PROXIMAL METHOD FOR /;,—NORM BASED SPARSE ENHANCED
CONTROL PROBLEMS IN LARGE-SCALE INTERCONNECTED
SYSTEMS
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Abstract. This paper considers linear quadratic optimal control problem of large-scale inter-
connected systems. An algorithmic framework is constructed to design controllers that provide a
desired tradeoff between the system performance and the sparsity of the static feedback matrix.
This is accomplished by introducing a minimization problem involving fp—norm of the feedback
matrix subject to a maximum allowable compromise in performance. To address the computational
difficulty caused by the use of fp—norm, we propose to approximate the £p—norm by its Moreau
envelope and the proximal algorithm with extrapolation is constructed to solve the approximated
optimization problem. Convergence analysis based on the Kurdyka-Lojasiewicz (KL) properties is
presented. Our numerical examples show that the proposed framework can obtain feedback matrices
with higher sparsity when compared with the model based on the ¢; —norm relaxation.
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1. Introduction. Consider the following control system

T = Az + Bid + Bou (11)
z = Ex + Du, (1.2)

where x € R", d € RY, u € R™ and z € R’ is the state variable, disturbance,
(input) control, and performance output, respectively, F = [Ql/ 2 07 € R**™ and
D =10 RY?T € R**™, where Q = QT = 0 and R = RT > 0 is the state and
performance weights, respecively, and it is assumed A € R™*™ be given such that
(A, By) is stabilizable and (A, Q'/?) is detectable.

By letting w = — Kz, the corresponding closed-loop system is then given by

&= (A— ByK)x + Bid (1.3)
T
z = [QUQ - Rl/zK} x, (1.4)

where K € R™*™ denotes the state-feedback matrix. This kind of control systems
arises in the analysis of distributed controllers for interconnected systems [7, 10, 13, 22]
where the interconnection structure of the system is often described by matrix A.
The embedded sturcture is then transferred to the feedback matrix that governs the
controllers via the Lyapunov-type relation [1]. The design of optimal control strategies
based on the closed-loop system (1.3)-(1.4) was well-studied, see for example [23]. If
there is no structural constraints imposed on K, the corresponsinding optimal control
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problem would be a standard linear-quadratic regulator (LQR) problem where the
stabilizing K minimizes the s norm of the communication cost function from d to
z (for example, see [23])

in t P(K)B; BT 1.
lnin race(P(K)B1 By ) (1.5)

where P(K) € R"*" is the observability Gramian of (1.3)-(1.4) given by
P(K) = / exp((A — BoK)Tt)(Q + KT RK) exp((A — By K)t)dt. (1.6)
0

For simplicity, throughout the paper, we shall denote P(K) by P. Using the standard
Lyapunov approach (see for example [1, 23]), P can be computed by solving the
following equation

L(K,P) = (A— ByK)"P+ P(A— ByK)+ (Q + K'RK) = 0. (1.7)
The solution of (1.5) subjected to (1.7) is then given by
K =R 'BIP, (1.8)
where P is the unique positive definite solution of the algebraic Riccati equation
ATP 4+ PA+ Q- PB,R'BIP=0. (1.9)

The classicial optimal control design often results a dense feedback matrix, im-
plying that the optimal controllers are formed using information from all subsystems
carried in K. However, in large networks of dynamical systems controllers that based
on dense feedback matrix may impose prohibitively expensive setup cost and compu-
tation burden [5, 22]. Moreover in many applications, the communication graph does
not have to be fully connected since the subsystems are dynamically coupled to each
other and allowed to control their own states. Hence, it is clearly desirable to obtain
a higher sparsity feedback matrix so as to reduce the setup cost for controllers that
control the interconnected systems, especially when the size of the system is large.
On the other hand, any alternation on the optimal feedback matrix will result in the
inflation of communication cost. Therefore the main aim of this paper is to formu-
late an optimization problem that can obtain some meaningful combination between
these two conflicting objectives, namely maximizing the sparsity of K while keeping
the communication cost of the system near the one obtained via a traditional optimal
control solution.

2. Model formulation and its approximation. The idea of sparsity has long
been used in signal and image processing and many areas of system science. Techni-
cally, it is the problem of minimizing the number of nonzero components of a vector,
which is referred to as the £o— norm. Hence, this paper proposes a new algorithmic
framework to maximize the sparsity of the state-feedback matrix, i.e. to minimize the
fo—norm of the feedback matrix subject to a maximum allowable increase from the
optimal cost obtained via a traditional optimal control solution. The aim is to allow
users to identify control configurations that strike a balance between the cost and the
sparsity of the controller and to examine the influence of different control configura-
tions on the performance of distributed systems. For this purpose, we consider the
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following optimization problem

duin Ko (2.1)
st. J(P)< (1+47)J(P), (2.2)
L(K,P) =0,

where ||K||o denotes the number of nonzero entries or the cardinality of the matrix
K, J(P) = trace(PB,BY) is the cost function at P and .J(P) is the benchmarking
cost index, obtained via the traditional optimal control problem (1.8). The positive
scalar v characterizes the trade-off between the relative performance and the level of
sparsity; a larger v encourages higher sparsity for K, while renders a higher cost when
compared to J(P).

The non-convexity and discontinuity of the y—norm inevitably impose algorith-
mic difficulties on solving the optimization problem (2.1). In practice, for instance in
compressive sensing and sparse representation [19, 22], the {y—norm is often apprxi-
mated by the convex £1—norm. However, it is found that such an approximation is not
always satisfactory for many real practical problems [14, 17]. In contrast to this con-
vex approximation, we shall employ another approximation for the fp— norm via the
Moreau envelope. The notion of the Moreau envelope function is fundamental in vari-
ational analysis [21]; for a proper, lower semi-continuous function ¢ : R™ — RU{+o0},
and a parameter value A > 0, the Moreau envelope (or Moreau-Yosida regularization)
function envyy(z) and its proximal mapping proxw(ac) are defined by

envaola) = inf {5 lle = 213+ 60:) | < o) (24
proxs,(a) = arg i, { 51 o = <1+ 0(2) . (25)

Several properties can be drawn on envyg(x) for A > 0: it is continuous and finite-
valued even if ¢ is only lower semi-continuous and may take on the extended value
+00. Moreover, it can be shown [21] that envy,(z) — ¢(z) whenever A — 07. These
proporties motivate us to approximate the fy—norm || - [lo in (2.1) by its Moreau
envelope env |, for some A > 0.

Denote the set C' associated with the constraint (2.2) by

C={K e R"™J(P) <o}, (2.6)
where o = (1 +v)J(P), and the indicator functon of C, by

0 , ifKeC(C,

400 , otherwise. (27)

IC(K){

Without the equality constraint (2.3) and by using the above notations, problem
(2.1)-(2.2) can be written as the following unconstrained problem

in ||Kllo + Ic(K). 2.8
(Lin Ko + Io(K) (2.8)

Hence, an approximate model using the Moreau envelope of {g—norm for some positive
A is given by

i 11 (K) + Io(K). 2.9
huin envy, (K) + Io(K) (2.9)
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Based on the definition of the Moreau envelope, (2.9) can be written as the following
two variables set unconstrained optimization problem

1
in  F(K,Z):=—||K—-Z|%+|Zllo+ Ic(K 2.10
i F(K,Z) = o K = 2% + 2] + () (2.10)
where || - | 7 denotes the Frobenius norm. The following lemma gives the connection

between the solution of (2.9) and the solution pair of (2.10)
LEMMA 2.1. Let C be the set given by (2.6). For any A > 0, if the pair (K*, Z*)
is a solution of (2.10), then

Moreover, K* is a solution of problem (2.9) with Z* € prozy ., (K*) if and only if
(K*,Z*) is a solution of problem (2.10).
Proof. Suppose that (K*, Z*) is a solution of problem (2.10). Then K* € C' and

F(K*,Z*) < F(K*, Z), (2.12)

for all Z € proxy., (K*). Suppose for the sake of contradiction that Z* ¢ prox, ., (K*).
Then, there exist some Z € prox, ., (K*) such that

1 * * * 1 *
K = Z7 [+ 127 o > 11K = ZIIE + 1Z]o. (2.13)

Hence, the definition of the proximity operator of || - ||p implies that F(K*,Z*) >
F(K*,Z), which contradicts (2.12).

We shall now proceed to show that a pair (K*,Z*) is a solution of problem
(2.10) if and only if K* is a solution of problem (2.9) with Z* € prox,., (K*). Let
G(K) :=envy).,(K) + Ic(K). Using the definition of the Moreau envelope we have

G(K) = F(K,Z), (2.14)

for all Z € prox, ., (K). Suppose that (K*,Z*) is a solution of problem (2.10), but

K* is not a solution of problem (2.9). Then there exists a matrix K € R™™ such
that G(K) < G(K*). By (2.14) one can get

F(K,Z)=G(K) < G(K*), (2.15)

for all Z € prox)\H,”O(K'). On the other hand, since (K*, Z*) is a solution of problem
(2.10) the first part of this lemma ensures that Z* € prox, ., (K*). Again by (2.14)
we then have

F(K,Z)=G(K) < G(K*) = F(K*, Z*), (2.16)

which violates the assumption of (K*, Z*) being a solution of problem (2.10).

Conversely, suppose that K™ is a solution of problem (2.9) with Z € prox, ., (K™),
then (K*, Z*) is a solution of problem (2.10). Indeed, if it is not the case, then there
exists a pair (K, Z) such that F(K, Z) < F(K*, Z*) for some Z € prox)\H.”O(f(). This
implies that G(K) < G(K*), which contradicts the assumption on K*. O

The above lemma clearly suggested that one can solve (2.8) by solving the equiv-
alent approximate problem (2.10). Thus, our main focus now is on the development
of algorithm to solve (2.10).
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3. Proximity algorithm and convergence analysis. This section motivates
an iterative algorithm for problem (2.1)-(2.3) using the fixed-point proximity that
characterize the critical points of the problem. We begin by considering the following
unconstrained nonsmooth minimization problem:

min#(z,y) := F(x) + G(y) + Q(z,y) (3.1)
where x € R™ and y € R™, F(x),G(y) are proper lower semi-continuous functions,
and Q(z,y) is a smooth function with Lipschitz gradient on any bounded set. The
proximal method proposed in [6] updates the estimate of (z,y) via solving the follow-
ing proximal problems:

1
2 € argmin F(@) + (0 — o)) TV,Q08, o) + skl —aME (32)

. 1 .
y*t € argming(y) + (y - ")V, Q@ Ty + Saslly — ot (33)

where of and of are two appropriately chosen steplengths. In fact if the Lipschitz

continuity moduli for VQ are known, the steplengths can be taken as a’f = oL (yx)

and af = aLy(zy11), respectively where a > 1, and Ly (y) and Lo(x) are the corre-
sponding Lipschitz moduli of VQ such that

[V:Q(z1,y) — Vo Q(x2,y)|| < L1(y)l|z1 — 22|, Vzi,22 € R", (3.4)
VyQ(z,91) — Vy Q(z,92)|| < La(@)[|yr — w2ll, Vyi,y2 € R™. (3.5)

Using the proximal operator defined as (2.5), the minimization of (3.1) is equivalent
to the following proximal problem:

1
M e pProx,, r <xk - aszQ(xk,yk)> ; (3.6)
1

1
y* ! € prox,,g (y’“ - nyg(x’““,y’“)) : (3.7)
2

Obviously, the ¢p—norm minimization problem (2.1)-(2.3) can be expressed in the
form of (3.1) by setting

F(K) = 1Ko (3.8)
G(P) = Ix(P); (3.9)
Q(K, P) = p|| L(K, P)|[%, (3.10)

where Iy (P) denotes the indicator function of P that satisfies Iy (P) =0if P € X =
{P € R"*"|J(P) < o} and +oo otherwise, Q is the penalty function for the equality
constraint (2.3) with an appropriate penalty parameter .

REMARK 1. One can view the equality constraint L(K,P) = 0, as a system of
quadratic polynomials, and thus Q(K, P) is nothing else but a forth degree polyno-
mial of the components of K and P. Therefore, we can define the partial defivative
operators with respect to both K and P as follows:

Vg = a[a(ij:il,...,m;jl,...,n ; (3.11)
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cii=1,...,n|. (3.12)

To simplify the proximal problem (3.6)-(3.7), it is possible to segregate Q from the
proximal equations. Suppose that a feasible candidate solution (K*, P*) is given such
that L(K*, P¥) = 0. Hence, (K", P*) is the (global) minimum point of Q(K, P) and
since @ is at least twice differentiable, then the first order optimality condition implies
that Vg Q(K* P*) = VpQ(K*, P¥) = 0. Using these observation, the proximal
problem (3.6)-(3.7) can be relaxed as follows:

Given (K*, P*) such that L(K*, P*) = 0.

Kkl e Prox,, r (Kk) ;o (3.13)
Compute P* s.t. L(K**1 P*) = 0; '
PFHL e prox,, ¢ (pk,K"’H) : (3.14)

Compute K*t1 s.t. L(K*t1, Pkt = 0; .
(Kk+1,Pk+1) «— (KkJrl,PkJrl)' (315)

To establish the convergence properties of the proposed framework, we give a
definition of subdifferential for nonconvex and nonsmooth mappings. For a proper
closed function h : R™ — RU {cc}, the (limiting) subdifferential (see, e.g. [9]) of h at
x € dom h is defined as

h(y) = h(zF) — ok - (y — 2F
Oh(x) = {v :3zF = 2z, 0F > v, liminf () (27) Uk (y —27)
y—ak ly — =k ||

> 0} ,  (3.16)
where it is assumed that for all k, ¥ — x implies that h(z*) — h(z) and dom
Oh = {x € R™ : Oh(x) # 0}. It is known that if h is continuously differentiable, the
subdifferential (3.16) reduces to the gradient of h, denoted by Vh; see, for example,
[40, Exercise 8.8(b)]. When h is convex, the above subdifferential reduces to the
classical Fréchet subdifferential, see, for example, [40, Proposition 8.12]. Moreover,
the point x is called a critical point of h if 0 € dh(x). It follows that if x is a local
minimizer of h then 0 € 9h(x).

Before proceeding to the convergence study, we recall the Kurdyka-Lojasiewicz
(KL) property, which plays a central role in our analysis. We begin by introducing
some notation. For any subset S C R™ and any point € R", the distance from x to
S is given by

dist(z,S) : inf{|ly —z|| : y € S}. (3.17)

Note that when S = ), it is defined that dist(x,S) = oo for all z. Let a € (0, 00| and
we denote @, the class of all concave and continuous functions ¢ : [0,a) — [0, 00) that
are continuously differentiable on (0, a) with ¢(0) = 0 and ¢/(s) > 0 for all s € [0,a).
We shall state the KL property.

DEFINITION 3.1. [6] A proper and lower semi-continuous function h : R™ —
(—00,00] is said to have the KL property at § € dom Oh := {s € R™ : Oh(s) # 0} if
there exist a € (0,00], a neighborhood S of 5 and a function ¢ € @, such that for all
s €S and h(3) < h(s) < h(s) + a, the following inequality holds

ol (h(s) — h(3)dist(0,0h(u)) > 1. (3.18)



Proximal method for sparse enhanced control 7

Moreover, if h satisfy the KL property at each point of dom Oh then h is called a KL
function.
The KL function is closely related to a so-called semi-algebraic function. Hence
we shall also state the definition of the semi-algebraic sets and functions as below.
DEFINITION 3.2. [6] A subset S of R™ is called the semi-algebraic set if there
exists a finite number of real polynomial functions p;; and g;; such that

S = Uﬂ{s €R™ : p;j(s) = 0,q(s) <0} (3.19)

Moreover, a function h(s) is called the semi-algebraic function if its graph (s,t) €
R™ x R:t=h(s)} is a semi-algebraic set.
THEOREM 3.3 ([6]). The sequence generated by the iteration (7) converges to the
critical point of (6), if the following conditions hold:
i. H(x,y) is a KL function;
ii. {(xF,y*)}, k=0,1,2,... is a bounded sequence and there exists some positive
constant c1 and co such that oz’f7 0/2C € (e1,¢2), k=0,1,2,...;

1. VQ has Lipschitz constant on any bounded set.

The first condition requires that the objective function satisfies the so-called
Kurdyka-Lojasiewicz (KL) properties in its effective domain; see Definition 3 in [14]
for more details on KL properties. It is shown in Remark 5 and Theorem 11 in [5]
that any so-called semi-algebraic function satisfy the Kurdyka-Lojasiewicz property.
In the next, we first give the definition of the semi-algebraic sets and functions, fol-
lowed by the proof that the objective function (6) defined via (10) is a semi-algebraic
function.

THEOREM 3.4 (Global convergence). The sequence generated by the Algorithm
1, {K*, P*} is a Cauchy sequence and converges to a critical point of (5).

Proof.

i. We shall show that H(K, P) is a KL function term by term. Firstly, since
Q(K, P) is a real polynomial function, it is a semi-algebraic function [14]. For
the indicator function Iy (P), it is shown that (see [3]) the indicator function
of semi-algebraic sets is semi-algebraic function. Since J(P) = tr(BBTP)
is a linear polynomial in term of P, it is quite obvious that X = {P €
R™ ™| J(P) < o} is semi-algebraic set and thus Iy (P) is a semi-algebraic
function. Lastly, for F(K) = || K||o, the graph of F is given by

S = UZ{(K,4) | Ko = i} (3.20)

Foreachi=0,...,mn,let S; ={J:J C {1,...,mn},|J| =i}, then {(K,1) :
1Ko =i} = Ujes, {(K,7) : Kjy =0,K; # 0}, where J' = {1,...,mn}\J. It
is easy to see that the set {(K,47) : Ky =0,K;, <0,—-Kj, <0}; J=JiUJy
is a semi-algebraic set and hence, F(K) is a semi-algebraic function since the
finite union of the semi-algebraic set is also semi-algebraic.

ii. If the initial approximation (K P) is chosen as (K, P) then one can con-
struct a level set Sp = {P : J(P) < J(P) < ~}, which is is closed and
compact. Thus, any P* € {P : J(P) < J(P) < ~}, Vk are bounded since
J(P) is a linear function with non-negative coefficients. Moreover, for every
bounded P*, the equality constraint L(K, P¥) = 0 is reduced to an algebraic
matrix Riccati equation in term of K. Since the system (A, Bg) is stabi-
lizable and (A, QY 2) is detectable, then these imply that the corresponding
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matrix Riccati equation will have bounded solution [16]. On the other hand,
since Q(K, P) is a real polynomial in term of K and P, then there exist
¢y ¢ ey, e5 > 0 such that

inf{L;(P*): k€ N} >¢; and sup{Li(K"): ke N} <cf; (3.21)

inf{Ly(P*): k€ N} > ¢, and sup{Ly(K"):kec N} <cJ. (3.22)
Then, for ¢; = min{c;,c; } and ¢z = max{c],cj }, we have of, ok € (c1, c2),
k=0,1,2,...:

iii. The satisfaction of condition (iii) is obvious due to the fact that Q in our
context is a real polynomial.

0

Based on the proximal iteration (3.13)-(3.15), we shall propose some closed form
of the proximity operators so that the execution of the above iterative scheme is
possible. Firstly, let us consider the proximity operator of the fg—norm. It is easy to
see that for every A > 0 and Y € R™*™, the proximity operator of the y—norm can
be expressed in the form of component-wise

prox/\”,H(Y) = prox/\‘,lo(Yij) , i=1,....n, j=1,...,m. (3.23)
nxm
Note that prox,|.|, can be seen as the hard thresholding operator (see, e.g. [21]) that
forces every variables except the large one to be zero. It can then be defined by

{0}, |V < V2,
proxyp, (Yij) = ¢ {0,Yy;} Yy = v2), (3.24)
{Yi;} . otherwise.

Now we turn our attention to the proximity operator of the indicator function.
Note that the role of K and P is interchangable. Once K is obtained, P can be com-
puted by solving (1.7) and vice-versa. From the definition of the proximity operator
of the indicator function,

1
prox;, (Y) := arg min {2)\|Y —P|%+4+1c(Y): Pc Rnxm} (3.25)
Since C'is a closed non-empty set, the proximity operator of I~ reduces to Euclidean
projection of a n X m matrix Y onto C, in which
Y
J(Y)

To motivate a practical algorithm based on these proximity operators, let us
investigate the strategy on the selection of the parameters and some accrelarating
technique that is useful to enhance the effectiveness of the algorithm.

prox; (Y) := min {J(Y), 0}

(3.26)

3.1. Selection on the parameters. An iterative scheme may be suggested as
below. Given K° and Z9,

VAR proxaA”,”O(aKk +(1—a)z"), (3.27)
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where o € (0,1) is a parameter to balance the two iterates K* and Z*. This is
inspired by the so-called proximity gradient method discussed as follows: Recall the
definition of prox, ., for A > 0:

. 1
proxyy1,(2) = are min {2 - 21+ 1210 . (3.29)

where the first term of the objective, h(Z) = 5 || K — Z||% is differentiable. Thus, the

corresponding proximity gadient method is given by

Zk+1 S pI‘OX(Xk)\”,HO(Zk — Oéth(Zk)) = pI‘OXale,HO(((Xk/A)Kk + (1 — (Oék/)\)Zk),

(3.29)
for which o > 0 is a step size. Equation (3.29) coincides with (3.27) when a fixed
step size o = a\ is used. Since Vh is Lipschitz continuous with constant L, it can
be shown that the proximity gradient method converges, i. e. Vh(Z*) — 0 (see, for
e.g. [19]) when a fixed step o* = a\ € (0,1/L] is selected. In this context, choosing a
fixed step size is much desirable since the Lipschitz constant is known, i.e. 1/\. Note
that having aX € (0, A] implies that any « € (0, 1] is acceptable. Because line search
methods often prefer largest possible step size, « = 1 should be used. However, this
choice would result in the neglection of K* in (3.29). Hence we make a small trade
off on the step size by taking o = %.

We now turn our discussion on the selection of A. It is known that A serves as
the threshold parameter of the hard thresholding operator in (3.29). Hence, a large
A encourages sparser solution in a faster pace. On the other hand, the discrepancy
between the approximate problem (2.10) and the original model (2.9) becomes smaller
as A\ decreasing. So a reasonable strategy that can combine both of the outcomes of
large and small A is to gradually decrease the value of A during the iterations. The
smallest A, is then set to determine on the quality of the solution. Under this
setting, we take the following steps: Choose an initial value Ay and a reducing
factor p < 1, update max{pA, Amin} < A. To encourage more variety of solutions
set, we use both fixed and random reducing factors. The one that gives the better
solution is adopted.

3.2. Accerelation for the proximity algorithm. Given P¥, the feedback
matrix K* can be computed by solving the corresponding algebraic Riccati equation.
However, this is not preferred because the solution process of the algebraic Riccati
equation can be time-consuming and most importantly, the sparsity of K obtained
in the previous iteration may be jeopardized through the solution process. Hence, a
simple remedy to accerelate the algorithm is to compute a new candidate by including
a gradient descent step in the algorithm:

KFL =z ok g(P(ZMY), (3.30)

where o is the step size. Furthermore to avoid the compute of V.J, one can employ
extrapolation step in the form of

KR =z R (ZF L — K, (3.31)

where w* € [0,1) is an extrapolation parameter. The parameter w* must be chosen in
specific ways to achieve the convergence acceralation consistent to that of a gradient
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descent step. A scheme for w suggested in [19] has the form: Given 70 = 1,
Sk V1+(27F)2 +1
= 5 ,

k
™1

Finally, based on the proximity operators, selection of the parameters and ac-
cerelation scheme, we can now propose the following accerelated method for problem
(2.10).

Accerelated Proximal Algorithm (APA)

Input: K =20 = Ka o = %7 Amax = 8, Amin = 9 X 10747 P = %a %a% (Only the

best result is reported), e = 1074

Step 0. Given K% Z° «, A, Amin, p, and 7°. Set &k := 0.

Step 1. Compute ZF*1 ¢ proxwl“lo(aKk +(1—a)Zk).

Step 2. Compute P* = P(Z*+1) by solving L(P, Z**') = 0 where L is defined by
(1.7).

Step 3. Compute P**! = prox; _ (P*).

Step 4. Compute w” according to (3.32) and K**! by (3.31).

Step 5. If the criterion

||Kk+1 _ Kk”F

K = 339

is met, set KO = KO «— K*+1 70 « Zk+1 X« pXA > Amin, and go to Step
0. Else, set k:= k4 1 and go to Step 1.
Remark. In Step 3, given Z¥*1, one can solve the following Lyapunov equation for
P:

(A — BoZH)TP 4 P(A— BoZHY) 4+ (Q + (ZMH)TRZM 1) = 0. (3.34)

The Bartels-Stewart method [4] has been the method of choice for solving small-
to-medium scale Sylvester and Lyapunov equations. The main idea of the Bartels-
Stewart algorithm is to apply the Schur decomposition [15] to transform (3.34) into a
triangular system which can be solved efficiently by forward or backward substitutions.
This method is implemented as lyap in Matlab toolbox. On the other hand given
P, (1.7) in Step 4 reduces to an algebraic Riccati equation in term of K, and can be
solved effectively using the algorithm by Arnold and Laub [2]. The Matlab tool care
implements this algorithm.

4. Numerical illustrations. In this section we evaluate the performance of
the proposed algorithm on the task of finding sparse controllers for three problems
inspired by a bio-chemical reaction, a network control system with N? unstable nodes
[14] and the power distribution of IEEE 39 New England power grid problem. Com-
putationally, the £o—norm is often approximated by the £; —norm. However, we shall
show that our method can produce better quality solution than the model that based
on the minimization of the relaxed norm min||K||; subject to the cost constraint
(2.2). Smoothing methods (see for example, [8] and the references herewithin) are the
common technique for nonsmooth optimization problems. For the purpose of illustra-
tion, the relaxed nonsmooth constrained optimization problem is solved by the Matlab
optimization solver fmincon. The following numerical examples are constructed to
validate the performance of the methods:
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Example 1. Consider a network of N systems coupled through the dynamics
(1.3)-(1.4) where

-1 0 =3 3 00 3 00
[A]; = 3 -1 0 |, [BiJu=]0 3 0|, [Bus=1|0 0 0 |,
0o 3 -1 0 0 3 0 0 O

with [-];; denotes the ij—th block of a matrix. Each system models a cyclic intercon-
nection that arises in bio-chemical reactions. Here A is a block diagonal matrix while
By is a diagonal matrix and Bs is the Korenecker product of [Bs];; and the identity
matrix. The performance weights (@ and R are set to identity matrices.

Example 2. The goal of this example is to investigate the structural properties
of optimal control of N2 nodes, which are randomly and uniformly distributed in a
square region of N x N. Each node is an unstable second order linear system coupled
with other nodes through the dynamics (1.3)-(1.4) where:

[A]n:[i ;}7 [Bl]n:{g (1)}

The diagonal of A is defined by [A];; and the off-diagonal [A];; (i # j) is the identity
matrix while By = By are the Kronecker product of [By];; and the identity matrix.
Again the performance weights (Q and R are set to identity matrices.

Example 3 This example considers the IEEE 39 New England Power Grid Model
with 39 buses and 10 generators. Generator 10 is an equivalent aggregated model for
the part of the network that it is assumed to be uncontrollable; generators 1 to 9 are
equipped with Power System Stabilizers, which provide good damping of local modes
and stabilize otherwise unstable open-loop system. Detailed description of the model
can be found in [11, 12]. We use a sparsity-promoting optimal control strategy to
design a supplementary wide area control signal aimed at achieving a desirable trade-
off between damping of the inter-area oscillations and communication requirements in
the distributed controller. Inter-area oscillations are associated with the dynamics of
power transfers and they are characterized by groups of coherent machines that swing
relative to each other. These oscillations are caused by weakly damped modes of the
linearized swing equations and they physically correspond to active power transfer
between different generator groups.

In the absence of higher-order generator dynamics, for purely inductive lines and
constant-current loads, the dynamics of each generator can be represented by the
electromechanical swing equations

N
M;b; + Di6; = P = > |Y; j| B E; sin(6; — 6;), (4.1)

j=1

where N denotes the number of generators, P; is the generator power injection in the
network-reduced model, and Y; ; is the Kron-reduced admittance matrix describing
the interactions among generators. After the linearization at an operating point the
swing equations reduce to

M+ D+ Lo =0, (4.2)

where M and D are diagonal matrices of inertia and damping coefficients, and the
coupling among generators is entirely described by the weighted graph induced by the
Laplacian matrix L.
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Let the state of the power network be partitioned as = [T 67 z7]T where
6 and 6 are the rotor angles and frequencies of 10 synchronous generators and x, are
the state variables which correspond to fast electrical dynamics. Hence, the linearized
dynamics is given by

u=—Kzx.

An equivalent but more versatile formulation of the optimal control problem is given
by Dorfler et al. [11] via the closed-loop observability Gramian P as

min J(P) = trace(PB; BT)
s. t.(A— BoK)'P+ P(A— BK) = —(Q + KTRK). (4.3)

Therefore the problem considered is reduced to that similar to our main problem.
Unlike Example 1-2 where the corresponding feedback gain matrix is square, here
in this example, it is a 9 X 75 non-square matrix. For the purpose of illustration
R=1 and Q = el — (I — %eeT) are chosen, where the choice of () is inspired by
slow coherency theory with € > 0 denoting a small regularization parameter and e is
the vector of all ones. The data set for A, By and By are available in [18].

To illustrate the performance of the methods, we define the following indicators:

Number of non-zero element in K J(P) (4.4)
= —: o= — == :
Number of non-zero element in &' ©  J(P)’

To

where K and P are given in (1.8). In all runs for Example 1 and Example 2, the cost
tolerence ~y considered is up to 0.2, i.e. the maximum allowable increased in cost is 20%
of the optimal cost. As for Example 3, note that the optimal cost without imposing
any sparsity requirement is 344.7694. We are particularly interested to obtain the
efficiency curve of sparsity and cost against . Hence ~ is allowed to grow up to 1.0,
i.e. up to twice of the optimal cost. The corresponding efficiency curve is plotted in
Figure 1 while the performances of the methods for Example 1 and Example 2 are
given in Table 1 and Table 2, respectively. An observation from the efficiency curve of
APA in Figure 1 reveals that the number of nonzero component in K decreases rapidly
initially with only a small grow in cost. However, the decreasing rate is slowing down
significantly when ~ is increased beyond 0.05. Therefore a desirable structure for K
would be the solution that associated with v = 0.05, for which the cost is 356.7155
with 72 nonzero components.

From the tables, we observe that although fmincon solver can generate lower cost,
APA can always produce a better quality solutions i.e. a much sparser K. Moreover,
we demonstrate that for large problems with hundreds of states, our method is able
to reach a sufficiently sparse solution while fmincon solver fails.

5. Conclusion. When the fp—norm function in (2.1) is replaced by its Moreau
envelope, problem (2.8) can be viewed as a relaxation of the combinatorial problem
(2.1)-(2.3). As the parameter varies over, the solution of (2.8) traces the trade-off
path between the performance and the feedback gain sparsity. When the solution
is the centralized feedback gain, we then allow a slightly increase the cost and em-
ploy an iterative algorithm the alternating direction method of multipliers (ADMM)
initialized by the optimal feedback matrix at the previous. After a desired level of
sparsity is achieved, we fix the sparsity structure and find the approximated optimal
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TABLE 4.1
Ezxample 1: fmincon vs APA

N ~ fmincon APA
To rc To rc
1.02 | 0.9688 | 1.0199 | 0.9022 | 1.0197
15 | 1.10 | 0.8266 | 1.1000 | 0.3688 | 1.0931
1.20 | 0.8444 | 1.2000 | 0.3688 | 1.0931
1.02 | 0.9422 | 1.0055 | 1.0000 | 1.0000
30 | 1.10 | 0.9422 | 1.0999 | 0.4200 | 1.0952
1.20 | 0.9422 | 1.2000 | 0.4200 | 1.1557
1.02 | 0.9200 | 1.0001 | 0.8034 | 1.0001
45 | 1.10 | 0.8962 | 1.0144 | 0.4352 | 1.0912
1.20 | 0.8843 | 1.0447 | 0.4352 | 1.1211
TABLE 4.2
Example 2: fmincon vs APA
N ~ fmincon APA
To rc To rc
1.02 1.0000 1.0000 0.5312 | 1.0019
50 | 1.10 0.9046 1.0999 0.5296 | 1.0021
1.20 0.9412 1.1821 0.5440 | 1.0019
1.02 | out of memory | out of memory | 0.5166 | 1.0062
100 | 1.10 | out of memory | out of memory | 0.5136 | 1.0047
1.20 | out of memory | out of memory | 0.5146 | 1.0050
1.02 | out of memory | out of memory | 0.4965 | 1.0005
200 | 1.10 | out of memory | out of memory | 0.4944 | 1.0003
1.20 | out of memory | out of memory | 0.4941 | 1.0011

structured feedback gain by an extrapolation scheme. Since the set of stabilizing
feedback gains is in general not convex, it makes it difficult to establish convergence
to the global minimum of (2.8). Even in problems for which we cannot establish the
convergence, our computational experiments suggest that the algorithm developed
provides an effective means for attaining a desired trade-off between the performance
and the sparsity of the controller.
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