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Abstract
This paper extends dynamic control problems from a risk-neutral to a risk-averse setting. By

consistently nesting coherent risk measures it is possible to establish the limit of risk-averse multistage
optimal control problems in continuous time. For the limiting case we elaborate a new dynamic
programming principle and give risk-averse Hamilton–Jacobi–Bellman equations by generalizing
the infinitesimal generator. In doing so we provide a constructive explanation of the driver “6” in
6-expectation, a dynamic risk measure based on backwards stochastic differential equations.

Moreover we demonstrate that the Entropic Value-at-Risk is the natural and universal candidate for a
coherent risk measure in the context of optimal control.
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Classification: 90C15, 60B05, 62P05

1 Introduction
This paper discusses dynamic control problems in a risk-averse environment. For this purpose it is crucial
to compose (or nest) risk measures, as exactly nested risk measures allow quantifying risk via dynamic
programming equations which appear eminently in optimal control problems.

More specifically, this paper formulates risk-averse optimal control problems by extending the discrete
time setting to a continuous time framework. Here, a decision maker incurs an uncertain stream of costs
2(·) over time and his goal is to manage and minimize the accumulated costs incurred. The risk-averse
decision maker intends to guard against undesired scenarios in particular. The nested risk measure d0:)
governs the risk over the finite time horizon [0, )] and the optimization problem in consideration thus is

inf
D ( ·) ∈U

d0:)

(∫ )

0
2
(
C, D(C)

)
dC

)
,

whereU collects feasible control policies. We will see that the nested risk measure d0:) allows to guard
against risk in every instant of time, which is the typical objective of a risk manager permanently hedging
against risk. Non-nested risk measures, in contrast, only assess the accumulated position at terminal time ) ,
giving no chance to the risk manager to intervene.

Nested risk measures were introduced in Ruszczyński and Shapiro (2006). Pichler and Shapiro
elaborate that exactly these risk measures allow expanding the associated control problem to a risk-averse
framework. New dynamic programming equations, derived below, then reflect the risk-averse character.
For a discussion on risk measures and dynamic optimization we refer to De Lara and Leclère (2016).
Applications can be found in Philpott and de Matos (2012), Maggioni et al. (2012) or Guigues and Römisch
(2012), e.g., where stochastic dual dynamic programming methods are addressed.
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Çavuş and Ruszczyński (2014) and Fan and Ruszczyński (2014) study risk-averse control problems
in discrete time. Pflug and Pichler (2016) introduce extended conditional risk measures, which generate
dynamically consistent risk measures in discrete time. Extending these ideas, Dentcheva and Ruszczyński
(2018) analyze the value functions in a continuous time Markov chain model and derive dynamic
programming equations. For dynamic equations in the context of Markov decision processes see Haskell
and Jain (2015) and Haskell et al. (2016). Additionally, Ruszczyński and Yao (2015) discuss a risk-averse
optimal control problem in continuous time using 6-expectations and derive an Hamilton–Jacobi–Bellman
equation.

6-expectations are dynamic riskmeasures based on backward stochastic differential equations introduced
in Pardoux and Peng (1990). The relationship between risk measures and 6-expectations was extensively
studied in Coquet et al. (2002) and Peng (2004) among many others (see also the reference therein or
Rosazza Gianin (2006)).

This paper, in contrast, derives the driver 6(·) of 6-expectations explicitly by nesting classical risk
measures. Our approach thus provides a novel and elementary understanding of the risk-averse evolution
equations and 6-expectations based on nested risk measures. Moreover, our approach elaborates a clear
relation between static risk measures, dynamic risk measures in discrete time and the limiting risk measure
in continuous time.

Within this study, a special focus is given to nested risk measures based on the Entropic Value-at-Risk
defined by

EV@RV (. ) B sup {E./ : / ≥ 0, E / = 1 and E / log / ≤ V} , (1)

where V ≥ 0 is the coefficient of risk aversion (or risk level) and E / log / is the Shannon entropy (see also
Breuer and Csiszár (2013) and Pichler and Schlotter (2019) for a discussion of entropy and risk measures).
We give explicit formulas for the nested Entropic Value-at-Risk of the Wiener process and investigate more
general diffusion processes. Other risk measures can be nested as well, but their composite counterpart is
often degenerate. It is of independent interest that the Average Value-at-Risk (also known as Conditional
Value-at-Risk), the most prominent risk measure, degenerates when nested naively.

The infinitesimal generator is the essential tool for classical stochastic optimal control in continuous
time, see Fleming and Soner (2006), e.g. In this classical, risk-neutral setting, the infinitesimal generator of
an Itô process is a linear second order differential operator. We introduce the risk-averse analogue, called
risk generator and derive explicit expressions for Itô processes. Here, the risk generator is a second order
operator, which is nonlinear in the first derivative. While 6-expectations are nonlinear expectations (cf.
Peng (2004)) sui generis, we derive risk aversion from the nonlinear generator. We further derive risk-averse
Hamilton–Jacobi–Bellman equations, which extend the classical, risk-neutral dynamic programming
equations to the risk-averse setting.

Based on the derivation of the risk generator we conclude that the Entropic Value-at-Risk is the natural
choice for a nested risk measure in continuous time by adapting the risk levels in a natural way. Furthermore,
our approach provides an interpretation of the Hamilton–Jacobi–Bellman equation given in Ruszczyński
and Yao (2015).

Outline of the paper. Section 2 introduces conditional and nested risk measures and provides the
general mathematical setup in a discrete time setting. Section 3 deals with the extension to continuous
time. Section 4 provides risk evaluations for Itô processes and introduces the risk generator of a
stochastic process. We close with a discussion on other risk measures besides the Entropic Value-at-Risk.
Section 5 introduces the risk-averse stochastic control problem and derives the corresponding risk-averse
Hamilton–Jacobi–Bellman partial differential equation.

2



2 Notation and preliminaries
We consider a filtered probability space (Ω, F , (FC )C ∈T , %) and associate C ∈ T with stage or time. The
entropic space is

� B
{
. : Ω→ R

���E 4ℓ |. | < ∞ for all ℓ ∈ R
}

and we shall assume throughout the paper that the process - = (-C )C ∈T is adapted to the filtration (FC )C ∈T
with marginals -C ∈ � for all C ∈ T . We shall write -C C FC to indicate that -C is measurable with respect
to FC .

We further assume that our filtered probability space is Polish. As this paper develops a theory for risk
aversion of Itô processes based on Brownian motion we may work on the classical Wiener space without
loss of generality.

2.1 Conditional risk measures and EV@R
We recall the definition of law invariant, coherent risk measures d : ! → R defined on some vector space !
of R-valued random variables first. They satisfy the following axioms introduced by Artzner et al. (1999):

A1. Monotonicity: d(. ) ≤ d(. ′), provided that . ≤ . ′ almost surely;
A2. Translation equivariance: d(. + 2) = d(. ) + 2 for 2 ∈ R;
A3. Convexity: d

(
(1 − _). + _. ′

)
≤ (1 − _) d(. ) + _ d(. ′) for _ ∈ [0, 1];

A4. Positive homogeneity: d(_. ) = _ d(. ) for _ ≥ 0;

A5. Law invariance: d(. ) = d(. ′), whenever . and . ′ have the same law, i.e., %(. ≤ H) = %(. ′ ≤ H)
for all H ∈ R.

Remark 1. Any functional d : ! → R satisfying the Axioms A1–A4 can be represented by

d(. ) = sup
&∈Q

E& .

for a convex set of probability measures Q absolutely continuous with respect to % (cf. Delbaen (2002)).
We consider the conditional risk measures dC with respect to the sigma algebra FC defined by

dC (. |FC ) B ess sup
&∈Q

E& [. | FC ] . (2)

Note that dC satisfies conditional versions of the Axioms A1–A5. For further details, we refer the interested
reader to Ruszczyński and Shapiro (2006) and Riedel (2004). For the essential supremum of a set of random
variables as in (2) we refer to Karatzas and Shreve (1998, Appendix A). We remark that dC (. |FC ) C FC
and the axioms A2 and A4 extend to FC -measurable random variables.

Definition 2 (Entropic Value-at-Risk). The Entropic Value-at-Risk of a random variable . ∈ � at risk
level V ≥ 0 is (cf. (1))

EV@RV (. ) = sup {E./ : / ≥ 0, E / = 1, E / log / ≤ V} . (3)

Similarly, for the risk level 0 ≤ V C FB , we define the conditional Entropic Value-at-Risk EV@RV (· | FB)
as

EV@RV (. | FB ) B ess sup {E [./ | FB ] : 0 ≤ /, E [/ | FB ] = 1, E [/ log / | FB ] ≤ V} . (4)
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Remark 3. For a random variable . C FC , the density / in the defining equation (4) may be chosen to
satisfy / C FC . Indeed, the density /C B E [/ | FC ] satisfies all constraints as well, as can be seen by
applying the conditional Jensen inequality

E [/C log /C | FB] ≤ E [E [/ log / | FC ] | FB] = E [/ log / | FB] .

The tower property of the expectation finally insures the assertion.
For future reference we provide a closed form for the Entropic Value-at-Risk for Gaussian random

variables.

Proposition 4 (EV@R of Gaussians). For a normally distributed random variable . ∼ N(`, f2) with
f ≥ 0 and 0, 1 ∈ R it holds that

EV@RV (0 + 1. ) = 0 + 1 ` + f |1 |
√

2V.

Proof. Let . ∼ N(`, f2), V ∈ [0,∞) and consider the alternative representation of the Entropic
Value-at-Risk (cf. Ahmadi-Javid (2012))

EV@RV (. ) = inf
ℓ>0

1
ℓ

(
V + logE 4ℓ.

)
. (5)

It holds that E 4ℓ. = exp
(
`ℓ + 1

2ℓ
2f2

)
and thus 1

ℓ
V + 1

ℓ
log

(
4`ℓ+

1
2 ℓ

2f2
)
= 1
ℓ
V + ` + 1

2ℓf
2,which attains

its infimum at ℓ∗ = 1
f

√
2V. The Entropic Value-at-Risk thus is

EV@RV (. ) =
1
ℓ∗
V + ` + 1

2
ℓ∗f2 = ` + f

√
2V.

Finally notice that 0 + 1. ∼ N(0 + 1 `, 12 f2) and hence

EV@RV (0 + 1. ) = 0 + 1 ` + |1 | f
√

2V,

the assertion. �

2.2 Nested risk measures
Nested risk measures are compositions of conditional risk measures. This section elaborates general
properties of nested risk measures. The results are then discussed in more detail for the Entropic Value-
at-Risk. Throughout, we will always consider risk on the time interval [0, )], ) > 0, and denote by
P B {0 = C0 < C1 < · · · < C= = )} a finite partition of the interval [0, )] including its endpoints. With
ΔC8 B C8+1 − C8 we denote the time step and ‖P‖ B max0≤8≤=−1 ΔC8 is the mesh size of the partition P.

Definition 5 (Nested risk measures). Let P be a partition of the interval [0, )] and let . C F) . For a
collection of conditional risk measures (dC )C ∈P and 8 < =, the nested risk measure is

dC8 :C=
(
.

��FC8 ) B dC8
(
dC8+1 . . .

(
dC=−1

(
.

��FC=−1

)
. . .

��FC8+1 ) ��FC8 ) . (6)

Remark 6 (Risk martingales). Nested risk measures naturally follow a martingale like pattern. Indeed, the
stochastic process .C B dC:C= (. | FC ) satisfies

dC8 :C=
(
.C8+1

��FC8 ) = dC8 (dC8+1:C= (
.

��FC8+1 ) ��FC8 )
= dC8

(
dC8+1 · · ·

(
dC=−1

(
.

��FC=−1

)
· · ·

��FC8+1 ) ��FC8 )
= .C8 .

We call this process (.C )C ∈P a risk martingale with respect to the family of risk measures (dC )C ∈P .
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Often, the risk evaluation d0:) (-) ) of the terminal value -) of some stochastic process - is of interest.
The terminal value -) can then be represented as the sum of its increments Δ-C 9 B -C 9+1 − -C 9 as

-) = -C8 +
=−1∑
9=8

Δ-C 9 .

As a consequence of translation equivariance we have the following useful proposition.

Proposition 7. Suppose that (-C )C ∈P is a discrete time stochastic process adapted to the filtration (FC )C ∈P .
The nested risk measure (6) is

dC8 :)
(
-)

��FC8 ) = -C8 + dC8 (Δ-C8 + dC8+1 (
. . .Δ-C=−2 + dC=−1

(
Δ-C=−1

��FC=−1

)
. . .

��FC8+1 ) ��FC8 ) . (7)

It is therefore sufficient to study conditional risk evaluations of increments. The next section exploits
this observation by giving explicit formulas in important cases.

2.3 The nested Entropic Value-at-Risk
In what follows we consider the nested Entropic Value-at-Risk, but we adjust the risk level to span the
respective time interval. For convenience of the reader and future reference we reemphasize and state these
details in the following definition.

Definition 8 (Nested Entropic Value-at-Risk). Let P be a partition of [0, )] and . C F) . For a vector of
risk levels V B

(
VC8 ΔC8 , . . . , VC=−1 ΔC=−1

)
, the nested Entropic Value-at-Risk is

nEV@RC8 :C=
V

(
.

��FC8 ) B EV@RVC8 ·ΔC8
(
. . . EV@RVC=−1 ·ΔC=−1

(
.

��FC=−1

)
. . .

��FC8 ) . (8)

To emphasize the dependence on the partition we will also write nEV@RP
V
(. | FC8 ) for (8). Furthermore,

for the trivial sigma algebra F0 = {∅,Ω}, we simply write nEV@R0:)
V (. ).

As a corollary to Proposition 4 we provide an explicit formula for the nEV@R for a Wiener process
evaluated at discrete time points.

Proposition 9 (Nested EV@R for the Gaussian random walk). Let , = (,C )C ∈P be a Wiener process
evaluated on the partition P. Furthermore, let V B

(
VC0 ΔC0, . . . , VC=−1 ΔC=−1

)
be a vector of risk levels.

Then the nested Entropic Value-at-Risk is

nEV@RPV (,) ) =
=−1∑
8=0
ΔC8

√
2VC8 . (9)

Proof. Note that the increments of , satisfy ,C8+1 −,C8 ∼ N(0, C8+1 − C8) and, by Proposition 4, the
conditional Entropic Value-at-Risk is

EV@RVC8 ΔC8
(
,C8+1

��,C8 ) = ,C8 + √
ΔC8

√
2VC8ΔC8 .

Iterating as in Equation (7) shows

nEV@RPV (,) ) =
=−1∑
8=0

√
ΔC8

√
2VC8ΔC8 =

=−1∑
8=0
ΔC8

√
2VC8 ,

the assertion. �
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Remark 10 (Parametrization). Comparing the explicit formula (9) with Proposition 4 we observe the
surprising consistency property

nEV@RPV (,) ) = EV@RV0 ·) (,) )

for the risk levels V = (V0 ΔC0, . . . , V0 ΔC=−1) with constant risk level V0. This is a consequence of the
parametrization chosen in (3), the definition of the Entropic Value-at-Risk.

3 Quantification of risk in continuous time
The previous section considers nested riskmeasures in discrete time on partitionsP = {0 = C0 < · · · < C= = )}
of the interval T B [0, )]. In what follows, we refine the partitions to obtain a limit of the nested risk
measures in continuous time.

To this end, we first extend the vector of risk levels to continuous time by involving a piecewise constant
function V called the risk rate and extend the definition of the nested Entropic Value-at-Risk to risk rates
V(·).

Definition 11. Let V : T → [0,∞) be the simple function

V(C) =
=−1∑
8=0

VC8 1[C8 ,C8+1) (C).

Then the nested Entropic Value-at-Risk is defined as

nEV@RV ( ·) (. ) B nEV@RP
V̂
(. ),

where the vector of risk levels is V̂ B (V(C0)ΔC0, . . . , V(C=−1)ΔC=−1).

Given a risk rate V(·) we now investigate the relationship of nEV@R for different simple functions.
We assume throughout that the risk rate V(·) is Riemann integrable.

Theorem 12 (Closed under pairwise minimization). Let. C F) be a random variable and let V, V′ : T →
[0,∞) be piecewise constant risk rates. Then the nested entropic Value-at-Risk is closed under pairwise
minimization, i.e.,

nEV@Rmin
(
V ( ·) , V′ ( ·)

) (. ) ≤ min
{
nEV@RV ( ·) (. ), nEV@RV′ ( ·) (. )

}
holds true.

Proof. It is enough to consider a constant risk rate V′(·) = V1 and a piecewise constant risk rate

V(C) = V0 1[C0 ,C1) (C) + V1 1[C1 ,C2) (C)

with V0 ≤ V1 and hence min {V(·), V′(·)} = V(·). Consider the infimum representation as in Proposition 4,

EV@RV1 ΔC1

(
.

��FC1 )
= inf

ℓ

1
ℓ

(
V1ΔC1 + logE

[
4ℓ.

��FC1 ] )
,

of the conditional Entropic Value-at-Risk. By nesting we obtain

nEV@RV ( ·) (. ) = inf
G

1
G

(
V0ΔC0 + logE

[
exp

(
G

(
inf
ℓ

1
ℓ

(
V1ΔC1 + logE

[
4ℓ.

��FC1 ] ))) ���� FC0 ] ) .
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Choosing ℓ = G gives the upper bound

nEV@RV ( ·) (. ) ≤ inf
G

1
G

(
V0ΔC0 + V1ΔC1 + logE

(
E

[
4G.

��FC1 ] ��FC0 ))
= EV@RV0) (. ).

Because V′(·) ≥ V(·) is constant, it follows that

nEV@RV ( ·) (. ) ≤ EV@RV0) (. ) = nEV@RV′ ( ·) (. ).

The general case follows by induction using the monotonicity property A1 of conditional risk measures. �

We are now ready to extend the nested Entropic Value-at-Risk to continuous time and demonstrate that
the extension is well-defined.

Definition 13 (Nested Entropic Value-at-Risk in continuous time). Let ) > 0, C ∈ [0, )) and . ∈ � . The
nested Entropic Value-at-Risk in continuous time for the Riemann integrable risk rate V : [C, )] → [0,∞)
is the upper envelope

nEV@RC:)
V ( ·) (. | FC ) B ess inf

Ṽ ( ·) ≥V ( ·)
nEV@R

Ṽ ( ·) (. | FC ) , (10)

where the infimum is among simple functions Ṽ(·) ≥ V(·).

Remark 14. We have the lower bound

nEV@RC:)
V ( ·) (. | FC ) ≥ E [. | FC ]

and hence the essential infimum (10) is well defined and an element of � . Moreover, simple functions are
closed under pairwise minimization. Therefore, by Theorem A.3 in Karatzas and Shreve (1998, Appendix
A), there exists a sequence of decreasing simple functions

(
V= (·)

)
=
such that

nEV@RC:)
V ( ·) (. | FC ) = lim

=→∞
nEV@RV= ( ·) (. | FC ) almost surely.

We may assume, without loss of generality, that ‖P=‖ = max0≤8≤=−1 ΔC8 → 0 as = → ∞, where
P= = {C0 < C1 < · · · < C: = )} is the mesh corresponding to the simple function V= (·) =

∑:
8=1 V8 1[C8 ,C8+1) (·).

4 Itô processes and nested risk measures
The preceding sections introduce nested risk measures in discrete time and subsequently extend the nested
Entropic Value-at-Risk to continuous time using the monotonicity property of Theorem 12. Continuing
the ideas of Proposition 7 we now consider nested risk measures on increments of a stochastic process in
continuous time. A large class of such processes is given by Itô processes driven by Brownian motion. We
now focus our attention on this important class.

As a motivating example, consider the Brownian motion, where Proposition 9 makes an explicit formula
available.

Proposition 15. The nested Entropic Value-at-Risk of the Wiener process, on T = [0, )] for a risk rate
V : T → [0,∞) is

nEV@R0:)
V ( ·) (,) ) =

∫ )

0

√
2V(C) dC.
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Proof. Let (V=)= be the sequence of risk rates of Remark 14. It follows from (9) that

nEV@RV= ( ·) (,) ) =
=−1∑
8=0

√
ΔC8

√
2V= (C8) ΔC8 =

=−1∑
8=0
ΔC8

√
2V= (C8).

Taking the limit demonstrates

nEV@R0:)
V ( ·) (,) ) =

∫ )

0

√
2V(C) dC,

the assertion. �

In what follows we demonstrate that the nested Entropic Value-at-Risk is well defined and finite in
general cases of Itô processes. For important stochastic processes following a linear stochastic differential
equation we can give explicit formulas. To this end consider the general stochastic differential equation

d-C = 1(C, -C ) dC + f(C, -C ) d,C , 0 < C ≤ ), (11)
-0 = G0,

where 1, f : T × R→ R are measurable functions. The next lemma recalls conditions for the solution of
the stochastic differential equation (11) to exist.

Lemma 16 (cf. Øksendal (2003, Theorem 5.2.1)). Let C ∈ [0, )] and G, H ∈ R and suppose that

|1(C, G) | + |f(C, G) | ≤ � (1 + |G |)

and

|1(C, G) − 1(C, H) | + |f(C, G) − f(C, H) | ≤ � |G − H | .

Then the stochastic differential equation (11) has a unique solution for all initial values G0 ∈ R.

Without loss of generality we assume throughout that the solution - of (11) has continuous paths. In
this case we may choose the canonical representation Ω = � (T ) with - (C, l) = l(C). The next theorem
extends the explicit formula obtained in Proposition 15 to a large class of linear stochastic differential
equations.

Theorem 17. For T = [0, )] let - = (-C )C ∈T be a linear diffusion process driven by the stochastic
differential equation

d-C = (�(C)-C + 0(C)) dC + f(C) d,C , -0 = G0, (12)

where the functions �, 0, f and V : T → [0,∞) are bounded. Then the nested Entropic Value-at-Risk is
given explicitly by

nEV@R0:)
V ( ·) (-) ) = 4

∫ )
0 �(B) dB-0 +

∫ )

0
0(D)4

∫ )
D
�(B) dB dD +

∫ )

0
4
∫ )
D
�(B) dB |f(D) |

√
2V(D) dD.

Proof. The solution of the linear stochastic differential equation (12) is given by (see, e.g., Karatzas and
Shreve (1991, Section 5.6))

-C = 4
∫ C
A
�(B) dB

{
-A +

∫ C

A

0(D)4−
∫ D
A
�(B) dB dD +

∫ C

A

f(D)4−
∫ D
A
�(B) dB d,D

}
.
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Set Φ(A, C) B exp
{∫ C
A
�(B) dB

}
and consider the sequence of risk rates (V= (·))= of Remark 14. By

translation equivariance it follows that

EV@RV= (C8) ΔC8
(
-C8+1

��FC8 ) =
Φ(C8 , C8+1) -C8 +

∫ C8+1

C8

0(D)Φ(D, C8+1) dD + EV@RV= (C8) ΔC8

(∫ C8+1

C8

Φ(D, C8+1)f(D) d,D
��FC8 ) .

The random variable ∫ C8+1

C8

Φ(D, C8+1)f(D) d,D (13)

is Gaussian with mean zero and variance
∫ C8+1
C8

Φ2 (D, C8+1)f2 (D) dD. From Proposition 4 we conclude that

EV@RV= (C8) ΔC8
(
-C8+1

��FC8 )
= Φ(C8 , C8+1)-C8 +

∫ C8+1

C8

0(D)Φ(D, C8+1) dD +
(∫ C8+1

C8

Φ2 (D, C8+1)f2 (D) dD · 2V= (C8) ΔC8
) 1

2
.

Repeating the same steps gives

EV@RV=(C8−1) ΔC8−1

(
EV@RV=(C8) ΔC8

(
-C8+1

��FC8 ) ��FC8−1

)
= Φ(C8−1, C8+1)-C8−1 +

∫ C8+1

C8−1
0(D)Φ(D, C8+1) dD +

(∫ C8+1

C8

Φ2 (D, C8+1)f2 (D) dD · 2V= (C8) ΔC8
) 1

2

+Φ(C8 , C8+1) ·
(∫ C8

C8−1
Φ2 (D, C8)f2 (D) dD · 2V= (C8−1) ΔC8−1

) 1
2
.

Iterating this argument and nesting with respect to = stages we obtain the explicit formula

nEV@RV= ( ·) (-) ) = Φ(0, ))-0 +
∫ )

0
0(D)Φ(D, )) dD +

=−1∑
8=0

(∫ C8+1

C8

4
2
∫ C=
D

�(B) dB
f2 (D) dD · 2V= (C8) ΔC8

) 1
2

for the nested Entropic Value-at-Risk of a linear diffusion. Using the linear approximation∫ C8+1

C8

42
∫ C=
D

�(B) dBf2 (D) dD = 42
∫ C=
C8
�(B) dB

f2 (C8) ΔC8 + >(ΔC8 )

we first have

lim
=→∞

=−1∑
8=0

(∫ C8+1

C8

42
∫ C=
D

�(B) dBf2 (D) dD · 2V(C8) ΔC8
) 1

2

= lim
=→∞

=−1∑
8=0

4

∫ C=
C8
�(B) dB |f(C8) | ΔC8 ·

√
2V= (C8).

In the limit we obtain

nEV@R0:)
V (-) ) = 4

∫ )
0 �(B) dB-0 +

∫ )

0
0(D)4

∫ )
D
�(B) dBdD +

∫ )

0
4
∫ )
D
�(B) dB |f(D) |

√
2V(D) dD

and thus the assertion. �

The Ornstein–Uhlenbeck process is a well-known example of a process satisfying the assumptions of
Theorem 17 above. For this process the nested Entropic Value-at-Risk simplifies further.
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Example 18 (Ornstein–Uhlenbeck). Consider the Ornstein–Uhlenbeck process -C following the stochastic
differential equation with constant coefficients

d-C = \ (` − -C ) dC + f d,C , -0 = G0. (14)

The closed form solution of (14) is

-C = 4
−C \G0 + `(1 − 4−\C ) +

∫ C

0
f4−\ (C−B) d,B .

From Theorem 17 we obtain the explicit formula by setting �(C) = −\, 0(C) = \` and f(C) = f in (12)
and thus

nEV@R0:)
V (-) ) = 4

−) \G0 + `(1 − 4−\) ) +
∫ )

0
4−\ () −C)f

√
2V(C) dC.

Remark 19. It is essential for the proof of Theorem 17 that the diffusion coefficient f(·) is independent
of the state variable G. Otherwise, the stochastic integral in (13) is not Gaussian. However, the nested
Entropic Value-at-Risk is well-defined for Itô processes where f(·) depends on the state. Due to the strong
integrability conditions for random variables in � further assumptions besides those in Lemma 16 have to
be imposed as the next example illustrates.

Example 20. Let (-C )C be the Wald martingale

-C = exp
{
−f

2

2
C + f,C

}
,

then -C is log normally distributed for which the moment generating function

<. (ℓ) B E 4ℓ-C

is not defined for ℓ > 0 and EV@RV (-C ) = ∞.

We conclude that for a general Itô process (-C )C the diffusion coefficient f must not be unbounded, in
general.

4.1 The risk generator
A fundamental tool in the classical theory of risk-neutral stochastic optimal control is the infinitesimal
generator, a differential operator describing the evolution of the system. This subsection introduces the
generator in the presence of risk, which extends the notion of the infinitesimal generator of Markov
processes by replacing the expectation by a risk measure. This enables us to formulate and solve risk-averse
control problems.

Throughout this section we consider the interval T = [C, )] and the Itô process (-B)B∈T given by the
stochastic differential equation

d-B = 1(B, -B) dB + f(B, -B) d,B , B ∈ T , (15)
-C = G.

For such processes we can define the risk generator.

10



Definition 21 (Risk generator). Let (-C )C ∈T be the solution of (15) on T with initial condition -C = G.
For the risk rate V : T → R, the risk generator based on the Entropic Value-at-Risk is

RVΦ(C, G) B lim
ℎ↓0

1
ℎ

(
EV@RV (C) ·ℎ (Φ(C + ℎ, -C+ℎ) | -C = G ) −Φ(C, G)

)
,

for those functions Φ : T × R→ R for which the limit exists.

For normally distributed random variables Proposition 4 gives explicit representations for EV@R and
we may calculate the risk generator in the case where -C is given by (15). In light of Example 20 we
impose the following condition on the diffusion coefficient f.

Assumption 22 (Hölder continuity). There exists a �̃ > 0 and an U > 0 such that

|f(D, -D) − f(B, -B) | ≤ �̃ |D − B |U , B, D ∈ T

and furthermore f : T × R→ [0,∞) is bounded uniformly.

Proposition 23 (Risk generator). Let (-B)B∈T be the solution of (15) on T with initial condition -C = G.
Let Φ(·, ·) be continuously differentiable in the first variable and twice continuously differentiable in the
second, i.e., Φ ∈ �1,2 (T × R). If mΦ

mG
is bounded, the risk generator based on EV@R satisfies

RVΦ(C, G) =
mΦ

mC
(C, G) + 1(C, G) mΦ

mG
(C, G) + f

2 (C, G)
2

m2Φ

mG2 (C, G) (16)

+
√

2V(C) ·
����f(C, G) mΦmG (C, G)���� .

Remark 24. The risk generator RV can be decomposed as the sum of the classical generator plus the
nonlinear term

√
2V ·

��f mΦ
mG

��. The additional risk term is a directed drift term, where the uncertain drift
mΦ
mG
(C, -C ) is scaled with volatility f and the coefficient

√
2V(·), which expresses risk aversion. For absent

risk, V = 0, we obtain the classical risk-neutral infinitesimal generator. Furthermore, if f = 0, i.e., no
randomness occurs in the model, the generator reduces to a first order differential operator describing the
dynamics of a deterministic system, where risk does not apply.

Proof of Proposition 23. By assumption Φ ∈ �1,2 (T × R) and hence we may apply Itô’s formula

Φ(C + ℎ, -C+ℎ) −Φ(C, -C ) =
∫ C+ℎ

C

(
mΦ

mC
+ 1 mΦ

mG
+ f

2

2
m2Φ

mG2

)
(B, -B)dB +

∫ C+ℎ

C

(
f
mΦ

mG

)
(B, -B)d,B .

For convenience we set 51 (C, G) B
(
mΦ
mC
+ 1 mΦ

mG
+ f2

2
m2Φ
mG2

)
(C, G) and 52 (C, G) B

(
f mΦ
mG

)
(C, G). In this setting

RV rewrites as

RVΦ(C, G) = lim
ℎ↓0

1
ℎ

EV@RV (C) ·ℎ
[∫ C+ℎ

C

51 (B, -B) dB +
∫ C+ℎ

C

52 (B, -B) d,B
���� -C = G] .

We need to show (16) for each fixed (C, G), i.e., the inequality���RVΦ(C, G) − 51 (C, G) − √
2V(C) | 52 (C, G) |

��� ≤ 0. (17)

Note that EV@RV (C) ·ℎ
[

1
ℎ

∫ C+ℎ
C

52 (C, G)d,B
��� -C = G] = √

2V(C) | 52 (C, G) | because 52 (C, G) is deterministic
and hence (17) is equivalent to

lim
ℎ↓0

1
ℎ

�����EV@RV (C) ·ℎ

[ ∫ C+ℎ

C
51 (B, -B) − 51 (C, G)dB +

∫ C+ℎ

C
52 (B, -B) − 52 (C, G) d,B

����� -C = G
] ����� = 0.
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Using convexity of EV@R and the triangle inequality we have

0 ≤ lim
ℎ↓0

����EV@RV (C) ·ℎ
[

1
ℎ

∫ C+ℎ

C

51 (B, -B)dB − 51 (C, G)
���� -C = G] ����+ (18)

+ lim
ℎ↓0

����EV@RV (C) ·ℎ
[

1
ℎ

∫ C+ℎ

C

52 (B, -B) − 52 (C, G) d,B
���� -C = G] ���� . (19)

We continue by looking at each term separately. Note that B ↦→ 51 (B, -B) − 51 (C, G) is continuous almost
surely and hence

1
ℎ

∫ C+ℎ

C

51 (B, -B) dB − 51 (C, G) (20)

converges almost surely to zero. Furthermore, for ℎ ≤ 1,

EV@RV ·ℎ
(

1
ℎ

∫ C+ℎ

C

| 51 (B, -B) | dB
)
≤ EV@RV

(
1
ℎ

∫ C+ℎ

C
1 + |-B | dB

)
≤ 1 + EV@RV

(∫ C+1

C

|-B | dB
)

and hence (20) is uniformly bounded in the EV@R norm ‖·‖ = EV@R(|·|). Using dominated convergence,
this implies convergence of (18) to zero.

Furthermore, the stochastic integral "ℎ B
∫ C+ℎ
C

52 (B, -B) − 52 (C, G)d,B in (19) is a continuous
martingale with quadratic variation

〈"〉 ℎ =
∫ C+ℎ

C

(
52 (B, -B) − 52 (C, G)

)2 dB.

Using Assumption 22, we bound the quadratic variation by

〈"〉 ℎ ≤
�̃ · ℎ1+U

1 + U , (21)

where �̃ is deterministic. Recall the infimum representation of the Entropic Value-at-Risk in (5),

1
ℎ

EV@RV (C) ·ℎ ("ℎ | -C = G ) = inf
ℓ>0

1
ℎℓ

(
V(C) · ℎ + log [E exp (ℓ"ℎ) | -C = G]

)
,

but "ℎ satisfies Novikov’s condition and thus 1 = E exp
(
ℓ"ℎ − ℓ2 〈" 〉ℎ

2

)
holds. Together with (21) we

obtain

E
[
4ℓ"ℎ

�� -C = G] ≤ exp

(
ℓ2

2
· �̃ · ℎ

1+U

1 + U

)
.

It follows similarly to Proposition 4 that

1
ℎ

EV@RV (C) ·ℎ ("ℎ | -C = G ) ≤ inf
ℓ>0

1
ℎℓ

(
V(C) · ℎ + ℓ

2

2
· �̃ · ℎ

1+U

1 + U

)
=

√
2V(C) ·

√
�̃ℎU

1 + U , (22)

where the infimum is attained at ℓ∗ =
(

2V (C) (1+U)
�̃ℎU

) 1
2 . We conclude that

lim
ℎ↓0

1
ℎ

�����EV@RV (C) ·ℎ

[ ∫ C+ℎ

C
51 (B, -B) − 51 (C, G)dB +

∫ C+ℎ

C
52 (B, -B) − 52 (C, G) d,B

����� -C = G
] ����� = 0,

which shows the assertion. �
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The following result is an analogue to the fundamental theorem of calculus and it also generalizes the
classical Dynkin formula (see Fleming and Soner (2006)) to the risk-averse setting.

Lemma 25 (Dynkin’s formula). Let (-B)B∈T be the solution of (15) on T with initial condition -C = G.
For Φ ∈ �1,2 (T × R) such that mΦ

mG
is bounded, the risk-averse Dynkin formula

nEV@RC:A
V ( ·)

(
Φ(A, -A )

)
= Φ(C, G) + nEV@RC:A

V ( ·)

(∫ A

C

RVΦ(B, -B) dB
)

(23)

holds for any C ≤ A ≤ ) .

Proof. The rather technical proof builds on the arguments in the proof of Proposition 23 as well as
Theorem 12. We have moved the detailed proof to the appendix. �

4.2 The relation of risk measures to 6-expectations
The previous sections focus on developing a dynamic nested version of Entropic Value-at-Risk and a risk-
averse analogue of the generator is introduced. We now relate the dynamic risk measures introduced above
to solutions of certain backwards stochastic differential equations, called 6-expectation (cf. Rosazza Gianin
(2006)) . Let - = (-C )C be the forward process given by (15) and let (., /) be the solution of the following
backwards stochastic differential equation

.C =

∫ )

0
2(B, -B) dB −

∫ )

C

6(B, /B) dB +
∫ )

C

/B d,B , (24)

where the cost 2 is accumulated over the entire time horizon. Rosazza Gianin (2006, Proposition 19) shows
that if 6 is convex and positively homegeneous in the second component and satisfies some regularity
assumptions, then

dC:)
(∫ )

0
2(B, -B) dB

)
= .C

describes a dynamic risk measure, the so-called (conditional) 6-expectation.
Moreover, there is an intimate relationship between solutions of backwards stochastic differential

equations and partial differential equations (see Zhang (2017) for details). In fact, + (C, G) := .-C=GC solves
the partial differential equation

0 =
m+

mC
(C, G) + 2(C, G) + 1(C, G) · m+

mG
+ 1

2
f2 (C, G) · m

2+

mG2 + 6
(
C, f(C, G) · m+

mG

)
. (25)

Comparing (25) with the risk generator RV it follows that 6-expectation defines nested risk measures in
continuous time and for the Entropic Value-at-Risk we have

6(C, I) :=
√

2V(C) · |I | .

We now show that all coherent risk measures, for which the risk generator exists, lead to a nonlinearity
of the form

`(C) ·
����f(C, G) · m+mG ���� , ` ≥ 0.

By Kusuokas representation theorem it is sufficient to consider the Average Value-at-Risk, the most
prominent coherent risk measure. We demonstrate that the nested Average Value-at-Risk degenerates
either to the expectation or the essential supremum provided that the limit over all partitions in (6) is taken

13



without properly rescaling the risk levels. Furthermore, we provide the proper rescaling such that the
nested Average Value-at-Risk does not degenerate in the continuous time setting.

The Average Value-at-Risk at risk level U is given by (cf. Ogryczak and Ruszczyński (2002))

AV@RU (. ) B min
G∈R

G + 1
1 − U E (. − G)+ .

For normally distributed . ∼ N(`, f2) we have the explicit formula AV@RU (. ) = ` + f i(Φ−1 (U))
1−U ,

where i and Φ are the density and cumulative distribution function of the standard normal distribution,
respectively. The conditional Average Value-at-Risk is given by

AV@RU (. | FB ) B min
G∈R

G + 1
1 − U E [(. − G)+ | FB] .

Similarly to the Entropic Value-at-Risk, we now consider a risk rate U : T → [0, 1] and introduce the
nested Average Value-at-Risk for a vector of risk levels (U(C0), . . . , U(C=−1)) on a partition P by

nAV@RPU
(
.

��FC8 ) B AV@RU(C8)
(
. . . AV@RU(C=−1)

(
.

��FC=−1

)
. . .

�� FC8 ) .
For a Brownian motion evaluated on P (cf. Corollary 9) the nested Average Value-at-Risk evaluates to

nAV@RPU (,) ) =
=−1∑
8=0

√
ΔC8

i
(
Φ−1 (U(C8))

)
1 − U(C8)

. (26)

The following example show that natural choices for risk rates U(·) lead to a degenerate risk evaluation.

Example 26. We consider constant risk levels U(C8) = U0 ∈ (0, 1). Then the limit of the right side of (26)
above is

lim
=→∞

=−1∑
8=0

√
ΔC8

i
(
Φ−1 (U0)

)
1 − U0

= ∞.

On the other hand the analysis inXin and Shapiro (2011) suggests to choose the risk rateU(C8) B ΔC8 ∈ (0, 1).
Then

=−1∑
8=0

√
ΔC8

i
(
Φ−1 (U(C8))

)
1 − U(C8)

=

=−1∑
8=0

√
ΔC8

1
(1 − ΔC8)

· 1
√

2c
exp

{
−1

2

(
Φ−1 (ΔC8)

)2
}
,

but for ? close to zero the asymptotic relation Φ−1 (?) ∼ −
√
−2 log ? holds (see the stable reference

http://dlmf.nist.gov/7.17.iii) and thus

=−1∑
8=0

√
ΔC8

1
(1 − ΔC8)

· 1
√

2c
exp

{
−1

2

(
Φ−1 (ΔC8)

)2
}
∼
=−1∑
8=0

√
ΔC8 ΔC8

(1 − ΔC8)
√

2c
,

which tends to zero as ΔC8 → 0.

We now derive the correct asymptotic behavior of U, such that the nested Average-Value-at-Risk does
not degenerate. To this end, we construct a modified risk rate AU (C, ℎ) depending on time C as well as the
step size ℎ.

14
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Theorem 27. Consider a Brownian motion , = (,C )C ∈[0,) ] on the interval [0, )]. For a risk rate
U : [0, )] → [0,∞) we set1

AU (C, ℎ) B Φ

(
−
√
− log(2cℎ · U(C))

)
.

Then the nested Average Value-at-Risk for the Brownian motion is given by

nAV@R0:)
AU ( ·)

(∫ )

0
d,B

)
=

∫ )

0

√
U(B) dB.

Proof. Let i be the density of the standard normal distribution, and Φ be its cumulative distribution
function. Denote by P = (C0, . . . , C=) a partition of the interval [0, )] and set ΔC8 = C8+1 − C8 . For AU (C, ℎ)
as in the theorem we obtain

i

(
Φ−1 (AU (C8 ,ΔC8))

)
=

√
ΔC8 U(C8)

and hence (26) shows that

nAV@RPU (,) ) =
=−1∑
8=0
ΔC8

U(C8)
1 − U(C8)

.

Proceeding exactly as in Definition 13 and Remark 14 shows that

nAV@R0:)
AU ( ·)

(∫ )

0
d,B

)
=

∫ )

0

√
U(B) dB

and thus the assertion. �

The following proposition shows that the risk generator with respect to the modified Average Value-at-
Risk with risk rate AU (·) coincides with the risk generator based on the Entropic Value-at-Risk up to a
scaling factor. Its proof is similar to the proof of Proposition 23.

Proposition 28 (Risk generator for AV@R). Let (-B)B∈T be the solution of (15) on T = [C, )] with initial
condition -C = G satisfying Assumption 22. For Φ ∈ �1,2 (T × R) such that mΦ

mG
is bounded, the risk

generator based on AV@R satisfies

RΦ(C, G) = mΦ

mC
(C, G) + 1(C, G) · mΦ

mG
(C, G) + 1

2
f2 (C, G) · m

2Φ

mG2 (C, G) +
√
U(C)

����f(C, G) mΦmG (C, G)���� .
The preceding proposition implies that all nested coherent risk measures lead to the same 6-expectation

up to a scaling factor. Rosazza Gianin (2006, Section 3) discusses the particular choice and interpretation
of the driver 6 from an economic perspective whereas our results connect the appropriate choice of 6 to
static risk measures by modifying the risk levels in a consistent manner.

Moreover, our results demonstrate that from the perspective of dynamic programming equations it is
not important which coherent risk measure is considered as the risk generators are essentially the same.
However, the adapted risk levels for the Entropic Value-at-Risk can be interpreted intuitively as a fixed
risk level related to the time horizon considered, whereas the modified risk levels AU for the Average
Value-at-Risk do not allow for such an immediate interpretation. For this reason, we consider the nested
Entropic Value-at-Risk as natural choice for a coherent risk measure in continuous time.

1The asymptotic expansion

AU (C , ℎ) ∼
√
ℎ

©­« 1√
− log(2cℎ U(C))

− 1√
− log(2cℎ U(C))3

+ 3√
− log(2cℎ U(C))5

. . .
ª®¬

holds for ℎ → 0
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5 The risk-averse control problem
The preceding section develops a risk-averse extension of the infinitesimal generator. Moreover, a risk-averse
Dynkin formula is shown. Using these results, we now formulate a risk-averse optimal control problem
and derive associated Hamilton–Jacobi–Bellman equations.

Consider the set of controls

U[0, )] B {D : T ×Ω→ * | D is adapted }

and* ⊂ R. For any initial condition (C, G) ∈ [0, )) ×R and control D ∈ U[C, )] we consider the controlled
stochastic process (- C ,G,DB )B given by (compare to (15))

d- C ,G,DB = 1
(
B, - C ,G,DB , D(B)

)
dB + f

(
B, - C ,G,DB , D(B)

)
d,B , B ∈ [C, )], (27)

-
C ,G,D
C = G.

The aim is to evaluate the risk of the accumulated cost over time, therefore we consider a cost rate
2 : [0, )] × R ×* → R and a terminal cost Ψ : R→ R so that the total cost accumulated over [C, )] is∫ )

C

2
(
B, - C ,G,DB , D(B)

)
dB +Ψ

(
-
C ,G,D

)

)
.

For D ∈ U[C, )] and adapted V : [0, )] → [0,∞) we define the controlled value function +D by

+D (C, G) B nEV@RC:)
V ( ·)

(∫ )

C

2
(
B, - C ,G,DB , D(B)

)
dB +Ψ

(
-
C ,G,D

)

) ���� -C = G) .
For arbitrary D ∈ U[0, )] the controlled value function +D may not exist. We follow Fleming and Soner
(2006, p. 141) and introduce the set of admissible controls.

Definition 29 (Admissible control). U[C, )] is called an admissible control system if it satisfies the
following conditions.

(i) For D ∈ U[C, )], the function D : [C, )] ×Ω→ * is an adapted process with respect to the Brownian
filtration.

(ii) For any initial value G ∈ R and D ∈ U[C, )] the stochastic differential equation (27) admits a unique
solution and +D (C, G) is well defined.

From now onU[C, )] always denotes an admissible control system and we define the optimal value
function + : [0, )] × R→ R as

+ (C, G) B inf
D∈U[C ,) ]

+D (C, G)

= inf
D∈U[C ,) ]

nEV@RC:)
V ( ·)

( ∫ )

C
2(B, - C ,G,DB , D(B)) dB +Ψ(- C ,G,D

)
)
���� -C = G) . (28)

The risk-averse control problem can now be formulated as:
given (C, G) ∈ [0, )) × R, find an admissible control D∗ ∈ U[C, )] such that

+D
∗ (C, G) = inf

D∈U[C ,) ]
+D (C, G). (29)

The following proposition guarantees that condition (ii) in Definition 29 is satisfied. It is an extension of
Lemma 16 as well as Lemma 23.
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Proposition 30. Let B ∈ [C, )] and G1, G2 ∈ R and D1, D2 ∈ *. Suppose there exists a constant � > 0 such
that

|1(B, G1, D1) | + |f(B, G1, D1) | + |2(B, G1, D1) | + |Ψ(G1) | ≤ � (1 + |G1 | + |D1 |)
and

|1(B, G1, D1) − 1(B, G2, D2) | + |f(B, G1, D1) − f(B, G2, D2) | + |2(B, G1, D1) − 2(B, G2, D2) |
≤ � ( |G1 − G2 | + |D1 − D2 |)

hold. Then the stochastic differential equation (27) has a unique solution. Moreover, if for D ∈ *, the
diffusion coefficient f(·, D(·)) satisfies Assumption 22, the controlled value function+D (C, G) is well defined
and deterministic.

5.1 Principle of dynamic programming
We show that the risk-averse optimal value function + (·, ·) defined in (28) satisfies an analogue of the
dynamic programming principle. Furthermore, we introduce the risk-averse Hamilton–Jacobi–Bellman
equations and show that the optimal value function solves these equations in the sense of viscosity solutions.
Additionally, we provide a verification theorem, showing that a classical solution to the risk-averse
Hamilton–Jacobi–Bellman equation is the optimal value function (28).

Lemma 31 (Dynamic programming principle). Let (C, G) ∈ [0, )) × R and A ∈ (C, )] and suppose that
U[C, )] is an admissible control system, then it holds that

+ (C, G) = inf
D∈U(C ,A )

nEV@RC:A
V ( ·)

(∫ A

C

2(B, - C ,G,DB , DB) dB ++ (A, - C ,G,DA )
���� -C = G) . (30)

Proof. For every Y > 0 there exists a D̃(·) ∈ U[C, )] such that + (C, G) + Y ≥ + D̃ (C, G). Using the recursive
property of the nested risk measures we obtain

+ (C, G) + Y ≥ + D̃ (C, G)

= nEV@RC:A
V ( ·)

(
nEV@RA :)

V ( ·)

(∫ )

C

2(B, - C ,G,D̃B , D̃B) dB +Ψ(- C ,G,D̃)
)
����FA )���� -C = G) .

For each A ∈ (C, )] the inequality

nEV@RA :)
V ( ·)

(∫ )

A

2(B, -A ,G (A ) ,D̃B , D̃B) dB +Ψ(-A ,G (A ) ,D̃)
)
����FA ) ≥ + (A, - C ,G,D̃A )

holds almost surely and thus

+ (C, G) + Y ≥ inf
D∈U(C ,A )

nEV@RC:A
V ( ·)

(∫ A

C

2(B, - C ,G,DB , DB) dB ++ (A, - C ,G,DA )
���� -C = G) .

As Y > 0 can be chosen arbitrarily we have shown the inequality ≥ in (30).
To see the converse inequality consider a fixed Y > 0 and let D̄ ∈ U[C, A] be an Y-optimal solution

to (30), that is

inf
D∈U(C ,A )

nEV@RC:A
V ( ·)

(∫ A

C

2(B, - C ,G,DB , DB) dB ++ (A, - C ,G,DA )
���� -C = GC ) + Y

≥ nEV@RC:A
V ( ·)

(∫ A

C

2(B, - C ,G,D̄B , D̄B) dB ++ (A, - C ,G,D̄A )
���� -C = G) .
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For every H ∈ R, let D̃(H) ∈ U[A, )] be such that + (A, H) + Y ≥ + D̃ (H) (A, H). We may assume that the
mapping H ↦→ D̃(H) is measurable (measurable selection theorem) and construct the control function

D0
B =

{
D̄B B ∈ [C, A)
D̃B (- C ,G,D̄A ) B ∈ [A, )]

.

Using monotonicity and the recursive property of the nested risk measure we get

nEV@RC:A
V ( ·)

(∫ A

C

2(B, - C ,G,D̄B , D̄B) dB ++ (A, - C ,G,D̄A )
���� -C = G)

≥ nEV@RC:A
V ( ·)

(∫ A

C

2(B, - C ,G,D̄B , D̄B) dB ++ D̃B (-
C,G,D̄
A ) (A, - C ,G,D̄A )

���� -C = G) − Y
= nEV@RC:)

V ( ·)

(∫ )

C

2(B, - C ,G,D0

B , D0
B) dB +Ψ(- C ,G,D

0

)
)
���� -C = G) − Y

= +D0 (C, G) − Y.

Combining the last inequalities we get

inf
D∈U(C ,A )

nEV@RC:A
V ( ·)

(∫ A

C

2(B, - C ,G,DB , DB) dB ++ (A, - C ,G,DA )
���� -C = G) + Y ≥ + (C, G) − Y

and as Y > 0 was arbitrary. The assertion follows. �

5.2 Hamilton–Jacobi–Bellman equations
The dynamic programming principle (30) suggests to consider quantities of the form

nEV@RC:)
V ( ·)

(∫ )

C

2(B, -B)dB ++ (), -) ) −+ (C, G)
���� -C = G) ,

where 2(·, ·) is a cost functional and + (·, ·) a terminal cost functional. The next theorem extends
Proposition 23 to this case.

Theorem 32. Let (-B)B∈T be the solution of (15) on T with initial condition -C = G. Let 2(·, ·),
+ (·, ·) ∈ �1,2 (T × R) and let + satisfy the conditions of Proposition 23, then it holds that

lim
ℎ↓0

1
ℎ

nEV@RC:C+ℎ
V ( ·)

(∫ C+ℎ

C

2(B, -B)dB ++ (C + ℎ, -C+ℎ) −+ (C, G)
���� -C = G) = 2(C, G) + RV+ (C, G). (31)

Proof. From convexity of coherent risk measures it follows that the left side of (31) can be bounded from
above by

lim
ℎ↓0

nEV@RC:C+ℎ
V ( ·)

(
1
ℎ

∫ C+ℎ

C
2(B, -B)dB

����� -C = G
)
+ lim
ℎ↓0

nEV@RC:C+ℎ
V ( ·)

(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

���� -C = G) ,
where the first part converges to 2(C, G) following the arguments in the proof of Proposition 23.

The second term can be rewritten as a limit over a sequence of risk rates (V= (·))= : [C, C + ℎ] → [0,∞)
as in Remark 14, i.e.,

lim
V=

EV@RV= (C0) Δ=
(
. . . EV@RV= (C=−1) Δ=

(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

���� FC=−1

)
. . .

���� FC0 ) . (32)
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We now show that the iterated limit (32) converges uniformly to RV+ (C, G). To this end, employing
Theorem 12 gives an upper bound for

nEV@RV= ( ·)
(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

���� -C = G) − RV+ (C, G) (33)

of the form ����EV@RV (C0) ·� ·ℎ
(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

)
− RV+ (C, G)

���� .
Here � is chosen such that � · V(C0) ≥ V(·) on [C, C + ℎ]. The analysis in the proof of Proposition 23
implies (compare with Equation (22)) the existence an Y depending on �, ℎ and the inital value C0 such that����EV@R� ·V (C0) ℎ

(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

)
− RV+ (C, G)

���� ≤ Y(� · ℎ, C0).
Exchanging the order of the arguments in (33) we get

RV+ (C, G) − nEV@RV= ( ·)
(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

���� -C = G) ≥ −Y(� · ℎ, C0).
We may conclude that for fixed Y′ > 0 there exists an ℎ′ > 0 such that for every smaller ℎ > 0����nEV@RV= ( ·)

(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

���� -C = G) − RV+ (C, G)���� ≤ Y′
holds independently of the risk rate V= (·). Therefore, the limits can be interchanged. By Definition 21 we
then obtain

lim
ℎ↓0

nEV@RC:C+ℎ
V ( ·)

(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

���� FC0 ) = lim
ℎ↓0

EV@RV (C0) ℎ
(
+ (C + ℎ, -C+ℎ) −+ (C, G)

ℎ

)
= RV+ (C, G).

Now, applying the triangle inequality to

lim
ℎ↓0

����nEV@RC:C+ℎ
V ( ·)

(
1
ℎ

(∫ C+ℎ

C

2(B, -B)dB ++ (C + ℎ, -C+ℎ) −+ (C, G)
)���� FC ) − 2(C, G) − RV+ (C, G)���� ,

the assertion follows immediately. �

Formally taking the limit A → C in the dynamic programming principle

0 = inf
D∈U(C ,A )

1
A − C nEV@RC:AV

(∫ A

C

2(B, - C ,G,DB , D(B)) dB ++ (A, - C ,G,DA ) −+ (C, G)
���� -C = G)

together with Theorem 32 shows that

0 = inf
D∈*

2(C, G, D) + RV+ (C, G).

This suggests to consider the partial differential equation on the space�1,2
1
( [C, )] × R) for (C, G) ∈ [0, )]×R

m+

mC
(C, G) = H

(
C, G,

m+

mG
,
m2+

mG2

)
, (34)
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with terminal condition E(), G) = Ψ(G) and HamiltonianH : [0, )] × R × R × R→ R given by

H(C, G, 6, �) B sup
D∈*

{
−2(C, G, D) − 6 · 1(C, G, D) − � · 1

2
f2 (C, G, D) − |6 | ·

√
2V(C)f(C, G, D)

}
.

The formal derivation suggests that the value function

+ (C, G) = inf
D∈U[C ,) ]

nEV@RC:)
V ( ·)

(∫ )

C

2(B, - C ,G,DB , D(B)) dB +Ψ(- C ,G,D
)
)
���� -C = G) (35)

solves the nonlinear partial differential equation (34).
Remark 33. Using backwards stochastic differential equations (BSDEs) an equation similar to (34) was
derived in Ruszczyński and Yao (2015). However, our analysis in Section 3 and Section 4 provides a more
elementary approach towards risk averse dynamic control. Moreover, we clarify the relationship between
static risk measures and their dynamic extensions by linking the risk level to the corresponding time period.

The value function (35) may not be regular enough and a more general concept of solutions for (34) is
needed. Therefore, the concept of viscosity solution was introduced by Crandall and Lions (1983). We
recall the definition in the next subsection and elaborate that the classical theory of viscosity solutions
developed for the risk-neutral setting is sufficient for the risk-averse case as well.

5.3 Viscosity solutions
We show that the optimal value function + (·, ·) defined in (28) solves equation (34) and vice versa a
solution of (34) is the optimal value function of problem (28). In order to discuss solutions of the partial
differential equation (34) we recall the concept of viscosity solutions.

Definition 34 (Viscosity solution). A function E : [0, )] × R→ R satisfying E(), G) = Ψ(G) for all G ∈ R
is called a viscosity solution of (34) if the following two conditions are met:

• E is a viscosity subsolution, i.e., for every F ∈ �1,2
1
( [0, )] × R) such that F ≥ E on [0, )] × R and

min(C ,G) {F(C, G) − E(C, G)} = 0, the inequality

0 ≥ −mF
mC
(C̄, Ḡ) + H (C̄, Ḡ, mF

mG
,
m2F

mG2 )

holds for every (C̄, Ḡ) ∈ [0, )] × R such that F(C̄, Ḡ) = E(C̄, Ḡ).

• E is a viscosity supersolution, i.e., for every F ∈ �1,2
1
( [0, )] ×R) such that F ≤ E on [0, )] ×R and

min(C ,G) {E(C, G) − F(C, G)} = 0, the inequality

0 ≤ −mF
mC
(C̄, Ḡ) + H (C̄, Ḡ, mF

mG
,
m2F

mG2 )

holds for every (C̄, Ḡ) ∈ [0, )] × R such that F(C̄, Ḡ) = E(C̄, Ḡ).

The following theorems highlights the relation between the optimal value function + (·, ·) defined
in (28) and the partial differential equation (34). We first show that the optimal value function + (·, ·) solves
the Hamilton–Jacobi–Bellman partial differential equation (34) in the sense of viscosity solutions.

Theorem 35. Suppose the assumptions of Proposition 30 as well as Assumption 22 are satisfied and
suppose the control set* is compact. Then the optimal value function + (·, ·) is a viscosity solution of the
equations (34).
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Proof. The proof follows familiar arguments and thus can be found in the appendix. �

We finally demonstrate that a classical solution of (34) is the optimal value function of the optimal
control problem (29). This provides a converse statement to Theorem 35.
Theorem 36 (Verification theorem). Suppose the assumptions of Proposition 30 as well as Assumption 22
are satisfied. Let ! ∈ �1,2

1

(
[0, )] × R

)
be bounded and satisfy the partial differential equation (34), then

! (C, G) ≤ +D (C, G) for all D ∈ U[C, )] and all (C, G) ∈ [0, )] × R. Moreover, if a control D∗ ∈ U[0, )]
exists such that for almost all (B, l) ∈ [0, )] ×Ω the relation

D∗B ∈ arg min
E∈*

{
2(B, - C ,G,D

∗
B , E) + 1(B, - C ,G,D

∗
B , E) m!

mG
(C, - C ,G,D

∗
B , E) + 1

2
f2 (C, - C ,G,D

∗
B , E) m

2!

mG2 (C, -
C ,G,D∗
B , E)

+
√

2V(C)f(C, - C ,G,D
∗

B , E)
���� m!mG (C, - C ,G,D∗B , E)

����} (36)

holds, then ! (C, G) = + (C, G) = +D∗ (C, G) for all (C, G) ∈ [0, )] × R.
Proof. Let (C, G) ∈ [0, )] × R and consider a control D̃ ∈ U[C, )]. It holds by assumption that

0 = −m!
mC
(C, G) + H (C, G, m!

mG
,
m2!

mG2 ). (37)

Equation (37) shows that for the fixed control D̃ ∈ U[C, )] and all B ∈ [C, )]

0 ≤ 2(B, - C ,G,D̃B , D̃B) + RV! (B, - C ,G,D̃B ). (38)

It now follows that

! (C, G) ≤ nEV@RC:)
V ( ·)

(
! (C, G) +

∫ )

C

RV! (B, - C ,G,D̃B ) dB +
∫ )

C

2(B, - C ,G,D̃B , D̃B)dB
)
. (39)

In the spirit of Lemma 25 we now show that the right side of (39) is equal to

nEV@RC:)
V ( ·)

(∫ )

C

2(B, - C ,G,D̃B , D̃B) dB + ! (), - C ,G,D̃)
)
)
. (40)

In fact, taking the difference of the right side of (39) and (40) we obtain an upper bound

nEV@RC:)
V ( ·)

(
! (C, G) +

∫ )

C

RV! (B, - C ,G,D̃B ) dB − ! (), - C ,G,D̃
)
)
)
. (41)

Using Itô’s Lemma on ! (), - C ,G,D̃
)
) we get

(41) = nEV@RC:A
V ( ·)

(∫ A

C

(
f
m!

mG

)
(B, -B) d,B −

∫ A

C

√
2V

����fm!mG ���� (B, -B) dB) .
This is equation (43) in the proof of Lemma 25. Following exactly the same steps we show assertion (40),
i.e.,

! (C, G) ≤ nEV@RC:)
V ( ·)

(∫ )

C

2(B, - C ,G,D̃B , D̃B) dB + ! (), - C ,G,D̃)
)
)
= + D̃ (C, G),

which concludes the first part of the assertion. Now suppose a control D∗ ∈ U[0, )] exists such that (36) is
satisfied, then the inequality (38) becomes an equality, where again the above steps show that

! (C, G) = nEV@RC:)
V ( ·)

(∫ )

C

2(B, - C ,G,D∗B , D∗B) dB +Ψ(- C ,G,D
∗

)
)
)
= +D

∗ (C, G),

concluding the proof. �

21



6 Summary
This paper introduces nested risk measures in continuous time, explains the “6” in 6-expectation and
derives risk-averse Hamilton–Jacobi–Bellman equations.

Nested risk measures in continuous time are constructed as suitable limits from discrete time risk
measures. We demonstrate that the natural building block for nesting is the Entropic Value-at-Risk. The
risk levels have to be adjusted to the time period – otherwise, the nested risk measures degenerate.

Conditional risk measures are associated with a risk-generator, a nonlinear generalization of the
infinitesimal generator. We relate nested risk measures with dynamic risk measures based on backwards
stochastic differential equations, called 6-expectation. Our constructive approach explains the driver “6” of
6-expectations and provides a novel and elementary understanding of the risk-averse evolution equations
and 6-expectations based on nested risk measures. The new Hamilton–Jacobi–Bellman equations involve
an new, additional drift term accounting for risk-aversion.

The approach presented elaborates a clear relation between static risk measures, dynamic risk measures
in discrete time and the limiting risk measure in continuous time. In this way, the construction implies a
consistent numerical procedure for solving risk-averse Hamilton–Jacobi–Bellman equations.
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A Appendix
Proof of a risk-averse Dynkin Formula
For convenience of the reader we restate the Lemma 25.

Lemma 37 (Dynkin’s formula). Let (-B)B∈T be the solution of (15) on T with initial condition -C = G.
For Φ ∈ �1,2 (T × R) such that mΦ

mG
is bounded, the risk-averse Dynkin formula

nEV@RC:A
V ( ·) (Φ(A, -A )) = Φ(C, G) + nEV@RC:A

V ( ·)

(∫ A

C

RVΦ(B, -B) dB
)

(42)

holds for any C ≤ A ≤ ) .

Proof. The left side of (42) rewrites as

Φ(C, G) + nEV@RC:A
V ( ·)

(∫ A

C

(
mΦ

mC
+ 1 mΦ

mG
+ f

2

2
m2Φ

mG2

)
(B, -B) dB +

∫ A

C

(
f
mΦ

mG

)
(B, -B) d,B

)
using Itô’s formula. Using the representation of the risk generator RV in Equation (16) we can write the
assertion as

nEV@RC:A
V ( ·)

(∫ A

C

(
mΦ

mC
+ 1 mΦ

mG
+ f

2

2
m2Φ

mG2

)
(B, -B) dB +

∫ A

C

(
f
mΦ

mG

)
(B, -B) d,B

)
= nEV@RC:A

V ( ·)

(∫ A

C

(
mΦ

mC
+ 1 mΦ

mG
+ f

2

2
m2Φ

mG2

)
(B, -B) dB +

∫ A

C

√
2V(B) ·

����(fmΦmG )
(B, -B)

���� dB
)
.

the representation of the risk generator in Proposition 23 shows that

nEV@RC:A
V ( ·) (Φ(A, -A )) −Φ(C, G) − nEV@RC:A

V ( ·)

(∫ A

C

RVΦ(B, -B) dB
)

can be bounded by

nEV@RC:A
V ( ·)

(∫ A

C

f(B, -B)
mΦ

mG
(B, -B) d,B −

∫ A

C

√
2V

����f(B, -B) mΦmG (B, -B)���� dB
)
. (43)

We will show that (43) is less than zero. For ease of notation, we now omit the arguments whenever there
is no ambiguity. Let = ∈ N. It follows from convexity that

(43) ≤
=−1∑
8=0

nEV@RC:A
V ( ·)

(∫ C8+1

C8

f
mΦ

mG
d,B −

∫ C8+1

C8

√
2V

����fmΦmG ���� dB
)
. (44)

Moreover, monotonicity of nEV@R as well as Theorem 12 show that the summands of (44) are bounded
by

nEV@RC:A
V ( ·)

(
EV@RVC8 ΔC8

[ ∫ C8+1

C8

f
mΦ

mG
d,B − ΔC8

√
2VC8

����f mΦmG (C8 , -C8 )���� + >(ΔC8) ���� FC8 ] ) , (45)
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where VC8 ≥ V(B) for all B ∈ [C8 , C8+1]. We demonstrate that the inner conditional risk measure converges to
zero fast enough. To this end, we argue similarly to the proof of Proposition 23 and split the stochastic
integral in two parts as∫ C8+1

C8

f
mΦ

mG
(B, -B) d,B =

∫ C8+1

C8

f
mΦ

mG
(C8 , -C8 ) d,B +

∫ C8+1

C8

f
mΦ

mG
(B, -B) − f

mΦ

mG
(C8 , -C8 ) d,B .

Thus (45) can be bounded by

nEV@RC:A
V ( ·)

(
EV@RVC8 ΔC8

[ ∫ C8+1

C8

f
mΦ

mG
(C8 , -C8 ) d,B − ΔC8

√
2VC8

����f mΦmG (C8 , -C8 )���� ���� FC8 ] )
+ nEV@RC:A

V ( ·)

(
EV@RVC8 ΔC8

[ ∫ C8+1

C8

f
mΦ

mG
(B, -B) − f

mΦ

mG
(C8 , -C8 ) d,B + >(ΔC8)

���� FC8 ] ) .
The first part is equal to zero and the argument in the proof of Proposition 23 shows that the second part
tends to zero faster than linearly. In conclusion we obtain

nEV@RC:A
V ( ·)

(∫ C8+1

C8

f
mΦ

mG
d,B −

∫ C8+1

C8

√
2V

����fmΦmG ���� dB
���� FC ) ≤ nEV@RC:A

V ( ·) (0 + >(ΔC8) | FC )

and hence taking the limit shows that

nEV@RC:A
V ( ·)

(∫ A

C

f(B, -B)
mΦ

mG
(B, -B) d,B −

∫ A

C

√
2V

����f(B, -B) mΦmG (B, -B)���� dB
)
≤ 0. (46)

To accept that the left side of (46) is equal to zero, reverse the order of the arguments and repeat the above
steps for

nEV@RC:A
V ( ·)

(∫ A

C

√
2V

����f(B, -B) mΦmG (B, -B)���� dB −
∫ A

C

f(B, -B)
mΦ

mG
(B, -B) d,B

)
≤ 0,

which concludes the proof. �

Proof of Theorem 35
Again we restate the Theorem 35 for the convenience of the reader.

Theorem 38. Suppose the assumptions of Proposition 30 as well as Assumption 22 are satisfied and
suppose the control set* is compact. Then the optimal value function + (·, ·) is a viscosity solution of the
equations (34).

Proof. Let F ∈ �1,2
1
( [0, )] × R) be such that F ≥ + on [0, )] × R and

min
(C ,G)
{F(C, G) −+ (C, G)} = 0.

Consider a point (C ′, G ′) such that F(C ′, G ′) = + (C ′, G ′), let ℎ > 0 and consider a constant control DB = E on
[C ′, C ′ + ℎ]. From Lemma 31 it follows that

+ (C ′, G ′) ≤ nEV@RC
′:C′+ℎ
V ( ·)

(∫ C′+ℎ

C′
2(B, - C′,G′,EB , E) dB ++ (C ′ + ℎ, - C

′,G′,E
C′+ℎ )

����� -C′ = G ′
)

≤ nEV@RC
′:C′+ℎ
V ( ·)

(∫ C′+ℎ

C′
2(B, - C′,G′,EB , E) dB + F(C ′ + ℎ, - C

′,G′,E
C′+ℎ )

����� -C′ = G ′
)
.
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It follows from translation equivariance that

0 ≤ nEV@RC
′:C′+ℎ
V

(∫ C′+ℎ

C′
2(B, - C′,G′,EB , E) dB + F(C ′ + ℎ, - C

′,G′,E
C′+ℎ ) − F(C

′, G ′)
����� -C′ = G ′

)
. (47)

By assumption F ∈ �1,2
1

and hence Itô’s formula holds. Furthermore Theorem 32 can be applied and hence

1
ℎ

nEV@RC
′:C′+ℎ
V ( ·)

(∫ C′+ℎ

C′
2(B, - C′,G′,EB , E) dB + F(C ′ + ℎ, - C

′,G′,E
C′+ℎ ) − F(C

′, G ′)
����� -C′ = G ′

)
converges to

2(C, G, E) + mF
mC
(C, G) + 1(C, G, E) mF

mG
(C, G, E) + 1

2
f2 (C, G, E) · m

2F

mG2 (C, G, E) +
√

2V(C)f(C, G, E)
����mFmG (C, G, E)���� .

Since the constant control E was arbitrary it follows that

0 ≤ mF
mC
(C, G) − H

(
C, G,

mF

mG
,
m2F

mG2

)
and hence + is a viscosity subsolution.

Now, let F ∈ �1,2
1
( [C, ) × R) be such that F ≤ + on [0, )] × R, and min(C ,G) [+ (C, G) − F(C, G)] = 0.

Consider a point (C ′, G ′) ∈ [0, )) × R such that F(C ′, G ′) = + (C ′, G ′). Let D(·) ∈ * [C ′, C ′ + ℎ] be an
Yℎ-optimal control in (34) at (C, G) = (C ′, G ′). Proceeding exactly as in the derivation of (47), we obtain the
inequality:

nEV@RC
′:C′+ℎ
V ( ·)

(∫ C′+ℎ

C′
2(B, - C′,G′,EB , D) dB + F(C ′ + ℎ, - C

′,G′,D
C′+ℎ ) − F(C

′, G ′)
����� -C′ = G ′

)
≤ Yℎ.

Therefore we also have

min
D∈* [C′,C′+ℎ]

1
ℎ

nEV@RC
′:C′+ℎ
V ( ·)

( ∫ C′+ℎ

C′
2(B, - C

′,G′,D
B , D) dB + F(C ′ + ℎ, - C

′,G′,D
C′+ℎ ) − F(C ′, G′)

����� -C′ = G′
)
≤ Y

and letting ℎ tend to zero, we see with Theorem 32 that

inf
D∈*

{
2 (C , G, D) + m+

mC
(C , G) + 1 (C , G, D) m+

mG
(C , G) + f

2 (C , G, D)
2

m2+

mG2 (C , G) +
√

2V (C)
����f (C , G, D) m+mG (C , G) ����} ≤ Y.

Since Y > 0 was arbitrary, we conclude that + is a viscosity supersolution, which completes the proof. �
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