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Abstract

Driven by ambitious renewable portfolio standards, large scale inclusion of variable en-
ergy resources (such as wind and solar) is expected to introduce unprecedented levels of
uncertainty to power system operations. The current practice of operations planning with
deterministic optimization models may be ill-suited for a future where uncertainty is abun-
dant. To overcome the potential reliability challenges, we present a stochastic hierarchical
planning (SHP) framework. This framework captures operations at day-ahead, short-term
and hour-ahead timescales, along with the interactions between the stochastic processes and
decisions. In contrast to earlier studies where the stochastic optimization of individual prob-
lems (e.g., unit commitment, economic dispatch) have been studied, this paper provides a
comprehensive treatment of planning under uncertainty, where stochastic optimization mod-
els are stitched together in a hierarchical setting, in a way that parallels the widely adopted
deterministic hierarchical planning (DHP) of the power industry. Our experiments, based
on NREL118 dataset, allude to significant improvements in sustainable and reliable oper-
ations under high renewable penetration, solely by moving from the current paradigm of
DHP towards SHP. Such advances in operations planning, along with improved equipment
technology and market designs, are essential to the transition into the next generation of
power systems.

1 Introduction

Lawmakers throughout the U.S. have mandated that a significant percentage of electricity sup-
ply should be derived from renewable resources. Each state has set its own goal, with California
being the most aggressive, requiring 50% renewables by 2026, 60% by 2030, and 100% by 2045
(see [1]). State and local authorities (e.g., independent system operators (ISOs)) have com-
missioned studies to assess operational considerations such as system reliability, market design,
incorporation of storage technologies, and other avenues. A recent simulation study [2], commis-
sioned by California ISO (CAISO), suggests that for renewable-integration levels beyond 33%,
one can expect a fair amount of over-generation and renewable curtailment during daytime,
and perhaps, load-shedding around sundown. These issues are exacerbated at higher levels of
renewable penetration, and maintaining system reliability becomes a challenge.
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Figure 1: CAISO’s duck chart, predicting four emerging ramping patterns with increased re-
newable integration [4].

A popular illustration of the above issues are captured by the so-called “duck-chart” of CAISO
(see Fig. 1). This figure depicts the daily net-load (total electric load minus generation from
“must-run” units) across successive years with increasing levels of solar added to the generation
mix. A surplus of solar energy during daytime leads to a dip in the net-load, followed by a
significant upward ramp around sundown. In a grid with limited storage capabilities, excess
supply during daytime poses significant challenges as utilities will be required to procure suffi-
cient ramp-up capabilities to meet the electric load of evening hours. The absence of substantial
ramping capabilities can push the loss-of-load probability to unacceptable levels, and may even
cause load-shedding in certain areas, jeopardizing system reliability and performance. On the
other hand, over-generation during daytime could lead to negative prices in the market, result-
ing in, for instance, large shipments of energy to neighboring states (e.g., from California to
Arizona), while paying these states to accept the surplus at home (see [3]).

In order to meet the challenges discussed above and “tame the duck”, so to speak, a recent
U.S. Department of Energy (DOE) report [5] has distilled a myriad of operational guidelines
(for maintaining reliability) into four specific rules:

e Power generation and transmission capacity must be sufficient to meet peak demand for
electricity;

e Power systems must have adequate flexibility to address variability and uncertainty in
demand and generation resources;

e Power systems must be able to maintain steady frequency;
e Power systems must be able to maintain steady voltage at various points on the grid.

These rules are particularly focused on changes that are expected over the next several years due
to the inclusion of new production resources, especially variable energy resources (VER). The
first two rules can be seen as addressing operations planning, whereas the last two rules pertain
to operations control. The latter are typically addressed via controlling devices such as inverters.
To quote a recent study associated with a photovoltaic (PV) demonstration project, the authors
observe that modern inverters “mitigate the impact of [PV] variability on the grid, and contribute
to important system requirements more like traditional generators” [6, p. 5]. Another innovation
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which is credited to improving power system control is flexible AC transmission systems. These
devices used to be relatively expensive several years ago, but are relatively inexpensive now, and
should be looked upon as part of the modern grid.

In contrast to the operations control studies, the focus of this paper is on the first two
rules which are crucial for operations planning. While there are some proposals for completely
decentralized electricity production and markets, it is commonly accepted that the presence of
an [SO enhances the reliability of the power system. Accordingly, in order to accommodate
extensive use of VERs as expected for the next generation of the power grid, we propose an
important paradigm shift: from the contemporary deterministic hierarchical planning (DHP),
to a future which allows pre-positioning of resources based on new agile technology via smart
grid solutions. Given the above focus, our paper will demonstrate the reliability, economic and
environmental impacts of a stochastic hierarchical planning (SHP) framework, and contrast it
with the DHP paradigm.

Both the SHP and DHP paradigms require coordination via a central planning authority (e.g.
ISO). Most ISOs in the U.S. currently implement some form of a DHP framework, which divide
the daily planning activities into three principal layers: a) day-ahead unit commitment based on
a daily forecast of load and generation limits, producing a production and transmission plan,
b) short-term unit commitment over a shorter planning window (typically three to four hours),
producing some commitment decisions and updated transmission plans, and ¢) hour-ahead eco-
nomic dispatch where the production and transmission plans are finalized and, if necessary,
reserve capacities are committed. There are some variations of this multi-layer hierarchy, such
as updating the dispatching plan in 15-minute intervals to accommodate high levels of VER.
All layers in this hierarchical setup use some form of deterministic optimization, and as such,
all forecasts used in the optimization models are point forecasts.

With growing VER share in the grid, the reliability challenges will only get bigger, which
the above planning process can inefficiently address by more conservative reserve restrictions.
To this end, we recommend SHP, whose main difference is that at each layer of the hierarchy,
the model uses a stochastic programming setup, so that the decisions are cognizant of various
potential uncertainties (load, generation, failures etc.). These models are solved using stochastic
programming (SP) algorithms, some of which have been studied rigorously over the past twenty-
five years |7, 8] with more recent versions in [9, 10]. In this paper we coalesce our research from
SP, including discrete SP [11], with the work in power systems research for economic dispatch
(ED) [12, 13] and unit commitment (UC) [14]. We caution that not all algorithms which solve a
particular class of models are equally effective in solving equivalent models. This is particularly
true for stochastic programming (SP) models for which certain types of structures (e.g., fixed and
complete recourse models with linear structures) are much more amenable to specialized solution
algorithms, than general purpose SP algorithms [15]. While such algorithmic and modeling
issues have significant importance, this paper takes a system-wide perspective and focuses on
operational outcomes of using such models and algorithms. Readers who are interested in these
aspects should refer to papers where models and algorithms for individual problems are discussed
in detail.

We will compare the performance of DHP and (two) SHP strategies using the NREL118
dataset. Our analysis will examine questions that pertain to the metrics of the operations
planning guidelines of the DOE report [5]. More specifically, our comparisons will focus on the
following questions at different levels of penetration of VER:

o Are there significant differences between results for unmet demand for DHP v SHP? Does
one dominate the other?

e Are there significant differences between conventional over-generation and renewable cur-
tailment for DHP v SHP?

e To what degree does each approach rely on reserve generation?
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e What percentage of daily power generation was due to short-term unit commitment?

In addition to the above system reliability questions, we will also compare costs and greenhouse
gas (GHG) emissions. Our conclusions regarding the viability of these approaches will be based
on these comparisons.

While there are many studies of stochastic optimization within any one layer of the hierarchi-
cal system (see [16, 17| for comprehensive reviews), no other study pits the standard hierarchy
of deterministic models against a hierarchy of stochastic models. It is such a comparison which
provides a preview of potential advantages and disadvantages of these alternative hierarchies.
Thus, this study examines whether a system-wide overhaul which introduces stochastic opti-
mization and coordination among all layers of the hierarchy can mitigate difficulties associated
with high penetration of renewable energy into the grid. Our experiments point to the potential
of a transition from the DHP to the SHP framework.

The remainder of the paper is arranged as follows. In §2 we present a detailed description
of the SHP framework including the optimization models and solution algorithms employed. In
§3 we present the experimental results conducted using the NREL118 dataset on the DHP and
SHP frameworks. Finally, we will conclude with a brief discussion in §4. The overall structure of
each of the models used in the hierarchy are summarized in Appendix A, the online supplement.

2 Stochastic Hierarchical Planning

Electric power systems are very large-scale networks interconnecting many sources of electric
power (generators) to points of consumption (loads). The entire network is arranged at several
voltage levels, converted from one to the other by step-up or step-down transformers. This
network is operated with the overall goal of minimizing total cost while ensuring reliable power
delivery. The implementation of this objective is complex when viewed as a single decision
making problem. Therefore, system operators use a reformulation involving a hierarchy of opti-
mization models defined over overlapping horizons with different time resolutions for decisions
and constraints.

The particular rules, design, and operational elements differ markedly across different system
operators. In addition to the ISOs which oversee the operations over larger geographic areas,
balancing area authorities (BAA) for smaller regions also operate under notably different prac-
tices. For instance, Bonneville Power Administration, which primarily oversees hydroelectricity
production, performs bulk-hourly generation-scheduling, and has sufficient range of reserves and
ramping capabilities for handling imbalances [18]. However, in the case of ISOs as well as BAAs,
the operations can be classified into two phases: day-ahead (DA) and real-time (RT) [19, 20, 21].
In line with the current practices, we also adopt a hierarchical decision process comprising of
DA and RT phases.

Day-ahead Operations

This phase begins by estimating demand and renewable-supplies as well as collecting generation
and demand bids. This information is used in simultaneous co-optimization of the next oper-
ating day using security constrained UC and security constrained ED models. In our setting,
these optimization models are formulated over a 24-hours horizon with decisions and constraints
defined at an hourly resolution. The UC model commits and schedules resources for regula-
tion. The amount of resources (mainly spinning operating reserves) scheduled in DA are based
on estimates generated using historical data and ISO-specific practices. The DA planning also
involves committing resources for reliability assessment and emergency operations, however, we
do not consider these in our setup. The UC optimization model involves continuous as well as
binary decision variables, resulting in a mixed integer program (MIP).
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The UC decisions are used to instantiate the DA security constrained ED model. The
ED model is used to determine the generation, regulating and spinning reserve amounts for
all committed resources, as well as the ex ante DA prices. While the ED model in the DA
phase is often solved separately for each hour of the day, we formulate the ED model as a
single optimization model defined over an entire day at an hourly resolution. In our models
we do not allow for generator self-scheduling and do not consider system operations under
contingency/emergency.

Real-time Operations

There is always some RT deviation of actual generation and load from what was scheduled during
DA planning. One of the key functions of the ISO is to perform real-time balancing of loads
and generation. RT balance is maintained through the combined use of spinning and ancillary
services along with the units providing regulation reserves, which are managed by the automatic
generation control (AGC). The non-AGC units are dispatched every few minutes (usually 5
to 15 minutes), while the regulation units are used only to respond instantaneously to system
imbalances.

In our setting we will use an Hour-ahead ED (HA-ED) model for balancing the supply and
demand at least cost while recognizing the operating conditions of the system a few minutes
ahead of the actual dispatch. The model will determine the generation quantities and reserve
levels for non-AGC units. These models are defined at a resolution of 15 minutes and a horizon of
75 minutes. Furthermore, HA-ED model is solved every 15 minutes in a rolling horizon manner.
This allows us to revise the generation amounts of committed units closer to the time of dispatch
when updated forecasts are available.

Short-term Operations

Some of the advanced ISOs use additional instruments that commit fast-start resources in order
to ensure that schedules meet all the reliability requirements. The associated models are solved
independently against DA transactions and generation bids. At certain ISOs, these operations
are considered to be part of the RT markets and are referred to as the RT-UC (e.g., NYISO). Fol-
lowing its usage at CAISO, we will refer to these operations as Short-Term UC (ST-UC). These
models are formulated at finer resolution (15 minutes) that allows adaptive (de)commitment
decisions, and are solved over a horizon of few hours (e.g., 4.5 hours at CAISO and 2.5 hours in
NYISO). In our setting we define these models at a resolution of 15 minutes and a horizon of 4
hours.

In summary, the framework considered in this work comprises of three phases — day-ahead,
short-term and real-time. These phases are arranged in a hierarchical manner with progressively
(from DA to RT) shorter horizon, higher resolution, and using updated forecasts of demand and
renewable generation. The interactions and timeline of our modeling framework are illustrated
in Fig. 2. Notice that our framework does not involve an energy market, or ancillary services
such as ramping reserves. We assume that the latter can serve any unmet demand that might
be revealed during our planning process, albeit at a higher cost. Finally, since the framework is
focused on planning phases, we do not consider real-time AGC.

Even with this temporal decomposition, both generation scheduling and dispatch problems
are truly stochastic optimization problems, and as such are computationally very challenging.
Therefore, the power systems operators employ deterministic optimization methods which ap-
proximate these stochastic optimization models with point forecasts to be used in deterministic
optimization models. Some ISOs (e.g., New England ISO) have recognized the shortcomings of
such deterministic planning within the context of renewable integration, and recommend certain
deterministic policies (e.g., “do-not-exceed” limits on wind and hydro power [22]). However, in
the absence of significant storage capacity in the system, such vast swings may result in over-
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Figure 2: Hierarchical Structure and Timescale of the Operating Framework used for Experi-
ments.

generation, which, in turn, require bi-lateral agreements and exchanges between neighboring
ISOs to ensure supply matches demand. Nevertheless, the current approaches to power systems
operations remain beholden to deterministic models and policies. Our goal is to explore whether
there are benefits to using stochastic optimization models within power systems planning, espe-
cially, in the context of high penetration levels of VER.

Accordingly, we will consider deterministic planning models as our benchmark. Then, we will
investigate the potential of using stochastic optimization models, by replacing the deterministic
approaches with their stochastic counterparts. We will next discuss the optimization models
used in our framework.

2.1 Optimization Models

Both the UC and ED problems are fundamental to power systems planning and operations.
These problems are posed as deterministic optimization models, often with linearized objective
functions and constraints. Due to the presence of commitment decisions, which are formulated
as binary variables, the UC models are mixed-integer programs. 23] provides a comprehensive
treatment of the state-of-the-art UC formulations, including a comparative computational study.

For assessing the impact of large-scale integration of VERs into power systems, we propose
transitioning from traditional deterministic approaches to stochastic optimization for both UC
and ED. Stochastic programming (SP) has played a prominent role to enable decision mak-
ing under uncertainty in real-scale problems across many application domains including power
systems [24]. In particular, the two-stage stochastic programs (2-SPs), including models with
discrete first-stage variables, have gained acceptance of both the power systems research com-
munity as well as practitioners (see surveys by [25| for UC and [16] for ED). We will use such
2-SPs to model DA, ST and RT operations.

Typical UC formulations studied in the literature (such as [14, 23, 26]) are deterministic
MIPs and do not include transmission constraints. In our study, we extend a variant of the
UC model in [14] into a 2-SP with the commitment decisions in the first-stage along with
minimum up/downtime requirements. The ED model in the second-stage is based on [12].
This formulation includes a linear objective function that captures production cost along with
over-generation /load-shedding penalties, and constraints corresponding to generation capacities,
ramping, flow balance, linearized power flow (DC approximation), operating reserve utilization,
bounds on bus angles, and line capacities.

For HA-ED, we use a 2-SP model where the first-stage is used to determine the genera-
tion levels of committed slow-ramp generators while the second-stage determines the utilization
of committed operating reserves in response to realizations of uncertain renewable generation
and demand. We refer the reader to [14] and [12] for detailed descriptions and additional con-
siderations in UC and ED models, respectively. Here we provide only high-level models with
a particular focus on the interactions between various model instances inside our hierarchical
framework.

Let z and y be the vector variables that model the generators’ on/off statuses and production
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levels, respectively, for the entire planning period (say, a week), and define z = (z, y). We will
use superscripts d, s and r on objective functions, constraint sets and parameters associated DA,
ST and HA, respectively. A subscript [e] (as in, x,)) is used to refer to the set of time indices
starting at 0, and ending at the time specified in the argument. We use three such subscripts,
[i], [7], and [E], corresponding to the DA-UC, ST-UC, and HA-ED models, respectively. The
randomness associated with the renewable supplies and the demand is embodied in random
vectors that evolve over time. We denote these random vectors as ém, é[]']? and é[k], for the i,
4t and k' instances of the DA-UC, ST-UC, and HA-ED models, respectively. To make our
notation clear (refer to the timescales in Fig. 2), the DA operations of the first day will be
captured by DA-UC instance indexed by i = 1; the ST operations between 9:00 am - 12:00 pm
will be captured by the ST-UC instance indexed by j = 4; and the RT operations for 10:00 am
will be captured by the HA-ED indexed by k& = 11.

We begin by presenting the deterministic models used in the DHP framework. Given the
above notation, for a given day i, we define the DA-UC model as follows:

DA-UC (z[*o] e Z)s Eg]) = min f[‘f] (1315 Ypa)) (1)
subject to: (z(, yp;) € X[gl] (z[*o] 2 g[c%) .

Above, the function DA-UC () uses the history of the generators (i.e., sz] z[*ifu) and a
single forecast of the renewable supplies and the demand (denoted as &;) to determine feasible
commitment schedules for the DA generators. The feasible region of the model is denoted as
X[Cil] (+), and the function fﬁ} () captures the combined commitment and dispatch costs. We refer
to the optimal solution of this model as 2 ., = (=3 i Ya [i]).
Using the DA decisions (i.e., 2} [i])’ the j®* ST-UC model is formulated as follows:
ST-UC (zﬁ)} . z[*j_l], Zé,[j}’ f[“?]) = min f[‘;] (1515 Y1)
subject to: (z(;],y[;)) € X[‘;] (ZEB] o Z[*jfu? ém) ,
T[] = Ta ) (2a)
[Ya.1i) = Ya, 5] < € (2b)

The ST-UC (-) and DA-UC(-) are similar in nature, except for (2a) and (2b). The former
ensures that the DA commitment decisions are respected in the ST-UC model for generators
that participate only in the DA market, and the later allows for their generation levels to be
updated only within a bound defined by the parameter €¢;. Such bounds are placed to avoid
myopic solutions of ST models as they have a shorter horizon than the DA model. Generators
that participate only in ST markets can be (de)committed and all generators’ output levels can
be adjusted in compliance with the constraints defining the feasible set X'*(-).

Using all the commitment decisions x7;; and generation levels yrk} prescribed by higher levels
UC models, the HA-ED model is instantiated as shown below:

ED (2 - 21 g Sp) = min Sl (a)s vi)

subject to: (), y)) € Ay (Z[*O} 2 gfk}) ,
T = Ty, )
Y — Vil < e (3b)

Since the dispatch decisions are fixed in (3a), the resulting model only has continuous decision
variables. As in the case of ST-UC, the constraint (3b) ensures that the HA generation does
not deviate beyond € to overcome the myopic nature of HA-ED model resulting from shorter
horizon when compared to UC models at higher levels of hierarchy.
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The deterministic variants of models defined in (1), (2) and (3) use only a point forecast &
and the objective function is defined as the cost associated with both unit commitment decisions
as well as dispatch under such a point forecast. The main distinction between the models used
in the DHP hierarchy and SHP hierarchy is that the objective functions of the latter are defined
with a deterministic first-stage cost and expected recourse (second-stage) cost as follows:

f[t](xay) :g[t](‘r?y) +E[h[t}<xay7€)] t=1,5,k. (4)

Notice that the recourse value hy is the optimal value of a second-stage optimization model

that is instantiated by the first-stage decisions (x,y) and a realization of the random variable f .
Additional details can be found in previous work of the authors cited in the References.

2.2 Solution Methods

The deterministic UC and ED models are solved using MIP and LP algorithms available in
off-the-shelf solvers. In the 2-SP model for UC, we use a finite set of scenarios to represent
the uncertainty. Even with modest numbers of scenarios, the resulting deterministic equivalent
models could be very large and cannot be handled by off-the-shelf solvers. Given that the second-
stage programs can be decoupled by scenarios and are LPs, we use the L-shaped (also known as
Benders decomposition) algorithm to solve the stochastic UC models [27]. The basic idea of the
L-shaped method is to approximate the expectation in the first-stage objective function in (4)
using affine functions that are obtained via exact (dual) solutions of all second-stage LPs. The
first-stage master program is solved as a linear MIP that comprises of the original constraints
X and the affine lower bounding functions.

The 2-SP formulation of HA-ED has linear first- and second-stage programs. We solve
these models using a sequential sampling method called regularized stochastic decomposition
(SD) algorithm [8]. Like the L-shaped method, SD is also a cutting-plane method that builds
outer-approximations of the first-stage objective function. However, unlike the L-shaped method
(which uses a fixed finite set of scenarios), SD operates with a scenario set that grows over the
course of the algorithm (and hence the classification as a sequential sampling method). This
allows the algorithm to determine a sufficient number of scenarios to ensure statistical optimality
while optimization is being carried out concurrently (see [28] for details). While such a feature
is desirable for SPs, there is a lack of such algorithms for models with discrete decision variables.
Hence, we do not use successive sampling methods for UC models.

The scenarios that constitute stochastic UC instances and those used within the SD algorithm
are generated using two time-series simulators, one for solar and another one for wind generators.
The simulators are based on a vector auto-regression (VAR) model that captures temporal and
spatial correlation of the stochastic processes governing generator outputs. A separate VAR
model is estimated for each level of the hierarchy using the forecast time series in the NREL118
dataset. Subsequently, scenarios for optimization are simulated at their respective timescales
using these prediction models (see 13| for a similar application).

3 Experimental Study

We conduct our experiments with the NREL118 dataset [29] that was introduced by the Na-
tional Renewable Energy Laboratory for large-scale VER integration studies, such as the one
undertaken in this paper. The topology of this system is based on the IEEK118 dataset which is
widely recognized as a reasonable experimental prototype. The NREL118 instance contains 327
generators (75 solar and 17 wind), 118 buses, and 186 transmission lines, along with forecasts
and real-time outputs of renewable generators and demand. This dataset has a power system
that is rich in solar, wind, and hydro resources, and may be consider futuristic/progressive.
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We assess three factors that have significant impact on power system operations. These
are solar and wind penetration, reserve requirements, and the planning strategy adopted for
handling the UC and ED problems. By varying these factors, we analyze their impact on
certain reliability metrics, as well as economic, and environmental ones, such as unmet demand,
operating costs, and GHG emissions. In Table 1, we summarize the values considered for these
factors in our experiments. We use a three letter identifier to recognize the type of optimization
model (Deterministic or Stochastic) employed at the three planning levels in the hierarchy.
Following this notation, the DDD setting is the benchmark planning framework (i.e., DHP),
whereas both DDS and SDS can be considered as examples of SHP framework.

Table 1: Investigated factors and their levels.

Category Label Description
Solar & Low SW: Original solar & wind outputs
Wind In- in the NREL118 dataset.
tegration  Med. Twice the original values.

SW:

High SW: Thrice the original values.

Very 5% for UCs, 1.25% for ED.
Reserve Low:
Requiremenisow: 10% for UCs, 2.5% for ED.
Med. 15% for UCs, 5% for ED.
High: 20% for UCs, 10% for ED.
DDD: Deterministic DA-UC, ST-UC,

Planning ED
Setting L
DDS: Deterministic DA-UC, ST-UC;
stochastic ED.
SDS: Deterministic ST-UC; stochas-
tic DA-UC, ED.

Evaluations of the hierarchical frameworks are carried out in a rolling horizon manner. While
the simulated scenarios from VAR models are used for optimization, the evaluations are carried
using the actual observations (also available in the NREL118 dataset) made at every 15 minutes
over a time-span of 7 days. In particular, the actual observations are used to setup instances of
the first-stage programs. Note that both the deterministic as well as stochastic frameworks are
evaluated on the same actual observation time series. In what follows, we present the results
obtained from these evaluations.

3.1 Reliability Impact

Significant amounts of unmet demand revealed in the planning process may potentially result into
actual blackouts with damaging economic consequences for customers. Due to its importance
to ISOs and customers, we start our discussion with an illustration of average and maximum
unmet demand values in Table 2.

In general, we notice higher unmet demand values when more solar and wind resources
introduced into the system. More conservative reserve requirements substantially reduce these
values, but, possibly, comes with additional economic cost. On the other hand, adopting stochas-
tic planning approaches into the modeling framework can zero out unmet demand, even at less
conservative reserve requirements. For instance, to completely eliminate unmet demand from the
planning process, DDD, DDS, and SDS necessitate high, medium, and low reserve requirements,
respectively, under Medium SW and High SW settings. This observation supports the use of
stochastic planning approaches to accommodate the variability of VERs, and reduce reliance on
(manually-imposed) reserve restrictions. More importantly, it suggests the possibility of a more
economical way of operating the system.
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Table 2: Average and maximum unmet demand amounts (MW)

Avg. Unmet Demand || Max. Unmet Demand

Planning | Reserve || Solar & Wind Integ. Solar & Wind Integ.
Setting Req. Low | Med. High || Low | Med. High
DDD V Low 1.9 4.4 17.0 || 320.0 | 595.1 | 956.1
Low 0.5 3.0 1.5 | 246.9 | 336.5 | 274.3

Med. 0.0 04 1.2 0.0 | 252.6 | 552.5

High 0.0 0.0 0.0 0.0 0.0 0.0

DDS V Low 1.2 0.7 3.9 | 172.0 | 162.8 | 494.3
Low 0.0 0.0 0.5 0.0 0.8 | 217.8

Med. 0.0 0.0 0.0 0.0 0.0 0.0

High 0.0 0.0 0.0 0.0 0.0 0.0

SDS V Low 0.0 1.9 0.6 | 19.2 | 182.0 | 356.6
Low 0.0 0.0 0.0 0.0 0.0 0.0

Med. 0.0 0.0 0.0 0.0 0.0 0.0

High 0.0 0.0 0.0 0.0 0.0 0.0

During our planning process, certain fast-ramping generators can be committed by the ST-
UC problems to recover from unexpected supply shortages during the day. We evaluate the
reliance on ST-UC problems by looking at the percentage of time that these generators were
active (see Table 3). We observe a consistent trend where the DDD setting heavily relies on
ST-UC problems to maintain reliability. In contrast, DDS and SDS substantially reduces these
requirements even under higher renewable-integration settings.

Table 3: Average percentage of time ST-UC generators were active.

Planning Setting | Low SW Med. SW High SW
DDD 11.0 11.7 11.8
DDS 9.7 8.3 7.8
SDS 8.7 6.5 5.3

Fig. 3 shows the average amounts of over-generation (by conventional generators) estimated
under all settings. We observe the smallest amounts under the DDD setting. This is not
surprising as it would never be optimal to over-produce in a deterministic optimization model
provided that ramping capabilities are sufficient to cover ramping needs within the model’s
horizon. In contrast, stochastic optimization (i.e., DDS and SDS) compensates for the variability
in future time periods by over-generating in significantly larger amounts, thereby preventing
situations where upwards-ramping capabilities may not be sufficient under certain settings.

In terms of solar and wind curtailment, Fig. 4 shows a significant trend where higher re-
newable integration leads to substantial amounts of curtailment, providing support to the need
for energy storage. In addition, we still observe that both DDS and SDS leads to slightly more
curtailment than that in DDD.

Fig. 5 illustrates intra-day generation profiles under DDD and SDS settings. Notice that
the duck-chart is clearly visible. Another phenomenon to notice is that unmet demand, over-
generation, and renewable curtailment may all occur simultaneously (at different buses), and
the former two typically occur at day-time, when solar generators are active, and transmission
capacity constitutes the bottleneck. This underscores the importance of accounting for the
transmission networks in power system experiments. As seen from the figure under discussion,
SDS leads to more over-generation but reduces unmet demand from 16.9 MW to 0.7 MW.
Furthermore, we observe higher variability in hydro-based generation under SDS (coefficient of
variation of hydro-based generation is 0.13 in SDS vs. 0.05 in DDD). Hydro generators have
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Figure 4: Average curtailed solar and wind energy.

better ramping capabilities, which makes them suitable for accommodating uncertainty. SDS
naturally leverages this fact seamlessly.

3.2 Economic Impact

Fig. 6 demonstrates the average daily generation costs recorded in our experiments!. In line
with expectations, increased renewable integration leads to lower costs whereas increased reserve
requirements have the opposite effect.

We next turn our focus to the minimum reserve requirements levels at which the network
demand is seamlessly fulfilled (in other words, no unmet demand is observed). Table 4 illustrates
the daily operating costs corresponding to the minimum reserve requirements that must be set
at each level of the hierarchy in order to ensure zero unmet demand. The figure indicates that,
with stochastic optimization, reserve requirements can be relaxed as the models are able to
dynamically adjust production levels by accounting for uncertainty in the future. As a result,
operating cost of the network can be reduced by up to 10.4% (e.g., compare $11.23M with DDD

!The total operating costs will additionally include the penalty for load curtailment which is not presented in
this figure.
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Figure 5: Generation mix, unmet-demand, and over-generation in DDD and SDS settings (very
low reserves, High SW, and a sample day).
to $10.06M with SDS, under high renewable integration).

3.3 Emnvironmental Impact

To assess the environmental impact of increasing renewable energy in the power system, we
estimate the daily GHG emissions using the recorded generation amounts and mixes. Analo-
gous to Table 4, Fig. 7 demonstrates daily CO9 emission estimates under the minimum reserve
requirements that lead to zero unmet demand. These estimates are based on generators’ heat
and emission rates, which are given in the NREL118 dataset, as well as their generation levels,
which is determined by the optimization. Similar observations were made for the NOyx and SO»
emissions.

With respect to COq emissions, we have two observations. First, in the experimented power
system, higher renewable integration leads to lower levels of CO9 emissions. While this sounds
intuitive, opponents of this intuition typically suggest that the duck-chart phenomenon could
actually lead to more emissions. This increase is attributed to over-generation and reliance on
significant amount of gas-fired fast generators to overcome insufficient ramping capabilities and
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Figure 6: Average daily generation cost of the power system under different reserve requirements
and operations planning strategies.

Table 4: Average daily operating cost of the power system corresponding to the minimum reserve
requirements leading to zero unmet demand (in million $; Reserve requirements in paranthesis).
DDD DDS SDS

Low SW | 12.42 (Med.) | 11.56 (Low) | 11.60 (Low)

Med. SW | 12.11 (High) | 11.00 (Med.) | 10.66 (Low)

High SW | 11.23 (High) | 10.34 (Med.) | 10.06 (Low)

volatility of VERs. Our experiments suggest that this is not the case for power systems with
similar characteristics. Second, while stochastic modeling (i.e., DDS, SDS) also leads to over-
generation and renewable curtailment (see Fig. 3-4), their impact can largely be reversed by
the lower reserve requirements necessary to achieve the same level of reliability. In this regard,
a concurrent optimization-simulation approach to obtain statistically appropriate measure of
reserve requirement is presented in [30].

4 Discussion and Conclusions

We presented an SHP framework for power systems with large-scale VER penetration. While the
call for a framework comprising of stochastic dynamic problems evolving at different timescales
have been made before (e.g., [31]), this is the first study to conduct comprehensive computational
experiments on such a framework. Our framework captures the operations and their interactions
across day-ahead, short-term and hour-ahead timescales.

Our experiments indicate that the SHP framework overcomes many of the shortcomings of
the DHP approach that is currently in practice. We observed that the SHP framework typically
outperforms DHP in terms of reliability: Even at lower levels of reserve requirements, SHP is
more effective in eliminating the unmet demand from the planning process. Moreover, with SHP,
reliance on ST-UC problems (to avoid unmet demand) reduces. On the other hand, the SHP
framework is more conservative and leads to more conventional over-generation and renewable
curtailment, which can be mitigated by introducing storage resources to the grid. Finally, we
observed that being able to operate reliably at lower levels of reserve requirements can mitigate
excessive over-generation and renewable curtailment, as well as reduce the operating costs and
GHG emissions.

The challenges associated with meeting ambitious renewable portfolio standards set in light
of climate change concerns can be addressed principally through (i) efficient generator designs
and power electronics, (ii) market designs, and (iii) optimization software used in planning and
operations. In order to “tame the duck”, advances along all these three fronts will be critical.
Efforts in this paper lay the groundwork for addressing (iii) through the SHP framework and
the use of stochastic optimization tools. The results essentially show that systems with high
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the bars).

penetration of renewable resources can lead to more sustainable and reliable operations solely by
transitioning from a deterministic to a stochastic planning hierarchy. Our results are encouraging
and point to the next steps that must involve experiments with actual ISO data. This will be
undertaken as part of our future research endeavours.
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A Mathematical Models for Power System Planning Problems

This section outlines the mathematical models of DA-UC, ST-UC, and HA-ED problems. For
brevity, we first describe the used constraints, then, refer to these while constructing each model.
All models are presented in static form; the reader is referred to §2.1 which describes their role
within the hierarchical planning processes, solved in a rolling horizon fashion. A nomenclature
is provided in Table 5.

Table 5: Nomenclature for mathematical formulations.

Sets
B: buses. Gr: solar and wind generators. Gj: generators that are located in
L: transmission lines. G.: conventional generators bus j € B.
G: generators. (Ge =G\ Gr). T: time periods.
Parameters
G¢**: generation capacity of g € G.. cg: start up cost of g € G.

Gg™": minimum generation requirement for g € Ge. cgz no-load cost of g € G (i.e., the intercept of the

G;Xail: wind/solar availability for g € G-, int € T. cost curve).

AGT*: limit fi .. . . .
g ramp up limit for g € G cb: variable generation cost of g € G (i.e., the slope

in, I g
AGZ"™: ramp down limit for g € G.. of the cost curve).

UT,: minimum uptime requirement of g € G.. ]
. . . 6;""*: upper bound on the voltage-angle at bus j €
DTy: minimum downtime requirement of g € G.. B

B;j: susceptance of arc (i,j) € L.

Dji: load in bus j € B, in period t € T
Rj:: reserve requirement in bus j € B and period | ¢g: penalty for over-generation by g € G..

O;vni“: lower bound on the voltage-angle at bus j € B.

teT.
- . . o ¢g: penalty for renewable curtailment in g € G,..
Fj7*: maximum permitted flow through arc (4, 5) €
L. ¢3: penalty for unmet demand in bus j € B.
Decision Variables
sge: 1if g € G is turned on in t € T, 0 otherwise. G, over-generation amount by g € G¢, int € 7.

xgt: 1if g € G is operational in ¢ € T, 0 otherwise. | G;: renewable curtailment in g € G-, int € T.

zge: 1if g € G is turned off in ¢t € T, 0 otherwise. Fijes electricity flow through (i, j) € £, in t € T.

G;’t: generation amount of g € G, in t € T, which is Oje: voltage angle at j € B, in t € 7.

nsum he grid. 225?-}; °d. amount of unmet load at jeB inte T,

Generator commitment decisions are often modeled using three sets of binary variables (x4,
Sqt, Zg¢) that indicate whether g is operational, turned on, and turned off in period ¢, respectively
[32]. These variables are linked with the following constraints:

Tgt — Tgt—1 = Sqt — Zgts YVgeg,teT. (5)

To model the minumum uptime and downtime requirements of generators, we use the turn
on and off inequalities of [33]:

t—1
Z Sgt < Zgt, \V/g € ga le T7 (6)
J=t—UTy+1
t
> sy <l-wzg, VgeG,teT. (7)
j=t—DT,

We use two sets of variables to model generation levels. The G;t variable denotes the amount
of electricity produced by generator g in period t and consumed by the grid. The second variable

G, can assume two different meanings, depending on the type of the generator. For solar
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and wind generators (i.e., Vg € G, ), these variables capture the amount of renewable supply
that is curtailed, whereas for all other generators (i.e., Vg € G.), they represent the amount of
electricity that is over-generated in period t. Here, we assume the existence of a mechanism
that can consume over-generation at the buses where conventional generators are located in. In
more realistic settings, the over-generated electricity should be accounted for at certain locations
where a consumer (e.g., a neighboring grid or energy-storage facilities) exists. Such information
is not available in the NREL118 dataset.

All conventional generators (including hydro) must obey certain physical requirements for
attaining feasible production schedules. The generator capacities and minimum generation re-
quirements are given by

Gyzg < Gor < Gy™ g,  VgeGe teT, (8)
whereas ramping requirements are modeled as follows:
—AGY™ < Gyp — Ggr1 <AGP™,  VgeGe, teT, (9)

Above (and in the ensuing discussion) Gy is used to simplify exposition and defined as Gg =
Gy + Gy

Ramping constraints (9) can be strengthened with binary variables to enhance the compu-
tational performance of MIP solvers. Our study incorporated some of the developments made
in [34] and [14]. For the purpose of conciseness, we do not present them in here.

For solar and wind generators, the forecast and actual supply time-series are assumed to be
capturing the physical requirements that these generators are subject to. Accordingly, we only
need to impose a solar/wind availability constraints, which are given as follows:

Gt = GoMa gy, Vge G, teT. (10)

This constraint implies that the amount of available renewable capacity that is not consumed is
considered to be curtailed.

Electricity transmission is modeled using three sets of variables which represent the electricity
flow (Fjj;¢), bus voltage angles (6;;), and the amount of unmet demand (D;ltled). We begin with
the flow-balance equations:

Z Fij,t — Z Fji,t + Z Glﬁed + D??ed = Djt + Rjt, jeB, teT. (11)
1€B:(i,5)€L i€B:(j,i)eL 9€g;

Note that the above constraint also involves reserve considerations (R;;), which are modeled as
the sum of contingency and regulation requirements.

We consider linear (direct-current) approximations of power-flows in our models. These are
given, in terms of the bus voltage-angles, as follows:

Fijp = Bij(0it — 0jt), V(i j) € Lt eT, (12)
H;nin < ejt < 0;113)(, VieB, teT. (13)

Finally, transmission capacities are given by
FR™ < Fye <FZ™, V(i j) €L, teT. (14)

Further modeling details that pertain to improving computational performance (such as
symmetry breaking constraints, valid inequalities, or basic linear transformations) are omitted
in this presentation.

18



Atakan et.al. Stochastic Hierarchical Planning Framework for Power Systems

A.1 Models for Deterministic Optimization

The following is an outline of the UC formulations:

min Z(Z<e§sw+c§wm+c§%)+2( D, 9Cut D G+ oD
teT \geg Jj€B N g€GNGe 9€G;NG,
ve)
subject to: (5) — (14),

(xgt, Sqts 2gt) € {0, 1}3, (G!}G&) eR2, Vge G, teT,

Fij+ € R, V(i,j)e L, teT,
0 €R, DY eRy, VjeB teT.

This formulation serves as the foundation of both DA-UC and ST-UC problems, but modifica-
tions have been made to accommodate their differences. For instance, the DA-UC problem does
not commit certain fast-response generators, which can be ensured by setting x4 = 0 for such
generators. Likewise, the ST-UC problem does not alter the commitment decisions made by the
DA-UC problem, in which case, the x4 variables can be fixed according to the solution of the
DA-UC problem.

Next, we present the HA-ED formulation:

min Z(zcgagt+z< PR ACTESD ¢3G;t+¢;‘D§1;ed>> (ED(x))
teT \geg jeB “geG;nGe 9€G;NGr

subject to: (8) — (14),
(GH,Gp) eRY,  VgegG, teT,

gt

Fij: € R, V(i,j) e Lt €T,
0 R, DN eR,, VjeB teT.

Observe that the above (linear programming) problem is defined as a function of x (i.e., 4, Vg €
G,t € T, in vector form). Accordingly, the values of these variables must be fixed in (8) and
(10), prior to solving an HA-ED the problem. Furthermore, the constraints for idle generators
(xgt = 0) clearly need not be included into the HA-ED formulation.

A.2 Models for Stochastic Optimization

The stochastic optimization models will retain the fundamental structure of their deterministic
counterparts, but will include solar/wind availability as random input. Consider the random
vector & which represents the solar and wind output. The realization of £ under scenario s is
given by &*. The vector £* has {3, Vg € G, t € T, as its components, where {;; denotes the
realization of solar/wind availability under scenario s, for generator g, in period ¢.

We begin with describing the stochastic UC model. We partition the model into two stages,
where the first stage involves commitment decisions, whereas the second involves production
decisions. The resulting formulation is given as follows:

min Y > (cisg + cfag) + E[ED(z,¢)] (SUC)
teT geg

subject to: (5) — (7),
(xgt, Sgt, 2gt) € {0, 1}3, Vge G, teT,
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where,

D(x,&) =min ) (chG; +> ( doosGL+ > G+ ¢;fp;§ed)>

teT \ geg jeEB “geG;inG. 9€G;NGr

subject to: (8),(9),(11) — (14),
Ggt = fgtxgt, Vge g, teT, (15)
(GHGp) €RY,  VgeG teT,

Fij,t €R, V(’L,j) eL, te T,
0 €R, D eR,  VjeB teT.

The second-stage problem (ED(x,£*)) has the same form as the ED(z) problem, except for the
additional input £° and the corresponding solar/wind availability constraint (15). The input x
in ED(z,£*) only affects constraints (8) and (15) in above.

Next, we describe the stochastic ED model. The first stage consists of all the decisions
associated with the initial time period, whereas the remaining decisions (corresponding to later
periods) are made in the second stage. The resulting formulation is given below.

min Y ehGh+ Y ( > oiGa+ > G, + gb;%D;f*fed) +E[ED'(z,¢)]

9€eg JEB *geG;nG. 9€G;NGr
(SED(z))
subject to: (8) — (14), (excluding t = 1),
(G,G,) eRE,  Vgeg,
Fyi1€R,  V(i,j) €L,
01 € R, DI e Ry, Vj e B,
where,
ED'(z,6%) =min Y _ (chG;t +)° ( S iGat > G+ ¢;Lp;§ed>>
teT\{1} \g€eg jeB “gegG;nGe 9€G;NGyr
subject to: (8),(9), (11) — (14), (excluding t = 1),
Gyt = §pgt, Vge G, teT\ {1}, (16)
(Gh.Gy) €eRY, Vgeg, teT\{1},

FjpeR, V(i,j) € L, te T\ {1},
0 €R, D eRy,  VjeB teT\{1}

Similar to ED(z, &%), the input x in ED'(z,£°) alters (8) and (16). Note that the components
of = corresponding to t = 1 are not used in the ED'(x, &%), but preserved for ease of exposition.
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