-odd cycle inequalities (1) are fulfilled by
(x̄, X̄), see Lemma 3.4.

Remark 3.7 Our extended A-odd cycle formulation in Theorem 3.6 requires
4n2 additional variables f , whereas the wA- and wB-defining equations can be
replaced by their definition in terms of x and X. In total, 8|E|n+n inequalities
are added. Notice that firir for all i ∈ N and r ∈ {0, 1} are just constant
numbers.

4 Numerical Experiments

Bonami, Günlük, and Linderoth [3] construct a weak linear relaxation of the
BoxQP by linearizing the objective function and relaxing the nonlinear con-
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straints. The resulting LP is given by

min
∑
{i,j}∈E

QijXij +
1

2

∑
i∈N

QiiYi +
∑
i∈N

cixi

s.t. xi ≥ Yi ≥ 2xi − 1 ∀ i ∈ N,
Yi ≥ 0 ∀ i ∈ N, (LPM)

xi ≥ Xij ∀ {i, j} ∈ E,
xj ≥ Xij ≥ xi + xj − 1 ∀ {i, j} ∈ E,
Xij ≥ 0 ∀ {i, j} ∈ E.

Furthermore, they strengthen it to

min
∑
{i,j}∈E

QijXij +
1

2

∑
i∈N−

QiiYi +
1

2

∑
i∈N+

Qiix
2
i +

∑
i∈N

cixi

s.t. xi ≥ Yi ∀ i ∈ N−,
xi ≥ Xij ∀ {i, j} ∈ E, (QPM2)

xj ≥ Xij ≥ xi + xj − 1 ∀ {i, j} ∈ E,
Xij ≥ 0 ∀ {i, j} ∈ E,

1 ≥ xi ≥ 0 ∀ i ∈ N,

where N+ := {i ∈ N | Qii ≥ 0} and N− := {i ∈ N | Qii < 0} partition N .
Although QPM2 has a convex quadratic objective and only linear constraints
apart from that, solving the pure LPM seems to be much faster in general.
However, QPM2 provides better lower bounds for the BoxQP.

In a computational study, Bonami, Günlük, and Linderoth [3] add 0 −
1
2−Chvátal-Gomory cuts heuristically to LPM and to QPM2 in CPLEX for
the 99 BoxQP test instances of Nemhauser and Vandenbussche [9], Burer and
Vandenbussche [5], and Burer [4]. Our contribution is to compute the bounds
that arise from exact A-odd cycle separation for the pure linear program LPM.
To this end, we add the extended relaxation from Theorem 3.6 to the constraint
set of LPM and solve the resulting LP with CPLEX v. 12.8.0.0 on the same
benchmark set. Adding the extended relaxation from Theorem 3.6 to QPM2

gives a convex quadratic program with a large amount of variables and in-
equalities. Although solving these QPs in reasonable running time does not
seem to be promising, we compute the solutions for some instances, i.e. all
instances where n ≤ 40 whose density is not too high.

Let d be the percentage of non-zeros in Q. An instance is called sparse,
medium, or dense, if d ≤ 40%, 40% < d ≤ 60%, or d > 60%, respectively.
Moreover, we divide these classes further into small (n ∈ {20, 30, 40}), medium
(n ∈ {50, 60, 70}), large (n ∈ {80, 90}), and jumbo (n ∈ {100, 125}).

The optimality gap is defined as

gap(z) :=

∣∣∣∣zBoxQP − z
z

∣∣∣∣× 100,
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Density gap(zM) gap(zM2 ) gap(z•M) gap(z•M2 )

Sparse 28.02 27.11 0.69 0.30

Medium 38.15 37.24 1.37 0.61

Dense 44.43 43.50 1.44 –

Table 1: Average optimality gap for instances with n ∈ {20, 30, 40}. Time limit exceeded
when solving QP•M2 for dense instances with n = 40.

where zBoxQP is the optimal objective value of the BoxQP and z is the optimal
objective value of the considered relaxation.

We denote the bounds arising from LPM and QPM2 , respectively, by zM
and zM2 . For the LPM strengthened with inequalities (2)–(7) we use the
notation LP•M. The bound arising from an optimal solution of LP•M is denoted
by z•M. Analogously, we use the notation z•M2 for the bound given by QP•M2 ,
which is the extension of QPM2 .

The set of small test instances is partitioned into 6 sparse, 9 medium dense,
and 27 dense instances. Table 1 specifies how much of the optimality gap is
closed by the A-odd cycle inequalities when adding them to LP•M and QP•M2 ,
respectively.

Sparse Medium Dense

0

10

20

30

40

50

60

70 LPM QPM2 LP•M

n ∈ {50, 60, 70}
Sparse Medium Dense

0

10

20

30

40

50

60

70

n ∈ {80, 90}
Sparse Medium Dense

0

10

20

30

40

50

60

70

n ∈ {100, 125}

Fig. 4: Average optimality gap for classified instances.

The average optimality gap left by LPM, QPM2 , and LP•M, respectively,
for all instances with n ≥ 50 is visualized graphically in Figure 4. We obtain
that the impact of the A-odd cycle inequalities increases when decreasing the
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density of Q. Especially on sparse instances, the optimality gap is reduced
tremendously by using the relaxation LP•M. For all test instances, bounds and
optimality gaps are listed in the appendix.

5 Conclusion

We showed how to construct a tight compact extended relaxation for noncon-
vex QP with box constraints by enforcing the A-odd cycle inequalities for the
BQP. Therefore, we are able to avoid executing a separation algorithm in mul-
tiple rounds. On a large benchmark set, our computational results illustrate
how efficient it is to strengthen the weak linear relaxation LPM. Since our
strengthened relaxation remains linear, it is applicable in practice.
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A Numerical Results

Table 2 is a modification of Table 9 from [3], which includes the columns zBoxQP, zM,
and zM2 . The bounds provided by the relaxations LPM and QPM2 , respectively, where
0− 1

2
−Chvátal-Gomory cuts of the BQP are added heuristically, are replaced by the values

z•M and z•M2 that arise from exact separation. Notice that the bounds z•M2 are at least as
strong as the bounds z•M. However, computing z•M2 was only possible in reasonable time

for instances with n ∈ {20, 30} and for half of the instances with n = 40.
The first number in the name of the test instance is equal to n, i.e., the number of

variables of the BoxQP. Moreover, the second number expresses the density of Q. The third
number enumerates different test instances that have similar parameters.

Table 2: Bounds for BoxQP relaxations. All values in columns zM, zM2 , and zBoxQP were
taken from [3].

Name zM zM2 z•M z•M2 zBoxQP

spar020-100-1 -1,066.00 -1,038.38 -706.50 -706.50 -706.50

spar020-100-2 -1,289.00 -1,258.38 -880.25 -867.14 -856.50

spar020-100-3 -1,168.50 -1,142.00 -772.00 -772.00 -772.00

spar030-060-1 -1,454.75 -1,430.00 -730.06 -714.21 -706.00

spar030-060-2 -1,699.50 -1,668.25 -1,385.50 -1,379.18 -1,377.17

spar030-060-3 -2,047.00 -2,006.50 -1,323.56 -1,305.97 -1,293.50

spar030-070-1 -1,569.00 -1,547.25 -703.86 -688.50 -654.00

spar030-070-2 -1,940.25 -1,888.25 -1,321.75 -1,315.82 -1,313.00

spar030-070-3 -2,302.75 -2,251.12 -1,695.00 -1,677.00 -1,657.40

spar030-080-1 -2,107.50 -2,072.00 -988.93 -967.73 -952.73

spar030-080-2 -2,178.25 -2,158.12 -1,597.00 -1,597.00 -1,597.00

spar030-080-3 -2,403.50 -2,376.25 -1,813.50 -1,809.78 -1,809.78

spar030-090-1 -2,423.50 -2,385.12 -1,296.50 -1,296.50 -1,296.50

spar030-090-2 -2,667.00 -2,622.75 -1,478.00 -1,470.64 -1,466.84

spar030-090-3 -2,538.25 -2,499.38 -1,494.00 -1,494.00 -1,494.00

spar030-100-1 -2,602.00 -2,541.50 -1,235.38 -1,227.38 -1,227.12

spar030-100-2 -2,729.25 -2,698.88 -1,260.50 -1,260.50 -1,260.50

spar030-100-3 -2,751.75 -2,703.75 -1,541.50 -1,524.07 -1,511.05

spar040-030-1 -1,088.00 -1,067.00 -839.50 -839.50 -839.50

spar040-030-2 -1,635.00 -1,617.75 -1,431.50 -1,429.36 -1,429.00

spar040-030-3 -1,303.25 -1,297.12 -1,086.00 -1,086.00 -1,086.00

spar040-040-1 -1,606.25 -1,575.50 -856.82 -847.93 -837.00

spar040-040-2 -1,920.75 -1,895.75 -1,428.00 -1,428.00 -1,428.00

spar040-040-3 -2,039.75 -2,017.25 -1,193.00 -1,179.26 -1,173.50

spar040-050-1 -2,146.25 -2,120.88 -1,157.00 -1,154.73 -1,154.50

spar040-050-2 -2,357.25 -2,334.88 -1,435.50 -1,432.04 -1,430.98

spar040-050-3 -2,616.00 -2,603.00 -1,658.00 -1,653.63 -1,653.63

spar040-060-1 -2,872.00 -2,817.88 -1,390.40 -1,365.00 -1,322.67
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spar040-060-2 -2,917.50 -2,872.62 -2,014.00 -2,006.03 -2,004.23

spar040-060-3 -3,434.00 -3,386.12 -2,454.50 -2,454.50 -2,454.50

spar040-070-1 -3,144.00 -3,070.12 -1,605.00 – -1,605.00

spar040-070-2 -3,369.25 -3,323.00 -1,867.50 – -1,867.50

spar040-070-3 -3,760.25 -3,724.50 -2,444.00 – -2,436.50

spar040-080-1 -3,846.50 -3,788.62 -1,838.50 – -1,838.50

spar040-080-2 -3,833.00 -3,775.38 -1,952.50 – -1,952.50

spar040-080-3 -4,361.50 -4,311.12 -2,561.50 – -2,545.50

spar040-090-1 -4,376.75 -4,325.50 -2,135.50 – -2,135.50

spar040-090-2 -4,357.75 -4,304.38 -2,123.29 – -2,113.00

spar040-090-3 -4,516.75 -4,453.38 -2,540.00 – -2,535.00

spar040-100-1 -5,009.75 -4,932.12 -2,487.50 – -2,476.38

spar040-100-2 -4,902.75 -4,855.25 -2,146.25 – -2,102.50

spar040-100-3 -5,075.75 -5,017.25 -2,192.17 – -1,866.07

spar050-030-1 -1,858.25 -1,837.75 -1,324.50 – -1,324.50

spar050-030-2 -2,334.00 -2,324.62 -1,669.00 – -1,668.00

spar050-030-3 -2,107.25 -2,093.75 -1,461.00 – -1,453.61

spar050-040-1 -2,632.00 -2,580.62 -1,411.00 – -1,411.00

spar050-040-2 -2,923.25 -2,891.88 -1,753.50 – -1,745.76

spar050-040-3 -3,273.50 -3,236.00 -2,094.50 – -2,094.50

spar050-050-1 -3,536.00 -3,506.25 -1,409.72 – -1,198.41

spar050-050-2 -3,500.50 -3,467.12 -1,776.81 – -1,776.00

spar050-050-3 -4,119.75 -4,052.12 -2,138.34 – -2,106.10

spar060-020-1 -1,757.25 -1,745.50 -1,212.00 – -1,212.00

spar060-020-2 -2,238.25 -2,230.00 -1,925.50 – -1,925.50

spar060-020-3 -2,098.75 -2,081.00 -1,483.00 – -1,483.00

spar070-025-1 -3,832.75 -3,788.88 -2,545.00 – -2,538.91

spar070-025-2 -3,248.00 -3,232.88 -1,888.50 – -1,888.00

spar070-025-3 -4,167.25 -4,148.38 -2,819.25 – -2,812.28

spar070-050-1 -7,210.75 -7,151.12 -3,356.00 – -3,252.50

spar070-050-2 -6,620.00 -6,573.88 -3,296.00 – -3,296.00

spar070-050-3 -7,522.00 -7,473.88 -4,306.50 – -4,306.50

spar070-075-1 -11,647.75 -11,578.12 -5,003.67 – -4,655.50

spar070-075-2 -10,884.75 -10,793.38 -4,504.92 – -3,865.15

spar070-075-3 -11,262.25 -11,162.38 -4,862.75 – -4,329.40

spar080-025-1 -4,840.75 -4,829.12 -3,157.00 – -3,157.00

spar080-025-2 -4,378.50 -4,351.00 -2,361.62 – -2,312.34

spar080-025-3 -5,130.25 -5,102.88 -3,101.00 – -3,090.88

spar080-050-1 -9,783.25 -9,696.62 -4,025.80 – -3,448.10

spar080-050-2 -9,270.00 -9,205.50 -4,450.50 – -4,449.20

spar080-050-3 -10,029.75 -9,967.25 -4,961.27 – -4,886.00
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spar080-075-1 -15,250.75 -15,154.75 -6,601.92 – -5,896.00

spar080-075-2 -14,246.50 -14,146.62 -5,953.17 – -5,341.00

spar080-075-3 -14,961.50 -14,860.88 -6,584.00 – -5,980.50

spar090-025-1 -6,171.50 -6,135.25 -3,423.78 – -3,372.50

spar090-025-2 -6,015.00 -5,978.38 -3,550.65 – -3,500.29

spar090-025-3 -6,698.25 -6,681.88 -4,299.00 – -4,299.00

spar090-050-1 -12,584.00 -12,522.38 -5,468.90 – -5,152.00

spar090-050-2 -11,920.50 -11,851.38 -5,404.36 – -5,386.50

spar090-050-3 -12,514.00 -12,452.50 -6,230.59 – -6,151.00

spar090-075-1 -19,054.25 -18,944.50 -7,944.92 – -6,267.45

spar090-075-2 -18,245.50 -18,132.50 -7,334.75 – -5,647.50

spar090-075-3 -18,929.50 -18,823.50 -7,908.50 – -6,450.00

spar100-025-1 -7,660.75 -7,611.38 -4,116.48 – -4,027.50

spar100-025-2 -7,338.50 -7,303.12 -3,906.07 – -3,892.56

spar100-025-3 -7,942.25 -7,894.75 -4,459.25 – -4,453.50

spar100-050-1 -15,415.75 -15,341.75 -6,366.84 – -5,490.00

spar100-050-2 -14,920.50 -14,814.62 -6,504.93 – -5,866.00

spar100-050-3 -15,564.25 -15,480.12 -7,031.72 – -6,485.00

spar100-075-1 -23,387.50 -23,277.12 -9,551.75 – -7,384.20

spar100-075-2 -22,440.00 -22,307.00 -8,826.42 – -6,755.50

spar100-075-3 -23,243.50 -23,109.62 -9,614.25 – -7,554.00

spar125-025-1 -12,251.00 -12,184.75 -6,118.03 – -5,572.00

spar125-025-2 -12,732.00 -12,662.62 -6,401.29 – -6,156.06

spar125-025-3 -12,650.75 -12,627.50 -6,923.00 – -6,815.50

spar125-050-1 -24,993.00 -24,880.25 -10,879.42 – -9,308.38

spar125-050-2 -24,810.50 -24,669.38 -10,273.75 – -8,395.00

spar125-050-3 -24,424.50 -24,308.00 -10,032.50 – -8,343.91

spar125-075-1 -38,202.00 -38,058.12 -16,053.67 – -12,330.00

spar125-075-2 -37,466.75 -37,341.38 -15,088.58 – -10,382.47

spar125-075-3 -36,202.25 -36,033.00 -13,917.67 – -9,635.50

In Table 3, we list the optimality gap for every relaxation LPM, QPM2 , LP•M, and
QP•M2 on every test instance, except for those QP•M2 that were not solved.

Table 3: Gap for BoxQP relaxations.

Name gap(zM) gap(zM2 ) gap(z•M) gap(z•M2 )

spar020-100-1 33.72 31.96 0.00 0.00

spar020-100-2 33.55 31.94 2.70 1.23

spar020-100-3 33.93 32.40 0.00 0.00

spar030-060-1 51.47 50.63 3.30 1.15
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spar030-060-2 18.97 17.45 0.60 0.15

spar030-060-3 36.81 35.53 2.27 0.95

spar030-070-1 58.32 57.73 7.08 5.01

spar030-070-2 32.33 30.46 0.66 0.21

spar030-070-3 28.03 26.37 2.22 1.17

spar030-080-1 54.79 54.02 3.66 1.55

spar030-080-2 26.68 26.00 0.00 0.00

spar030-080-3 24.70 23.84 0.21 0.00

spar030-090-1 46.50 45.64 0.00 0.00

spar030-090-2 45.00 44.07 0.76 0.26

spar030-090-3 41.14 40.23 0.00 0.00

spar030-100-1 52.84 51.72 0.67 0.02

spar030-100-2 53.82 53.30 0.00 0.00

spar030-100-3 45.09 44.11 1.98 0.85

spar040-030-1 22.84 21.32 0.00 0.00

spar040-030-2 12.60 11.67 0.17 0.03

spar040-030-3 16.67 16.28 0.00 0.00

spar040-040-1 47.89 46.87 2.31 1.29

spar040-040-2 25.65 24.67 0.00 0.00

spar040-040-3 42.47 41.83 1.63 0.49

spar040-050-1 46.21 45.57 0.22 0.02

spar040-050-2 39.29 38.71 0.31 0.07

spar040-050-3 36.79 36.47 0.26 0.00

spar040-060-1 53.95 53.06 4.87 3.10

spar040-060-2 31.30 30.23 0.49 0.09

spar040-060-3 28.52 27.51 0.00 0.00

spar040-070-1 48.95 47.72 0.00 –

spar040-070-2 44.57 43.80 0.00 –

spar040-070-3 35.20 34.58 0.31 –

spar040-080-1 52.20 51.47 0.00 –

spar040-080-2 49.06 48.28 0.00 –

spar040-080-3 41.64 40.96 0.62 –

spar040-090-1 51.21 50.63 0.00 –

spar040-090-2 51.51 50.91 0.48 –

spar040-090-3 43.88 43.08 0.20 –

spar040-100-1 50.57 49.79 0.45 –

spar040-100-2 57.12 56.70 2.04 –

spar040-100-3 63.24 62.81 14.88 –

spar050-030-1 28.72 27.93 0.00 –

spar050-030-2 28.53 28.25 0.06 –

spar050-030-3 31.02 30.57 0.51 –
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spar050-040-1 46.39 45.32 0.00 –

spar050-040-2 40.28 39.63 0.44 –

spar050-040-3 36.02 35.28 0.00 –

spar050-050-1 66.11 65.82 14.99 –

spar050-050-2 49.26 48.78 0.05 –

spar050-050-3 48.88 48.02 1.51 –

spar060-020-1 31.03 30.56 0.00 –

spar060-020-2 13.97 13.65 0.00 –

spar060-020-3 29.34 28.74 0.00 –

spar070-025-1 33.76 32.99 0.24 –

spar070-025-2 41.87 41.60 0.03 –

spar070-025-3 32.51 32.21 0.25 –

spar070-050-1 54.89 54.52 3.08 –

spar070-050-2 50.21 49.86 0.00 –

spar070-050-3 42.75 42.38 0.00 –

spar070-075-1 60.03 59.79 6.96 –

spar070-075-2 64.49 64.19 14.20 –

spar070-075-3 61.56 61.21 10.97 –

spar080-025-1 34.78 34.63 0.00 –

spar080-025-2 47.19 46.85 2.09 –

spar080-025-3 39.75 39.43 0.33 –

spar080-050-1 64.76 64.44 14.35 –

spar080-050-2 52.00 51.67 0.03 –

spar080-050-3 51.28 50.98 1.52 –

spar080-075-1 61.34 61.09 10.69 –

spar080-075-2 62.51 62.25 10.28 –

spar080-075-3 60.03 59.76 9.17 –

spar090-025-1 45.35 45.03 1.50 –

spar090-025-2 41.81 41.45 1.42 –

spar090-025-3 35.82 35.66 0.00 –

spar090-050-1 59.06 58.86 5.79 –

spar090-050-2 54.81 54.55 0.33 –

spar090-050-3 50.85 50.60 1.28 –

spar090-075-1 67.11 66.92 21.11 –

spar090-075-2 69.05 68.85 23.00 –

spar090-075-3 65.93 65.73 18.44 –

spar100-025-1 47.43 47.09 2.16 –

spar100-025-2 46.96 46.70 0.35 –

spar100-025-3 43.93 43.59 0.13 –

spar100-050-1 64.39 64.22 13.77 –

spar100-050-2 60.68 60.40 9.82 –
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spar100-050-3 58.33 58.11 7.78 –

spar100-075-1 68.43 68.28 22.69 –

spar100-075-2 69.90 69.72 23.46 –

spar100-075-3 67.50 67.31 21.43 –

spar125-025-1 54.52 54.27 8.92 –

spar125-025-2 51.65 51.38 3.83 –

spar125-025-3 46.13 46.03 1.55 –

spar125-050-1 62.76 62.59 14.44 –

spar125-050-2 66.16 65.97 18.29 –

spar125-050-3 65.84 65.67 16.83 –

spar125-075-1 67.72 67.60 23.20 –

spar125-075-2 72.29 72.20 31.19 –

spar125-075-3 73.38 73.26 30.77 –
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