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Abstract

Recently, Guan, Pan, and Zohu presented a MIP model for the thermal single-
unit commitment claiming that provides an integer feasible solution for any
convex cost function. In this note we provide a counterexample to this statement
and we produce evidence that the perspective function is needed for this aim.
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1. Introduction

The Unit Commitment (UC) problem is a basic problem arising in power
industries to coordinate and manage power generation units. Originated in now
mostly bygone monopolistic regimes, research on UC have been ongoing for
over 60 years and it still is very much an active area, with many hundredths of
scientific articles (cf. e.g. [1]) and new ones appearing continuously.

Lately, a prolific trend has been the study of “tight” Mixed-Integer Program-
ming formulations; in particular, the operating constraints of thermal units
present an interesting combinatorial structure, and therefore provide a chal-
lenging research topic. Recently, three different groups have independently pro-
posed “exact” MIP formulations for a quite general form of the single-unit (also
known as self-scheduling) problem including minimum up- and down-time con-
straints, ramp constraints, start-up/shut-down limits, and history-dependent
start-up costs. While single-unit problems are typically solved efficiently by
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Dynamic Programming (DP) algorithms even with convex nonlinear objective
functions [2] (as required by many applications), exact self-scheduling models
can clearly contribute to tighter formulations for the more challenging multi-unit
versions. The first proposal has been [3], based on the exact DP algorithm of [2];
then, similar results with different proof techniques appeared in [4]. These re-
sults were for linear objective functions, and therefore resulted in Mixed-Integer
Linear formulations. Recently, [5] presented a similar approach claiming that
the proposed formulation is “exact” (its continuous relaxation always has integer
optimal solutions) also for general convex costs. However, this claim is false.
This note provides a counterexample for the case of simple convex quadratic
costs, which are the most common costs used in power industry.

The structure of the note is the following: in Section 2 the formulation pro-
posed in [5] is recalled. In Section 3 we show a counterexample to the statement
that the model in [5] is exact for any convex cost function, and we clarify where
the conceptual error is. Finally, in Section 4 we announce a companion paper
partly solving the problem of finding an exact MINLP formulation for the case
of convex cost functions, and in the Appendix we provide full LP-format files
(read by most current general-purpose solvers) to replicate it.

2. The Guan-Pan-Zohu model

In [5] the following model is presented for the thermal single-unit commite-
ment problem indicated there as (9a)-(9k):

min
∑T

t=1 SU(s0 + t− 1)αt +
∑T

t=1

∑T−1
k=t+L−1 SD(k − t+ 1)βtk+∑T−`−1

t=L

∑T
k=t+`+1 SU(k − t− 1)γtk +

∑
tk∈T K

∑k
s=t w

s
tk(qstk, βtk) (9a)

s.t.
∑T

t=1 αt ≤ 1 (9b)

− αt +
∑T

k=min(t+L−1,T ) βtk −
∑t−l−1

k=L γkt = 0 t ∈ [1, T ]Z (9c)

−
∑t−L+1

k=1 βkt −
∑T

k=min(t+l+1,T ) γtk ≤ 0 t ∈ [L, T − l − 1]Z (9d)

θt −
∑t−L+1

k=1 βkt = 0 t ∈ [T − l, T ]Z (9e)

Cβtk ≤ qstk ≤ Cβtk s ∈ [t, k]Z , tk ∈ T K (9f)

qttk ≤ V βtk s ∈ [t, k]Z (9g)

qktk ≤ V βtk s ∈ [t, k]Z , k ≤ T − 1 (9h)

qs−1tk − qstk ≤ V βtk s ∈ [t+ 1, k]Z , tk ∈ T K (9i)

qstk − qs−1tk ≤ V βtk s ∈ [t+ 1, k]Z , tk ∈ T K (9j)

α, β, γ ≥ 0 (9k)
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The model uses the following parameters
T length of the time horizon
L, ` minimum up- and down-time
T K set of all possible pairs t ∈ [1, T ]Z and k ∈ [min{t+ L− 1, T}, T ]Z
SU , SD start-up cost, shut-down cost
s0 number of instants generator has been off before time 1 (assumed s0 ≥ `)
ws

tk(qstk, βtk) production cost function
C, C generation lower/upper bound
V ramp-up/-down rate
V start-up/shut-down limits

and the following decision variables:
αt denotes that the first start-up occurs at time t;
βtk denotes that the unit is on from t to k;
γtk denotes that the unit is off from t+ 1 to k − 1;
θt denotes that the unit is on at time t;
qstk denotes the power generated at time s if βtk = 1.

Note that we have corrected constraints (9c) and (9d), corresponding to con-
straints (9c) and (9d) in [5], as the original form in [5] did not consider the right
initial indices when the limits of the summations hit the time limit T . In [5],
model (9a)–(9k) is determined as the dual of model (7a)–(7e), that is a Dynamic
Programming model. Indeed, the model can be interpreted as minimum cost
path problem on an acyclic graph with the following features:

• nodes u+k for each k ∈ T ;

• nodes u−k for each k ∈ T ;

• two additional nodes source and sink;

• arcs (u−t , u
+
k ), associated with variables βtk; when traversed by the flow

they denote that the unit is on from t to k (extreme included);

• arcs (u+k , u
−
t ), associated with variables γkt; when traversed by the flow

they denote that the unit is off from k to t (extreme excluded);

• arcs (source, u−t ), associated with variables αt, that denote that the unit
will remain off until time t− 1.

Indeed, (9c) are flow conservation constraints at nodes u−t while (9d) are flow
conservation constraints at nodes u+t (except for a missing variable associated
with the arc (u+t , sink), that corresponds a slack). The other constraints can
be interpreted very easily.

3. A counterexample

Here we describe a simple counterexample to Proposition 1 in [5]:
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Proposition 1. The optimal solution to the dual formulation (9) (cf. here
(9a)-(9k)) is binary with respect decision variables α, β, γ, and θ.

We point out that the counterexample is mainly based on the observation
that the description of the convex hull of the feasible solutions is not sufficient
to obtain the desired property when the objective function is nonlinear (even if
convex, cf. e.g. [6]). Indeed, the counterexample considers only basic features
of UC, that is, a convex quadratic objective function and minimum/maximum
power limits, while relaxing all other features by setting high values for ramp
rates and start-up/shut-down limits. In the example we set minimum up- and
down-time equal to 3, but it is also possible to reduce this value to 1.

The instance.. We describe the simple instance that constitutes a counterex-
ample:

• T = 4,

• C = 44, C = 119

• s0 = 5

• L = 3, ` = 3

• SU(t) = 0, SD(t) = 0, t = 1, . . . , T ,

• V = C − C = 75,

• V = C = 119,

• ws
tk(qstk, βtk) = a(qstk)2 + bsq

s
tk + cβtk,

where a = 0.009096, b1 = −1.30768, b2 = −1.42883, b3 = −1.47917,
b4 = −1.54395, c = 120.599.

The model.. We remark that start-up (9g) and shut-down (9h) limits are not
necessary, as V = C. Similarly, the ramp constraints (9i) and (9j) are not
necessary, as V = C − C. Therefore, the model reduces to:

min
∑

t∈T K
∑k

s=t

(
0.009096(qstk)2 + bsq

s
tk + 120.599βtk

)
(9a)

s.t. α1 + α2 + α3 + α4 ≤ 1 (9b)

β13 + β14 − α1 = 0 (9c[1])

β24 − α2 = 0 (9c[2])

β34 − α3 = 0 (9c[3])

β44 − α4 = 0 (9c[4])

44βtk ≤ qstk ≤ 119 s ∈ [t, k]Z , tk ∈ T K (9f)

α, β, γ ≥ 0 (9k)
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The optimal solution.. It is very simple to check with the help of a MIQP solver
(such as CPLEX) that an optimal solution for the previous problem instance is:

α1 = 0.360962 β13 = 0.171256 q113 = 20.379406 q224 = 24.708599
α2 = 0.207635 β14 = 0.189706 q213 = 20.379406 q324 = 24.708599
α3 = 0.215512 β24 = 0.207635 q313 = 20.379406 q424 = 24.708599
α4 = 0.215891 β34 = 0.215512 q114 = 22.575026 q334 = 25.645983

β44 = 0.215891 q214 = 22.575026 q434 = 25.645983
q314 = 22.575026 q444 = 25.690986
q414 = 22.575026

with objective function value equal to −72.018180917. Note that the values of
the variables α and β are not binary, and this already establishes the counterex-
ample.

Additional remarks.. It may, however, be worth remarking that a fractional
optimal solution occurs in the counterexample because the objective function is
nonlinear. Indeed, if we modify the example simply by setting a = 0, any MILP
solver would confirm that the optimal solution becomes

α1 = 1, β14 = 1, q114 = q214 = q314 = q414 = 119

with an optimal value of −202.99997. Hence, the solution is now integral, al-
though not the optimal integral solution of the original problem. In fact, the
optimal value clearly provides a lower bound on that of the UC, but this is
worse than the bound provided by (9a)–(9k). We can confidently state that
the solution is not optimal because we can construct a tighter model using
the well-known Perspective Reformulation technique, first proposed in [6] (in-
cidentally, motivated exactly by UC) for constructing “tight” formulations of
Mixed-Integer NonLinear problems with semi-continuous variables with convex
nonlinear costs. Applying the technique to the counterexample results in

min
∑

t∈T K
∑k

s=t

(
zstk + bsq

s
tk + 120.599βtk

)
s.t. (9b) , (9c[1]) , (9c[2]) , (9c[3]) , (9c[4]) , (9f) , (9k)

0.009096(qstk)2 ≤ zstkβtk s ∈ [t, k]Z , tk ∈ T K

The last nonlinear constraints are rotated Second-Order Cone constraints (that
current solvers are typically able to handle), and therefore describe a convex
region. This represent the (epigraph of the) perspective function

p( qstk , βtk ) = 0.009096(qstk)2/βtk

that can be proven to be the convex envelope (best possible convex approxi-
mation) of the nonconvex (nonlinear) function corresponding to fact that qstk
is a semi-continuous variable “governed” by the binary variable βtk, i.e., βtk =
0 =⇒ qstk = 0, and βtk = 1 =⇒ qstk ∈ [C , C ]. Indeed, with this change the
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formulation turns out to be “exact”: any appropriate solver (such as CPLEX)
readily proves that its optimal solution is equal to zero for all variables, and
therefore has optimal objective function equal to zero, too. The optimal solu-
tion being integral, is therefore optimal for the integer version of the problem
as well (indeed, the obtained lower bound is much better than the previous two
ones). This can be shown to be a general result.

4. Conclusions

In this note we have provided a counterexample for Proposition 1 in [5],
stating that (9a)–(9k) is an exact formulation for the thermal single-unit com-
mitment problem valid for any convex cost. We have also shown that the issue
lies in the nonlinearity of the objective function, as the optimal solution indeed
becomes integer if we make the objective linear. In order to get an integer
solution in the nonlinear case, the Perspective Reformulation technique can be
used for our example. In a companion paper [7], we will show that an “ex-
act” formulation for the problem can always be obtained combining the two
ingredients above, i.e., DP-based formulations like these of [3, 4, 5], and the
Perspective Reformulation technique. The proof actually extends not only to
Unit Commitment problems but to a large class of problems with analogous
structure.
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Appendix A. Complete LP file of the example

The following file in LP format, read by most general-purpose solvers, com-
pletely represents the counter-example.

Minimize

obj: 361.797 B_1_3 - 1.30768 Q_1_3_1 - 1.42883 Q_1_3_2 - 1.47917 Q_1_3_3

+ 482.396 B_1_4 - 1.30768 Q_1_4_1 - 1.42883 Q_1_4_2 - 1.47917 Q_1_4_3

- 1.54395 Q_1_4_4 + 361.797 B_2_4 - 1.42883 Q_2_4_2 - 1.47917 Q_2_4_3

- 1.54395 Q_2_4_4 + 241.198 B_3_4 - 1.47917 Q_3_4_3 - 1.54395 Q_3_4_4

+ 120.599 B_4_4 - 1.54395 Q_4_4_4 + [ 0.018192 Q_1_3_1 ^2

+ 0.018192 Q_1_3_2 ^2 + 0.018192 Q_1_3_3 ^2 + 0.018192 Q_1_4_1 ^2

+ 0.018192 Q_1_4_2 ^2 + 0.018192 Q_1_4_3 ^2 + 0.018192 Q_1_4_4 ^2

+ 0.018192 Q_2_4_2 ^2 + 0.018192 Q_2_4_3 ^2 + 0.018192 Q_2_4_4 ^2

+ 0.018192 Q_3_4_3 ^2 + 0.018192 Q_3_4_4 ^2 + 0.018192 Q_4_4_4 ^2 ] / 2

Subject To

_9b#0: A_1 + A_2 + A_3 + A_4 <= 1

_9c_1#1: B_1_3 + B_1_4 - A_1 = 0

_9c_2#2: B_2_4 - A_2 = 0

_9c_3#3: B_3_4 - A_3 = 0

_9c_4#4: B_4_4 - A_4 = 0

_9fa_1_3_1#5: 44 B_1_3 - Q_1_3_1 <= 0

_9fa_1_3_2#6: 44 B_1_3 - Q_1_3_2 <= 0

_9fa_1_3_3#7: 44 B_1_3 - Q_1_3_3 <= 0

_9fa_1_4_1#8: 44 B_1_4 - Q_1_4_1 <= 0

_9fa_1_4_2#9: 44 B_1_4 - Q_1_4_2 <= 0

_9fa_1_4_3#10: 44 B_1_4 - Q_1_4_3 <= 0

_9fa_1_4_4#11: 44 B_1_4 - Q_1_4_4 <= 0

_9fa_2_4_2#12: 44 B_2_4 - Q_2_4_2 <= 0

_9fa_2_4_3#13: 44 B_2_4 - Q_2_4_3 <= 0

_9fa_2_4_4#14: 44 B_2_4 - Q_2_4_4 <= 0

_9fa_3_4_3#15: 44 B_3_4 - Q_3_4_3 <= 0

_9fa_3_4_4#16: 44 B_3_4 - Q_3_4_4 <= 0

_9fa_4_4_4#17: 44 B_4_4 - Q_4_4_4 <= 0

_9fb_1_3_1#18: - 119 B_1_3 + Q_1_3_1 <= 0

_9fb_1_3_2#19: - 119 B_1_3 + Q_1_3_2 <= 0

_9fb_1_3_3#20: - 119 B_1_3 + Q_1_3_3 <= 0

_9fb_1_4_1#21: - 119 B_1_4 + Q_1_4_1 <= 0

_9fb_1_4_2#22: - 119 B_1_4 + Q_1_4_2 <= 0

_9fb_1_4_3#23: - 119 B_1_4 + Q_1_4_3 <= 0

_9fb_1_4_4#24: - 119 B_1_4 + Q_1_4_4 <= 0
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_9fb_2_4_2#25: - 119 B_2_4 + Q_2_4_2 <= 0

_9fb_2_4_3#26: - 119 B_2_4 + Q_2_4_3 <= 0

_9fb_2_4_4#27: - 119 B_2_4 + Q_2_4_4 <= 0

_9fb_3_4_3#28: - 119 B_3_4 + Q_3_4_3 <= 0

_9fb_3_4_4#29: - 119 B_3_4 + Q_3_4_4 <= 0

_9fb_4_4_4#30: - 119 B_4_4 + Q_4_4_4 <= 0

_9g_1_3#31: - 119 B_1_3 + Q_1_3_1 <= 0

_9g_1_4#32: - 119 B_1_4 + Q_1_4_1 <= 0

_9g_2_4#33: - 119 B_2_4 + Q_2_4_2 <= 0

_9g_3_4#34: - 119 B_3_4 + Q_3_4_3 <= 0

_9g_4_4#35: - 119 B_4_4 + Q_4_4_4 <= 0

_9h_1_3#36: - 119 B_1_3 + Q_1_3_3 <= 0

_9i_1_3_2#37: - 75 B_1_3 + Q_1_3_1 - Q_1_3_2 <= 0

_9i_1_3_3#38: - 75 B_1_3 + Q_1_3_2 - Q_1_3_3 <= 0

_9i_1_4_2#39: - 75 B_1_4 + Q_1_4_1 - Q_1_4_2 <= 0

_9i_1_4_3#40: - 75 B_1_4 + Q_1_4_2 - Q_1_4_3 <= 0

_9i_1_4_4#41: - 75 B_1_4 + Q_1_4_3 - Q_1_4_4 <= 0

_9i_2_4_3#42: - 75 B_2_4 + Q_2_4_2 - Q_2_4_3 <= 0

_9i_2_4_4#43: - 75 B_2_4 + Q_2_4_3 - Q_2_4_4 <= 0

_9i_3_4_4#44: - 75 B_3_4 + Q_3_4_3 - Q_3_4_4 <= 0

_9j_1_3_2#45: - 75 B_1_3 - Q_1_3_1 + Q_1_3_2 <= 0

_9j_1_3_3#46: - 75 B_1_3 - Q_1_3_2 + Q_1_3_3 <= 0

_9j_1_4_2#47: - 75 B_1_4 - Q_1_4_1 + Q_1_4_2 <= 0

_9j_1_4_3#48: - 75 B_1_4 - Q_1_4_2 + Q_1_4_3 <= 0

_9j_1_4_4#49: - 75 B_1_4 - Q_1_4_3 + Q_1_4_4 <= 0

_9j_2_4_3#50: - 75 B_2_4 - Q_2_4_2 + Q_2_4_3 <= 0

_9j_2_4_4#51: - 75 B_2_4 - Q_2_4_3 + Q_2_4_4 <= 0

_9j_3_4_4#52: - 75 B_3_4 - Q_3_4_3 + Q_3_4_4 <= 0

_9k0_0#53: A_1 >= 0

_9k0_1#54: A_2 >= 0

_9k0_2#55: A_3 >= 0

_9k0_3#56: A_4 >= 0

_9k1_1_3#57: B_1_3 >= 0

_9k1_1_4#58: B_1_4 >= 0

_9k1_2_4#59: B_2_4 >= 0

_9k1_3_4#60: B_3_4 >= 0

_9k1_4_4#61: B_4_4 >= 0

_9k2_1_3#62: G_1_3 >= 0

_9k2_1_4#63: G_1_4 >= 0

_9k2_2_4#64: G_2_4 >= 0

_9k2_3_4#65: G_3_4 >= 0

_9k2_4_4#66: G_4_4 >= 0

End

The results relative to the linear objective function can be obtained by replacing
the objective function section in the file with
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obj: 361.797 B_1_3 - 1.30768 Q_1_3_1 - 1.42883 Q_1_3_2 - 1.47917 Q_1_3_3

+ 482.396 B_1_4 - 1.30768 Q_1_4_1 - 1.42883 Q_1_4_2 - 1.47917 Q_1_4_3

- 1.54395 Q_1_4_4 + 361.797 B_2_4 - 1.42883 Q_2_4_2 - 1.47917 Q_2_4_3

- 1.54395 Q_2_4_4 + 241.198 B_3_4 - 1.47917 Q_3_4_3 - 1.54395 Q_3_4_4

+ 120.599 B_4_4 - 1.54395 Q_4_4_4

while those relative to the “perspectivized” exact formulation can be obtained
by replacing the objective function with

obj: 361.797 B_1_3 - 1.30768 Q_1_3_1 - 1.42883 Q_1_3_2 - 1.47917 Q_1_3_3

+ 482.396 B_1_4 - 1.30768 Q_1_4_1 - 1.42883 Q_1_4_2 - 1.47917 Q_1_4_3

- 1.54395 Q_1_4_4 + 361.797 B_2_4 - 1.42883 Q_2_4_2 - 1.47917 Q_2_4_3

- 1.54395 Q_2_4_4 + 241.198 B_3_4 - 1.47917 Q_3_4_3 - 1.54395 Q_3_4_4

+ 120.599 B_4_4 - 1.54395 Q_4_4_4 + z_1_3_1 + z_1_3_2 + z_1_3_3

+ z_1_4_1 + z_1_4_2 + z_1_4_3 + z_1_4_4 + z_2_4_2 + z_2_4_3 + z_2_4_4

+ z_3_4_3 + z_3_4_4 + z_4_4_4

and adding the (rotated Second-Order Cone) constraints

[0.009096 Q_1_3_1 ^2 - B_1_3 * z_1_3_1 ] <= 0

[0.009096 Q_1_3_2 ^2 - B_1_3 * z_1_3_2 ] <= 0

[0.009096 Q_1_3_3 ^2 - B_1_3 * z_1_3_3 ] <= 0

[0.009096 Q_1_4_1 ^2 - B_1_4 * z_1_4_1 ] <= 0

[0.009096 Q_1_4_2 ^2 - B_1_4 * z_1_4_2 ] <= 0

[0.009096 Q_1_4_3 ^2 - B_1_4 * z_1_4_3 ] <= 0

[0.009096 Q_1_4_4 ^2 - B_1_4 * z_1_4_4 ] <= 0

[0.009096 Q_2_4_2 ^2 - B_2_4 * z_2_4_2 ] <= 0

[0.009096 Q_2_4_3 ^2 - B_2_4 * z_2_4_3 ] <= 0

[0.009096 Q_2_4_4 ^2 - B_2_4 * z_2_4_4 ] <= 0

[0.009096 Q_3_4_3 ^2 - B_3_4 * z_3_4_3 ] <= 0

[0.009096 Q_3_4_4 ^2 - B_3_4 * z_3_4_4 ] <= 0

[0.009096 Q_4_4_4 ^2 - B_4_4 * z_4_4_4 ] <= 0
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