
Optimal Crashing of an Activity Network with Disruptions

Abstract

In this paper, we consider an optimization problem involving crashing an activity network
under a single disruption. A disruption is an event whose magnitude and timing are random.
When a disruption occurs, the duration of an activity, which has not yet started, can change.
We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage
is random. In our model the recourse problem is a mixed-integer program. We prove the
problem is NP-hard, and using simple examples, we illustrate properties that differ from the
problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require
a large number of samples in a sample average approximation, leading to large-scale instances
that are computationally expensive to solve. Therefore, we develop a branch-and-cut decompo-
sition algorithm, in which spatial branching of the first stage continuous variables, and linear
programming approximations for the recourse problem, are sequentially tightened. We test
our decomposition algorithm with multiple improvements and show it can significantly reduce
solution time over solving the problem directly.

1 Introduction

The management of complex projects through optimization has a rich history in operations research,

beginning with the critical path method of Kelly Kelly (1961); see Söderlund Söderlund (2004) for an

overview. A project is a collection of activities, between which there are precedence relationships

due to logical or technological considerations. A precedence relationship is usually reflected as

the start time of one activity following the completion of another. Typically, multiple activities

can be processed at the same time, as long as the precedence requirements are satisfied. See

Elmaghraby Elmaghraby (1977) for a detailed treatment of activity networks. In this setting,

“crashing” is an action that consumes a certain amount of one or more resources and shortens the

duration of an activity accordingly Kuhl and Tolentino-Peña (2008). A deterministic optimization

model for crashing an activity network was proposed in the 1960s Fulkerson (1961), Kelly (1961),

in which the goal is to complete the project in minimum time by allocating resources under one

or more budget constraints. Project crashing problems see pervasive application, for example,

in optimizing project management Demeulemeester and Herroelen (2006), Jaselskis and Ashley

(1991), Tonchia (2018), machine scheduling Hall and Sriskandarajah (1996), Naderi et al. (2009),

health services scheduling Cardoen et al. (2010), chemical processes Li and Ierapetritou (2008),

and digital circuit sizing Kim et al. (2007).

When the program evaluation and review technique (PERT) was introduced Malcolm et al.

(1959), activity durations were modeled as independent beta random variables, with the project

duration approximated by a normal distribution. Extensions that allow for more general assump-

tions were then developed Elmaghraby (1977), and Monte Carlo simulation began to play a role in

estimating the expected project span, which is difficult to express analytically Burt and Garman

(1971), van Slyke (1963). In stochastic versions of the project crashing problem, a crashing plan

is made at the beginning of the horizon. The start time of each activity is then determined by a

1

recourse decision variable after random activity durations are realized. Heuristics and simulation-

based algorithms have been developed to approximately solve the stochastic project crashing prob-

lem Aghaie and Mokhtari (2009), Bowman (1994), Ke (2014), Kim et al. (2007). Another approach

to handle uncertainty in activity duration is robust optimization, in which the objective is to min-

imize the worst-case project span over a specified uncertainty set. While affinely adaptive recourse

decisions are computationally tractable as linear, or second-order cone, programs, this restriction

may lead to suboptimal or infeasible solutions Chen et al. (2008), Cohen et al. (2007). However,

once recourse decisions can take general form, the robust model is only tractable with rectangular

uncertainty sets Wiesemann et al. (2012). Ahipasaoglu et al. Ahipasaoglu et al. (2016) propose

a distributionally robust optimization scheme applied to a PERT network, which reformulates

the problem as a semidefinite program or a copositive program, depending on the description of

uncertainty.

Another major stream of work relevant to project crashing involves the resource-constrained

project scheduling problem (RCPSP). In an RCPSP, makespan is minimized while satisfying prece-

dence constraints. Resources, such as equipment and labor, are required to execute each activity in

an RCPSP, and constraints limit their use in each time period. In contrast in our work, resources

only constrain crashing decisions, which reduce an activity’s duration. Even a deterministic RCPSP

is NP-hard Blazewicz et al. (1983). Solving an RCPSP with uncertain activity durations is challeng-

ing, with most solution methods focusing on restrictive classes of policies or heuristics Hartmann

and Kolisch (2000), Lamas and Demeulemeester (2016), Möhring and Stork (2000).

In this paper, we propose the concept of stochastic disruptions to model uncertainty in the

duration of activities, which differs from existing approaches in stochastic programming and robust

optimization. A stochastic disruption is an event that may occur at any time in the problem’s

horizon and results in a change—typically a significant change—in the system’s parameters. A few

authors apply this idea in models with discrete time periods, in which the disruption occurs in a set

of prespecified time periods. Yu and Qi Yu and Qi (2004) introduce scenario-based optimization

models for airline scheduling. Salmerón et al. Salmerón et al. (2009) introduce a sealift scheduling

problem under a finite number of stochastic disruptions within a stochastic programming structure;

this model structure “falls between standard two-stage and multi-stage stochastic programs for a

multi-period problem” and reduces the size of the problem (scenario tree) to quadratic, rather

than exponential, growth in the number of time periods. Our setting inherits the philosophy of

Salmerón et al. Salmerón et al. (2009), but enhances the model by allowing the random disruption

time to be continuous in the context of an activity network, where time is naturally modeled as

being continuous.

Given a limited number of disruption scenarios, the problem of optimizing crashing decisions

to minimize expected completion time can be formulated as a stochastic mixed-integer program,

2

and we present the model in Section 2. If we assume a continuous distribution for the disruption

time and magnitude, a sample average approximation (SAA) can be used to create a finite set of

scenarios and approximate the original problem by a finite-sized optimization problem. In Section 3

we show that the problem is NP-hard even with a continuous allocation of crashing effort and just

two scenarios. Section 4 presents properties of the problem using a serial activity network as a

special case. The potentially large scale and the discrete, non-convex nature of the SAA problem’s

formulation suggest that it may be computationally challenging to solve. In Section 5, a method

based on Benders’ decomposition is developed to solve our problem of optimizing crashing decisions

under stochastic disruptions. We show that the decomposition method can significantly reduce the

time required to solve the integer program compared to solving the extensive formulation using

a commercial off-the-shelf solver. Experimental results are presented in Section 6, including the

empirical relationship between solution quality and sample size, a comparison between the quality

of our solution and solutions of alternative models, and the computational performance of the

decomposition method of Section 5. We conclude with remarks on potential extensions of our

model in Section 7.

2 Problem Formulation

Nomenclature:

Indices and index sets
I set of activities;
Ji set of crashing options for activity i ∈ I;
Ω index set for disruption scenarios (sample space);
A set of arcs, which represents precedence relationships;

Parameters
Dik nominal duration between possible start times of activities

i and k, (i, k) ∈ A;
eij effectiveness of crashing option j ∈ Ji for activity i ∈ I;
B total budget for crashing options;
bij cost of crashing option j ∈ Ji for activity i ∈ I;
x̄ij upper bound on option j ∈ Ji for activity i ∈ I with x̄ij ≤ 1;
Hω disruption time under scenario ω ∈ Ω;
dωik increase in duration of (i, k) ∈ A under ω ∈ Ω, if started after

the disruption;
pω the probability of scenario ω ∈ Ω;
p0 the probability of no disruption;

Decision variables
ti continuous nominal start time of activity i ∈ I;
xij continuous nominal crashing of activity i ∈ I by option j ∈ Ji;
tωi continuous start time of activity i ∈ I under scenario ω ∈ Ω;
xωij continuous crashing of activity i ∈ I by option j ∈ Ji under

3

scenario ω ∈ Ω;
Gωi binary indicator whether activity i ∈ I starts after disruption

under ω ∈ Ω;
zωij continuous term to linearize bilinear term, Gωi x

ω
ij , i ∈ I,

j ∈ Ji, ω ∈ Ω.

We first review an optimization model for a deterministic crashing problem; see Fulkerson Fulk-

erson (1961) and Kelley Kelly (1961). A set of activities, I, together with precedence relationships,

A ⊆ I × I, form an acyclic activity network G = (I,A), which represents the project. An arc

(i, k) ∈ A indicates that activity i has to finish before activity k starts, and its length, Dik, shows

that the start time of activity i has to be at least Dik ≥ 0 before the start time of activity k. This

corresponds to the activity-on-node representation in Elmaghraby (1977). We allow for precedence-

dependent durations to model finish-to-start lags between specified pairs of activities. For example,

activity k1 can start immediately after activity i ends but additional set-up time is required to com-

mence activity k2, as is common practice in project management Project Management Institute

(2017). We create two dummy activities S, T ∈ I to represent the start and the termination of

the entire project. Activity S should precede every activity i ∈ I\{S} and T should succeed every

activity i ∈ I\{T}, either directly or by implication, and they both have zero duration.

We can apply a finite set of crashing options, j ∈ Ji, to activity i ∈ I. One unit application of

each option incurs a cost of bij , and decreases the corresponding durations by Dikeij , ∀(i, k) ∈ A,

where eij ∈ [0, 1] denotes the unit effectiveness of crashing option j. This construct, coupled with

upper bounds x̄ij , can model a piecewise linear concave relationship between resources devoted to

crashing and the reduction in duration, representing diminishing returns on investment for each

activity. For example, suppose the duration between the start time of activities 1 and 2 is D12 = 10,

applying one unit of crashing option 1 decreases the duration by half (e11 = 0.5) but we can only

apply x̄11 = 0.4 units, and option 2 for activity 1 has unit effectiveness e12 = 0.3. The maximum

reduction in D12 is then 10(1 − 0.4 · 0.5 − 0.6 · 0.3) = 6.2. Even if x̄11 = 1 we might limit use of

option 1 and/or choose x12 > 0 due to b11, b12, and the overall budget B, which the total cost of

crashing cannot exceed. The objective is then to minimize the start time of activity T , and thus,

we formulate the deterministic project crashing problem as:

min tT (1a)

s.t. tk − ti ≥ Dik

1−
∑
j∈Ji

eijxij

 ∀ (i, k) ∈ A (1b)

∑
i∈I

∑
j∈Ji

bijxij ≤ B (1c)

∑
j∈Ji

xij ≤ 1 ∀ i ∈ I (1d)

4

0 ≤ xij ≤ x̄ij ∀ i ∈ I, j ∈ Ji (1e)

ti ≥ 0 ∀ i ∈ I. (1f)

In this formulation, ti represents the start time of activity i ∈ I. We aim to minimize the

project span, which is the start time of the terminal activity, tT . Constraint (1b) guarantees

the precedence relationship: if activity i precedes activity k, activity k cannot start until time

ti + Dik(1 −
∑

j∈Ji eijxij). Constraint (1c) is the budget constraint, and constraint (1d) ensures

that no more than one unit of total crashing effort can be applied to an activity. Constraints (1e)

and (1f) enforce simple bounds.

A number of variants of model (1) are possible. The budget constraint (1c) is for a single

resource, but an extension to multiple resources is straightforward. We model continuous crashing

decisions, and allow multiple options to be used in concert. Instead, discrete crashing decisions, or a

hybrid, can be used in which a fixed cost, and subsequent per unit costs are incurred. The crashing

options for each alternative can instead be mutually exclusive so that at most one option can be

selected for each activity. All such variants can be employed in a straightforward way throughout

the paper’s development.

For a project crashing problem under stochastic disruptions, we assume at most one stochastic

disruption can occur at a random time in the project span. While this assumption may be limiting

in some settings, it is appropriate when it is unlikely for two or more disruptions to occur during

the time horizon, and can apply, e.g., for natural disasters, major market crashes, cyber attacks,

and work stoppages. For example, suppose we manage a construction project, and we aim to plan

against the potential hazard caused by an earthquake or an employee strike. It may be unlikely

for two major earthquakes or strikes to affect the same project within the relevant time period.

We further assume that for each activity i ∈ I, the crashing decision needs to be made prior to

the start of that activity, which is reasonable, e.g., when contracts are involved in commitment of

resources Oberlender (1993). We assume a disruption does not affect activities that have already

started—including those already finished—at the time of the disruption, but the disruption changes

the length of activities that have not yet started according to a known probability distribution.

(This assumption is revisited at the end of this section.) It is usually hard to compute the recourse

function directly when random parameters have a continuous distribution, and therefore we use

sample average approximation (SAA) Kim et al. (2015), Shapiro et al. (2009). In this paper, we

assume there is a finite set of scenarios indexed by ω ∈ Ω. For each scenario ω, the random

realization of parameters, which we denote ξω, consists of the timing of the disruption, Hω, and

the magnitude of the disruption via increases in the duration parameters, dωik,∀(i, k) ∈ A.

Because we assume at most one disruption, we can model the problem as a two-stage stochastic

mixed-integer program, in which the timing of the second stage is random. That is, the definition

of our stages differs from the usual stochastic programming setting. Here the first stage contains

5

decisions through completion of the project, and we follow this policy if no disruption occurs. And,

the second stage characterizes the decisions for each realization of the disruption, which commences

at the random time, Hω. The first stage decision variables are carried out until the disruption if it

ever occurs, and after the disruption, the scenario-specific recourse decisions are executed.

The extensive formulation of the two-stage stochastic program is shown as formulation (2):

z∗ = min p0tT +
∑
ω∈Ω

pωtωT (2a)

s.t. tk − ti ≥ Dik

1−
∑
j∈Ji

eijxij

 ∀ (i, k) ∈ A (2b)

∑
i∈I

∑
j∈Ji

bijxij ≤ B (2c)

∑
j∈Ji

xij ≤ 1 ∀ i ∈ I (2d)

Hω +MGωi ≥ ti ∀ i ∈ I, ω ∈ Ω (2e)

Hω −M(1−Gωi) ≤ ti ∀ i ∈ I, ω ∈ Ω (2f)

tωi +M ′Gωi ≥ ti ∀ i ∈ I, ω ∈ Ω (2g)

tωi −M ′Gωi ≤ ti ∀ i ∈ I, ω ∈ Ω (2h)

xωij + x̄ijG
ω
i ≥ xij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (2i)

xωij − x̄ijGωi ≤ xij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (2j)

tωk − tωi ≥ Dik + dωikG
ω
i −∑

j∈Ji

Dikeijx
ω
ij −

∑
j∈Ji

dωikeijz
ω
ij ∀ (i, k) ∈ A, ω ∈ Ω (2k)

∑
i∈I

∑
j∈Ji

bijx
ω
ij ≤ B ∀ω ∈ Ω (2l)

∑
j∈Ji

xωij ≤ 1 ∀ i ∈ I, ω ∈ Ω (2m)

zωij ≤ x̄ijGωi ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (2n)

zωij ≤ xωij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (2o)

zωij ≥ xωij + x̄ij(G
ω
i − 1) ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (2p)

ti ≥ 0 ∀ i ∈ I (2q)

tωi ≥ HωGωi ∀ i ∈ I, ω ∈ Ω (2r)

0 ≤ xij ≤ x̄ij ∀ i ∈ I, j ∈ Ji (2s)

0 ≤ xωij ≤ x̄ij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (2t)

0 ≤ zωij ≤ 1 ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (2u)

Gωi ∈ {0, 1}. ∀ i ∈ I, ω ∈ Ω. (2v)

6

In model (2), we minimize the expected project span, weighing the span under each scenario

by its probability. We replicate constraints (1b)-(1d) for the nominal scenario as (2b)-(2d). In

constraints (2e)-(2f), variable Gωi takes value 1 if activity i starts after the disruption time; otherwise

it takes value 0. The value of M must be sufficiently large to enforce this logic, and can be the

largest possible start time of any activity in an optimal solution. We derive such value, Tmax, in

Section 5. The logic constraints are important because the duration of each activity depends on

its temporal relationship to the disruption time, which is reflected in constraint (2k). Also, we

must ensure that decisions made before the disruption time in each scenario match the nominal

decisions, and constraints (2g)-(2j) capture these non-anticipativity conditions. For each scenario,

the duration between activity i and k becomes (Dik + dωikG
ω
i)(1−

∑
j∈Ji eijx

ω
ij), which expands to

the form of constraint (2k). If Gωi = 0, which means activity i starts before the disruption time

of scenario ω, this expression is the same as Dik(1 −
∑

j∈Ji eijxij) because xij = xωij is enforced

by constraints (2i) and (2j). If Gωi = 1, then the duration between activity i and k is changed

to Dik + dωik ≥ 0. We allow a negative “increase” in duration dωik, but choose the parameters so

that the overall duration is nonnegative. The expression (Dik +dωikG
ω
i)(1−

∑
j∈Ji eijx

ω
ij) contains a

bilinear term Gωi x
ω
ij , which we linearize using variable zωij , constraints (2n)-(2p), and a big-M value

of x̄ij via constraint (2t).

Model (2) assumes that disruptions can only affect (typically delay) activities that have not yet

started. Appendix A details an alternative in which disruptions affect ongoing activities that have

yet to end.

3 NP-Hardness

We show that the optimal project crashing problem under a stochastic disruption is NP-hard

even with a single disruption scenario, which occurs with probability one at time zero. Our proof

relies on a transformation from the exactly-one-in-three 3SAT (EOIT_3SAT) problem: Let U =

{u1, u2, . . . , un} be a set of variables. A literal can be either u or ū = ¬u for u ∈ U . Let

C = {c1, c2, . . . , cm} be a set of clauses, each of which is formed by a disjunction of three literals,

e.g., ci = uj ∨ uk ∨ ū`. The EOIT_3SAT problem asks whether there is a truth assignment for each

u ∈ U such that each clause in C has exactly one true literal. De et al. De et al. (1997) use

EOIT_3SAT to prove that an activity network problem, in which there are a finite set of alternatives

for each activity with different duration and cost, is NP-hard, and we use similar proof constructs.

Starting with an instance of EOIT_3SAT, we formulate an activity network using three layers of

nodes. The first layer contains 3n nodes and represents the truth assignment of each variable in

EOIT_3SAT. The second layer contains 3m nodes and represents the value of EOIT_3SAT’s clauses.

And, the third layer consists of terminal node T , the end of the project. Each of the first layer’s n

components corresponds to a variable and contains three nodes, denoted uj1, uj2, and uj3, which

7

are connected as shown in Figure 1. The figure also shows how the first layer connects to the third

layer. We let Ω = {1}, and H1 = 0 with probability p1 = 1. We define the parameter values

associated with the arcs in Figure 1 as:

Duj1,uj2 = 1 d1
uj1,uj2 = 1 (3a)

Duj1,uj3 = 2 d1
uj1,uj3 = −1 (3b)

Duj3,T = 0 d1
uj3,T = 0. (3c)

No activities in the first layer can be crashed, i.e.,

Jujk = ∅, for all j = 1, 2, . . . , n, k = 1, 2, 3. (4)

The start node, S, connects to each uj1 with zero duration. It is optimal to start each activity

uj1 at time 0 because the inclusive inequalities in constraints (2e)-(2f) still allow us to choose

G1
uj1 ∈ {0, 1} for each variable in U . With this setup, the length of the longer path through the

j-th component is always 2, j = 1, 2, . . . , n. Whether the longer path traverses activity uj2 (top

path in Figure 1) or activity uj3 (bottom path) depends on the value of G1
uj1 . If G1

uj1 = 1 then the

top path yields a length of Duj1,uj2 + d1
uj1,uj2 = 1 + 1 = 2, while the bottom path yields a length

of Duj1,uj3 + d1
uj1,uj3 = 2 − 1 = 1. If G1

uj1 = 0 then the top path yields a length of Duj1,uj2 = 1,

while the bottom path yields a length of Duj1,uj3 = 2. We can consider the value of G1
uj1 as the

truth assignment of variable uj . If variable uj is TRUE, the top path is longer; if it is FALSE the

bottom path is longer. The arcs from activities uj2 and uj3 in Figure 1 point to activities in the

Figure 1: A component corresponding to variable uj , j = 1, 2, . . . , n, in the first layer of the activity
network for EOIT_3SAT.

second layer, which we now construct, again following ideas in De et al. De et al. (1997). Consider

the clause ci = uj ∨ uk ∨ ū`, with literals consisting of two original variables, uj and uk, and one

complement, ū`. We consider an activity, cip, corresponding to the truth assignment of the variable

up, for p ∈ {j, k, `}. For the original variables up, p ∈ {j, k}, we connect activity up3 to activity

8

cip, and we connect activity up2 to the other two activities ciq, where q ∈ {j, k, `}, q 6= p. For the

complemented variable ū`, we do the opposite, connecting activity u`2 to activity ci`, and activity

u`3 to activities ciq, q ∈ {j, k}. This illustrates the general rule by which a clause with three literals

(typically a mix of original and complemented variables) yields the network topology:

• original variables result in a connection from uj3 to cij via a single arc and

a connection from uj2 to the other two cj-activity nodes; and, (5a)

• complemented variables result in the opposite. (5b)

From now on we refer to the activities representing variables as u-activities and those representing

clauses as c-activities.

We make the following assignments:

Dujp,cij = d1
ujp,cij = 0 ∀i = 1, . . . ,m, j = 1, . . . , n, p = 2, 3 :

uj is in clause ci (6a)

Dcij ,T = 1 and d1
cij ,T = 0 ∀i = 1, . . . ,m, j = 1, . . . , n :

uj is in clause ci (6b)

ecij ,1 = 1 ∀i = 1, . . . ,m, j = 1, . . . , n :

uj is in clause ci (6c)

bij = 1 ∀i = 1, . . . ,m, j = 1, . . . , n :

uj is in clause ci (6d)

B = 2m (6e)

The nominal duration and the disrupted duration for the arcs between u-activities and c-activities

are 0 per equation (6a). The nominal and disrupted durations for the arcs between the c-activities

and T are specified in equation (6b). Unlike the u-activities, each c-activity can be crashed with a

single option with unit effectiveness as given in equation (6c). We assign the budget in equation (6e),

where m is the total number of clauses, and assign unit bij values in equation (6d). We illustrate

the logic behind this construction using Figure 2. For variable uj , if G1
uj1 = 1 then the earliest

time activity uj2 can start is 2, and activity uj3 can start at time 1. If G1
uj1 = 0 then the earliest

time activity uj3 can start is 2, and activity uj2 can start at time 1. The same holds for variable

uk, and the opposite for variable u`. The truth assignments indicate which path is longer.

Next, we establish two lemmas, which relate start times at certain nodes in the activity network

corresponding to an instance of EOIT_3SAT.

Lemma 1. Consider an instance of EOIT_3SAT, and the corresponding activity network for this

instance. For each clause, ci, i = 1, 2, . . . ,m, there is at most one activity ciq∗ , q
∗ ∈ {j, k, `}, that

has 1 as its earliest start time, and the start time for ciq is 2, for q ∈ {j, k, `}, q 6= q∗.

9

Figure 2: The i-th clause, uj ∨ uk ∨ ū`, in the second layer of the constructed activity network for
EOIT_3SAT with the arcs connecting it with the first and the third layer.

Figure 3: The i-th clause, uj ∨ uk ∨ u`, in the second layer of the constructed activity network for
EOIT_3SAT with the arcs connecting it with the first and the third layer.

Proof of Lemma 1. The proof enumerates eight cases, and we begin with ci = uj ∨ uk ∨ u`, which

has a component of the activity network illustrated in Figure 3. Without loss of generality, suppose

both cij and cik can start at time 1. This means that both uj2 and uj3 need to start at time 1,

which is impossible because regardless of G1
uj1 ’s value, at least one activity in {uj2, uj3} can start

no earlier than time 2. The proof is completed by enumerating the remaining seven cases—with

variables uj , uk, u` in all combinations of original or complemented form—in analogous fashion.

Lemma 2. Consider an instance of EOIT_3SAT, and the corresponding activity network for this

instance. For any clause, ci, activity ciq∗ , q
∗ ∈ {j, k, `}, has an earliest start time of 1 if and only

if the corresponding literal, uq∗ or ūq∗, is the only literal in the clause to which the truth assignment

10

is TRUE.

Proof of Lemma 2. The proof again enumerates eight cases, and we begin with ci = uj ∨ uk ∨ u`;
see Figure 3. Without loss of generality, we assume q∗ = j.

(=⇒): In turn we suppose uj is FALSE or uk is TRUE or u` is TRUE. First, suppose uj is FALSE,

i.e., G1
uj1 = 0. Then activity uj3 can start no earlier than time 2, which leads to the contradiction

that cij can start as early as time 1; see Figure 3. Suppose uk is TRUE. Since there is an arc from

uk2 to activity cij , and since uk2 cannot start before time 2 this again contradicts that cij can start

as early as time 1. The argument for u` being TRUE is identical. Therefore, if activity cij can

start at time 1 then uj is the only literal which is TRUE.

(⇐=): if only uj is TRUE, then uj3, uk2 and u`2 can all start as early as time 1; again, see

Figure 3. This means that the earliest start time for cij is 1.

We again complete the proof by enumerating the remaining seven cases.

As a result of Lemmas 1 and 2, we can transform an EOIT_3SAT instance to an instance of

model (2) using the activity network construction process just described. In particular, we know

that if there exists a truth assignment to the variables of U that meets the requirement of EOIT_3SAT,

there are exactly 2m c-activities (two per clause) that can start no earlier than time 2. Since we

have budget B = 2m, we can crash all of those c-activities to achieve a project length of 2. If there

is no truth assignment that meets the requirement of EOIT_3SAT then model (2)’s optimal value is

3. We formalize this in what follows.

Definition 1. Stochastic Crashing Decision Problem: Is there a feasible solution, (t, x,G),

to model (2) with objective function value of at most τ?

Theorem 3. Consider an instance of EOIT_3SAT, and the corresponding activity network for this

instance. In particular, let Ω = {1}, H1 = 0, p1 = 1, and let the network topology and model

parameters be given by Figure 1, rule (5) and equations (3), (4), and (6). Let τ = 2. The answer

to the Stochastic Crashing Decision Problem is yes if and only if the given instance of

EOIT_3SAT problem has a solution, i.e., a truth assignment to the variables so that each clause has

exactly one true literal.

Proof of Theorem 3. The EOIT_3SAT problem has n variables and m clauses, and the constructed

activity network for the project crashing problem has 3n + 3m + 2 activities and 4n + 12m arcs.

Thus the size of the activity network and the time required to construct the network are both

polynomial in the size of the original EOIT_3SAT instance.

(⇐=) Suppose the EOIT_3SAT instance has a solution. A feasible solution to the instance of

model (2) starts every activity as early as possible. Under the EOIT_3SAT hypothesis, by Lemmas 1

and 2 exactly 2m c-activities have earliest start times of 2 and the remaining m have an earliest

11

start time of 1. Spending the budget, B = 2m, to crash all 2m c-activities that correspond to the

literals with FALSE assignment, yields an objective function value of 2.

(=⇒) Suppose the instance of model (2) has a solution, (t̂, x̂, Ĝ), with an objective function value

of 2. By Lemma 1 we know that for each clause there is at most one c-activity that can start at

time 1, which means there must be at least 2m c-activities with a start time of at least 2. Since

B = 2m, if there are more than 2m c-activities that start at time 2 or after, the objective function

value of model (2) must exceed 2. Hence, there are exactly 2m c-activities starting at time 2.

Lemmas 1 and 2 then imply that exactly one c-activity in each of the m clauses starts at time 1;

i.e,. for each clause there is exactly one variable to which the truth assignment is TRUE.

EOIT_3SAT is NP-complete Garey and Johnson (1979). The Stochastic Crashing Decision

Problem is in NP because we can check in O(n+m) time whether a given solution is feasible and

has an objective function value of at most τ .

As a result of Theorem 3 we immediately obtain the following result.

Corollary 4. Model (2) is NP-hard, even under a single disruption scenario, which occurs with

probability one at time zero.

4 Illustration of Problem Properties via Examples

We show two examples of serial activity networks to give insight regarding the nature of the project

crashing problem under a stochastic disruption, and to draw distinctions relative to its deterministic

counterpart. In the deterministic project crashing problem, all activities on the critical path should

start as soon as possible. However, with a stochastic disruption, it is sometimes optimal to delay

the start of one or more activities. In addition, under a stochastic disruption, it is possible that

on a critical path, an activity with a shorter expected duration is crashed with a larger amount of

resource, while in the deterministic case, it is always optimal to crash the activity with the longest

duration on the critical path, under equal bij and eij values. We use two examples to show that the

deterministic optimal solution can be significantly inferior in the stochastic setting because of these

two properties. Here, we assume that the required duration that separates the start of activity i

and the start of a successor, k, only depends on i; i.e., for each activity i we use Di to denote the

duration of activity i and dωi to denote the change in duration under scenario ω:

Dik = Di ∀(i, k) ∈ A

dωik = dωi ∀(i, k) ∈ A, ω ∈ Ω.

Clearly delaying the start of an activity may be beneficial when dωi < 0 for some i ∈ I, ω ∈ Ω

because the expected decrease in duration may exceed the delay required to move the start of

12

activity i after a potential disruption. In the following example, we show the value of a delay, even

if all activities are lengthened by the disruption; i.e., dωi > 0,∀i ∈ I, ω ∈ Ω.

Figure 4: Example of a 2-activity serial network project.

Example 1. Consider a network with two activities in series, as shown in Figure 4 with I =

{S, 1, 2, T}, and let parameter κ > 4. Let the nominal durations be D1 = κ and D2 = 1. We assume

only one crashing option for each activity, and so we omit index j. We let e1 = e2 = 1− 1
2κ , assume

bi = 1 for all i ∈ I, and we let B = 1. Let Ω = {1} so that either we have no disruption with

probability p0 = 1 − 1
κ , or we have a disruption that occurs at time ε < 1

2 with probability p1 = 1
κ .

If a disruption occurs, the nominal activity durations are lengthened by d1 = κ and d2 = (κ− 1)2.

If we start each activity without delay, then t1 = 0, x1 = x1
1, and for any x1 ≤ 1, t2 ≥ 1

2

because D1(1 − e1x1) ≥ κ(1 − 1 + 1
2κ) = 1

2 , which means activity 2 will start after the disruption.

Since κ > 1, the duration of activity 1, D1 = κ, exceeds the expected duration of activity 2,

D2 + p1d2 = 1 + 1
κ(κ − 1)2 = κ − 1 + 1

κ . As a result, it is optimal to spend the entire budget on

activity 1: x1 = x1
1 = 1 and x2 = x1

2 = 0, and the expected project duration is:

D1(1− e1x1) + p0D2 + p1(D2 + d2)

=κ

(
1−

(
1− 1

2κ

)
· 1
)

+

(
1− 1

κ

)
· 1 +

1

κ

(
1 + (κ− 1)2

)
=κ− 1

2
+

1

κ
.

On the other hand, if we delay the start of activity 1 until t1 = ε then x1 and x1
1 need not be equal.

Since for κ > 2 +
√

2, κ = D1 > D2 = 1 and (κ− 1)2 + 1 = D2 + d2 > D1 + d1 = κ+ κ, we have

x1 = 1, x1
1 = 0, x1

2 = 1 in an optimal solution, and the expected duration is:

ε+ p0

[
D1 ·

(
1−

(
1− 1

2κ

)
· 1
)

+D2

]
+ p1

[
(D1 + d1)+(

1−
(

1− 1

2κ

)
· 1
)

(D2 + d2)

]
=ε+

κ− 1

κ

(
κ · 1

2κ
+ 1

)
+

1

κ

[
(κ+ κ) +

1

2κ

(
(κ− 1)2 + 1

)]
=ε+ 4− 5

2κ
+

1

κ2
.

In Example 1, if we require that activity 1 start without delay then the objective function

grows to infinity with κ, but the optimal project span by delaying the start of activity 1 by ε has

13

a constant limit of ε + 4. This example shows that the gap between the optimal solution under

a no-delay policy and an optimal solution that allows for delay—as we do in model (2)—can be

arbitrarily large. Intentionally delaying the start of certain activities can provide flexibility for

crashing decisions. We pay the cost of a delay but save more time in expectation by being able to

use adaptive second-stage crashing decisions. Because it is possible for an optimal crashing plan to

contain a delay for some activities, model (2) uses decision variables ti, ∀i ∈ I, as the start time of

each activity, rather than assuming that each activity starts as soon as all of its predecessors are

finished.

Example 2. We again consider the network with two activities from Figure 4. Let D2 > D1,

d1 = 0, d2 > 0, e1 = e2 = 1
2 , and B = 1. We again consider a single disruption scenario, Ω = {1},

so that either we have no disruption with probability p0 = 1
2 , or we have a disruption that occurs at

time H1 = 1
2D1 with probability p1 = 1

2 . Here, the optimal solution is to crash the shorter activity,

i.e., x1 = 1, which yields an expected project span of 1
2D1+D2 with start times t1 = 0 and t2 = 1

2D1.

In contrast, if 0 ≤ x1 < 1 then the expected duration is D1(1− 1
2x1) + (D2 + 1

2d2)(1− 1
2x2), so that

the ratio of the objective functions grows arbitrarily large as d2 grows.

In Example 2 the intuition behind crashing the shorter activity is that it allows us to initiate

activity 2 in time to avoid incurring delay d2. Both examples in this section suggest that the

intuition associated with the deterministic version of the optimal crashing problem does not always

apply in the stochastic setting, and provides further motivation for employing a model like that in

formulation (2).

5 A Decomposition Algorithm

Model (2) is a two-stage stochastic mixed-integer program:

z∗ = min p0tT +
∑
ω∈Ω

pωfω(t, x) (7a)

s.t. tk − ti ≥ Dik

1−
∑
j∈Ji

eijxij

 ∀(i, k) ∈ A (7b)

∑
i∈I

∑
j∈Ji

bijxij ≤ B (7c)

∑
j∈Ji

xij ≤ 1 ∀ i ∈ I (7d)

ti ≥ 0 ∀ i ∈ I (7e)

0 ≤ xij ≤ x̄ij ∀ i ∈ I, j ∈ Ji. (7f)

With the first stage solution (t̂, x̂) as input, the second stage problem is:

(Sω) fω(t̂, x̂) = min tT (8a)

14

s.t. Hω +MGi ≥ t̂i ∀ i ∈ I (8b)

Hω −M(1−Gi) ≤ t̂i ∀ i ∈ I (8c)

ti +M ′Gi ≥ t̂i ∀ i ∈ I (8d)

ti −M ′Gi ≤ t̂i ∀ i ∈ I (8e)

xij + x̄ijGi ≥ x̂ij ∀ i ∈ I, j ∈ Ji (8f)

xij − x̄ijGi ≤ x̂ij ∀ i ∈ I, j ∈ Ji (8g)

tk − ti ≥ Dik + dωikGi−∑
j∈Ji

Dikeijxij −
∑
j∈Ji

dωikeijzij ∀ (i, k) ∈ A (8h)

∑
i∈I

∑
j∈Ji

bijxij ≤ B (8i)

∑
j∈Ji

xij ≤ 1 ∀ i ∈ I (8j)

zij ≤ x̄ijGi ∀ i ∈ I, j ∈ Ji (8k)

zij ≤ xij ∀ i ∈ I, j ∈ Ji (8l)

zij ≥ xij + x̄ij (Gi − 1) ∀ i ∈ I, j ∈ Ji (8m)

ti ≥ 0 ∀i ∈ I (8n)

ti ≥ HωGi ∀ i ∈ I (8o)

0 ≤ xij ≤ x̄ij ∀ i ∈ I, j ∈ Ji (8p)

0 ≤ zij ≤ 1 ∀ i ∈ I, j ∈ Ji (8q)

Gi ∈ {0, 1} ∀ i ∈ I. (8r)

A number of existing approaches for stochastic mixed-integer programming assume a special

structure not satisfied by our model. For example, Gade et al. Gade et al. (2014) solve two-

stage stochastic programs with pure binary first stage variables, and general integer second stage

variables; they derive a finitely convergent sequential convex approximation and a branch-and-cut

framework involving Gomory cuts that are parameterized by the first-stage decision variables. Zou

et al. Zou et al. (2019) assume state variables are binary (or general integer via binary expansion) in

a multi-stage setting so that the Lagrangian cuts are a tight approximation of the recourse function;

see also Philpott et al. Philpott et al. (2020). Carøe and Tind Carøe and Tind (1998) solve a

more general case of two-stage models by using integer programming duality, but there is limited

computational work investigating their approach. Qi and Sen Qi and Sen (2017) allow mixed-integer

variables in both the first stage and the recourse problem, and parametric disjunctive cuts convexify

recourse problems while Benders’ cuts approximate recourse functions Chen et al. (2012). Although

this method suits our problem setting, preliminary computational results (discussed below) found

that it was not competitive with the scheme we describe here, which makes use of the special

15

structure of our problem.

A simple approach is to relax the integrality constraints (8r) of subproblem (Sω), and execute a

multi-cut L-shaped decomposition algorithm on this linear programming (LP) relaxation. The re-

sulting optimality cuts provide a valid lower approximation of the recourse functions, fω(t, x),∀ω ∈
Ω, but may not be tight. In each iteration of the decomposition, an upper bound can be obtained

by solving subproblems (8) with the first stage solution. The main challenge is how to iteratively

tighten the lower bound while quickly locating a good upper bound. The topics in this section aim

to tackle these two issues.

The combinatorial decision, Gi ∈ {0, 1}, i ∈ I, for each (Sω) is (almost fully) decided by the

first-stage continuous variables, ti. If t̂i > Hω then Gi = 1, if t̂i < Hω then Gi = 0, and only

if they are equal is there a combinatorial choice. This observation motivates the decomposition

algorithm that we develop. We could pull these binary variables to the first stage, but doing so

involves |I||Ω| variables and does not scale well. Instead, we partition an interval, which we denote

[0, Tmax], containing each ti, and we adaptively refine that partition. This helps control the number

of binary first-stage variables, and has further benefits in terms of tightening lower bounds, as we

describe in what follows. We will be specific later regarding the value of Tmax, but for now we

simply assume we have a value such that ti ∈ [0, Tmax] is a redundant constraint in model (2).

We assume that Ω = {1, 2, . . . , |Ω|} is such that ω < ω′ implies Hω ≤ Hω′ with strict inequality

if the realizations of H are distinct, and we let H0 ≡ 0 ≤ H1 and H |Ω|+1 ≡ Tmax ≥ H |Ω|. We define

a partition of [0, Tmax] for each i ∈ I as follows.

Definition 2. For each activity i ∈ I, we define a partition of interval [0, Tmax] as an ordered

set of two-element tuples Pi = {[
¯
Hq, H̄q], q ∈ Qi} with an index set Qi = {1, 2, . . . , |Qi|} and the

following properties:

•
¯
H1 = H0 ≡ 0

• H̄ |Qi| = H |Ω|+1 ≡ Tmax

•
¯
Hq < H̄q ∀q ∈ Qi

• H̄q =
¯
Hq+1 ∀q ∈ Qi.

With the possible exceptions of
¯
H1 and H̄ |Qi|, each

¯
Hq and H̄q corresponds to a disruption time

of some scenario, and a simple example is illustrated in Figure 5 in which we have five scenarios,

Ω = {1, 2, 3, 4, 5}. The partition has three intervals as illustrated. The second interval has lower

bound H2 and upper bound H5.

With this setup, we make sure the start time of each activity falls in some element of the

partition. In particular, for each activity i ∈ I the first-stage start time ti lies an interval of Pi as

16

Figure 5: An illustration of a partition of interval [0, Tmax].

specified by a first-stage indicator variable:∑
q∈Qi

¯
Hqyqi ≤ ti ≤

∑
q∈Qi

H̄qyqi ∀i ∈ I (9a)

∑
q∈Qi

yqi = 1 ∀i ∈ I (9b)

yqi ∈ {0, 1}, ∀i ∈ I, q ∈ Qi. (9c)

Constraints (9) require that ti be associated with one of the intervals of the partition. In model (2)

if ti = Hω then Gωi can either be 0 (activity i is said to start before ω’s disruption) or 1 (i starts

after the disruption). If ti = H̄q =
¯
Hq+1 = Hω for some ω then the y-variables have a similar

choice, and our convention is that if the y-variables choose ti ∈ [
¯
Hq, H̄q] then activity i is said to

start before the disruption and if ti ∈ [
¯
Hq+1, H̄q+1] then i starts after the disruption.

5.1 Tightening Big-M with Partitions

The tightness of (Sω)’s LP relaxation relies, in part, on the big-M value used in constraints to

represent the logical condition of whether activity i starts before or after a disruption. A smaller,

but still valid, big-M value yields a tighter relaxation, and can further help prevent numerical issues,

e.g., Camm et al. (1990), Klotz and Newman (2013). We can rewrite constraints (8b) and (8c) as:

(t̂i −Hω)/M ≤ Gi ≤ (t̂i −Hω)/M + 1. (10)

Variable Gi can take a wider range of values when M is large. Tightening M hinges on specifying

valid ranges for t̂i. Furthermore, we know that if t̂i > Hω′ for some ω′ then Gi has to take value 1

in all subproblems (Sω) with ω < ω′. On the other hand, if t̂i < Hω′ for some ω′ then Gi must be

0 for all subproblems (Sω) in which ω > ω′. If we can fix the Gi for all i ∈ I to either 0 or 1 the

resulting optimality cuts will be tight.

Proposition 5. Let t0i be the length of the longest S-i path in the activity network G = (I,A) in

which the arc length of (i, k) ∈ A is Dik and in which no crashing is allowed. Then there exists

(part of) an optimal solution to model (2), t∗, such that t∗i ∈ [0, H |Ω|+ t0i], ∀i ∈ I, provided M and

M ′ are sufficiently large.

17

Proof of Proposition 5. Constraint (2q) enforces the lower bound of 0. By hypothesis t0k − t0i ≥
Dik,∀(i, k) ∈ A since t0i is the length of the longest S-i path of G in which the arc length of (i, k) ∈ A
is Dik and in which no crashing is allowed. We prove the upper bound on t∗i by contradiction.

Suppose there does not exist a t∗ such that t∗i ∈ [0, H |Ω| + t0i], ∀i ∈ I. Then for every t∗, there

must be a set I∗ ⊆ I such that t∗i > H |Ω| + t0i for i ∈ I∗. Let the corresponding optimal values

of variables xij , G
ω
i , t

ω
i , x

ω
ij , z

ω
ij be denoted x∗ij , G

ω,∗
i , tω,∗i , xω,∗ij , z

ω,∗
ij , respectively. We can establish a

feasible solution to model (2) as follows:

t̃i = H |Ω| + t0i ∀i ∈ I∗ (11a)

t̃i = t∗i ∀i ∈ I\I∗ (11b)

x̃ij = x∗ij ∀i ∈ I, j ∈ Ji (11c)

G̃ωi = Gω,∗i ∀i ∈ I, ω ∈ Ω (11d)

t̃ωi = tω,∗i ∀i ∈ I, ω ∈ Ω (11e)

x̃ωij = xω,∗ij ∀i ∈ I, j ∈ Ji, ω ∈ Ω (11f)

z̃ωij = zω,∗ij ∀i ∈ I, j ∈ Ji, ω ∈ Ω. (11g)

We see this solution is feasible by examining the constraints of model (2):

• For constraint (2b), we examine the following four possible cases:

– i ∈ I∗, k ∈ I∗: since x̃ij ≥ 0 and t0k − t0i ≥ Dik, we have

t̃k − t̃i = t0k − t0i ≥ Dik ≥ Dik

1−
∑
j∈Ji

eij x̃ij

 ;

– i ∈ I∗, k /∈ I∗: we have t̃i < t∗i since i ∈ I∗, and then

t̃k − t̃i > t∗k − t∗i ≥ Dik

1−
∑
j∈Ji

eijx
∗
ij

 = Dik

1−
∑
j∈Ji

eij x̃ij

 ;

– i /∈ I∗, k ∈ I∗: since t∗i ≤ H |Ω| + t0i , x̃ij ≥ 0 and t0k − t0i ≥ Dik, we have

t̃k − t̃i = H |Ω| + t0k − t∗i ≥H |Ω| + t0k −
(
H |Ω| + t0i

)
=t0k − t0i ≥ Dik ≥ Dik

1−
∑
j∈Ji

eij x̃ij

 ;

– i, k /∈ I∗: the constraint is unchanged and feasible;

• For variable Gωi :

– if i /∈ I∗: we have t̃i = t∗i . Therefore, constraints (2e)-(2h) is unchanged and feasible;

18

– if i ∈ I∗: variable G∗,ωi is forced to take value 1 for all ω ∈ Ω. Since t̃i = H |Ω|+t0i ≥ H |Ω|,
for any ω ∈ Ω, G̃ωi = G∗,ωi = 1 remains feasible. Therefore, constraints (2e)-(2h) hold

for M and M ′ sufficiently large.

• Since the values for t̃ωi , x̃ij , x̃
ω
ij , G

ω
i , z

ω
ij all remain the same, constraints (2c), (2d), (2i)-(2v)

are all satisfied by the solution in (11).

We can also see that t̃i ≤ t∗i , ∀i ∈ I because of equations (11a) and (11b). Thus, the feasible

solution in (11) yields an objective function value p0t̃T +
∑

ω∈Ω p
ω t̃ωT ≤ p0t∗T +

∑
ω∈Ω p

ωt∗,ωT . This

means that the feasible solution in (11) is also optimal. As t̃i ≤ H |Ω| + t0i , ∀i ∈ I, it contradicts

the assumption that there does not exist an optimal solution with t∗i ∈ [0, H |Ω| + t0i], ∀i ∈ I.

For simplicity of exposition, we use an identical upper bound on every ti for i ∈ I as Tmax =

H |Ω| + t0T . From a computational perspective, there is an efficient algorithm to obtain the longest

path length t0T as the graph is acyclic. While Proposition 5 bounds the start-time variables, ti, ∀i ∈
I, to the interval [0, Tmax], the y-variables of (9) allow for tighter bounds. Given a partition for

each activity and given a first-stage solution with ŷqi , ∀i ∈ I, q ∈ Qi, we can replace constraints (8b)

and (8c) with:

Hω +Gi

∑
q∈Qi

H̄qŷqi −H
ω

 ≥ t̂i ∀i ∈ I (12a)

Hω − (1−Gi)

Hω −
∑
q∈Qi

¯
Hqŷqi

 ≤ t̂i ∀i ∈ I. (12b)

In a first-stage solution, ŷqi = 1 for a specific q satisfying
¯
Hq ≤ t̂i ≤ H̄q, and verifying the validity of

constraints (12) in replacing (8b)-(8c) is straightforward by enumerating the cases Hω ∈ [
¯
Hq, H̄q],

Hω <
¯
Hq, and Hω > H̄q. In the degenerate case in which Hω coincides with H̄q or

¯
Hq, the

corresponding constraint from (12) is as tight as possible, i.e., a simple bound on t̂i involving Hω.

Otherwise constraints (12) reduce to the following analog of (10):

(t̂i −Hω)/(H̄q −Hω) ≤ Gi ≤ (t̂i −Hω)/(Hω −
¯
Hq) + 1, (13)

and we see that smaller values of H̄q and larger values of
¯
Hq have the effect of tightening the big-M

value in constraints (10).

We introduce variables F qi to linearize the bilinear terms, and rewrite constraints (12) as follows:

∑
q∈Qi

H̄qF qi −H
ωGi ≥ t̂i −Hω ∀i ∈ I (14a)

19

HωGi −
∑
q∈Qi

¯
HqF qi ≤ t̂i −

∑
q∈Qi

¯
Hqŷqi ∀i ∈ I (14b)

F qi ≤ Gi ∀i ∈ I, q ∈ Qi (14c)

F qi ≤ ŷ
q
i ∀i ∈ I, q ∈ Qi (14d)

F qi ≥ Gi + ŷqi − 1 ∀i ∈ I, q ∈ Qi. (14e)

We can further tighten the formulation by adding two constraints involving y that cover cases

when Gi can be fixed to 0 or 1. Again given a partition of each activity and a first-stage solution

ŷqi ,∀i ∈ I, q ∈ Qi, we have: ∑
q∈Qi,Hω≤

¯
Hq

ŷqi ≤ Gi ≤ 1−
∑

q∈Qi,Hω≥H̄q

ŷqi ∀i ∈ I. (15)

For the case in which Hω ∈ (
¯
Hq, H̄q) for the q with ŷqi = 1, constraint (15) adds no restriction, but

for the cases in which Hω ≤
¯
Hq and Hω ≥ H̄q, Gi is forced to 1 and 0, respectively.

5.2 Partition-based Decomposition Method

Our decomposition algorithm to solve model (2) iteratively partitions the continuous feasible region

of the first-stage t-variables by introducing binary variables that facilitate tighter optimality cuts.

With the addition of constraints (14) and (15), the tightened subproblem is:

(SωP) fωP (t̂, x̂, ŷ) = min tT (16a)

s.t.
∑
q∈Qi

H̄qF qi −H
ωGi ≥ t̂i −Hω ∀i ∈ I (16b)

HωGi −
∑
q∈Qi

¯
HqF qi ≤ t̂i −

∑
q∈Qi

¯
Hqŷqi ∀i ∈ I (16c)

F qi ≤ Gi ∀i ∈ I, q ∈ Qi (16d)

F qi ≤ ŷ
q
i ∀i ∈ I, q ∈ Qi (16e)

F qi ≥ Gi + ŷqi − 1 ∀i ∈ I, q ∈ Qi. (16f)

Gi ≥
∑

q∈Qi,Hω≤
¯
Hq

ŷqi ∀i ∈ I (16g)

Gi ≤ 1−
∑

q∈Qi,Hω≥H̄q

ŷqi ∀i ∈ I (16h)

constraints (8d)-(8q) (16i)

0 ≤ F qi ≤ 1 ∀ i ∈ I, q ∈ Qi (16j)

0 ≤ Gi ≤ 1. ∀ i ∈ I. (16k)

We express (SωP) in LP relaxation form, excluding constraints (8r). Let ` denote the iteration of

the decomposition algorithm, and (t̂`, x̂`, ŷ`) denote a given first-stage decision. We solve (SωP) for

20

each ω ∈ Ω and construct an optimality cut of the form:

θω ≥vω,` +
∑
i∈I

πω,`i (ti − t̂`i) +
∑
i∈I

∑
j∈Ji

λω,`ij (xij − x̂`ij)+∑
i∈I

∑
q∈Q`

i

γω,`,qi

(
yqi − ŷ

q,`
i

)
. (17)

Here, θω is a continuous decision variable that forms an outer-linearization of fωP (t, x, y); param-

eter vω,` is the optimal value of (SωP) at (t̂`, x̂`, ŷ`); and, coefficients π, λ and γ are appropri-

ate sums of dual variables from the LP relaxation—e.g., πω,`i involves dual variables from con-

straints (8d)-(8e) and (16b)-(16c). Since we solve a linear relaxation, θω is a lower bound on

fω(t̂`, x̂`, ŷ`). However, the cut needs to be modified once the partition is updated to maintain

validity, and we assume that the update refines the partition for each i ∈ I by subdividing one or

more intervals as indicated in the following definition.

Definition 3. For two partitions P1
i and P2

i , indexed by Q1
i and Q2

i , respectively, we say P2
i is a

refinement of P1
i provided:

∀q2 ∈ Q2
i , ∃q1 ∈ Q1

i s.t. H̄q1 ≥ H̄q2 and
¯
Hq1 ≤

¯
Hq2 .

At the current iteration for each i ∈ I, let the partition Pi be indexed by Qi, and assume this

partition is formed from earlier partitions by a sequence of refinements satisfying Definition 3. We

can then find a set of intervals in the current partition, Pi, whose union is the q-th interval in

partition P`i from previous iteration `. We index such a descendant set by ∆i(`, q). Cut (17) can

then be updated to the following form:

θω ≥vω,` +
∑
i∈I

πω,`i (ti − t̂`i) +
∑
i∈I

∑
j∈Ji

λω,`ij (xij − x̂`ij)+

∑
i∈I

∑
q∈Q`

i

γω,`,qi

 ∑
q′∈∆i(`,q)

yq
′

i − ŷ
q,`
i

 . (18)

We show that given a partition, P =×i∈I Pi, which is updated by sequential refinement from a pre-

vious partition, P` =×i∈I P
`
i , the optimality cut (18) is a valid lower approximation for fωP (t, x, y).

Proposition 6. For each i ∈ I, suppose we have a partition, Pi, indexed by Qi, which is a

refinement of P`i , indexed by Q`i . Then at any given feasible (t, x, y) we have

fωP (t, x, y) ≥vω,` +
∑
i∈I

πω,`i (ti − t̂`i) +
∑
i∈I

∑
j∈Ji

λω,`ij (xij − x̂`ij)+

∑
i∈I

∑
q∈Q`

i

γω,`,qi

 ∑
q′∈∆i(`,q)

yq
′

i − ŷ
q,`
i

 . (19)

21

Proof of Proposition 6. We denote the recourse function corresponding to partition P` by fωP`(t, x, y),

where y has the correct dimension according to P`. We first show that

fωP (t, x, y) ≥ fωP`(t, x, ỹ), (20)

where

ỹqi =
∑

q′∈∆i(`,q)

yq
′

i ∀i ∈ I, q ∈ Q`i . (21)

Suppose for given (t, x, y), we solve (SωP) and obtain an optimal solution (tω, xω, Gω, Fω). We then

form

F̃ω,qi =
∑

q′∈∆i(`,q)

Fω,q
′

i ∀i ∈ I, q ∈ Q`i ,

and we obtain a feasible solution (tω, xω, Gω, F̃ω) to subproblem (SωP`). Therefore, inequality (20)

holds. Furthermore, the cut generated under partition P` is

θω ≥ vω,` +
∑
i∈I

πω,`i (ti − t̂`i) +
∑
i∈I

∑
j∈Ji

λω,`ij (xij − x̂`ij) +
∑
i∈I

∑
q∈Q`

i

γω,`,qi

(
yqi − ŷ

q,`
i

)
,

which means that for any feasible (t, x, ỹ), we have

fωP`(t, x, ỹ) ≥vω,` +
∑
i∈I

πω,`i (ti − t̂`i) +
∑
i∈I

∑
j∈Ji

λω,`ij (xij − x̂`ij)+∑
i∈I

∑
q∈Q`

i

γω,`,qi

(
ỹqi − ŷ

q,`
i

)
. (22)

Using equation (21), we replace ỹ by y, and combine inequalities (20) and (22) to obtain (19).

Proposition 6 states that by properly modifying the y-variables in cuts generated under earlier

partitions, the resulting cuts (18) are valid in the sense of providing a lower approximation on the

LP relaxation of the recourse function. Therefore, we incorporate the modified cuts (18) in the

following master problem, given a partition P, which is indexed by Q:

(MP) z∗P = min p0tT +
∑
ω∈Ω

pωθω (23a)

s.t. tk − ti ≥ Dik

1−
∑
j∈Ji

eijxij

 ∀(i, k) ∈ A (23b)

∑
i∈I

∑
j∈Ji

bijxij ≤ B (23c)

∑
j∈Ji

xij ≤ 1 ∀ i ∈ I (23d)

∑
q∈Qi

¯
Hqyqi ≤ ti ≤

∑
q∈Qi

H̄qyqi ∀i ∈ I (23e)

22

∑
q∈Qi

yqi = 1 ∀i ∈ I (23f)

θω ≥ vω,` +
∑
i∈I

πω,`i (ti − t̂`i)+∑
i∈I

∑
j∈Ji

λω,`ij (xij − x̂`ij)+

∑
i∈I

∑
q∈Q`

i

γω,`,qi

 ∑
q′∈∆i(`,q)

yq
′

i − ŷ
q,`
i

 ∀ω ∈ Ω, ` = 1, 2, . . . , L (23g)

yqi ∈ {0, 1} ∀i ∈ I, q ∈ Qi (23h)

ti ≥ 0 ∀ i ∈ I (23i)

0 ≤ xij ≤ x̄ij ∀ i ∈ I, j ∈ Ji. (23j)

As we refine the partitions, the generated cuts become tighter and we provide tighter lower bounds

on model (2)’s optimal value. We refine the partition by selecting the interval of Pi for each activity

i ∈ I, where for some scenarios ω ∈ Ω with Hω ∈ [
¯
Hq, H̄q], Gωi has a fractional value, and partition

the interval as we describe in further detail in Section 5.7.

The development so far in this section is summarized in the decomposition procedure of Algo-

rithm 1, which makes use of the tightened master problem (MP) in (23), the original subproblem

(Sω) in (8), and the tightened subproblem (SωP) in (16). The algorithm couples Benders’ decom-

position and iterative refinement of the partition defining the y-variables. Cuts of the form (17)

are added in step 12. These optimality cuts, along with those from previous coarser partitions,

are updated to the form of (18) based on the current partition in step 17. Algorithm 1 serves as

a precursor to our more effective algorithm developed later in this section, but its partition-based

construct suffices to prove convergence.

We prove Algorithm 1 converges in finite number of iterations. Since every partition update is a

refinement and we have a finite set of scenario Ω, we can prove the finite convergence of Algorithm 1

as long as with the finest partition we reach the optimum of problem (2). These results use the

following hypothesis:

Gωi = Gω
′

i ∀ i ∈ I, ω, ω′ ∈ Ω : Hω = Hω′ . (24)

Proposition 7. Assume that for each partition, Pi indexed by Qi, and for each Hω we have

Hω = H̄q for some q ∈ Qi, i.e., |Qi| = |Ω|+ 1 so that each partition is as fine as possible. Further

assume hypothesis (24). Then

z∗ = min
(t,x,y)∈X

p0tT +
∑
ω∈Ω

pωfωP (t, x, y), (25)

23

Algorithm 1 Partition-based decomposition algorithm to solve model (2).

1: Initialize cut iteration number ` = 0, lower bound LB = 0, upper bound UB = +∞, initial
partition P` with its indexed set Q`, and tolerance parameters ε ≥ 0;

2: while UB−LB
UB > ε do

3: Solve (MP) and obtain solution t̂`, x̂`, ŷ`, θ̂` and optimal value z∗P ;
4: if z∗P > LB then
5: Update LB = z∗P ;

6: For each ω ∈ Ω, solve (Sω) and obtain fω(t̂`, x̂`) and Ĝ`;
7: Calculate z̄ = p0t̂`T +

∑
ω∈Ω p

ωfω(t̂`, x̂`);
8: if z̄ < UB then
9: Update UB = z̄ and incumbent solution as t∗ = t̂`, x∗ = x̂` and G∗ = Ĝ`;

10: for each ω ∈ Ω do
11: solve (SωP) given t̂`, x̂`, ŷ` and obtain optimal value vω,` and πω,`, λω,`, γω,`;

12: if θ̂ω,` < vω,` then add cut of form (17) to (MP);

13: if there are cuts added then
14: Let P`+1 = P` and Q`+1 = Q`;
15: else
16: Refine the partition and obtain the new partition P`+1 and its indexed sets Q`+1;
17: Update previously generated cuts to the form of (18);

18: Let ` = `+ 1;
end while

19: Output UB as the ε-optimal value of model (2), and (t∗, x∗, G∗) as the ε-optimal solution.

where

X =


(t, x, y)

∣∣∣∣∣∣∣∣∣∣∣

constraints (23b)-(23f)

yqi ∈ {0, 1} ∀i ∈ I, q ∈ Qi

ti ≥ 0 ∀i ∈ I

0 ≤ xij ≤ x̄ij ∀i ∈ I, j ∈ Ji


and where z∗ is the optimal value of model (2).

Proof of Proposition 7. We first consider the case in which all realizations of Hω, ω ∈ Ω, are distinct

so that hypothesis (24) immediately holds. We can formulate an extensive form for model (25),

i.e., an analog of model (2), using X and model (16), where the decision variables of model (16) are

now also indexed by ω. Let Ω = {1, 2, . . . , |Ω|} so that the realizations of the disruption times are

given by H1 < H2 < · · · < H |Ω|. By Definition 2, under the first hypothesis of the proposition, the

intervals of each partition are given by the finest partition, [H0, H1], [H1, H2], . . . , [H |Ω|−1, H |Ω|],

[H |Ω|, H |Ω|+1], which we can index by q = 1, 2, . . . , |Ω|, |Ω|+ 1, where H0 = 0 and H |Ω|+1 = Tmax.

Under the assumed partition, constraints (16g)-(16h) in the extensive form of (25) reduce to

|Ω|+1∑
q=ω+1

yqi ≤ G
ω
i ≤ 1−

 ω∑
q=1

yqi

 , ∀i ∈ I, ω ∈ Ω. (26)

24

Under this finest partition, there is a one-to-one mapping between the G- and y-variables under

the binary restrictions imposed by models (2) and (25). In particular,

yqi = 1 if and only if Gωi = 1 ∀ω ≥ q + 1 and Gωi = 0 ∀ω ≤ q. (27)

Any feasible solution to model (2) necessarily satisfies the condition Gωi ≤ Gω+1
i required by (27)

via constraint (2f). And, constraints (23f) and (23h) ensures the 0-0 or 1-1 nature of the left-

and right-hand side of (26). By Proposition 5 we know ti ∈ [0, Tmax], and hence this restriction

imposed by model (25) is nonbinding. As a result, model (2) and the extensive form of model (25)

are equivalent and yield the same optimal value.

Now suppose Ω̂ ⊆ Ω is such that realizations of Hω are identical for ω ∈ Ω̂, where |Ω̂| > 1;

i.e., scenarios in Ω̂ are distinguished only by dωik. The proposition’s second hypothesis ensures that

the value of Gωi is consistent for each activity i across Ω̂, and so all scenarios in Ω̂ can be treated

identically when executing the branching process. Because the disruption magnitude dωik does not

play a role in the branching process, the finest partition argument above still holds.

As discussed after formulating models (7) and (8), the first-stage continuous variables, ti, de-

termine Gωi except when ti = Hω, in which case the G-variables can either say that activity i

commences before or after the disruption. Hypothesis (24), which is repeated in the next theorem,

assumes that these choices are made consistently across all scenarios with the same disruption

time. This hypothesis is clearly satisfied if the realizations Hω, ω ∈ Ω, are distinct. Moreover, the

hypothesis is automatically satisfied when ti 6= Hω.

Theorem 8. Assume that we obtain a dual extreme-point solution to subproblem (SωP) in step 11

of Algorithm 1. Further assume hypothesis (24). Then, the algorithm terminates in finite number

of iterations to an ε-optimal solution to model (2) for any ε ≥ 0.

Proof of Theorem 8. Let z∗ denote the optimal value of model (2) or equivalently model (7). The

value of UB in the algorithm is an upper bound on z∗ because (t̂`, x̂`) is a feasible solution, and

its objective function value in model (7) is evaluated in step 7 of the algorithm. The value of LB

in the algorithm is a lower bound on z∗ because: (i) Proposition 6 ensures that the cuts (23g) are

an outer linearizations of fP(t, x, y); inequality (20) in the proof of Proposition 6 shows that fP

becomes tighter as the partition is refined; and, Proposition 7 shows that the finest partition yields

a model equivalent to model (2). Thus, if Algorithm 1 terminates according to step 2 then the

current incumbent is an ε-optimal solution.

For a fixed partition, P, Algorithm 1 can only add a finite number of new cuts because each

linear program (SωP) has a finite number of dual extreme points. After the final iteration in which

new cuts are added, partition P is refined in step 16 of the algorithm. Because there are a finite

25

number of scenarios the finest possible partition, if necessary, will be obtained in a finite number

of iterations. From Proposition 7 we know that with the finest partition the solution to model (25)

yields an optimal solution, and we will obtain the requisite cuts (23g) so that models (23) and (25)

are equivalent in a finite number of iterations.

5.3 Pruning Partitions Using Bound Tightening

Feasibility-based and optimality-based bound tightening schemes have proved powerful in mixed-

integer nonlinear programming to improve computational performance, e.g., Belotti et al. (2012),

Coffrin et al. (2015), Sundar et al. (2018). A feasibility-based bound tightening (FBBT) process

is suitable for our problem because the precedence relationships limit the start times of activities.

We solve the following linear programs to identify lower and upper bounds on the first-stage start

time of each activity:

min /max ti (28a)

s.t. constraints (7b)-(7f) (28b)

¯
ti ≤ ti ≤ t̄i ∀i ∈ I. (28c)

The bound tightening process starts with a set of initial bounds
¯
ti = 0 and t̄i = Tmax for each i ∈ I.

Looping over all the activities, we repeatedly solve model (28), iteratively updating the bounds t̄i

and
¯
ti that appear in (28c) with the obtained solutions until the bounds converge for every i ∈ I.

We run FBBT at the beginning of our decomposition method to provide the initial partition P0

to start Algorithm 1. If we can tighten the bounds of some activities, for example, by branch-and-

bound or heuristics, we can run FBBT to tighten the bounds for all activities, which leads to a

tighter formulation of the subproblems, (SωP), as further detailed in Section 5.8.

5.4 Obtaining a Heuristic Upper Bound

In our computation, we observe that it can take many iterations of Algorithm 1 before we find a

good feasible solution. When there is not a good upper bound to use as a “cutoff value,” it takes

an integer programming solver longer to solve model (MP). On the other hand, we can quickly

solve the extensive formulation (2) when the number of scenarios is small; e.g., |Ω| = 20. Solving

such a model provides a feasible first-stage solution (t̂, x̂), which can be used to generate an upper

bound for the problem with the larger, original set of scenarios. Therefore, we can generate N

small subsets of scenarios from the original scenario set, i.e., Ωn ⊂ Ω, n = 1, 2, . . . , N , and solve

model (2) with each of those subsets to generate candidate upper bounds, and select the one with

the smallest expected project span under Ω.

In generating Ωn, we observe that it is beneficial to have diverse scenarios within each subset.

As above, we sort the scenarios by disruption time so Hω ≤ Hω+1. For simplicity, suppose each

26

subset has equal size so that N · |Ωn| = |Ω|, ∀n. The n-th subset is then:

Ωn = {ω |ω = n+ (j − 1) · |Ωn|, j = 1, 2, . . . , N}.

In Section 6 we compare the computational time of the decomposition method with and without

initial upper bounds, and show the significant performance improvement by including the heuristic

upper bound.

5.5 Magnanti-Wong Cut Generation

In a Benders’ decomposition algorithm, linear programming subproblems can have multiple optimal

dual solutions, which means that at a specific incumbent solution, there are multiple valid cuts that

could be generated. Magnanti and Wong Magnanti and Wong (1981) provide a method to select

Pareto-optimal cuts, which cannot be dominated, and help tighten the LP relaxation of the master

program.

We apply a technique that pursues the same goal as Magnanti and Wong Magnanti and Wong

(1981) in order to tighten cuts at interior points of (MP). We record (t̂, x̂) solutions from previous

iterations, compute the corresponding ŷ for the current partition, and obtain the average, which

we denote (t0, x0, y0). We then solve the subproblems following the procedure of Magnanti and

Wong Magnanti and Wong (1981), using this average point as a proxy for the core point, i.e., a point

on the relative interior of the LP relaxation of (MP)’s feasible region. For each scenario ω ∈ Ω, first

we solve model (16) with the current master solution (t̂, x̂, ŷ) to obtain the optimal value, fωP (t̂, x̂, ŷ).

Next we need to find dual variables that ensure the dual objective value at (t̂, x̂, ŷ) is within a small

tolerance of fωP (t̂, x̂, ŷ) (e.g., εMW = 10−5), while maximizing the dual objective value at (t0, x0, y0).

Let the following denote the dual of (SωP) in compact form, suppressing dependence on ω:

fωP (t̂, x̂, ŷ) = max
π,λ,γ,η

π>(t̂+ bt) + λ>(x̂+ bx) + γ>(ŷ + by) + η>b (29a)

s.t. A>π π +A>λ λ+A>γ γ +A>η η ≤ c. (29b)

Here the b-parameters capture constant right-hand side terms in (SωP) involving H, x̄, D, “1”, B,

etc. We solve the following to obtain Magnanti-Wong cut parameters, v, π, λ, and γ:

v = max
π,λ,γ,η

π>(t0 + bt) + λ>(x0 + bx) + γ>(y0 + by) + η>b (30a)

s.t. π>(t̂+ bt) + λ>(x̂+ bx) + γ>(ŷ + by) + η>b ≥

(1− εMW)fωP (t̂, x̂, ŷ) (30b)

A>π π +A>λ λ+A>γ γ +A>η η ≤ c. (30c)

Our average point, (t0, x0, y0), may not be in the relative interior of the master problem’s feasible

region, e.g., if all solutions contributing to the average have a component of y taking value zero or

one. Although this means the resulting cuts may not be Pareto-optimal, they may still improve

computational performance, and we investigate this in Section 6.

27

5.6 Cut Selection

Algorithm 1 is a multi-cut version of Benders’ decomposition Birge and Louveaux (1988). A multi-

cut scheme can converge in fewer iterations, but each iteration is typically more computationally

expensive. The latter issue tends to exacerbate as the algorithm proceeds and cuts accumulate,

particularly when the master problem is a mixed-integer program.

As we discuss in the next section, when naively keeping all cuts, we see that the time required

to solve the master problem can grow quickly as the algorithm proceeds. Therefore, we limit the

number of cuts and only keep those that have been tight most recently at the end of each Benders’

iteration. Refining a partition can yield many loose cuts. Therefore, keeping only a limited number

of cuts eliminates unnecessary constraints, while still providing a valuable lower bound and reducing

computational effort.

5.7 Refining Partitions

Here, we indicate how a partition is refined in step 16 of Algorithm 1. The most significant

contributor to the optimality gap is that variable G can take fractional values in the relaxed

problem (SωP). For example, if dωik � Dik then Gi can take a fractional value far from optimal.

This can significantly alter the duration between activity i and k (see constraint (8h)) in the

LP relaxation, and thus create a large gap between the relaxation and the original mixed-integer

subproblem. Let Np be a parameter that limits the number of new partitions for each activity i ∈ I;

we use Np = 5 in our subsequent computation, unless stated otherwise. Suppose subproblem (SωP)

has as part of its solution Gωi , i ∈ I. Then separately for each i ∈ I our rule selects for partitioning

up to Np scenarios with the largest values of:

ρωi =


max(i,k)∈A d

ω
ikG

ω
i if ti < Hω

max(i,k)∈A d
ω
ik(1−Gωi) if ti > Hω

min{max(i,k)∈A d
ω
ikG

ω
i ,max(i,k)∈A d

ω
ik(1−Gωi)} if ti = Hω.

(31)

5.8 Branch-and-Cut Algorithm

In Algorithm 1 we iteratively refine the partition defining the y-variables, and each time we solve

the mixed-integer linear program (MP), we do so with a commercial solver. Algorithm 1 is not a

branch-and-cut (B&C) algorithm in that it does not adaptively generate different cuts at different

parts of a branch-and-bound tree. As a potential improvement to Algorithm 1, we propose here

a B&C algorithm, which involves a branch-and-bound (B&B) tree with nodes that we manage.

The root node in our B&B tree involves the initial partition obtained by the FBBT procedure of

Section 5.3, and we solve that node using Benders’ decomposition, which iteratively adds cuts to

(MP) until the problem is solved for the fixed partition, as in Algorithm 1. In the B&C algorithm

we recursively branch on a continuous variable ti via ti ≤ Hω and ti ≥ Hω for some i-ω pair.

28

Rather than actually branching on the continuous t-variables, this branching is carried out using

the partition (Pi,Qi) by fixing the corresponding subset of yqi -variables to zero. This helps manage

both the number of binary variables and the number of optimality cuts in a master problem. In

our implementation we solve the nodes in our B&B tree in parallel.

The optimal value of a B&B node provides a lower bound on the optimal value of (2). We

also continually update a global upper bound each time we obtain a feasible solution in a Benders’

decomposition iteration. If the gap between a node’s lower bound and the global upper bound is

smaller than the tolerance, we mark the node as fathomed. If not, we branch as follows:

select ω ∈ argmaxω∈Ω

[
fω(t̂, x̂)− fωP (t̂, x̂, ŷ)

]
(32a)

select i ∈ argmaxi∈I [ρωi] . (32b)

In (32a) we select the scenario ω with the largest relaxation gap. Then in (32b) we select the

activity with the largest ρωi from equation (31). This defines the i-ω pair for branching. Suppose

Hω ∈ [
¯
Hq, H̄q] for some q ∈ Qi. The new partition Pi will have two new elements indexed by q1

and q2 defined as [
¯
Hq1 , H̄q1] = [

¯
Hq, Hω] and [

¯
Hq2 , H̄q2] = [Hω, H̄q].

After a branch, for each child node we refine the partition on all activities i ∈ I according to

Section 5.7. The children inherit the parent node’s cuts, updated in a similar fashion as inequal-

ity (18). To set up notation for Algorithm 2, suppose that for activity i ∈ I the current B&B

node, say node n, has a partition Pni indexed by set Qni , and its parent node m has a partition Pmi
indexed by set Qmi . Then, the cuts inherited from node m are updated for node n as:

θω ≥ vω,m,` +
∑
i∈I

πω,m,`i (ti − t̂m,`i) +
∑
i∈I

∑
j∈Ji

λω,m,`ij (xij − x̂m,`ij)+

∑
i∈I

∑
q∈Qm

i

γω,m,qi

 ∑
q′∈∆n

i (m,q)

yq
′

i − ŷ
q,m,`
i

 ∀` = 1, 2, . . . , L. (33)

Here, ∆n
i (m, q) represents the descendant set of the partition Pni refined from the q-th element in

the partition Pmi . The cuts remain valid by Proposition 6 because the partitions in the child node

refine those of the parent node. The parent node is marked as fathomed after a refinement, and we

select the next available node with the smallest lower bound.

Putting all these pieces together, we summarize our partition-based branch-and-cut decompo-

sition method in Algorithm 2. As indicated above, in implementation we execute the algorithm’s

steps on each available node in parallel. As also indicated above, the algorithm inherits the conver-

gence result of Theorem 8 due to its use of Algorithm 1’s partitioning procedure for the y-variables.

5.9 Algorithm 2: Numerical Example

We illustrate Algorithm 2 on an example with ε = 0. We consider the network with five activities

that accompany the source and terminal, as shown in Figure 6. Each of the five activities has unit

29

Algorithm 2 Partition-based branch-and-cut algorithm to solve model (2).

1: Initialize tolerance parameters ε ≥ 0, and a global upper bound UB (Section 5.4);
2: Initialize the B&B tree with node 1, with the following properties: cut iteration number `1 = 1,

lower bound LB1, initial partition P1 with its indexed set Q1 (Section 5.3);
3: while there exists an available node such that UB−LBn

UB > ε do
4: Select available node n with smallest LBn;
5: Append inherited cuts from parent of node n to master (Mn

P) using (33);
6: repeat
7: Solve (Mn

P) and obtain solution t̂ `
n
, x̂`

n
, ŷ`

n
, θ̂`

n
and optimal value z∗P ;

8: if z∗P > LBn then
9: Update LBn = z∗P ;

10: For each ω ∈ Ω, solve problem (Sω) and obtain fω(t̂`
n
, x̂`

n
) and Ĝ`

n
;

11: Calculate z̄ = p0t̂ `
n

T +
∑

ω∈Ω p
ωfω(t̂`

n
, x̂`

n
);

12: if z̄ < UB then
13: Update UB = z̄ and incumbent solution as t∗ = t̂ `

n
, x∗ = x̂`

n
and G∗ = Ĝ`

n
;

14: for each ω ∈ Ω do
15: solve (SωP) given t̂ `

n
, x̂`

n
, ŷ`

n
and obtain optimal value vω,`

n
and πω,`

n
, λω,`

n
, γω,`

n

(i.e., Magnanti-Wong cut coefficients in Section 5.5);
16: if θ̂ω,` < vω,` then add cut of form (17) to (Mn

P);

17: Let `n = `n + 1;
18: until no cut is added;
19: if UB−LBn

UB > ε then
20: Branch via (32), creating two available children nodes, n1 and n2, from node n;
21: Refine partition for n1 and n2 to obtain Pn1 and Pn2 , respectively (Section 5.7);
22: Let LBn1 = LBn2 = LBn;
23: Select cuts to retain (Section 5.6);

24: Mark node n as fathomed;
end while

25: Output UB as the ε-optimal value of model (2), and (t∗, x∗, G∗) as the ε-optimal solution.

duration, and can be crashed with a single option that decreases the duration by 90% with one

unit of resource consumption, i.e., ei1 = 0.9, ∀i ∈ I \ {S, T}, and we let B = 2. The probability of

no disruption is p0 = 0.2, and the disruption can occur at four discrete time points, H1 = 1, H2 =

2, H3 = 3, H4 = 4, with equal probability pω = 0.2, ∀ω ∈ Ω = {1, 2, 3, 4}. The increase in

duration under a disruption is dωi = 10 for each activity-scenario pair. By Proposition 5 we can

bound the start time of each activity from above by Tmax = 9.

Figure 6: A five-activity serial network to illustrate Algorithm 2.

Running the FBBT procedure of Section 5.3 we obtain
¯
t1 = 0,

¯
t2 = 0.1,

¯
t3 = 0.2,

¯
t4 = 1.2,

¯
t5 =

2.2, and
¯
tT = 3.2. Given these values, and the realizations of Hω, we initialize node 1 of Algorithm 2

30

with the following partition, which precludes certain intervals for activities 4, 5, and T :

P1
1 = {[0, 9]} Q1

1 = {1}

P1
2 = {[0, 9]} Q1

2 = {1}

P1
3 = {[0, 9]} Q1

3 = {1}

P1
4 = {[0, 1], [1, 9]} Q1

4 = {1, 2} y1
4 = 0

P1
5 = {[0, 2], [2, 9]} Q1

5 = {1, 2} y1
5 = 0

P1
T = {[0, 3], [3, 9]} Q1

T = {1, 2} y1
T = 0.

Executing steps 6-18 of the algorithm, we solve node 1 with Benders’ decomposition, converging

to an optimal value of z∗P = 4.072, and in the process, we obtain an upper bound of UB = 6.607.

The optimal solution is:

t̂1 = 0 x̂11 = 0

t̂2 = 1 x̂21 = 0.1124

t̂3 = 1.899 x̂31 = 0.1124

t̂4 = 2.798 x̂41 = 0.8892

t̂5 = 2.997 x̂51 = 0.8860

t̂T = 3.2.

At this solution, by equation (32a) the largest relaxation gap is incurred at ω = 1, and equa-

tion (32b) corresponds to activity 3, which has a fractional solution of G3 = 0.125 in subprob-

lem (S1
P). We branch on i-ω pair 3-1, creating two children, node 2 and node 3. Node 2 has an

additional constraint, t3 ≥ H1 = 1 and node 3 has an additional constraint t3 ≤ H1 = 1. For each

activity i, we refine the partition by selecting the scenario with the largest nonzero ρωi for ω ∈ Ω,

i.e., for simplicity we use Np = 1; see Section 5.7. If the largest ρωi is zero for activity i, we do

not refine that activity’s partition. We again apply the ideas of Section 5.3, and solve a series of

linear programs (28) to tighten the bounds of start times for nodes 2 and 3, accounting for their

respective additional constraints t3 ≥ 1 and t3 ≤ 1. This refinement and bound-tightening process

yields:

Node 2:

P2
1 = {[0, 9]} Q2

1 = {1}

P2
2 = {[0, 9]} Q2

2 = {1}

P2
3 = {[0, 1], [1, 9]} Q2

3 = {1, 2} y1
3 = 0

P2
4 = {[0, 1], [1, 2], [2, 9]} Q2

4 = {1, 2, 3} y1
4 = 0

P2
5 = {[0, 2], [2, 3], [3, 9]} Q2

5 = {1, 2, 3} y1
5 = 0

31

P2
T = {[0, 3], [3, 4], [4, 9]} Q2

T = {1, 2, 3} y1
T = 0

Node 3:

P3
1 = {[0, 1], [1, 9]} Q3

1 = {1, 2} y2
1 = 0

P3
2 = {[0, 1], [1, 9]} Q3

2 = {1, 2} y2
2 = 0

P3
3 = {[0, 1], [1, 9]} Q3

3 = {1, 2} y2
3 = 0

P3
4 = {[0, 1], [1, 2], [2, 9]} Q3

4 = {1, 2, 3} y1
4 = 0

P3
5 = {[0, 2], [2, 3], [3, 9]} Q3

5 = {1, 2, 3} y1
5 = 0

P3
T = {[0, 3], [3, 4], [4, 9]} Q3

T = {1, 2, 3} y1
T = 0.

We fathom node 1 and nodes 2 and 3 inherit its cuts and lower bound. Breaking the tie arbitrarily,

we select and then solve node 2 with Benders’ decomposition and obtain an optimal value of

z∗P = 6.111. Node 2 then branches to nodes 4 and 5, which inherit the cuts and the lower bound

from node 2. The upper bound value remains UB = 6.607.

Node 3 now has the smallest lower bound, 4.072, among unfathomed nodes, and yields an

optimal value of z∗P = 6 and optimal solution:

t̂1 = 0 x̂11 = 1 (34a)

t̂2 = 0.1 x̂21 =
1

9
(34b)

t̂4 = 2 x̂41 = 0 (34c)

t̂5 = 3 x̂51 =
8

9
(34d)

t̂T = 3.2. (34e)

In the process of solving node 3, we also obtain a tighter global upper bound of UB = 6 associated

with solution (34), and hence the optimality gap at node 3 is zero. Nodes 4 and 5 can now be

fathomed because their lower bound of 6.111 exceeds UB. The algorithm terminates with the

optimal solution in equation (34), and the corresponding G-variables indicate that activities 1, 2,

and 3 start before disruption scenario 1, activity 4 starts before disruption scenario 2, and activity

5 starts before disruption scenario 3. The optimal objective function value is 6 = 0.6 · [3.2] + 0.2 ·
[2 + 11 · (1− 0.9 · 8/9) + 11]+ 0.2 · [3 + 11 · (1− 0.9 · 8/9)].

6 Experimental Results

In this section, we address the following questions with our computational results:

1. What is the value of model (2), which takes account of randomness in both the timing and

magnitude of a disruption? In other words, how does the quality of the solution to model (2)

compare to those of simpler alternatives?

32

2. How does the solution quality improve as the number of samples grows in a sample average

approximation?

3. How do Algorithms 1 and 2 perform versus solving the extensive formulation (2) using a state-

of-the-art MIP solver? How effective are the computational enhancements of upper-bound

generation, Magnanti-Wong cuts, and the cut-selection procedure from Sections 5.4-5.6?

Section 6.1 introduces the PERT networks and probability distributions characterizing the disrup-

tions for our test cases. In Section 6.2 we construct deterministic and semi-deterministic alternatives

to model (2), perform out-of-sample tests, and compare the quality of the resulting solutions to

those of model (2). We test how the sample size affects solution quality and requisite computational

effort in Section 6.3. Finally, in Section 6.4 we compare the performance of Algorithms 1 and 2 to

solving extensive formulation directly.

All tests are run on a server with 30 Intel Xeon cores at 3.1 GHz and 256 GB of RAM. For

Algorithm 2, each node is solved by 6 cores and we allow at most 5 nodes to be solved simultaneously

so that the maximum number of cores used at any time is again 30. All models are constructed

using version 0.18.0 of the JuMP package Dunning et al. (2017) on the Julia platform. All linear

programs and mixed-integer programs are solved by Gurobi 8.01 Gurobi Optimization, Inc. (2016)

with the integer feasibility tolerance and the primal feasibility tolerance both set to 10−8. Within

each node, Benders’ and Magnanti-Wong cuts are added through Gurobi callbacks. In addition,

we solve all problems using an optimality-gap tolerance of 10−2, including Algorithm 2’s ε = 10−2.

The cuts are generated with a tolerance parameter δ = 10−4; i.e., a cut is generated only when

θω,` ≤ vω,`−δ. We do so to prevent numerical issues in which (nearly) identical cuts are repeatedly

generated.

6.1 Test Cases Construction

We construct our test cases based on two activity networks from the literature, along with one we

create and one we generate randomly. In particular, we use an activity network from Plambeck

et al. Plambeck et al. (1996) with 11 activities, and one from Elmaghraby Elmaghraby (1977)

with 19 activities. We also manually create one activity network with 14 activities and randomly

generate one network with 35 activities using the tool RanGen Demeulemeester et al. (2003). In

the following section, we use “Case X” to denote the test case with X activities. Data for all four

test cases are detailed in Appendix B.

For each test case, the timing of the disruption is a discrete random variable sampled from a

lognormal distribution, which is commonly used to model failure times, e.g., Crow and Shimizu

(1987), Mullen (1998). The magnitude of the disruption for each activity follows an exponential

distribution (which we again sample) whose parameter varies among the activities; the exponential

distribution is widely used to model activity durations such as service times, e.g., Ross (1996).

33

6.2 Value of a Fully Stochastic Model

We compare the quality of five solutions, one from solving model (2) and four from solving simpler

alternatives, to investigate the value of modeling both the random timing and random magnitude

of a disruption. First, we can obtain a solution by solving a deterministic model (1), assuming

no disruption occurs, i.e., dω = 0 (denoted “DET”). Three semi-stochastic alternative models can

be solved assuming: both the timing and magnitude of the disruption are deterministic at their

expected values (denoted “EXP”); the timing is random but magnitude is fixed at its expected

value (denoted “HOnly”); and, the magnitude is random but timing is fixed at its expected value

(denoted “dOnly”). Finally, we construct the fully stochastic model (2) in which both the timing

and magnitude are random (denoted “FULL”). We sample 500 scenarios to solve HOnly, dOnly,

and FULL. Twenty batches of samples of size 5,000 are used to estimate an upper bound for each

candidate solution. The upper bound point estimate for those five candidate solutions is shown in

Figure 7, and the 95% confidence interval is shown in Table 2. Figure 7 scales the optimal value

Figure 7: Comparison of quality of alternative solutions in which the optimal value of “FULL” is
rescaled to 1.0.

of each test problem, dividing by that of FULL, and shows that the solution quality can be poor

without considering the uncertainty in the timing of a disruption. DET’s upper bound estimate

is at least 20% larger than that of FULL for all test cases. The upper bound estimates of dOnly

and EXP are similar and at least 10% larger than that of FULL. For Case 14, the upper bound

of HOnly is 20% larger than that of FULL, and is closer to that of FULL for the other three

cases. That said, given the sample sizes, the computational effort to solve HOnly and FULL are

comparable. These test results indicate that the fully stochastic model can outperform simpler

34

variants.

DET EXP dOnly HOnly FULL

Case 11 575.80 ± 16.88 454.33 ± 18.34 454.33 ± 18.34 287.05 ± 14.91 287.29 ± 14.92
Case 14 3309.27 ± 177.18 2878.65 ± 176.70 2876.42 ± 176.55 3098.05 ± 133.06 2602.97 ± 110.12
Case 19 426.09 ± 10.09 389.61 ± 7.88 388.77 ± 8.43 355.29 ± 7.14 356.42 ± 5.86
Case 35 1353.80 ± 21.11 1183.74 ± 18.52 1188.93 ± 19.53 1078.57 ± 17.31 1068.29 ± 17.47

Table 2: Compare optimal values from alternatives of the disruption model.

6.3 Simulation Budget

We examine how the quality of a solution changes with sample size. An SAA approach can provide

lower and upper bounds on z∗. And, these bounds converge to z∗ as the sample size grows to

infinity, e.g., Shapiro et al. (2009). The computational effort of solving an SAA instance also grows

with the sample size. We aim to determine a reasonable sample size, which yields a high-quality

solution without excessive computational effort. We first examine trends of lower and upper bounds

obtained from SAA as the sample size grows. For each test case, we first obtain 20 SAA solutions

and corresponding lower bounds with sample sizes of 10, 20, 50, 100, 200, and 500. For each

SAA solution, an upper bound estimator is evaluated using the same 5,000 samples. We present

both lower- and upper-bound estimators and their 95% confidence intervals, for each sample size in

Figure 8. From the figure we see the gap between the lower- and upper-bound estimators shrinks,

and both estimators become less variable as the sample size grows. While upper bound estimators

change little from 200 to 500 samples, lower-bound estimator still improve noticeably at these

sample sizes.

We examine the gap between the lower- and upper-bound estimates further using the common

random numbers procedure of Mak et al. (1999). Let gn(t, x) represent the objective function

of an SAA instance of model (7), under sample size n, given a first-stage solution, (t, x). From

the tests that generate Figure 8, we have 20 candidate first-stage solutions for each sample size,

among which we select the “best”, denoted (t∗, x∗), via the smallest value of g5000(t, x) using an

independently generated set of 5000 samples, which are common across the 20 candidate solutions.

Then we simulate another 20 instances with each sample size n ∈ {10, 100, 500, 1000}. For the i-th

instance, we obtain the lower bound estimate by solving mint,x g
(i)
n (t, x)—i.e., an SAA instance of

model (7)—the upper bound estimate by evaluating g
(i)
n (t∗, x∗), and their difference forms a point

estimate of the optimality gap. We present the sample mean of the optimality gap and a 95%

confidence interval on the gap in Table 3. Furthermore, we generate n =100,000 samples, and

estimate z∗ via a sample mean, gn(t∗, x∗), with this sample size, and the right-most column in the

table reports the confidence interval as a percentage of this estimate. We observe from Table 3

that the optimality gap tends to shrink as the sample size grows, and relatively large sample sizes

35

Figure 8: Confidence intervals, and point estimates, of the lower and upper bounds on z∗ for
different sample sizes.

are needed for Cases 14 and 19.

6.4 Computational Performance

In this section we discuss the computational performance of our decomposition method with its

various potential enhancements. As a benchmark, we compare the performance of Algorithms 1

and 2 to direct solution of the extensive formulation (2) using a commercial solver. We report the

wall clock time as the running time in the results that follow.

We first briefly comment on running Algorithm 2, with and without FBBT from Section 5.3.

Using a sample size of 500, we solve instances of Cases 11, 14, 19, and 35. In so doing, we use all

improvements described in Sections 5.4-5.6. FBBT can significantly improve the value of the LP

relaxation at the B&B tree’s root node, and this sometimes leads to modest improvements in the

total number of nodes that are explored. That said, the differences in overall run-times, with and

without FBBT, are mixed and not particularly large, and hence we do not present these results in

detail. We do employ FBBT in the remainder of this section.

Next, we show the quality of the heuristic upper bound of Section 5.4. We solve SAA instances

with sample sizes of 100, 200, and 500, and in the notation of Section 5.4 we use N = 10 in the

first two instances and N = 20 in the third instance. We compare the heuristic upper bound to

36

Sample Optimality 95% CI Percentage
size gap mean on gap of z∗ (%)

Case 11

10 3.7 [0,4.8] 1.7
100 4.1 [0,6.1] 2.1
500 1.1 [0,1.5] 0.5
1000 1.3 [0,1.7] 0.6

Case 14

10 796.5 [0,1042.7] 39.9
100 264.3 [0,317.1] 12.2
500 127.5 [0,155.5] 6.1
1000 80.2 [0,99.5] 3.9

Case 19

10 40.5 [0,49.4] 13.9
100 15.2 [0,17.3] 4.9
500 7.1 [0,8.1] 2.3
1000 5.9 [0,6.7] 1.9

Case 35

10 15.2 [0,26.4] 2.5
100 9.0 [0,10.9] 1.0
500 5.1 [0,6.0] 0.6
1000 6.1 [0,6.8] 0.6

Table 3: Mean, 95% confidence interval (CI) on optimality gap, and the value of the confidence
interval width relative to an estimate of z∗ based on evaluating the objective function at (t∗, x∗)
using 100,000 samples.

the optimal value of the SAA instance. Moreover, for each case/sample-size pair, we replicate the

procedure on 20 independent instances. Table 4 shows the smallest gap, the average gap, and the

largest gap, all as percentages, between the heuristic upper bound and the SAA optimal value

across the 20 replications. The table also shows the average time required to compute the heuristic

upper bound. We see that the average upper bound gap exceeds 5% only for Case 14 when the

Sample size
Gap (%) Average

Smallest Average Largest time (sec)

Case 11
100 0.01 0.5 2.3 5.6
200 0 0.15 0.83 17.8
500 0 0.07 0.37 67.5

Case 14
100 1.34 6.02 16.14 7.7
200 1.58 3.9 8.91 30.4
500 0.75 2.35 3.96 104.4

Case 19
100 0.56 2.67 5.28 9.9
200 0.05 0.99 2.03 37.2
500 0 0.72 1.59 127.6

Case 35
100 0 0.64 2.65 5.8
200 0.08 0.46 1.3 25.7
500 0 0.32 1.25 59.0

Table 4: Gap information between the heuristic upper bound and optimal value for twenty random
samples.

37

sample size is 100. Among all 240 SAA instances, there are only 15 for which the heuristic upper

bound exceeds the optimal value by more than 5%. We also observe that as the sample size grows,

the heuristic upper bound’s quality improves.

Table 5 shows run-time results for finding a heuristic upper bound and generating Magnanti-

Wong cuts while using Algorithm 2 with cut selection. Here we solve 20 replications for the sample

size of 500, assuming N = 20 in the notation of Section 5.4, and we obtain the mean running time.

In the table, “UB” means that we only use the heuristic upper bound of Section 5.4 and generate

regular Benders’ cuts, and “MW” means that we generate Magnanti-Wong cuts of Section 5.5

without the benefit of the upper bound heuristic. We also show the computation time of using

neither and using both techniques. Table 5 shows that obtaining a heuristic upper bound can

Running Time (sec.) Case 11 Case 14 Case 19 Case 35

Neither 73.0 682.3 1466.9 126.7
UB 55.4 677.9 1379.1 47.1
MW 122.9 1321.6 2065.1 207.1
Both 67.8 647.7 860.8 71.1

Table 5: Run-time results for using the heuristic upper bound and Magnanti-Wong cuts in Algo-
rithm 2 with cut selection.

reduce computational effort; this occurs because the bound facilitates earlier fathoming of some

nodes in the branch-and-bound tree when solving the master MIP. This outweighs the time required

to compute the upper bound; see Table 4. Magnanti-Wong cuts are effective for the harder cases

Case 14 and Case 19 when applied together with a heuristic upper bound.

Table 6 compares the run time of Algorithm 1 (denoted A1), Algorithm 2 (denoted A2), with and

without the cut selection procedure (CS). Here we use all improvements described in Section 5.3-

5.5. The table also shows the run-time for solving the extensive formulation (2) using Gurobi, again

to a relative optimality tolerance of 0.01. Due to the computational effort required to execute some

of the less efficient algorithms on large problem instances, we report results for a single replication.

Table 6 shows that although directly solving the extensive formulation may be faster when the

sample size is small, our decomposition algorithms tend to perform better as the sample size grows.

The improved computational performance occurs because, while our decomposition methods must

solve the master problem multiple times, the number of binary variables is significantly smaller

than that of the extensive formulation. We compare the computational progress of Algorithm 2

versus directly solving the extensive formulation in Figure 9. Algorithm 2 finds a good lower bound

more quickly because its form of branching can determine the value of many binary variables such

that the linear relaxation of the subproblems is relatively tight. From Table 4 we know the heuristic

upper bound is relatively tight, and so good lower bounds allow Algorithm 2 to terminate after

branching only twice in this example (Figure 9b).

38

Running
Sample Size

Methods
Time (sec.) A1 A1+CS A2 A2+CS Extensive

Case 11

100 8.7 7.4 20.0 10.0 5.0
200 16.7 34.8 20.0 20.0 40.3
500 273.3 240.9 103.4 114.1 1597.1
1000 279.9 326.7 73.0 80.1 5019.0

Case 14

100 45.2 31.0 43.7 40.0 13.7
200 137.5 126.0 150.2 101.0 158.7
500 1710.7 1578.0 1252.0 795.6 1263.1
1000 6284.1 7416.6 3135.1 1684.2 9808.3

Case 19

100 201.2 107.4 80.4 60.1 58.4
200 239.9 194.2 400.6 187.1 279.8
500 1643.7 1421.0 747.2 607.5 2792.9
1000 11259.1 8824.9 9785.2 2562.8 33698.5

Case 35

100 33.4 31.7 40.1 30.0 7.0
200 14.1 13.6 10.0 10.0 35.9
500 66.1 66.2 20.0 20.0 358.6
1000 241.0 248.0 40.1 40.1 662.0

Table 6: Computational performance with different sample sizes for decomposition methods and
directly solving the extensive formulation using Gurobi.

Algorithm 2 outperforms Algorithm 1 when the sample size exceeds 500. When the sample size

is large, Algorithm 1 requires many master iterations to converge, and solving the mixed-integer

master program becomes significantly harder. For Algorithm 2, the time saved by processing

nodes in parallel outweighs the slightly longer solution time at each node due to using fewer cores.

Moreover, because of branching, each master problem at a node in the B&B tree has a small number

of binary variables in Algorithm 2, which further accelerates the B&C algorithm. The results also

show that selecting cuts can significantly improve the decomposition methods. On the most difficult

instances, applying the cut selection scheme yields larger improvements for Algorithm 2 than for

Algorithm 1. On a different note, our implementation of the method of Qi and Sen Qi and Sen

(2017) does not solve any of our cases more quickly than directly solving the extensive formulation.

We also attempted to solve our instances using Benders’ decomposition in which we move all binary

variables to the first stage and generate cuts using Gurobi’s callback feature. This method is also

inferior to directly solving the extensive formulation and was unable to achieve the optimality-gap

tolerance within a reasonable time when the sample size exceeds 500.

7 Conclusions

In this paper, we introduce the concept of a stochastic disruption in the context of a project crash-

ing problem. We consider the case of a single disruption, and formulate the model as a two-stage

stochastic mixed-integer program in which the timing of the stage, i.e., the disruption time, is ran-

39

(a) (b)

Figure 9: Illustration of Case 19 with 500 scenarios: (a) computational progress of Algorithm 2
versus directly solving the extensive formulation with Gurobi; note the log scale on the x-axis. Dots
represent the upper and lower bounds after solving the correspondingly indexed node in the branch-
and-bound tree of Algorithm 2 and the curves represent the upper and lower bounds of directly
solving the extensive formulation using Gurobi. (b) branch-and-bound tree of Algorithm 2, LB
and UB represent the lower bound and the upper bound obtained by solving the two-stage relaxed
problem at each node. Nodes 2, 4 and 5 are fathomed because their local lower bounds either
exceed or lie within the tolerance of the best identified upper bound. The lower bounds in (a) are
the best available when each node is solved.

dom. We use examples to illustrate properties of our problem that deviate from its deterministic

counterpart, including the fact that it can be optimal to delay the start of an activity or crash a

shorter-duration activity, even under proportional reduction. While, conceptually, the underlying

problem involves continuous decision variables, we argue that the problem is NP-hard. In our

two-stage stochastic mixed-integer program, second-stage binary variables capture the logic of the

start time of an activity, relative to the disruption time. The resulting model is computationally

challenging, but we propose a decomposition method which exploits the logical temporal relation-

ship just mentioned, and sequentially partitions the feasible region of continuous first-stage decision

variables to generate tighter cuts in a Benders’ decomposition algorithm. The proposed method

can significantly improve computational performance, especially as sample sizes grow large.

The temporal aspect of a stochastic disruption is valuable in modeling contingencies and recov-

ery plans in infrastructure systems Yang and Nagarajan (2020), Yuan et al. (2016), and our ideas

may help advance future work for handling such disruptions in continuous time. Our decomposition

algorithm can be easily adapted to other scheduling problems under stochastic disruptions. For

example, in a spatial batch scheduling problem in manufacturing Srinivasan et al. (2015), we need

to decide the location and the start time of each job in continuous space and time, which induces

precedence relations for scheduling other jobs. In a model variant with a stochastic disruption,

the durations of processing times change after the disruption, and a delayed job will block other

jobs from being processed in its space, causing cascading effects. Our model can also be viewed

40

as handling a type of decision-dependent uncertainty Hellemo et al. (2018) in that investments in

crashing reduce uncertainty in an activity’s duration. So, our branch-and-cut algorithm may prove

useful in other such models in which the value of a stochastic parameter relies on a logical condition

between first-stage decision variables and other independent stochastic parameters, like the time of

disruption.

The ideas in this paper can be extended in further ways. There may be opportunities to

exploit network structure in tailoring the branch-and-cut algorithm that we have developed. The

distribution governing the disruption time and, conditional on that time, the magnitude of the

disruption may facilitate sampling strategies that reduce variance and improve solution quality.

We have considered a model and algorithm that allow for at most one disruption, but handling a

small number of disruptions could be attractive.

References

A. Aghaie and H. Mokhtari. Ant colony optimization algorithm for stochastic project crashing

problem in PERT networks using MC simulation. The International Journal of Advanced

Manufacturing Technology, 45(11):1051–1067, 2009.

S. D. Ahipasaoglu, K. Natarajan, and D. Shi. Distributionally robust project crashing with

partial or no correlation information. Optimization-Online, 2016. URL http://www.

optimization-online.org/DB_FILE/2016/11/5715.pdf.

P. Belotti, S. Cafieri, J. Lee, and L. Liberti. On feasibility based bounds tightening. Optimization-

Online, 2012. URL http://www.optimization-online.org/DB_FILE/2012/01/3325.pdf.

J. R. Birge and F. V. Louveaux. A multicut algorithm for two-stage stochastic linear programs.

European Journal of Operational Research, 34:384–392, 1988.

J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan. Scheduling subject to resource constraints:

classification and complexity. Discrete Applied Mathematics, 5(1):11–24, 1983.

R. A. Bowman. Stochastic gradient-based time-cost tradeoffs in PERT networks using simulation.

Annals of Operations Research, 53(1):533–551, 1994.

J. M. Burt and M. B. Garman. Conditional Monte Carlo: A simulation technique for stochastic

network analysis. Management Science, 18(3):207–217, 1971.

J. D. Camm, A. S. Raturi, and S. Tsubakitani. Cutting big M down to size. Interfaces, 20(5):

61–66, 1990.

B. Cardoen, E. Demeulemeester, and J. Beliën. Operating room planning and scheduling: A

literature review. European Journal of Operational Research, 201(3):921–932, 2010.

41

C. Carøe and J. Tind. L-shaped decomposition of two-stage stochastic programs with integer

recourse. Mathematical Programming, 83(1-3):451–464, 1998.

B. Chen, S. Küçükyavuz, and S. Sen. A computational study of the cutting plane tree algorithm

for general mixed-integer linear programs. Operations Research Letters, 40(1):15–19, 2012.

X. Chen, M. Sim, P. Sun, and J. Zhang. A linear decision-based approximation approach to

stochastic programming. Operations Research, 56(2):344–357, 2008.

C. Coffrin, H. L. Hijazi, and P. Van Hentenryck. Strengthening convex relaxations with bound

tightening for power network optimization. In International Conference on Principles and

Practice of Constraint Programming, pages 39–57. Springer, 2015.

I. Cohen, B. Golany, and A. Shtub. The stochastic time–cost tradeoff problem: a robust optimiza-

tion approach. Networks, 49(2):175–188, 2007.

E. L. Crow and K. Shimizu. Lognormal distributions: theory and applications. CRC Press, 1987.

P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells. Complexity of the discrete time-cost tradeoff

problem for project networks. Operations Research, 45(2):302–306, 1997.

E. Demeulemeester and W. S. Herroelen. Project scheduling: a research handbook, volume 49.

Springer Science & Business Media, 2006.

E. Demeulemeester, M. Vanhoucke, and W. Herroelen. RanGen: A random network generator for

activity-on-the-node networks. Journal of scheduling, 6(1):17–38, 2003.

I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical optimization.

SIAM Review, 59(2):295–320, 2017.

S. E. Elmaghraby. Activity networks: project planning and control by network models. Wiley, 1977.

D. R. Fulkerson. A network flow computation for project cost curves. Management Science, 7(2):

167–178, 1961.

D. Gade, S. Küçükyavuz, and S. Sen. Decomposition algorithms with parametric Gomory cuts for

two-stage stochastic integer programs. Mathematical Programming, 144(1-2):39–64, 2014.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., 1979.

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2016. URL http://www.gurobi.

com.

42

N. G. Hall and C. Sriskandarajah. A survey of machine scheduling problems with blocking and

no-wait in process. Operations Research, 44(3):510–525, 1996.

S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art heuristics for the resource-

constrained project scheduling problem. European Journal of Operational Research, 127(2):

394–407, 2000.

L. Hellemo, P. I. Barton, and A. Tomasgard. Decision-dependent probabilities in stochastic pro-

grams with recourse. Computational Management Science, 15(3-4):369–395, 2018.

E. J. Jaselskis and D. B. Ashley. Optimal allocation of project management resources for achieving

success. Journal of Construction Engineering and Management, 117(2):321–340, 1991.

H. Ke. A genetic algorithm-based optimizing approach for project time-cost trade-off with uncertain

measure. Journal of Uncertainty Analysis and Applications, 2(1):8, 2014.

J. E. Kelly. Critical-path planning and scheduling: Mathematical basis. Operations Research, 9(3):

296–320, 1961.

S. Kim, S. P. Boyd, S. Yun, D. D. Patil, and M. A. Horowitz. A heuristic for optimizing stochas-

tic activity networks with applications to statistical digital circuit sizing. Optimization and

Engineering, 8(4):397–430, 2007.

S. Kim, R. Pasupathy, and S. G. Henderson. A guide to sample average approximation. In Handbook

of Simulation Optimization, pages 207–243. Springer, 2015.

E. Klotz and A. M. Newman. Practical guidelines for solving difficult mixed integer linear programs.

Surveys in Operations Research and Management Science, 18(1-2):18–32, 2013.

M. E. Kuhl and R. A. Tolentino-Peña. A dynamic crashing method for project management using

simulation-based optimization. In Proceedings of the 40th Conference on Winter Simulation,

pages 2370–2376. Winter Simulation Conference, 2008.

P. Lamas and E. Demeulemeester. A purely proactive scheduling procedure for the resource-

constrained project scheduling problem with stochastic activity durations. Journal of Schedul-

ing, 19(4):409–428, 2016.

Z. Li and M. Ierapetritou. Process scheduling under uncertainty: Review and challenges. Computers

& Chemical Engineering, 32(4-5):715–727, 2008.

T. L. Magnanti and R. T. Wong. Accelerating Benders decomposition: Algorithmic enhancement

and model selection criteria. Operations research, 29(3):464–484, 1981.

43

W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for determining

solution quality in stochastic programs. Operations Research Letters, 24(1):47–56, 1999.

D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar. Application of a technique for research

and development program evaluation. Operations Research, 7(5):646–669, 1959.

R. H. Möhring and F. Stork. Linear preselective policies for stochastic project scheduling. Mathe-

matical Methods of Operations Research, 52(3):501–515, 2000.

R. E. Mullen. The lognormal distribution of software failure rates: origin and evidence.

In Proceedings Ninth International Symposium on Software Reliability Engineering (Cat.

No.98TB100257), pages 124–133, Nov 1998.

B. Naderi, M. Zandieh, and S. M. T. Fatemi Ghomi. Scheduling job shop problems with sequence-

dependent setup times. International Journal of Production Research, 47(21):5959–5976, 2009.

G. D. Oberlender. Project management for engineering and construction, volume 2. McGraw-Hill

New York, 1993.

A. B. Philpott, F. Wahid, and J. F. Bonnans. MIDAS: A mixed integer dynamic approximation

scheme. Mathematical Programming, 181(1):19–50, 2020.

E. L. Plambeck, B. Fu, S. M. Robinson, and R. Suri. Sample-path optimization of convex stochastic

performance functions. Mathematical Programming, 75(2):137–176, 1996.

Project Management Institute. A guide to the project management body of knowledge: PMBOK

guide. Project Management Institute, Newtown Square, Pennsylvania, 2017.

Y. Qi and S. Sen. The ancestral Benders cutting plane algorithm with multi-term disjunctions for

mixed-integer recourse decisions in stochastic programming. Mathematical Programming, 161

(1-2):193–235, 2017.

S. M. Ross. Stochastic processes, volume 2. Wiley New York, 1996.

J. Salmerón, R. K. Wood, and D. P. Morton. A stochastic program for optimizing military sealift

subject to attack. Military Operations Research, 14(2):19–39, 2009.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming: modeling and

theory. SIAM, 2009.

J. Söderlund. Building theories of project management: past research, questions for the future.

International Journal of Project Management, 22(3):183–191, 2004.

44

S. Srinivasan, J. P. Brooks, and J. H. Wilson. Batching-based approaches for optimized packing

of jobs in the spatial scheduling problem, pages 243–263. Springer International Publishing,

Cham, 2015.

K. Sundar, H. Nagarajan, S. Misra, M. Lu, C. Coffrin, and R Bent. Optimization-based bound

tightening using a strengthened QC-relaxation of the optimal power flow problem. arXiv

preprint arXiv:1809.04565, 2018.

S. Tonchia. Industrial project management. Springer, 2018.

R. M. van Slyke. Letter to the editor—Monte Carlo methods and the PERT problem. Operations

Research, 11(5):839–860, 1963.

W. Wiesemann, D. Kuhn, and B. Rustem. Robust resource allocations in temporal networks.

Mathematical Programming, 135(1):437–471, 2012.

H. Yang and H. Nagarajan. Optimal power flow in distribution networks under stochastic N-1

disruptions. Electric Power Systems Research, 189:106689, 2020.

G. Yu and X. Qi. Disruption Management: Framework, Models and Applications. World Scientific,

2004.

W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng. Robust optimization-based resilient

distribution network planning against natural disasters. IEEE Transactions on Smart Grid,

7(6):2817–2826, 2016.

J. Zou, S. Ahmed, and X. A. Sun. Stochastic dual dynamic integer programming. Mathematical

Programming, 175(1-2):461–502, 2019.

45

A Model when Disruption Affects Activities Yet to End

Model (2) assumes that activities that have started are not affected by the disruption, even if they

have yet to end. That is, the disruption only affects activities that have yet to start. Here, we

formulate a model under the complementary assumption that the disruption affects activities that

have yet to end. To do so, we model the end time of activities as the decision variables denoted

by t and tω. In addition variable Gωi indicates whether activity i finishes after the disruption in

scenario ω. In this situation, we further assume that the crashing decisions can be adjusted before

the activity ends. To obtain comparable computational results, we assume that durations Di and

dωi only depend on the activity, and not the precedence relationship, which is the same assumption

made in the computational experiments in the main text. For simplicity we formulate the model

under this assumption.

z∗ = min p0tT +
∑
ω∈Ω

pωtωT (35a)

s.t. tk − ti ≥ Dk

1−
∑
j∈Jk

ekjxkj

 ∀ (i, k) ∈ A (35b)

∑
i∈I

∑
j∈Ji

bijxij ≤ B (35c)

∑
j∈Ji

xij ≤ 1 ∀ i ∈ I (35d)

Hω +MGωi ≥ ti ∀ i ∈ I, ω ∈ Ω (35e)

Hω −M(1−Gωi) ≤ ti ∀ i ∈ I, ω ∈ Ω (35f)

tωi +M ′Gωi ≥ ti ∀ i ∈ I, ω ∈ Ω (35g)

tωi −M ′Gωi ≤ ti ∀ i ∈ I, ω ∈ Ω (35h)

xωij + x̄ijG
ω
i ≥ xij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (35i)

xωij − x̄ijGωi ≤ xij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (35j)

tωk − tωi ≥ Dk + dωkG
ω
k−∑

j∈Jk

Dkekjx
ω
kj −

∑
j∈Jk

dωk ekjz
ω
kj ∀ (i, k) ∈ A, ω ∈ Ω (35k)

∑
i∈I

∑
j∈Ji

bijx
ω
ij ≤ B ∀ω ∈ Ω (35l)

∑
j∈Ji

xωij ≤ 1 ∀ i ∈ I, ω ∈ Ω (35m)

zωij ≤ x̄ijGωi ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (35n)

zωij ≤ xωij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (35o)

46

zωij ≥ xωij + x̄ij(G
ω
i − 1) ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (35p)

ti ≥ 0 ∀ i ∈ I (35q)

tωi ≥ HωGωi ∀ i ∈ I, ω ∈ Ω (35r)

0 ≤ xij ≤ x̄ij ∀ i ∈ I, j ∈ Ji (35s)

0 ≤ xωij ≤ x̄ij ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (35t)

0 ≤ zωij ≤ 1 ∀ i ∈ I, j ∈ Ji, ω ∈ Ω (35u)

Gωi ∈ {0, 1}. ∀ i ∈ I, ω ∈ Ω. (35v)

The bulk of the model mirrors that of model (2), and so we do not repeat the corresponding

narrative. Constraints (35b) and (35k) differ due to the altered definition of the end-time decision

variables: the duration between the end time of activity i and k, if i precedes k, is the duration

of activity k, instead of that of activity i in model (2). Constraint (35r) ensures that if the

disruption occurs during an activity, the crashing decision cannot cause the activity to end before

the disruption.

Next, we present the effect of this altered assumption on the optimal values, i.e., the expected

completion times of the projects, in the first two rows of Table 7 using |Ω| = 500. We also test

how well the optimal solution to model (2) performs in model (35), and the optimality gap ranges

from 5% to 20%; see the final row of the table. This suggests the importance of selecting the most

realistic assumption when formulating the model. The decomposition algorithm can still be used

to solve model (35) with necessary, but minimal, changes in the recourse problem formulation. We

observe that changing the assumption does not significantly change the requisite computational

effort.

Optimal value Case 11 Case 14 Case 19 Case 35

Model (2) 229.8 2384.7 351.6 1043.3
Model (35) 402.0 12015.3 703.3 1431.1
(2) → (35) 481.6 13527.5 823.6 1498.2

Table 7: The first two numerical rows show the optimal values of models (2) and (35), with sample size 500.
The final row shows the suboptimal objective function value obtained by using the optimal crashing solution
of model (2) in model (35).

While we do not explicitly write the model here, it is possible to partition activities into two

groups that correspond to the respective assumptions of models (2) and (35) regarding whether

in-process activities are affected by a disruption. This can be done by defining both start and end

time variables for each activity in the same model, and enforcing the nonanticipativity constraints

differently for the two types of activities.

47

B Test Cases Data

We present the data of four test cases here. For all test cases we assume there is only one possible

crashing option for each activity. The option consumes 1 unit of resource and has the effectiveness

parameter of ei1 = 0.5 for all i ∈ I. The nominal scenario probability is p0 = 0.1 and pω = 1−p0
|Ω| .

The timing of the disruption follows a lognormal distribution with parameters µ and σ where the

mode is eµ−σ
2
. We also assume that the duration only depends on the predecessor, i.e., Dik = Di

and dωik = dωi . All di follow an exponential distribution with a mean of µi. The value of Di and µi

are shown in the following tables.

48

• Case 11: B = 3, µ = ln 6, σ = 0.5

Figure 10: Activity network of Case 11

Activity Di µi Activity Di µi
1 10 10−5 7 7.3 1
2 2 4 8 4.9 50
3 10 2 9 11.1 40
4 12 30 10 3.5 40
5 3 1500 11 9.9 5
6 10 1

Table 8: Activity duration Di and the mean of disruption magnitude µi for Case 11

49

• Case 14: B = 4, µ = ln 35, σ = 0.5

Figure 11: Activity network of Case 14

Activity Di µi Activity Di µi
1 5 10−5 8 49 4000
2 30 5 9 40 4000
3 25 40000 10 30 3000
4 20 40000 11 45 4000
5 15 1500 12 25 5
6 24 20000 13 21 5
7 30 20000 14 5 5

Table 9: Activity duration Di and the mean of disruption magnitude µi for Case 14

50

• Case 19: B = 4, µ = ln 8, σ = 0.5

Figure 12: Activity network of Case 19

Activity Di µi Activity Di µi
1 5 10 11 6 400
2 10 100 12 4.5 300
3 18 300 13 12 1000
4 35 300 14 1.5 10
5 6 50 15 2.1 200
6 6 50 16 8.1 2
7 2.5 400 17 6.1 100
8 8 20 18 0.001 40
9 10 1000 19 0.001 300
10 1 50

Table 10: Activity duration Di and the mean of disruption magnitude µi for Case 19

51

• Case 35: B = 8, µ = ln 4, σ = 0.3

Figure 13: Activity network of Case 35

Activity Di µi Activity Di µi Activity Di µi
1 9 10 13 5 200 25 1 300
2 7 40 14 2 10 26 4 400
3 3 30 15 5 400 27 3 200
4 4 100 16 2 10 28 4 1000
5 6 50 17 10 10 29 10 300
6 3 10 18 4 2000 30 7 500
7 10 10 19 8 10 31 2 200
8 4 20 20 8 500 32 9 100
9 3 10 21 1 500 33 7 100
10 6 1000 22 5 500 34 1 100
11 9 10 23 2 10 35 7 200
12 8 500 24 7 10

Table 11: Activity duration Di and the mean of disruption magnitude µi for Case 35

52

