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Abstract9

The minimum cut problem, MC, and the special case of the vertex separator problem, consists10

in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize11

the number of edges cut after removing the k-th set. Previous work on this topic uses eigenvalue,12

semidefinite programming, SDP, and doubly nonnegative, DNN, bounds, with the latter being13

strong but expensive. In this paper, we derive strengthened SDP and DNN relaxations, and14

propose a scalable algorithmic approach for efficiently evaluating both upper and lower bounds.15

16

Our stronger relaxations are based on a new gangster set, and we demonstrate how facial17

reduction, FR, fits in well to allow for regularized relaxations. Moreover, the FR appears to be18

perfectly well suited for a natural splitting of variables and thus for the application of splitting19

methods. Here, we adopt the strictly contractive Peaceman-Rachford splitting method, sPRSM.20

We discuss how useful redundant constraints can be brought back to the subproblems involved to21

empirically accelerate the sPRSM. We also propose new strategies for obtaining lower bounds22

and upper bounds of the optimal value of MC from the iterates of the sPRSM to help the23

algorithm terminate early. Numerical experiments on random datasets and vertex separator24

problems comparing with other existing approaches demonstrate the efficiency and robustness of25

the proposed method.26
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1 Introduction73

We present strengthened doubly nonnegative, both positive semidefinite and nonnegative elementwise,74

relaxations for the min-cut problem, MC, i.e., the problem of partitioning the set of nodes of a75

graph G into k subsets of given sizes in order to minimize the number of edges cut after removing76

the k-th set. Our relaxations are aimed at specifically applying splitting methods based on using77

the regularization technique facial reduction, FR, as well as employing new so-called gangster78

constraints. This results in strengthened upper and lower bounds for MC.79

We consider an undirected graph G = (V, E) with vertex and edge sets V, E , respectively, and80

|V| = n. We let m = (m1 m2 . . . mk)T ,
∑k

i=1mi = n, denote a given partition of n into k sets. The81

special type of minimum cut problem, MC, we consider consists in partitioning the vertex set V into82

k subsets, with given sizes in m, in order to minimize the cut obtained after removing the k-th set,83

i.e., we minimize the number of edges connecting distinct sets other than those edges connected to84

the k-th set, see e.g., [21]. This problem arises for example when finding a re-ordering to bring the85

sparsity pattern of a large sparse positive definite matrix into a block-arrow shape so as to minimize86

fill-in within a Cholesky factorization, e.g., [22]. The MC has further applications in computer87

program segmentation, solving symmetric systems of equations, microchip design and circuit board,88

floor planning and other layout problems [20]. In particular herein, we include consideration of89

the vertex separator problem, i.e., finding a vertex set whose removal splits the graph into two90

disconnected subsets, see e.g., [8, 22].91

It is well known that MC is an NP-hard problem when k ≥ 3, see e.g., [15,21]. Solution techniques92

rely on efficiently calculating lower and upper bounds. We refer the readers to [7,11,19,21,22] and the93

references therein for recent results for finding bounds and solving MC; and also to [22, Section 2]94

for a recent overview of existing relaxation techniques for solving MC. An important tool for finding95

lower bounds is the semidefinite programming, SDP , relaxation of MC; this is included in [19].96

Moreover, this relaxation uses facial reduction FR to guarantee strict feasibility and robustness for97

both the relaxation and its dual. However, these SDP problems are typically solved by interior point98

methods: these methods often do not scale well and cannot properly exploit sparsity. Moreover,99

while SDP lower bounds can be strengthened to yield better approximations to MC by adding extra100

nonnegativity and cutting plane constraints, the resulting optimization problems can be prohibitively101

expensive to solve for interior point solvers. Thus, in order to improve MC approximations, besides102

deriving tighter upper and lower bounds, one also needs to design efficient and scalable algorithms103

for computing these bounds.104
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1.1 Main Contributions105

In this paper, we derive tighter (lower and upper) bounds and design efficient algorithms for their106

evaluation. The bounds are based on strengthened SDP and doubly nonnegative, DNN, relaxations107

within a FR framework. Moreover, we introduce a random weighted sampling of eigenvectors to108

strengthen the upper bounds.109

Our stronger relaxations use a new gangster set; see Definition 2.4. This set can be larger than110

the one used in the literature, e.g., [19, 28], when some of the set sizes mi = 1. Then, as in [19],111

we apply FR to simplify these stronger SDP and DNN relaxations so that the facially reduced112

problems satisfy Robinson’s regularity condition. In addition, we show that many of the constraints113

are redundant in the facially reduced problem, resulting in a greatly simplified relaxation.114

Although many redundant constraints are removed, our final DNN relaxation is still very difficult115

to solve for interior point solvers. Here, we propose a scalable algorithmic approach. The key116

idea is that FR gives a natural way of reformulating the facially reduced DNN relaxation into a117

separable convex programming problem with linear coupling constraints. This sets the stage for an118

application of splitting methods such as alternating direction method of multipliers, ADMM [4].119

These methods typically involve updating the multiplier(s) and solving several subproblems every120

iteration. Their efficiency depends highly on the simplicity of the subproblems, and they can take a121

lot of iterations to obtain high accuracy solutions.122

Herein we employ a particular variant of ADMM, the strictly contractive Peaceman-Rachford123

splitting method, sPRSM , [12, 13]. This method involves two subproblems and two updates of the124

multiplier at every iteration. While a direct application of this method can be slow (i.e., takes a125

lot of iterations), we introduce two key ingredients for empirical acceleration. First, instead of just126

using the natural splitting induced by FR, as in the recent work [18], we bring back some provably127

redundant constraints that are not redundant for the subproblems as long as the constraint does128

not significantly increase the computational cost. Second, we derive new strategies for obtaining129

lower bounds and upper bounds of the true optimal value of MC. This helps with early termination130

of sPRSM when the two bounds agree. Specifically, we compute a lower bound by looking at the131

Fenchel dual. Moreover, we mimic the now classical Goeman-Williamson’s approach for MAXCUT132

and use a random weighted sampling of eigenvectors of an iterate of the sPRSM before projecting133

it onto the set of partition matrices for computing an upper bound.134

In the numerical experiments, we illustrate the efficiency of our proposed algorithmic approach135

(based on the strengthened DNN relaxation model) by comparing with the DNN relaxation model136

in [19], as well as the SDP4 model in [22]. Our experiments show that our approach takes less137

computational time and the bounds obtained are typically tighter.138

1.1.1 Outline139

In Section 2 we discuss properties of our new gangster sets and our facially reduced SDP and140

DNN relaxations. Our algorithmic sPRSM approach is presented in Section 3. We discuss the141

usefulness of redundant constraints and include details of the subproblems of sPRSM. And, we142

describe methods for obtaining both lower and upper bounds from possibly inaccurate solutions of143

the sPRSM. Our numerical results are presented in Section 4. Concluding remarks are given in144

Section 5.145
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1.2 Preliminaries146

Let A be the adjacency matrix of our graph, G = (V, E). Let e be the all ones vector, E be the
square matrix of all ones and I be the identity matrix, all of appropriate sizes.1 We set

B =

[
eeT − Ik−1 0

0 0

]
∈ Sk,

where Sk is the space of real symmetric k × k matrices equipped with the trace inner product ,147

〈S, T 〉 = traceST , and the corresponding Fröbenius norm, ‖S‖F . We use ‖S‖ = ‖S‖F , when the148

meaning is clear.149

Let m = (m1, . . . ,mk)
T ∈ Zk+, k > 2, and let n = |V| = mT e. Let S = {S1, S2, . . . , Sk} be a

partition of the vertex set with cardinalities |Si| = mi > 0, i = 1, . . . , k, i.e., the sets are nonempty,
pairwise disjoint, and the union is S. In addition, we let M = Diag(m) denote the diagonal matrix
formed from the vector m. More generally, for a vector x ∈ Rj , we define Diag : Rj → Sj to be the
linear transformation that maps x to the diagonal matrix whose diagonal is x; we denote its adjoint
linear transformation by diag, i.e, diag := Diag∗. Next, we define the set of edges between two sets
of nodes by

δ(Si, Sj) := {uv ∈ E : u ∈ Si, v ∈ Sj}.

The cut of a partition S, δ(S), is then defined as the union of all edges cut by the first k − 1 sets of
the partition, i.e.,

δ(S) := ∪{δ(Si, Sj) : 1 ≤ i < j ≤ k − 1} .

Our objective is to minimize the cardinality of the cut, i.e., |δ(S)|. In [21], it is shown that |δ(S)|
can be represented in terms of a quadratic form of the partition matrix X. This quadratic form for
the MC problem in the trace formulation is

cut(m) = min 1
2 traceAXBXT

s.t. X ∈Mm,
(1.1)

where the set of partition matrices, Mm is defined by

Mm =
{
X ∈ Rn×k : Xe = e, XT e = m,Xij ∈ {0, 1}

}
,

i.e., column j of a partition matrix X is the indicator vector for set Sj . We let x = vec(X) ∈ Rnk
denote the columnwise vectorization of the matrix X. The inverse and adjoint linear transformation
Mat : Rnk → Rn×k is

X = Mat(x) = vec∗(x) = vec−1(x).

2 SDP and DNN relaxations of MC150

In this section, we strengthen the facially reduced SDP relaxation presented in [19] and present151

our strengthened DNN relaxation to be used with our sPRSM approach below in Section 3. One152

way to derive an SDP relaxation for (1.1) is to start by considering a Lagrangian relaxation of a153

quadratic-quadratic model of MC. Taking the dual of the dual of this Lagrangian relaxation then154

1We will also use subscripts to specify the dimension whenever necessary, i.e., for a positive integer j, ej is the
j-dimensional vector of all ones, Ej = eje

T
j and Ij is the j × j identity matrix.
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gives the SDP relaxation for (1.1); see also [28,30] for the development for other hard combinatorial155

problems. Alternatively, we can obtain the same SDP relaxation directly using the well-known156

lifting process, e.g., [2, 16,25,28,30].157

2.1 Quadratic-quadratic models158

In our approach, we start with the following two equivalent quadratically constrained quadratic
problems to (1.1):

cut(m) = min 1
2 traceAXBXT = min 1

2 traceAXBXT

s.t. X ◦X = X s.t. X ◦X = x0X

‖Xe− e‖2 = 0 ‖Xe− x0e‖2 = 0∥∥XT e−m
∥∥2

= 0
∥∥XT e− x0m

∥∥2
= 0

X:i ◦X:j = 0, ∀i 6= j X:i ◦X:j = 0, ∀i 6= j
XTX −M = 0 XTX −M = 0
diag(XXT )− e = 0 diag(XXT )− e = 0

x2
0 = 1.

(2.1)

The equivalence of the constraint set in the first optimization problem in (2.1) to Mm can be found
in [29]. Here u ◦ v denotes the Hadamard (elementwise) product of the two vectors u, v. Note that
we add x0 and the constraint x2

0 = 1 to homogenize the linear terms. If x0 = −1 at the optimum,
then we can replace it with x0 = 1 by changing the sign X ← −X while leaving the objective value
unchanged. We next linearize the quadratic terms in the second optimization problem in (2.1) using
the matrix lifting

Y :=

(
x0

x

)
(x0 xT ), x = vec(X). (2.2)

Then Y ∈ Snk+1
+ and is rank-one. The rows and columns of Y are indexed from 0 to nk. Note that

Y in (2.2) can be blocked appropriately as

Y =

[
Y00 Y T

1:nk 0

Y1:nk 0 Y

]
, Y1:nk 0 =


Y(10)

Y(20)
...

Y(k0)

 , Y =


Y

(11)
Y

(12)
· · · Y

(1k)

Y
(21)

Y
(22)
· · · Y

(2k)
...

. . .
. . .

...

Y
(k1)

. . .
. . . Y

(kk)

 , (2.3)

with
Y

(ij)
∈ Rn×n, ∀i 6= 0,∀j 6= 0, and Y(j0) ∈ Rn, ∀j = 1, . . . , k.

With the matrix lifting for Y , we can rewrite the objective function in (2.1) in linearized form
as

1

2
traceAXBXT =

1

2
traceLAY, (2.4)

where

LA :=

[
0 0
0 B ⊗A

]
.

We next recall how to obtain linearized formulations for the constraints in the second optimization159

problem in (2.1), i.e., all the quadratic terms in (2.1) are linearized with the rank-one positive160

semidefinite matrix Y in (2.2). Therefore, we obtain an equivalent rank-one SDP model.161
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2.2 SDP and DNN constraints162

2.2.1 The arrow constraint163

It follows from the first constraint in the second optimization problem in (2.1), x2
0 = 1 and (2.2)

that the diagonal equals the first column (and row) and that Y00 = 1, i.e.,

Y ∈ {Y ∈ Snk+1 : Y00 = 1, diag(Y ) = Y:0}.

The above set is further clarified by using the linear mapping arrow : Snk+1 → Rnk+1, and the
corresponding constraint

arrow(Y ) := diag(Y )−
[

0
Y1:nk 0

]
= e0, (2.5)

where e0 is the first (0-th) unit vector. This constraint is redundant in the final SDP relaxation164

(see Theorem 2.13 below).165

2.2.2 DNN, doubly nonnegative166

From the matrix lifting in (2.2), we obtain Y � 0. Then the arrow constraint yields nonnegativity for
the first row (and column) of Y . Now from the first and last constraints in the second optimization
problem in (2.1), and relaxing the 0, 1 property of x0X ∈ Mm to 0 ≤ x0X ≤ 1, we obtain the
following constraints

Y ∈ DNN ∩ {Y ∈ Snk+1 : 0 ≤ Y ≤ 1}, (2.6)

where, by abuse of notation, DNN also stands for the doubly nonnegative cone, i.e., the intersection167

of the positive semidefinite cone and the nonnegative orthant.168

2.2.3 Trace constraints169

Using (2.2), the second and third constraints in the second optimization problem in (2.1) along with
x2

0 = 1 yields

traceD1Y = 0, D1 :=

[
n −eTk ⊗ eTn

−ek ⊗ en (eke
T
k )⊗ In

]
,

traceD2Y = 0, D2 :=

[
mTm −mT ⊗ eTn
−m⊗ en Ik ⊗ (ene

T
n )

]
,

(2.7)

where ej is the vector of ones of dimension j. Here Di � 0, i = 1, 2. The nullspaces of these matrices170

yield the facial reduction, as we will discuss in Section 2.3 below. The detailed derivation can be171

found in e.g., [10]. These two constraints are redundant in the SDP relaxation after the FR; see172

Theorem 2.13 below.173

2.2.4 Block: trace, diagonal and off-diagonal174

We now consider the fifth and the sixth constraints in (2.1). We define the following linear175

transformations.176
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Definition 2.1. Let Y ∈ Snk+1 be blocked as in (2.3). Define the linear transformation Dt :

Snk+1 → Sk so that (Dt(Y ))ij is the trace of the block Y
(ij)

, i.e.,

Dt(Y ) :=
(

traceY
(ij)

)
∈ Sk;

define the linear transformation Dd : Snk+1 → Rn as the sum of diagonals in each block Y
(ii)

, i.e.,

Dd(Y ) :=

k∑
i=1

diag Y
(ii)
∈ Rn;

define the linear transformation Do : Snk+1 → Sk so that (Do(Y ))ij is the sum of off-diagonal entries

in the block Y
(ij)

, i.e.,

Do(Y ) :=

∑
s 6=t

(
Y

(ij)

)
st

 ∈ Sk.

We have the following results for the transformations Dt,Dd, and Do.177

Proposition 2.2. Let Y be defined as in (2.2) with X and x0 satisfying the constraints in the

second optimization problem in (2.1). Let M̂ := mmT −M . Then the following holds:

Dt(Y ) = M ; Dd(Y ) = en; Do(Y ) = M̂. (2.8)

Proof. For any feasible Y blocked as in (2.3), along with the fifth, sixth and seventh constraints in
(2.1), we have the corresponding block trace and block diagonal constraints:

Dt(Y ) =
(

traceY
(ij)

)
=
(

traceX:iX
T
:j

)
=
(

traceXT
:jX:i

)
=
(
XT

:jX:i

)
= XTX = M ;

Dd(Y ) =
k∑
i=1

diag Y
(ii)

=
k∑
i=1

diag(X:iX
T
:i ) = diag(

k∑
i=1

X:iX
T
:i ) = diag(XXT ) = e.

These prove the first two equations in (2.8). Next, note that

Do(Y ) =
(∑

s 6=t

(
Y

(ij)

)
st

)
=
(
eTY

(ij)
e
)
−
(

traceY
(ij)

)
.

Using this together with the third and the last constraints in (2.1), we have(
eTY

(ij)
e
)

=

(
eT
(
X:iX

T
:j

)
e

)
=

(
mix0mjx0

)
= mmT .

It then follows from the above two equations and the first equation in (2.8) that

Do(Y ) = mmT −M.

178
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Corollary 2.3. Let Y be defined as in (2.2) with X and x0 satisfying the constraints in the second
optimization problem in (2.1). Partition Y in blocks as in (2.3). Then we have

traceY = n+ 1 (2.9)

and
eTY(i 0) = mi, i = 1, . . . , k. (2.10)

Moreover, the objective value in (2.4) satisfies

1

2
trace(LA + αI)Y =

1

2
traceLAY +

α

2
(n+ 1), ∀α ∈ R. (2.11)

Proof. The first equation (2.9) follows from Dt(Y ) = M in (2.8), and the facts that eTm = n and179

Y00 = 1. The second equation (2.10) can be obtained by combining Dt(Y ) = M and the arrow180

constraint (2.5). The last equation follows immediately from (2.9).181

All the constraints in (2.8) are redundant in the final SDP relaxation; see Theorem 2.13 below.182

2.2.5 Gangster constraints183

We now obtain constraints on the individual blocks in the submatrix Y , based on the fourth
constraint in (2.1). These constraints typically result in elements of Y being set to 0.2 We let GΩ

represent the coordinate projection map on Snk+1 that chooses the elements in the index set Ω, i.e,

GΩ(Y ) =
(
Yij
)
ij∈Ω

(∈ R|Ω|), Ω ⊆ ∆0:nk := {ij : 0 ≤ i ≤ j ≤ nk}.

By abuse of notation, we assume that the (gangster) indices are restricted to the upper triangular
indices ∆0:nk, even when not specified so. We denote the complement of Ω in ∆0:nk by Ωc. The
adjoint of GΩ, denoted by G∗Ω : R|Ω| → Snk+1, is given by

(G∗Ω(w))ij =


1
2wij if i 6= j and ij or ji ∈ Ω,
wii if ii ∈ Ω,
0 otherwise.

We now define the following index sets, including the gangster index set.184

Definition 2.4 (Restricted gangster set). Let K := {1, . . . , k}, I := {i ∈ K : mi = 1}, and the
complement Ic := K\I. Define mone ∈ Rk by

(mone)i =

{
1 if i ∈ I,
0 if i ∈ Ic.

Define J0 ⊆ ∆0:nk to be the set of (gangster) indices corresponding to the ones in (Ek − Ik)⊗ In +
Diag(mone)⊗ (En − In), i.e.,

J0 := ∆0:nk ∩ (Θo ∪ΘI), (2.12)

where
Θo := {all diagonal positions of all off-diagonal blocks},
ΘI := {all off-diagonal positions of the ith diagonal blocks if mi = 1}.

2The name gangster refers to shooting holes in the matrix, a term coined originally by Philippe Toint.

9



Fix a j0 ∈ Ic. Define the gangster subsets, Ji, i = 1, 2, 3, by

J1 := all diagonal positions of the (i, k) (and (k, i)) blocks, ∀i ∈ I\{k};
J2 := all diagonal positions of the (j0, k) (and (k, j0)) blocks;

J3 := all diagonal positions of the (k − 2, k − 1) (and (k − 1, k − 2)) blocks.

Then we define the restricted gangster set, JI , as follows:

(∆0:nk ⊇) JI =


J0, if I = ∅
J0\J1, if k /∈ I 6= ∅
J0\(J1 ∪ J2), if k ∈ I 6= K
J0\(J1 ∪ J3), if I = K.

(2.14)

We now have the following results concerning the restricted gangster set JI .185

Proposition 2.5. Let Y be defined as in (2.2) with X and x0 satisfying the constraints in the
second optimization problem in (2.1). Given the gangster set J0 ⊆ ∆0:nk, the index set I and the
restricted gangster set JI ⊆ ∆0:nk as defined in Definition 2.4, the following gangster constraint and
restricted gangster constraint on Y hold:

GJ0(Y ) = 0 and GJI (Y ) = 0. (2.15)

Proof. Because of the matrix lifting in (2.2) and the fourth constraints in (2.1), i.e., X:i ◦X:j =186

0,∀ i 6= j, we conclude that all diagonal positions of all off-diagonal blocks of Y are zero.187

Next, note that for any i ∈ I, we have mi = 1. From Do(Y ) = M̂ in (2.8) we have

(Do(Y ))ii =

∑
s 6=t

(
Y

(ii)

)
st

 = (mmT −M)ii = mi(mi − 1) = 0.

It follows from the above equation and Y ≥ 0 that the off-diagonal elements of Y
(ii)

are zero. As188

a result, all diagonal positions of all off-diagonal blocks and all off-diagonal positions of the i-th189

diagonal blocks ∀i ∈ I are zero, i.e., GJ0(Y ) = 0. Since JI ⊆ J0, we conclude GJI (Y ) = 0.190

Remark 2.6. 1. We see that if mi = 1, ∀i, then necessarily all the diagonal elements of all191

off-diagonal blocks and all the off-diagonal elements of all diagonal blocks are zero. This is192

precisely the case for the quadratic assignment problem, QAP, e.g., [18, 30].193

2. Our definition of the gangster mapping differs from that in [19]. Specifically, we use the194

coordinate projection rather than an operator on the matrix space. Moreover, note that the195

gangster set J0 is larger than the one used in [19].196

3. The restricted gangster set JI is obtained from J0 by removing some indices. We will see later197

in Remark 2.12 that JI is in some sense the “largest effective subset” in J0.198
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2.3 SDP relaxation199

We now summarize the results on our SDP relaxation of (1.1) without including the nonnegativity200

box constraints. This strengthens the relaxation in [19,28] in the case where some of the set sizes201

mi = 1, since we are using the larger gangster set J0.202

We use the objective function (2.4) and constraints (2.5), (2.6), (2.7), (2.8) and (2.15), and
ignore the hard rank-one constraint, the nonnegativity constraint and the upper bound (by one)
constraint. We obtain our SDP relaxation:

cut(m) ≥ p∗SDP := min 1
2 traceLAY

s.t. arrow(Y ) = e0

traceD1Y = 0, traceD2Y = 0
GJ0(Y ) = 0, Y00 = 1

Dt(Y ) = M, Dd(Y ) = e, Do(Y ) = M̂
Y � 0.

(2.16)

From Section 2.2.3 we have that both D1 and D2 are positive semidefinite. Therefore the constraints203

traceDiY = 0, i = 1, 2, imply that the feasible set of (2.16) has no strictly feasible (positive definite)204

point Y � 0, i.e., the (generalized) Slater condition, strict feasibility , fails for the SDP relaxation205

(2.16). Serious numerical difficulties can arise when algorithms such as interior-point methods or206

alternating projection methods are applied to a problem where the Slater condition, fails, e.g., [9,10].207

Nonetheless, as noted in [19,28], we can find a simple matrix in the relative interior of the feasible208

set and use its structure to project (and regularize) the problem into a smaller dimension. This is209

achieved by finding a matrix V with range equal to the intersection of the nullspaces of D1 and D2.210

This is called facial reduction, FR, [3, 6, 10].211

Such matrices V are discussed in [19,28]. Let Vj ∈ Rj×(j−1) have full column rank with V T
j e = 0.

To be specific, we set

Vj :=


1 0 . . . . . . 0
0 1 . . . . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . 1
−1 . . . . . . −1 −1


j×(j−1)

. (2.17)

Denote

y =
1

n
(m⊗ en), (2.18)

and let

Ṽ :=

[
1 0
y Vk ⊗ Vn

]
∈ R(nk+1)×((k−1)(n−1)+1). (2.19)

Notice that the feasible set of (2.16) must be contained in the following face

F = Ṽ S(k−1)(n−1)+1
+ Ṽ T . (2.20)

We can thus facially reduce (2.16) using the substitution

Y = Ṽ RṼ T ∈ Snk+1
+ , R ∈ S(k−1)(n−1)+1

+ .

11



The facially reduced SDP is then given by

cut(m) ≥ p∗SDP = min 1
2 trace Ṽ TLAṼ R

s.t. arrow(Ṽ RṼ T ) = e0

G
Ĵ0

(Ṽ RṼ T ) = G
Ĵ0

(e0e
T
0 )

Dt(Ṽ RṼ T ) = M, Dd(Ṽ RṼ T ) = e, Do(Ṽ RṼ T ) = M̂
R � 0,

(2.21)

where we let Ĵ0 := J0 ∪ (00), J0 is defined in (2.12).212

It is not clear whether or not (2.21) satisfies a proper regularity condition. Regarding this213

concern, the gangster constraint in (2.21) plays a crucial role. In Section 2.3.1, we study further214

properties of the gangster set J0 and the restricted gangster set JI defined in Definition 2.4. Then215

in Section 2.3.2, we present our simplified facially reduced SDP relaxation (2.49) (which uses JI216

in place of J0) and establish some desirable regularity conditions. Specifically, we show that the217

Robinson regularity3 holds for (2.49). This implies in particular that F in (2.20) is the smallest face218

of the positive semidefinite cone containing the feasible set of (2.16), and the range of Ṽ is indeed219

equal to the range of (any) Ŷ ∈ relintF .220

2.3.1 Gangster sets JI and J0221

Recall that JI is obtained from J0 by removing certain indices. We show here that, together with222

the facial structure defined by Ṽ · Ṽ T , the gangster constraint defined using JI is as strong as that223

defined using J0, and the corresponding linear map is onto.224

Lemma 2.7. Suppose Z ∈ Sn. If Z is a diagonal matrix or a matrix with diagonal equal to zero,
then

V T
n ZVn = 0 =⇒ Z = 0,

where Vn is defined in (2.17).225

Proof. We consider two cases.226

Case 1: Let Z = Diag(a) ∈ Sn. Then

V T
n ZVn =

 a1 . . . 0
...

. . .
...

0 . . . an−1

+ anE = 0 =⇒ a = 0 =⇒ Z = 0.

Case 2: Let Z ∈ Sn with diag(Z) = 0. We can then write

Z =

[
C b
bT 0

]
for some C ∈ Sn−1 with diag(C) = 0 and some b ∈ Rn−1. Then

V T
n ZVn = C − ebT − beT = 0 =⇒ b = 0, C = 0 =⇒ Z = 0.

3Strict feasibility holds and the linear constraints are onto, [23].
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227

We prove in the following Proposition 2.8 the onto property of the linear map defining the228

restricted gangster constraints, i.e., the constraint GJI (Ṽ RṼ T ) = 0. A related result for the general229

graph partitioning problem but with another gangster set is given in [28,29]. The basic idea is to230

show that the null space of its adjoint Ṽ TG∗JI (·)Ṽ is zero.231

Proposition 2.8. For all w ∈ R|JI |, we have

Ṽ TG∗JI (w)Ṽ = 0 =⇒ w = 0,

where Ṽ is defined in (2.19) and JI is defined in (2.14).232

Proof. Let Y = G∗JI (w) ∈ Snk+1. Then we immediately have Ṽ TY Ṽ = 0. On the other hand, using
the definition of G∗JI , we see that the symmetric matrix Y can be written as

Y =


0 0 . . . 0

0 Y
(11)

. . . Y
(1k)

...
...

. . .
...

0 Y
(k1)

. . . Y
(kk)

 ,

where Y
(ij)

, i, j ∈ K are n× n matrices, and Y
(ij)

is diagonal whenever i 6= j. Let

Z := (Vk ⊗ Vn)T


Y

(11)
. . . Y

(1k)
...

. . .
...

Y
(k1)

. . . Y
(kk)

 (Vk ⊗ Vn). (2.22)

It follows from Ṽ TY Ṽ = 0 that Z = 0. Note that

Vk ⊗ Vn =


Vn . . . 0
...

. . .
...

0 . . . Vn
−Vn . . . −Vn

 .
Therefore, if we write the above matrix Z in (2.22) as Z(1 1) . . . Z(1 k−1)

...
. . .

...
Z(k−1 1) . . . Z(k−1 k−1)

 ,
we have

Z(ij) = V T
n

(
Y

(ij)
− Y

(kj)
− Y

(ik)
+ Y

(kk)

)
Vn = 0, ∀ i, j ∈ {1, . . . , k − 1}. (2.23)

Furthermore, using the fact that Y
(ij)

is diagonal whenever i 6= j, we have

Z(ii) = V T
n

(
Y

(ii)
− 2Y

(ik)
+ Y

(kk)

)
Vn = 0, ∀ i ∈ {1, . . . , k − 1}. (2.24)
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It follows from (2.23) and (2.24) that

V T
n

(
2Y

(ij)
− Y

(ii)
− Y

(jj)

)
Vn = 0, ∀ i, j ∈ {1, . . . , k − 1}. (2.25)

We now claim that
Y

(ii)
= 0, ∀ i ∈ {1, . . . , k}, (2.26)

holds under the different choices of I in JI given in (2.14).233

• If I = ∅, by (2.14), we have JI = J0, i.e., (2.26) holds.234

• If k /∈ I 6= ∅, then by (2.14), we have JI = J0\J1, i.e., the following equalities hold:

Y
(kk)

= 0 (2.27)

Y
(ik)

= Y
(ki)

= 0, ∀ i ∈ I (2.28)

Y
(ii)

= 0, ∀ i ∈ {1, . . . , k − 1}\I. (2.29)

From (2.27), (2.28) and (2.24) we get V T
n Y (ii)

Vn = 0, ∀ i ∈ I. Notice that Y
(ii)

is a symmetric235

matrix with zeros on the diagonal, by Lemma 2.7, we get Y
(ii)

= 0, ∀ i ∈ I. This, together236

with (2.27) and (2.29), yields (2.26).237

• If k ∈ I 6= K, then Ic 6= ∅. By (2.14), we have JI = J0\(J1 ∪ J2), i.e

Y
(ii)

= 0, ∀ i ∈ Ic (2.30)

Y
(kj0)

= Y
(j0k)

= 0, for the j0 ∈ Ic (2.31)

Y
(ki)

= Y
(ik)

= 0, ∀ i ∈ I\{k}. (2.32)

It follows from (2.30), (2.31), (2.24) and Lemma 2.7 that

Y
(kk)

= 0. (2.33)

In view of (2.32), (2.33), (2.24) and Lemma 2.7, we have Y
(ii)

= 0, ∀ i ∈ I\{k}. This, together238

with (2.30) and (2.33), yields (2.26).239

• If I = K, then by (2.14), we have JI = J0\(J1 ∪ J3), i.e.,

Y
(k−1,k−2)

= Y
(k−2,k−1)

= 0,

Y
(ki)

= Y
(ik)

= 0, ∀ i ∈ {1, . . . , k − 1}. (2.34)

With i = k−1, j = k−2 in (2.23), by (2.34) and Lemma 2.7, we have Y
(kk)

= 0. This together240

with (2.34), (2.24) and Lemma 2.7 yields (2.26).241
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In summary, the claim (2.26) holds. Combining (2.26) and (2.24), we get

V T
n Y (ki)

Vn = V T
n Y (ik)

Vn = 0 ∀i ∈ {1, . . . , k − 1}. (2.35)

In addition, it follows from (2.26) and (2.25) that

V T
n Y (ij)

Vn = 0 ∀i, j ∈ {1, . . . , k − 1}. (2.36)

Combining (2.35), (2.36) and (2.26), we have

V T
n Y (ij)

Vn = 0 ∀i, j ∈ {1, . . . , k}.

Since Y
(ij)

is either a diagonal matrix or a matrix with diagonal equal to zeros, by Lemma 2.7 we242

have Y
(ij)

= 0, for all i, j ∈ {1, . . . , k}. Therefore, Y = 0. Thus, it follows that w = 0.243

We now extend the results in Proposition 2.8 to show that the operator G
ĴI

(Ṽ · Ṽ T ) is onto244

when considered as a linear transformation mapping into R|JI |+1, where ĴI := JI ∪ {00} with JI245

defined in (2.14).246

Theorem 2.9. For all w ∈ R|JI |+1, it holds that

Ṽ TG∗
ĴI

(w)Ṽ = 0 =⇒ w = 0,

where Ṽ is defined in (2.19) and ĴI := JI ∪{00} with JI defined in (2.14). This means the operator247

G
ĴI

(Ṽ · Ṽ T ) is onto when considered as a linear transformation mapping into R|JI |+1.248

Proof. For w ∈ R|JI |+1, write w =
[
w00 w̆T

]T
, where w̆ ∈ R|JI |. Then we have

G∗JI (w̆) =

[
0 0

0 W

]
and G∗

ĴI
(w) =

[
w00 0

0 W

]
for some W ∈ Snk. A direct computation using the definition of Ṽ yields

Ṽ TG∗
ĴI

(w)Ṽ =

[
w00 + yTWy yTW (Vk ⊗ Vn)

(V T
k ⊗ V T

n )Wy (V T
k ⊗ V T

n )W (Vk ⊗ Vn)

]
, (2.37)

Ṽ TG∗JI (w̆)Ṽ =

[
yTWy yTW (Vk ⊗ Vn)

(V T
k ⊗ V T

n )Wy (V T
k ⊗ V T

n )W (Vk ⊗ Vn)

]
. (2.38)

Now, assume that Ṽ TG∗
ĴI

(w)Ṽ = 0. Then we see from (2.37) that (V T
k ⊗ V T

n )W (Vk ⊗ Vn) = 0.

Following the same argument as in the proof of Proposition 2.8 (start from (2.22) and use W
in place of Y there), we conclude that W = 0. Combining this with (2.37) and the assumption
Ṽ TG∗

ĴI
(w)Ṽ = 0 gives [

w00 0
0 0

]
= Ṽ TG∗

ĴI
(w)Ṽ = 0,

showing that w00 = 0. On the other hand, we can deduce from (2.38) and the fact W = 0 that

Ṽ TG∗JI (w̆)Ṽ = 0.

This implies w̆ = 0, according to Proposition 2.8. Consequently, w =
[
w00 w̆T

]T
= 0. This249

completes the proof.250
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We next show in Theorem 2.11 below that the nullspaces of GJI (Ṽ · Ṽ T ) and GJ0(Ṽ · Ṽ T ) are251

the same. Since the restricted gangster set JI is obtained by removing indices in J0 and the linear252

map GJI (Ṽ · Ṽ T ) is onto according to Proposition 2.8, this suggests that we have removed just the253

right number of indices from J0. Before presenting Theorem 2.11, we first recall the following result254

from [28, Lemma 4.1] that is used in our analysis below.255

Lemma 2.10 ( [28, Lemma 4.1]). Let R ∈ S(n−1)(k−1)+1 be given, Ṽ be as in (2.19), and let

Y = Ṽ RṼ T .

Then the block notation of (2.3) yields

miY
T

(j0) = eTY
(ij)
, ∀ i, j ∈ {1, . . . , k}, (2.39)

and
k∑
i=1

diag(Y
(ij)

) = Y(j0), ∀ j ∈ {1, . . . , k}. (2.40)

256

Theorem 2.11. Let Y = Ṽ RṼ T for some R ∈ S(n−1)(k−1)+1 with Ṽ defined in (2.19). Then

GJI (Y ) = 0⇐⇒ GJ0(Y ) = 0, (2.41)

where J0 is defined in (2.12) and JI is defined in (2.14).257

Proof. The alleged equivalence (2.41) is trivially true if I = ∅, because JI = J0 in this case. Thus,258

we assume I 6= ∅ from now on.259

Since JI ⊆ J0, we trivially have GJ0(Y ) = 0 =⇒ GJI (Y ) = 0. Hence, to establish (2.41), it
remains to prove the converse implication, i.e., to show that

GJI (Y ) = 0 =⇒ GJ0(Y ) = 0 (2.42)

In view of the definition of JI , to prove (2.42), it amounts to proving the following three implications:
GJ0\J1

(Y ) = 0 =⇒ GJ1(Y ) = 0 if k /∈ I 6= ∅;
GJ0\(J1∪J2)(Y ) = 0 =⇒ GJ1(Y ) = 0,GJ2(Y ) = 0 if k ∈ I 6= K;

GJ0\(J1∪J3)(Y ) = 0 =⇒ GJ1(Y ) = 0,GJ3(Y ) = 0 if I = K.
(2.43)

To prove these implications, we write Y in the block matrix form (2.3). Since mi = 1, ∀ i ∈ I, from

(2.39), we obtain Y T
(i0) = eTY

(ii)
, ∀ i ∈ I. This, together with GJ0\(J1∪J2∪J3)(Y ) = 0, yields that

Y(i0) = diag(Y
(ii)

), ∀ i ∈ I. (2.44)

We can now prove the first assertion in (2.43). Using (2.40) and GJ0\J1
(Y ) = 0, we have

Y(j0) = diag(Y
(jj)

) + diag(Y
(kj)

), ∀ j ∈ I\{k}.
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Combining this with (2.44) and the symmetry of Y , we see that

diag(Y
(jk)

) = diag(Y
(kj)

) = 0, ∀ j ∈ I\{k}, (2.45)

i.e., GJ1(Y ) = 0.260

Next, we prove the second assertion in (2.43). The reasoning for GJ1(Y ) = 0 is the same as in
the previous case. In addition, from GJ0\(J1∪J2)(Y ) = 0, (2.45) and (2.40), we have

Y(k0) = diag(Y
(j0 k)

) + diag(Y
(kk)

).

Since k ∈ I, from (2.44), we have

Y(k0) = diag(Y
(kk)

).

In view of the above two equations and the symmetry of Y , we obtain

diag(Y
(k j0)

) = diag(Y
(j0 k)

) = 0,

i.e., GJ2(Y ) = 0.261

Finally, we prove the third assertion in (2.43). It follows from (2.40) and GJ0\(J1∪J3)(Y ) = 0 that

Y(j0) = diag(Y
(jj)

) + diag(Y
(kj)

), ∀ j ∈ I\{k − 2, k − 1, k}.

Together with (2.44) and the symmetry of Y , we have

diag(Y
(jk)

) = diag(Y
(kj)

) = 0, ∀ j ∈ I\{k − 2, k − 1, k}. (2.46)

Combining this with (2.40) and GJ0\(J1∪J3)(Y ) = 0 gives
diag(Y

(k−2 k−2)
) + diag(Y

(k−1 k−2)
) + diag(Y

(k k−2)
) = Y(k−2 0)

diag(Y
(k−2 k−1)

) + diag(Y
(k−1 k−1)

) + diag(Y
(k k−1)

) = Y(k−1 0)

diag(Y
(k−2 k)

) + diag(Y
(k−1 k)

) + diag(Y
(k k)

) = Y(k 0)

Using this together with (2.44) and the symmetry of Y , we obtain
diag(Y

(k−2 k−1)
) + diag(Y

(k−2 k)
) = 0

diag(Y
(k−2 k−1)

) + diag(Y
(k−1 k)

) = 0

diag(Y
(k−2 k)

) + diag(Y
(k−1 k)

) = 0

Therefore, we have

diag(Y
(k−2 k)

) = diag(Y
(k−1 k)

) = diag(Y
(k−2 k−1)

) = diag(Y
(k−1 k−2)

) = 0,

which together with (2.46) yields that GJ1(Y ) = 0 and GJ3(Y ) = 0.262

Remark 2.12. Combining Theorem 2.11 with Proposition 2.8, we see that the linear map GJ0(Ṽ ·Ṽ T )263

is not onto but GJI (Ṽ · Ṽ T ) is, and the two linear maps have the same nullspace. Thus, in some264

sense, the restricted gangster set JI is the “largest effective subset” of J0: no redundant indices in265

JI .266
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2.3.2 Facially reduced SDP relaxation267

We are now ready to present our facially reduced SDP relaxation. In Theorem 2.13 below, we show268

that the facial reduction in combination with the restricted gangster constraints essentially makes269

the rest of the constraints in (2.21) redundant, and that the Robinson regularity holds.270

Similar to [28, Theorem 4.1], to study primal strict feasibility, we make use of the barycenter of
the rank-1 matrices of the lifting (see [28, Equation (3.3)]), defined as

Ŷ :=
m1! . . .mk!

n!

∑
Mat(x)∈Mm

[
1 xT

x xxT

]
.

Recall from [28, Theorem 3.1] that the above barycenter can be written as

Ŷ =


1 m1

n e
T
n . . . mk

n e
T
n

m1
n en

(
m1
n In + m1(m1−1)

n(n−1) (En − In)
)
. . .

(
m1mk
n(n−1)

)
(En − In)

...
...

. . .
...

mk
n en

(
m1mk
n(n−1)

)
(En − In) . . .

(
mk
n In + mk(mk−1)

n(n−1) (En − In)
)

 . (2.47)

On the other hand, to analyze dual strict feasibility, we define the following matrices

W̃ := β

[
α 0
0 2QI

]
and QI := TI ⊗ In + SI ⊗ (En − In), (2.48)

with α < 0 < β and

(TI , SI) =


(Ek − Ik, 0) if I = ∅,
(Ek − Ik − M̂one, e

TmoneMone) if k /∈ I 6= ∅,
(Ek − Ik − Ê,Mone) if k ∈ I 6= K,
(0, Ik) if I = K,

where mone, I and K are defined in Definition 2.4, Ê =

[
0 ek−1

eTk−1 0

]
∈ Sk, Mone= Diag(mone), and271

M̂one=

[
0 m̂one

m̂T
one 0

]
∈ Sk with m̂one ∈ Rk−1 being the vector that contains the first k− 1 entries of272

mone.273

Theorem 2.13. The following holds:274

1. The facially reduced SDP (2.21) is equivalent to the single equality constrained problem

cut(m) ≥ p∗SDP = min 1
2 trace

(
Ṽ TLAṼ

)
R

s.t. G
ĴI

(Ṽ RṼ T ) = G
ĴI

(e0e
T
0 )

R � 0.

(2.49)

2. The primal model (2.49) satisfies strict feasibility, with (generalized) Slater point

R̃ =

 1 0

0 1
n2(n−1)

(nDiag(m̂k−1)− m̂k−1m̂
T
k−1)⊗ (nIn−1 − En−1)

 ∈ S(k−1)(n−1)+1
++ , (2.50)
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where m̂k−1= (m1, . . . ,mk−1)T ∈ Zk−1
+ . Moreover, it holds that Ṽ R̃Ṽ T = Ŷ , where Ŷ is given275

in (2.47). Furthermore, the Robinson regularity holds for (2.49).276

3. The dual problem of (2.49) is

max 1
2w00

s.t. Ṽ TG∗
ĴI

(w)Ṽ � Ṽ TLAṼ .
(2.51)

Moreover, with W̃ defined as in (2.48), the point w̃I := G
ĴI

(W̃ ) is strictly feasible for (2.51)277

for all sufficiently positive β and sufficiently negative α.278

Proof. Item 1: It suffices to show that any R feasible for (2.49) is also feasible for (2.16). To this
end, let R be feasible for (2.49) and let Y := Ṽ RṼ T . Therefore, it holds that GJI (Y ) = 0, where JI
is defined in (2.14). According to Theorem 2.11, we have GJ0(Y ) = 0, where J0 is defined in (2.12).

Hence, all the diagonal elements of off-diagonal blocks of Y (see the block structure in (2.3)) are

zero. This together with Y00 = 1 and R � 0 shows that Y = Ṽ RṼ T satisfies all the constraints in
(2.21) except for

Do(Y ) = M̂, (2.52)

as shown in [19, Theorem 5.1]. Therefore, it remains to show that (2.52) is also redundant in the279

facially reduced SDP (2.21), i.e., to show that Y satisfies (2.52).280

Let D2 be as defined in (2.7). Since R � 0 and G
ĴI

(Ṽ RṼ T ) = G
ĴI

(e0e
T
0 ), we have Y � 0,

Y00 = 1, and traceD2Y = 0. Let v1 := Y0:kn 0. Then we have

Y − v1v
T
1 =

[
1 Y T

1:nk 0

Y1:nk 0 Y

]
−
[

1
Y1:nk 0

] [
1

Y1:nk 0

]T
=

[
0 0

0 Y − Y1:nk 0Y
T

1:nk 0

]
.

(2.53)

Note that Y − Y1:nk 0Y
T

1:nk 0 is the Schur complement of Y00 in Y and Y � 0. Hence, it holds that281

Y − Y1:nk 0Y
T

1:nk 0 � 0. Consequently, we deduce from (2.53) that Y � v1v
T
1 .282

Let X = Mat(Y1:kn 0). Since

traceD2Y = 0, D2 =

[
mTm −mT ⊗ eTn
−m⊗ en Ik ⊗ (ene

T
n )

]
=

[
−mT

Ik ⊗ en

] [
−mT

Ik ⊗ en

]T
� 0, and Y � v1v

T
1 ,

we see that

0 = trace(D2Y ) ≥ trace(D2v1v
T
1 ) = ‖XT e−m‖2 and Y

[
−mT

Ik ⊗ en

]
= 0. (2.54)

Using the second relation in (2.54) together with the block partition of Y in (2.3), we have

−Y1:nk 0m
T + Y (Ik ⊗ en) = 0.

Multiplying the above relation on the left by Ik ⊗ eTn , we obtain further that

− (Ik ⊗ eTn )Y1:nk 0m
T + (Ik ⊗ eTn )Y (Ik ⊗ en) = 0. (2.55)
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Next, recall from the first relation in (2.54) that (Ik ⊗ eTn )Y1:nk 0 = XT en = m. Moreover, a direct

computation shows that (Ik ⊗ eTn )Y (Ik ⊗ en) =
(
eTnY (ij)

en

)
. Combining these with (2.55) yields(

eTnY (ij)
en

)
= mmT .

Finally, recall that Dt(Y ) = Dt(Ṽ RṼ T ) = M in (2.21) can be inferred from the constraints in (2.49),
thanks to Theorem 2.11 and [19, Theorem 5.1]. Therefore, it holds that

Do(Y ) =

∑
s 6=t

(
Y

(ij)

)
st

 =
(
eTnY (ij)

en

)
−Dt(Y ) = mmT −M = M̂.

Item 2: Recall from [28, Theorem 4.1] that R̃ � 0. Moreover, in the proof of [28, Theorem 4.1],283

it is shown that Ṽ R̃Ṽ T = Ŷ . Furthermore, following the block structure of Y described in (2.3),284

the barycenter Ŷ in (2.47) is zero along the diagonal of each off-diagonal blocks as well as at all285

off-diagonal positions of the ith diagonal block if mi = 1. Thus, it holds that G
ĴI

(Ŷ ) = G
ĴI

(e0e
T
0 ).286

This together with R̃ � 0 and Ṽ R̃Ṽ T = Ŷ proves the strict feasibility of R̃ for (2.49). The Robinson287

regularity holds in view of the strict feasibility of R̃ and Theorem 2.9.288

Item 3: It is standard to show that the dual problem of (2.49) is given by (2.51). We now prove289

the claim concerning strict feasibility.290

With the y in (2.18), the Ṽ in (2.19), the definitions of W̃ and w̃I , and the definition of JI in
Definition 2.4, we can compute that

Ṽ TG∗
ĴI

(w̃I)Ṽ = β

[
1 yT

0 V T
k ⊗ V T

n

] [
α 0
0 QI

] [
1 0
y Vk ⊗ Vn

]
= β

[
α+ yTQIy yTQI(Vk ⊗ Vn)

(V T
k ⊗ V T

n )QIy (V T
k ⊗ V T

n )QI(Vk ⊗ Vn)

]
.

(2.56)

Now, recall the following relations, which are immediate consequences of the definition of Vj :

V T
j =

[
Ij−1 −ej−1

]
, V T

j Ej = V T
j eje

T
j = 0, and V T

j Vj = Ej−1 + Ij−1.

Then we have291

(V T
k ⊗ V T

n )QIy = (V T
k ⊗ V T

n )(TI ⊗ In + SI ⊗ (En − In))y

= (V T
k TI ⊗ V T

n + V T
k SI ⊗ V T

n (En − In))y

= (V T
k TI ⊗ V T

n − V T
k SI ⊗ V T

n )y

=
1

n
(V T
k (TI − SI)⊗ V T

n )(m⊗ en)

=
1

n
(V T
k (TI − SI)m)⊗ V T

n en = 0

and292

(V T
k ⊗ V T

n )QI(Vk ⊗ Vn) = (V T
k ⊗ V T

n )(TI ⊗ In + SI ⊗ (En − In))(Vk ⊗ Vn)

= V T
k TIVk ⊗ V T

n Vn + V T
k SIVk ⊗ V T

n (En − In)Vn
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= V T
k TIVk ⊗ V T

n Vn − V T
k SIVk ⊗ V T

n Vn

= V T
k (TI − SI)Vk ⊗ V T

n Vn

= V T
k (TI − SI)Vk ⊗ (In−1 + En−1).

Combining the above two displays with (2.56), we obtain

Ṽ TG∗
ĴI

(w̃I)Ṽ = β

[
α+ yTQIy 0

0 V T
k (TI − SI)Vk ⊗ (In−1 + En−1)

]
. (2.57)

We next show that Vk(TI − SI)Vk ≺ 0 in each of the four cases in the definition of JI .293

• If I = ∅, then V T
k (TI − SI)Vk = V T

k (Ek − Ik)Vk = −V T
k Vk = −(Ik−1 + Ek−1) ≺ 0,294

• If k /∈ I 6= ∅, then we have295

V T
k (TI − SI)Vk = V T

k (Ek − Ik − M̂one − eTmoneMone)Vk

= −Ik−1 − Ek−1 − V T
k (M̂one + eTmoneMone)Vk

� −Ik−1 − Ek−1 − V T
k (M̂one +monem

T
one)Vk

= −Ik−1 − Ek−1 − V T
k

([
0 m̂one

m̂T
one 0

]
+

[
m̂one

0

] [
m̂T

one 0
])

Vk

= −Ik−1 − Ek−1 −
[
Ik−1 −ek−1

] [m̂onem̂
T
one m̂one

m̂T
one 0

] [
Ik−1

−eTk−1

]
= −Ik−1 − Ek−1 − (m̂onem̂

T
one − ek−1m̂

T
one − m̂onee

T
k−1)

= −Ik−1 − (ek−1 − m̂one)(ek−1 − m̂one)
T

� −Ik−1 ≺ 0,

where the first “�” follows from the observation that eTmoneMone � monem
T
one.296

• If k ∈ I 6= ∅, then we have297

V T
k (TI − SI)Vk = V T

k (Ek − Ik − Ê −Mone)Vk

= −Ik−1 − Ek−1 − V T
k (Ê +Mone)Vk

= −Ik−1 − Ek−1 −
[
Ik−1 −ek−1

] [Diag(m̂one) e
eT 1

] [
Ik−1

−eT
]

= −Ik−1 − Ek−1 − (Diag(m̂one)− Ek−1)

= −Ik−1 −Diag(m̂one) ≺ 0

• If I = K, then we have V T
k (TI − SI)Vk = V T

k (−Ik)Vk = −(Ek−1 + Ik−1) ≺ 0.298

In summary, we have Vk(TI − SI)Vk ≺ 0, which together with In−1 + En−1 � 0 yields that299

V T
k (TI −SI)Vk⊗ (In−1 +En−1) ≺ 0 in (2.57). Therefore, with α� 0� β, we have Ṽ TG∗

ĴI
(w̃I)Ṽ �300

Ṽ TLAṼ , i.e., w̃I is strictly feasible for (2.51).301

We emphasize that (2.49) is a SDP relaxation of model (1.1). It uses facial reduction to guarantee302

strict feasibility for both the relaxation and its dual. The Robinson regularity condition holds and303

thus we obtain robustness. In addition, facial reduction greatly simplifies the constraints by making304

many of them redundant.305
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2.4 DNN relaxation306

For our DNN relaxation and algorithm in Section 3, below, we need the following orthogonal matrix,307

V̂ .308

Assumption 2.14. Without loss of generality, by using a QR or SVD factorization on Ṽ in (2.19),
or some other special construction if needed, we assume that the columns of V̂ form an orthonormal
basis for the range of Ṽ . One such choice of V̂ is

V̂ =

[
s 0

sy V̂k ⊗ V̂n

]
, (2.58)

where s :=
√

n
n+‖m‖2 with ‖m‖ denoting the `2 norm of m; and V̂j is a matrix with orthonormal309

columns that satisfies V̂ T
j ej = 0.310

Since the range of V̂ is the same as the range of Ṽ , we obtain the same minimal face

V̂ S(k−1)(n−1)+1
+ V̂ T = Ṽ S(k−1)(n−1)+1

+ Ṽ T .

Using V̂ in place of Ṽ , the simplified facially reduced SDP (2.49) can be equivalently written as

cut(m) ≥ p∗SDP = min 1
2 trace

(
V̂ TLAV̂

)
R

s.t. G
ĴI

(V̂ RV̂ T ) = G
ĴI

(e0e
T
0 )

R � 0.

(2.59)

The dual problem of (2.59) is

max 1
2w00

s.t. V̂ TG∗
ĴI

(w)V̂ � V̂ TLAV̂ .
(2.60)

The SDP relaxation (2.59) can be further strengthened by adding additional constraints. With the
additional nonnegativity box constraint 0 ≤ (V̂ RV̂ T )

Ĵc
0
≤ 1, where Ĵc0 is the complement of Ĵ0, we

obtain the following doubly nonnegative, DNN, relaxation,

cut(m) ≥ p∗DNN = min 1
2 trace

(
V̂ TLAV̂

)
R

s.t. G
ĴI

(V̂ RV̂ T ) = G
ĴI

(e0e
T
0 )

R � 0

0 ≤
(
V̂ RV̂ T

)
Ĵc

0

≤ 1.

(2.61)

Note that the term DNN refers to the two nonnegative cones in the constraints of (2.61), i.e., the311

positive semidefinite cone and the nonnegative cone.312

The following Theorem 2.15 shows that the Slater point w̃I for (2.51) found in Theorem 2.13 is313

still strictly feasible for (2.60). Moreover, starting from the generalized Slater point R̃ in (2.50) for314

(2.49), one can construct a generalized Slater point for both (2.59) and (2.61): the fact that (2.61)315

has a generalized Slater point will be important for our algorithmic development later.316
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Theorem 2.15. The strictly feasible point w̃I for (2.51) found in Theorem 2.13 is strictly feasible
for (2.60). Moreover, define

R̂ := V̂ †Ṽ R̃Ṽ T (V̂ †)T , (2.62)

where R̃ is defined in (2.50), V̂ † is the pseudoinverse of V̂ , and Ṽ and V̂ are given in (2.19)317

and (2.58), respectively. Then it holds that R̂ is strictly feasible for both (2.59) and (2.61), and318

V̂ R̂V̂ T = Ŷ , where Ŷ is defined in (2.47).319

Proof. 1. Note that Range(V̂ ) = Range(Ṽ ) by construction. This implies that V̂ V̂ †Ṽ = Ṽ .
Thus, we have

Ṽ T (V̂ T )†V̂ T (LA − G∗ĴI (w̃I))V̂ V̂
†Ṽ = Ṽ T (LA − G∗ĴI (w̃I))Ṽ � 0,

where the positive definiteness follows from the fact that w̃I is strictly feasible for (2.51).
Since (V̂ †Ṽ )T = Ṽ T (V̂ T )† is a square matrix, we conclude from the above display that the
matrix Ṽ T (V̂ T )† is nonsingular. Thus, we deduce further that

V̂ T (LA − G∗ĴI (w̃I))V̂ = [Ṽ T (V̂ T )†]−1Ṽ T (LA − G∗ĴI (w̃I))Ṽ [V̂ †Ṽ ]−1 � 0,

i.e., w̃I is strictly feasible for (2.60).320

2. The positive definiteness of R̂ follows immediately from the fact that R̃ � 0 (see Theo-
rem 2.13 Item 2) and the nonsingularity of Ṽ T (V̂ T )† just established. In addition, since
Range(V̂ ) = Range(Ṽ ), we have V̂ V̂ †Ṽ = Ṽ . Using this and the definition of R̂, we see further
that

V̂ R̂V̂ T = V̂ V̂ †Ṽ R̃Ṽ T (V̂ †)T V̂ T = Ṽ R̃Ṽ T = Ŷ ,

where the last equality follows from Theorem 2.13 Item 2. Then we obtain immediately that321

G
ĴI

(V̂ R̂V̂ T ) = G
ĴI

(Ŷ ) = 0. Consequently, R̂ is strictly feasible for (2.59).322

Finally, notice that entries of Ŷ in Ĵc0 are strictly positive and strictly less than 1. Hence, we323

also have 0 <
(
V̂ R̂V̂ T

)
Ĵc

0

< 1. Thus, we have shown that R̂ is strictly feasible for (2.61) and324

V̂ R̂V̂ T = Ŷ .325

326

The DNN problem (2.61) is extremely difficult for interior point methods, especially when the
dimension is large. Motivated by the recent success in the application of splitting methods to
quadratic assignment problems in [18], we adopt a similar approach here. We first introduce a
new variable and add the constraint Y = V̂ RV̂ T to (2.61). By doing so, we essentially double the
number of variables and transform the original problem (2.61) to the following equivalent model,

p∗DNN = min 1
2 traceLAY

s.t. Y = V̂ RV̂ T

G
ĴI

(Y ) = G
ĴI

(e0e
T
0 )

R � 0
0 ≤ G

Ĵc
0
(Y ) ≤ 1.

(2.63)

This is a separable convex programming problem with linear coupling constraints from the facial327

reduction. One can then apply first order splitting methods, which allows us to take advantage of328
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the two variables and the two cones to obtain two separate subproblems. We will discuss one such329

method in Section 3 below and discuss how the corresponding subproblems can be solved efficiently330

(by giving a closed form solution).331

In passing, we would like to emphasize that the problem (2.63) is stable in that it has no
redundant equality constraints, even though we added an extra linear constraint and a new variable
Y . In detail, let T : Snk+1 × S(n−1)(k−1)+1 → Snk+1 × R|JI |+1 be the linear operator defined as

T (Y,R) =

[
Y − V̂ RV̂ T

G
ĴI

(Y )

]
, (2.64)

where V̂ is defined in (2.58). We show in Proposition 2.16 below, that the operator T is an onto332

linear transformation.333

Proposition 2.16. 1. Suppose that T is given in (2.64) and (W,w) ∈ Snk+1 × R|JI |+1. Then

T ∗(W,w) = 0 =⇒ (W,w) = 0.

2. Primal (generalized) Slater points of model (2.63) are given by R̂ in (2.62) and Ŷ in (2.47).334

Proof. 1. Algebraic manipulation of T ∗(W,w) = 0 yields the following two equations,

W + G∗
ĴI

(w) = 0 and V̂ TWV̂ = 0. (2.65)

Combining the above two equations, we have V̂ TG∗
ĴI

(w)V̂ = 0. This implies that

Ṽ T (V̂ T )†V̂ TG∗
ĴI

(w)V̂ V̂ †Ṽ = 0.

Next, recall that Range(V̂ ) = Range(Ṽ ) by construction. Thus, we have V̂ V̂ †Ṽ = Ṽ .335

Combining this with the above display yields Ṽ TG∗
ĴI

(w)Ṽ = 0. Then we deduce from336

Theorem 2.9 that w = 0. This together with the first relation in (2.65) gives W = 0 and337

completes the proof.338

2. This follows immediately from Theorem 2.15.339

340

3 sPRSM for DNN relaxation341

In this section, we adapt the P-R splitting method [12] for solving our DNN relaxation (2.63).342

In essence, we separate the semidefinite cone constraints from the polyhedral constraints and343

obtain two subproblems. However, we also add back some provably redundant constraints. This is344

because these constraints are not redundant when the subproblems are considered as independent345

optimization problems. We take advantage of this and bring a constraint back if it does not increase346

the computational cost excessively. We denote this new method by FRSMR.347
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3.1 FRSMR, A facially reduced splitting method with redundancies348

Let Ls := 1
2LA. We can rewrite (2.63) trivially as

p∗DNN = min traceLsY + 1Yo(Y ) + 1Ro(R)

s.t. Y = V̂ RV̂ T .
(3.1)

where we use the indicator function, 1S(S), that takes the value 0 on the set S and ∞ outside of S,
and the two constraint sets in (3.1) are

Ro := S(k−1)(n−1)+1
+ , Yo := {Y ∈ Snk+1 : G

ĴI
(Y ) = G

ĴI
(e0e

T
0 ), 0 ≤ G

Ĵc
0
(Y ) ≤ 1}. (3.2)

While this trivial decomposition is intuitive, a splitting method might benefit by operating on tighter349

constraint sets in the variables R and Y . Here, we shrink the sets in (3.2) by adding the following350

redundant constraints to (3.1):351

1. traceR = n + 1. Note that this is a redundant constraint in (3.1) because for any (R, Y )
feasible for (2.63), we have

traceR = trace V̂ RV̂ T = traceY = n+ 1,

where the last equality follows from the (redundant) constraint Dt(Y ) = M (see Theo-352

rem 2.13 Item 1).353

2. Do(Y ) = M̂ , whose redundancy follows from Theorem 2.13 Item 1.354

3. G
Ĵ0\ĴI (Y ) = G

Ĵ0\ĴI (e0e
T
0 ), whose redundancy follows from Theorem 2.11.355

4. eTY(i0) = mi for i = 1, . . . , k. This is redundant because any feasible (R, Y ) for (2.63) satisfies356

Dt(Y ) = M and the arrow constraint, thanks to Theorem 2.13 Item 1.357

We thus arrive at the following equivalent problem of (3.1):

p∗DNN = min traceLsY + 1Y(Y ) + 1R(R)

s.t. Y = V̂ RV̂ T ,
(3.3)

where
R :=

{
R ∈ S(k−1)(n−1)+1

+ : traceR = n+ 1
}

;

Y := {Y ∈ Snk+1 : G
Ĵ0

(Y ) = G
Ĵ0

(e0e
T
0 ), 0 ≤ G

Ĵc
0
(Y ) ≤ 1,

Do(Y ) = M̂, eTY(i0) = mi, i = 1, . . . , k}.

Notice that the sets R and Y are much smaller than Ro and Yo, respectively. This property may help358

bring the Y and R iterates closer to the optimal solution set more quickly when a splitting method359

is applied. In addition, as we shall see later in Section 3.1.1 and Section 3.1.2, these redundant360

constraints do not significantly increase the computational cost.361

We now describe our splitting method for solving (3.3) (which is equivalent to solving (2.63)).
We start by writing down the augmented Lagrangian function for (3.3):

Lβ(R, Y, Z) = fR(R) + gY(Y ) + 〈Z, Y − V̂ RV̂ T 〉+ β
2

∥∥∥Y − V̂ RV̂ T
∥∥∥2
.
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where β > 0 is a penalty parameter for the quadratic penalty term, and fR(R) and gY(Y ) are
defined respectively as

fR(R) = 1R(R), gY(Y ) = traceLsY + 1Y(Y ).

Our main Algorithm 3.1 for solving (3.3), which is a standard application of the strictly contractive362

Peaceman-Rachford splitting method, sPRSM [12] to (3.3), can now be summarized as follows:363

alternate minimization of Lβ in the variables Y and R interlaced by an update of the Z variable. In364

particular, we update the dual variable Z both after the R-update and the Y -update. We need365

to point out that the R-update and the Y -update in (3.4) are well defined, i.e., the subproblems366

involved have unique solutions. This is because both constraint sets are closed convex and both367

objective functions (i.e., the quadratic functions) are strongly convex. (Recall that V̂ T V̂ = I.)

Algorithm 3.1: FRSMR for DNN relaxation

Step 1. Pick any Y 0, Z0 ∈ Snk+1. Fix β > 0 and γ ∈ (0, 1). Set t = 0.

Step 2. For each t = 0, 1, . . ., update

Rt+1 = arg min
R∈R

Lβ(R, Y t, Zt) = arg min
R

fR(R)− 〈Zt, V̂ RV̂ T 〉+
β

2

∥∥∥Y t − V̂ RV̂ T
∥∥∥2
,

Zt+
1
2 = Zt + γβ(Y t − V̂ Rt+1V̂ T ),

Y t+1 = arg min
Y ∈Y

Lβ(Rt+1, Y, Zt+
1
2 ) = arg min

Y
gY(Y ) + 〈Zt+

1
2 , Y 〉+

β

2

∥∥∥Y − V̂ Rt+1V̂ T
∥∥∥2
,

Zt+1 = Zt+
1
2 + γβ(Y t+1 − V̂ Rt+1V̂ T ).

(3.4)

368

We next discuss convergence of the sequence generated by Algorithm 3.1. Recall from Proposi-
tion 2.16 that (2.63) has primal generalized Slater points. Consequently, (Y ∗, R∗) solves (3.3) if and
only if there exists Z∗ so that the following first order optimality condition holds:

0 ∈ −V̂ TZ∗V̂ +NR(R∗),
0 ∈ Ls + Z∗ +NY(Y ∗),

Y ∗ = V̂ R∗V̂ T ,

(3.5)

where NS(x) denotes the normal cone of S at x. The following Theorem 3.1 states that the369

sequence generated by Algorithm 3.1 converges to a point satisfying (3.5). Its proof can be found370

in [12].371

Theorem 3.1. Let {Rt}, {Y t}, {Zt} be the sequences generated by Algorithm 3.1. Then {(Rt, Y t)}372

converges to an optimal solution (R∗, Y ∗) of (3.3), and {Zt} converges to some Z∗ so that373

(R∗, Y ∗, Z∗) satisfies (3.5).374

In Algorithm 3.1, the explicit Z-update in (3.4) is simple and easy. We now show that we have375

explicit expressions for the R- and Y -updates too.376
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3.1.1 R-subproblem377

Recall that Assumption 2.14 guarantees that V̂ is normalized so that V̂ T V̂ = I. Then the R-
subproblem can be explicitly solved by projecting onto the set R

Rt+1 = arg min
R∈R

−〈Zt, V̂ RV̂ T 〉+ β
2

∥∥∥Y t − V̂ RV̂ T
∥∥∥2

= arg min
R∈R

β
2

∥∥∥Y t − V̂ RV̂ T + 1
βZ

t
∥∥∥2

= arg min
R∈R

β
2

∥∥∥R− V̂ T (Y t + 1
βZ

t)V̂
∥∥∥2

= PR(V̂ T (Y t + 1
βZ

t)V̂ ),

where PR denotes the projection (nearest point) onto the intersection of the positive semidefinite

cone S(k−1)(n−1)+1
+ and the hyperplane {R ∈ S(k−1)(n−1)+1 : traceR = n+ 1}. For any symmetric

matrix W ∈ S(n−1)(k−1)+1, we have

PR(W ) = U Diag(PΛ̄(diag(Λ)))UT ,

where (U,Λ) contains the eigenpairs of W and PΛ̄ denotes the projection of the vector of eigenvalues,378

i.e., diag(Λ), onto the simplex Λ̄ = {λ ∈ R(k−1)(n−1)+1
+ : λT e = n+ 1}. Projection onto simplices379

can be performed efficiently via some standard root-finding strategies; see, for example, [5, 27].380

3.1.2 Y -subproblem381

The Y -subproblem involves projection onto the polyhedral set Y, i.e.,

Y t+1 = arg min
Y ∈Y

〈Ls, Y 〉+ 〈Zt+
1
2 , Y − V̂ Rt+1V̂ T 〉+ β

2

∥∥∥Y − V̂ Rt+1V̂ T
∥∥∥2

= arg min
Y ∈Y

β
2

∥∥∥Y − V̂ Rt+1V̂ T + 1
β (Ls + Zt+

1
2 )
∥∥∥2
.

(3.6)

To present a closed form solution for the update, we let Υ := V̂ Rt+1V̂ T − 1
β (Ls +Zt+

1
2 ) and assume382

that Υ is blocked as in (2.3). We now partition the set of indices of Jc0 into the following three383

disjoint sets:384

• ζr: it includes the 0-th row of Υ except for the 00-element.385

• ζo(⊆ Jc0): it includes all off-diagonal elements of the blocks in Υ whenever these off-diagonal386

elements belong to Jc0 .387

• ζd: it includes the diagonal of Υ except for the 00-element.388

We also define the following subsets:

Yg := {Y ∈ Snk+1 : G
Ĵ0

(Y ) = G
Ĵ0

(e0e
T
0 )};

Yr := {Y ∈ Snk+1 : 0 ≤ Gζr(Y ) ≤ 1, eTY(i0) = mi, i = 1, . . . , k};
Yo := {Y ∈ Snk+1 : 0 ≤ Gζo(Y ) ≤ 1,Do(Y ) = M̂};
Yd := {Y ∈ Snk+1 : 0 ≤ Gζd(Y ) ≤ 1}.
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Note that Y = Yg ∩ Yd ∩ Yr ∩ Yo. The next iterate Y t+1 can now be computed as follows:

(Y t+1)ij =


1 if i = j = 0,
0 if ij ∈ J0,

(PYr(Υ))ij if ij ∈ ζr,
(PYo(Υ))ij if ij ∈ ζo,

min(1,max(Υij , 0)) if ij ∈ ζd,

where PYr and PYo denote the orthogonal projection onto the Yr and Yo respectively. Both Yr389

and Yo are intersections of a hyperplane and a box. The projection can be obtained efficiently via390

standard root-finding algorithms; see, for example, [14, 17].391

Denote the inexact approximate solution from FRSMR by (Rout, Y out, Zout). In the following392

two subsections, we illustrate how we compute the lower and upper bounds with the obtained Zout
393

and Y out , respectively.394

3.2 Lower bound from inaccurate relaxation395

Since (3.3) is a relaxation of MC, we conclude that exact solutions provide a lower bound for
the original MC. However, the problem size of (3.3) can be extremely large, and it could be very
expensive to obtain highly accurate solutions. In the following, we provide an inexpensive way to
get a valid lower bound from the output of our algorithm even when the solution is only obtained
to a moderate accuracy. Our approach is based on the following function

g(Z) := min
Y ∈Ỹ
〈Ls + Z, Y 〉 − (n+ 1)λmax(V̂ TZV̂ ), (3.7)

where λmax(V̂ TZV̂ ) denotes the largest eigenvalue of V̂ TZV̂ and the constraint set

Ỹ := {Y ∈ Snk+1 : G
Ĵ0

(Y ) = G
Ĵ0

(e0e
T
0 ), 0 ≤ G

Ĵc
0
(Y ) ≤ 1,

Do(Y ) = M̂, Dt(Y ) = M, eTY(i0) = mi, i = 1, . . . , k}.

In the following Theorem 3.2, we show that maxZ g(Z) is indeed a Fenchel dual problem of (3.3).396

Since the Fenchel dual problem is an unconstrained maximization problem, evaluating g in (3.7) at397

the t-th iterate Zt returned by Algorithm 3.1 always yields a lower bound for p∗DNN .4398

Theorem 3.2. Consider the problem

d∗Z := max
Z

g(Z), (3.8)

where g is defined in (3.7). Then (3.8) is a concave maximization problem and strong duality holds
between (3.3) and (3.8), i.e.,

d∗Z = p∗DNN, and d∗Z is attained.

Proof. We derive (3.8) as a Fenchel dual problem of (3.3) by finding a best lower bound as follows.

p∗DNN = min
R∈R,Y ∈Y

max
Z

{
〈Ls, Y 〉+

〈
Z, Y − V̂ RV̂ T

〉}
4This strengthens [18, Lemma 3.2].
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= min
R∈R,Y ∈Ỹ

max
Z

{
〈Ls, Y 〉+

〈
Z, Y − V̂ RV̂ T

〉}
(3.9a)

= max
Z

min
R∈R,Y ∈Ỹ

{
〈Ls, Y 〉+

〈
Z, Y − V̂ RV̂ T

〉}
(3.9b)

= max
Z

{
min
Y ∈Ỹ
{〈Ls, Y 〉+ 〈Z, Y 〉}+ min

R∈R
〈Z,−V̂ RV̂ T 〉

}
= max

Z

{
min
Y ∈Ỹ
{〈Ls, Y 〉+ 〈Z, Y 〉}+ min

R∈R
〈V̂ TZV̂ ,−R〉

}
= max

Z

{
min
Y ∈Ỹ
〈Ls + Z, Y 〉 − (n+ 1)λmax(V̂ TZV̂ )

}
= d∗Z , (3.9c)

where:399

1. (3.9a) follows from the redundancy of the constraint Dt(Y ) = M as guaranteed by Theo-400

rem 2.13; 5
401

2. (3.9b) follows from [24, Corollary 28.2.2], [24, Theorem 28.4] and the fact that (3.3) has402

generalized Slater points (see Proposition 2.16). 6
403

3. (3.9c) follows from the definition of R and the Rayleigh Principle.404

The concavity of g is clear, and we see from [24, Corollary 28.2.2] and [24, Corollary 28.4.1] that405

the dual value d∗Z is attained.406

3.3 Upper bound from a feasible solution407

We now move from lower bounds to finding upper bounds for cut(m). Given an output Y out from408

our algorithm FRSMR , the procedures for computing upper bounds are:409

1. We extract a column vector v from Y out in one of the following three ways:7410

(a) use column 0 of Y out;411

(b) use the eigenvector corresponding to the largest eigenvalue of Y out;412

(c) sum of random weighted-eigenvalue eigenvectors of Y out, i.e.,

v =

r∑
i=1

wiλivi,

where λ1 ≥ · · · ≥ λr > 0, are the ordered eigenvalues of Y out with eigenpairs (λi, vi), and413

1 ≥ w1 ≥ . . . ≥ wr > 0 are random ordered weights. The r here is the numerical rank of414

Y out. 8
415

5Note that the inner maximization forces Y = V̂ RV̂ T .
6Note that the Lagrangian is linear in R, Y and linear in Z. Moreover, both constraint sets R,Y are convex and

compact. Therefore, the result also follows from the classical Von Neumann-Fan minmax theorem.
7Note that if Y out is rank-1 and feasible, then the first two methods in Item 1a and Item 1b yield exact solutions

to MC. This motivates the use of eigenvector information.
8MATLAB: r = min(sum(λ/(n+ 1) > 0.1) + 1, n+ 1);
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2. For each vector v obtained in Step 1, we extract its last nk elements as a subvector v◦ and set416

X◦ = mat(v◦).417

3. For each X◦ obtained, we find the nearest partition matrix X∗ to it. (See Proposition 3.4,418

below.)419

4. For each X∗ obtained, an upper bound of MC is found as 1
2 trace(AX∗BX∗T ). We save the420

best (smallest) upper bound obtained and the corresponding X∗. (We repeat the random421

choice in Item 1c dlog(n)e times.)422

Remark 3.3. 1. First of all, the projection in Item 3 can be done efficiently using linear423

programming. (Actually in strongly polynomial time if one uses something like the classical424

Hungarian algorithm.) This is similar to what is done in [18, 19, 30].425

2. In [18], we adopt a similar procedure for calculating upper bound, but only generate the column426

vector v from Y out using the first two ways in item 1, i.e., Item 1a and Item 1b. In Figure 1,427

we compare the method in [18] with the above proposed procedure for calculating the upper428

bound. It demonstrates that Item 1c in our proposed procedure contributes greatly to the upper429

bound.430

Proposition 3.4 ( [19, Theorem 6.1]). Let X◦ ∈ Rn×k. Then the nearest partition matrix X∗ ∈Mm

to X◦ can be found by solving the transportation type linear program

X∗ ∈ arg min − traceX◦TX
s.t. Xe = e

XT e = m
X ≥ 0.

(3.10)

Note that we get an exact solution if rank(Y out) = 1 and Y out = V̂ RoutV̂ T . Proposition 3.5
below suggests that the methods described in Item 1a and Item 1b above likely yield reasonable
approximate partition matrices. Recall that

convMm = {X ∈ Rn×k : Xe = e,XT e = m,X ≥ 0}.

Proposition 3.5 ( [19, Proposition 5.2]). Let Y be feasible for (2.63). Let v1 = Y1:nk 0, and let[
v0 vT2

]T
denote a unit eigenvector of Y corresponding to the largest eigenvalue. Then v0 6= 0, and

both
X◦1 := Mat(v1), X◦2 := Mat(v0

−1v2) ∈ convMm.

However, in general Y out is not an exact solution of the DNN relaxation. Then Item 1c plays an431

important role in generating many vectors v for finding an upper bound. We see this in Section 4.3.3432

below. In fact, this allows us to stop the algorithm with much fewer iterations when we see that433

both the upper and lower bounds are not improving.434

4 Numerical experiments435

In this section we apply the proposed FRSMR method in Algorithm 3.1 to solve the DNN relaxation436

in (3.3). All the tests are performed using Matlab R2017a on a ThinkPad X1 with an Intel CPU437

(2.5GHz) and 8GB RAM running Windows 10.438
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4.1 Classes of problems and parameters439

We consider three classes of problems, see Sections 4.3.1 to 4.3.3. We outline them here:440

(a) (random structured graphs, Section 4.3.1.) We compare with the DNN relaxation in [19].9441

The latter relaxation is solved using an interior point approach with Mosek version 8.0.0.60. [1].442

See Table 4.2.443

(b) (partially random graphs with various sizes, Section 4.3.2.) There are four kinds of random444

graphs, classified by the number of 1’s, |I|, in the vector m. In particular, in the three cases445

where I 6= ∅, we almost always obtain a zero gap and thus the optimal solution. See Tables 4.3446

to 4.6.447

(c) (vertex separator instances, Section 4.3.3.) We compare with the bounds obtained by solving448

the relaxation SDP4 in [22]. In addition, we include comparisons on the upper bounds on the449

size of the vertex separator. See Table 4.7.450

4.2 Parameters, initialization, stopping criteria451

In our implementation, we first shift the objective to obtain positive definiteness.

L← L+ αI, α = 0.1 + max{0,−λmin(L)}.

This does not change the optimum Y ∗ but it changes the dual Z and promotes Z � 0, as can be452

seen from the expression for the Y -subproblem in (3.6). This in turn promotes a better lower bound453

from (3.9c).454

We now specify the parameters used in FRSMR in Sections 4.3.1 to 4.3.3.455

1. The penalty and step parameters are, respectively,

β =
3k

n
, γ = 0.9.

2. We terminate once one of the following Items 2a to 2c holds:456

(a) the number of iterations reaches 10000;457

(b) the relative gap, rel-gap, is either zero10 or does not change in max{5, dn/10e} consecutive
iterations,

rel-gap =
(best upper bound− best lower bound)

(best upper bound + best lower bound + 1)/2
; (4.1)

(c)

max
{∥∥∥Y t+1 − V̂ Rt+1V̂ T

∥∥∥, ∥∥Y t+1 − Y t
∥∥} < 10−12; (4.2)

This criterion (4.2) is the same as that suggested in [13, Remark 2.3].458

9The DNN relaxation in [19] imposes the additional nonnegativity constraints V̂ ZV̂ T ≥ 0 onto their SDPfinal

relaxation.
10Note that our data are integral and we round up the lower bound, therefore the gap is integer valued. Thus,

finding a zero duality gap is reasonable. Moreover, the lower bounds are nonnegative.
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3. We calculate: the lower bound and the upper bound every 100th iteration, using Theorem 3.2459

(to compute a lower bound as dg(Zt)e) and the procedures in Section 3.3. In the computation460

of the upper bound, we sample the random weight vector dlog(n)e times. The linear program461

(3.10) involved in the computation of the upper bound is solved with Mosek using their462

function ‘mosekopt’ and the dual-simplex method.463

4. The data terminology in our Tables are described in Table 4.1.

Table 4.1: Data terminology.

imax the maximum size of each set
k the number of sets
n the number of nodes, i.e., the sum of the sizes of the sets
p the density of the graph, i.e., 2|E|/(|V |(|V | − 1))
l = eTmone the number of 1’s in m
Iters the number of iterations
Time CPU time in seconds
Bounds best lower and upper bounds and relative gap

Residuals final values
∥∥∥Y t+1 − V̂ Rt+1V̂ T

∥∥∥ (∼= ∆Z);
∥∥Y t+1 − Y t

∥∥ (∼= ∆Y )

464

5. In Section 4.3.3 we consider the special class of vertex separator problems.465

(a) The penalty and step parameters in FRSMR are, respectively,

β = 0.001, γ = 0.9.

(b) The stopping criterion is set as the same as in Sections 4.3.1 and 4.3.2.466

(c) We calculate the lower bound every 100-th iteration using Theorem 3.2. We compute the467

upper bound every iteration using the procedures in Section 3.3. Other settings in the468

computation of the upper bound are the same as in Sections 4.3.1 and 4.3.2.469

4.3 Three classes of problems470

4.3.1 Random structured graphs471

The structured graphs are generated as in [19, Sect. 7.1]. That is, we first generate k disjoint cliques472

of sizes m1, . . . ,mk, randomly chosen from {2, ..., imax}. We then join the first k − 1 cliques to473

every node of the k-th clique, and add u0 edges between the first k − 1 cliques, chosen uniformly474

at random from the complement graph. In our experiments below, we set u0 = becdc, where ec475

is the number of edges in the complement graph and d is the density (percentage of edges in the476

complement graph to be added). By construction, u0 ≥ cut(m).477

We use small instances with k = 4, 5, d = 10% and imax = 6, 8. We compare our approach478

with the DNN relaxation model in [19] solved by Mosek [1]. The results in Table 4.2 illustrate the479

improvement in solution time.480
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Table 4.2: Comparison results for small structured graphs with DNN relaxation model in [19].

Data Lower bounds Upper bounds Rel-gap Time (cpu)
n k |E| u0 FRSMR Mosek FRSMR Mosek FRSMR Mosek FRSMR Mosek

20 4 136 6 6 6 6 6 0.00 0.00 0.14 5.41
25 4 222 8 8 8 8 8 0.00 0.00 0.22 10.24
25 5 170 14 14 14 14 14 0.00 0.00 0.27 30.36
31 5 265 22 22 22 22 22 0.00 0.00 1.15 126.11

4.3.2 (Partially) random graphs with various sizes481

We test four groups of random graphs corresponding to different values of I:482

1. (I = ∅) vector m is generated by choosing k integers randomly from {2, ..., imax};483

2. (k /∈ I 6= ∅) after generating m as in Item 1 above, we randomly select elements from484

{m1,m2, . . . ,mk−1} and set them to be 1;485

3. (k ∈ I 6= K) after generating m as in Item 1 above, we set mk = 1 and randomly select no486

more than k − 2 elements from {m1,m2, . . . ,mk−1} and set them to be 1;487

4. (I = K) simply set imax = 1 and set all the elements of m to be 1.488

Then, as n = mT e is the total number of nodes in the simple, undirected graph, we randomly489

generate an adjacency matrix A of a graph on n nodes with density = densityA, and construct the490

Laplacian matrix.11
491

In Tables 4.3 to 4.6, we consider the four groups of random graphs in Items 1 to 4, above. In492

each group of random graphs, we generate m and A by choosing k and imax as given in the tables493

with various values for densityA; the density p of the graphs is also reported.494

From Table 4.3, i.e, in the case of I = ∅, we can see that the FRSMR in general takes a495

reasonably short time to converge. Moreover, in most instances, the rel-gap is very small; sometimes496

we even obtain a zero gap and hence the instance is solved to optimality. FRSMR appears to497

perform better in the cases when I 6= ∅. The corresponding results are shown in Tables 4.4 to 4.6.498

We can see that in most instances, the rel-gap is zero and the problem is solved exactly. Moreover,499

the CPU times taken are reasonably small.500

4.3.3 Vertex separator problem501

We now test some vertex separator problems from https://sites.google.com/site/sotirovr/502

the-vertex-separator. We compare against the bounds obtained from the model SDP4 in [22].503

In each instance, the m has the special structure that k = 3, |m1 −m2| ≤ 1 and cut(m) > 0. In504

this case, by solving MC , one can separate the nodes of the graph into S1, S2 and S3 so that the505

number of edges between S1 and S2 is minimized. If cut(m) = 0, for some m = (m1,m2,m3)T , then506

we say that S3 separates S1 and S2, and S3 is called a vertex separator. If cut(m) > 0, on the other507

hand, it means that no separator S3 for the cardinalities specified in m exists. However, we can508

experiment with different choices of m, i.e, transferring nodes from S1 and S2 to S3, in the hope of509

11MATLAB: A = abs(sprandsym(sum(m),densityA))> 0; A = A - diag(diag(A));
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Table 4.3: Results for random graphs with I = ∅.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
4 5 17 0.43 0 500 0.94 16 17 0.06 9.51e-04 1.01e-04
4 5 17 0.32 0 100 0.19 10 10 0.00 1.93e-02 1.75e-02
5 6 23 0.35 0 500 1.75 37 42 0.13 1.81e-03 1.92e-04
5 6 23 0.30 0 600 1.92 30 34 0.12 1.07e-03 1.68e-04
6 7 30 0.28 0 900 5.99 42 48 0.13 1.65e-03 1.28e-04
6 7 30 0.22 0 600 4.14 31 40 0.25 3.24e-03 3.88e-04
7 8 37 0.18 0 700 9.03 32 38 0.17 6.29e-03 1.56e-03
7 8 37 0.14 0 700 9.13 18 22 0.20 5.22e-03 1.18e-03
8 9 49 0.10 0 1200 47.09 14 19 0.29 5.68e-03 8.18e-04
8 9 49 0.05 0 1000 45.52 0 6 1.71 1.31e-04 1.83e-04

Table 4.4: Results for random graphs with k /∈ I 6= ∅.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
4 5 14 0.37 1 100 0.17 6 6 0.00 1.59e-02 1.26e-02
4 5 14 0.37 1 100 0.17 5 5 0.00 2.88e-02 4.62e-02
5 6 16 0.35 2 400 0.92 11 11 0.00 1.70e-03 4.32e-04
5 6 16 0.32 2 100 0.24 11 11 0.00 2.81e-02 3.22e-02
6 7 19 0.27 4 500 1.79 8 9 0.11 2.73e-03 3.29e-04
6 7 19 0.22 4 500 1.76 4 5 0.20 1.75e-03 4.32e-04
7 8 12 0.20 7 100 0.21 0 0 0.00 1.20e-02 1.54e-02
7 8 12 0.17 7 100 0.21 0 0 0.00 2.19e-02 1.97e-02
8 9 16 0.12 8 100 0.38 0 0 0.00 4.78e-02 6.50e-02
8 9 16 0.06 8 100 0.38 0 0 0.00 3.06e-02 3.10e-02

eventually producing a separator. In this way, we can obtain an upper bound of the cardinality of510

a vertex separator. Here, we follow the approach described in [22, Section 8] to derive an upper511

bound of the cardinality of a vertex separator, using solutions obtained from FRSMR .512

In Table 4.7, we compare the lower and upper bounds for cut(m) obtained from (3.3) and from the513

model SDP4 in [22]. We also report the upper bound of the cardinality of vertex separator obtained514

for each instance. The (upper and lower) bounds for SDP4 are obtained directly from [22, Table 3].12
515

From Table 4.7, we can see that the MC upper bounds from the model (3.3) are very competitive516

with those obtained from the model SDP4. For most instances, the upper bounds are equal except517

for two instances, “grid3dt(5)” and “grid3dt(7)”; as for the comparison of upper bounds for vertex518

separator, still most upper bounds are equal, except for “can-144”,“gridt(15)”,“ gridt(5)”,“gridt(6)”519

and “gridt(7)”.520

Figure 1 shows the comparison of the upper bound using Section 3.3 (new upper bound derived521

via all three items there) and the method in [18] that only uses the Item 1a and Item 1b. It522

demonstrates that our new strategy can produce much better upper bound than the method that523

uses only the Item 1a and Item 1b.524

12These results use extra cutting planes, and therefore they obtain stronger lower bounds on cut(m).
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Table 4.5: Results for random graphs with k ∈ I 6= K.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
4 5 12 0.45 2 100 0.16 11 11 0.00 1.41e-03 2.03e-03
4 5 12 0.39 2 100 0.14 9 9 0.00 1.08e-02 1.38e-02
5 6 15 0.33 3 100 0.21 13 13 0.00 2.43e-02 3.80e-02
5 6 15 0.29 3 100 0.21 10 10 0.00 3.12e-02 5.09e-02
6 7 18 0.27 4 100 0.37 13 13 0.00 8.97e-02 1.03e-01
6 7 18 0.22 4 300 0.95 10 10 0.00 3.82e-03 2.76e-03
7 8 13 0.21 7 100 0.23 5 5 0.00 7.67e-03 8.75e-03
7 8 13 0.18 7 100 0.23 4 4 0.00 1.56e-02 1.94e-02
8 9 16 0.11 8 100 0.47 2 2 0.00 5.51e-02 1.04e-01
8 9 16 0.06 8 100 0.49 0 0 0.00 1.30e-02 1.47e-02

Table 4.6: Results for random graphs with I = K.
Specifications

Iters Time (cpu)
Bounds Residuals

imax k n p l lower upper rel-gap primal dual
1 8 8 0.64 8 100 0.17 12 12 0.00 4.22e-04 6.08e-04
1 10 10 0.69 10 100 0.26 23 23 0.00 9.94e-03 1.26e-02
1 12 12 0.47 12 100 0.39 23 23 0.00 1.86e-02 3.32e-02
1 14 14 0.46 14 100 0.66 33 33 0.00 6.37e-02 8.99e-02
1 16 16 0.44 16 100 1.04 43 43 0.00 1.69e-01 2.49e-01
1 18 18 0.39 18 200 3.71 48 48 0.00 1.45e-02 2.22e-02
1 20 20 0.29 20 200 7.31 47 47 0.00 3.75e-02 4.04e-02
1 22 22 0.25 22 200 11.24 47 47 0.00 1.39e-01 1.58e-01
1 24 24 0.13 24 200 16.41 31 31 0.00 1.06e-01 1.13e-01
1 26 26 0.05 26 200 23.75 10 10 0.00 1.19e-01 8.14e-02

Table 4.7: Comparisons on the bounds for MC and bounds for the cardinality of separators.
Name n |E| m1 m2 m3 lower upper lower upper lower upper upper

MC by SDP4 MC by (3.3) Separator by SDP4 Separator by (3.3)

Example 1 93 470 42 41 10 0.07 1 0 1 11 11 11
bcspwr03 118 179 58 57 3 0.56 1 0 2 4 5 5
Smallmesh 136 354 65 66 5 0.13 1 0 1 6 6 6
can-144 144 576 70 70 4 0.90 6 0 6 5 6 8
can-161 161 608 73 72 16 0.31 2 0 2 17 18 18
can-229 229 774 107 107 15 0.40 6 0 6 16 19 19
gridt(15) 120 315 56 56 8 0.29 4 0 4 9 11 12
gridt(17) 153 408 72 72 9 0.17 4 0 4 10 13 13
grid3dt(5) 125 604 54 53 18 0.54 2 0 4 19 19 22
grid3dt(6) 216 1115 95 95 26 0.28 4 0 4 27 30 31
grid3dt(7) 343 1854 159 158 26 0.60 22 0 27 27 37 44
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Figure 1: Comparison of upper bounds
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new upper bound

5 Conclusion525

In this paper we introduced new methods for finding strengthened lower and upper bounds for the526

MC problem. SDP relaxations provide strong bounds that are further strengthened by nonnegativity527

constraints, i.e., by using the DNN relaxation. However, in general solving the DNN relaxation by528

interior-point methods is extremely expensive.529

Strict feasibility fails for the SDP relaxation of MC , but FR can be used to regularize the530

problem and simultaneously make all but the gangster constraint redundant. The FR appears to531

provide a natural splitting for the variables Y = V̂ RV̂ T , where Y,R are restricted to the polyhedral532

and cone constraints, respectively. We exploit this within a sPRSM framework.533

We bring back previously redundant constraints to strengthen the two subproblems in Y,R. In534

addition, we periodically find lower and upper bound estimates in order to stop the algorithm early,535

i.e., with low accuracy.536

Our numerical experiments show that our approach for solving MC improves on the existing537

approaches in [19,22].538
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Index

A ◦B, Hadamard product, 6539

A, adjacency matrix, 5540

E, matrix of ones, 9541

Ej = eje
T
j , 5542

F , minimal face, 11543

G = (V, E),graph, 3544

Ij , 5545

J0, gangster indices bottom, 9546

Ji, i = 1, 2, 3, gangster subsets, 10547

JI , restricted gangster set, 10548

LA =

[
0 0
0 B ⊗A

]
, objective, 6549

M = Diag(m), 5550

Mone, 18551

Dd(Y ), block diagonal constraint, 8552

Do(Y ), block off-diagonal constraint, 8553

Dt(Y ), block trace constraint, 8554

Diag(m), diagonal matrix, 5555

E , edge set, 3556

GJI (Y ), restricted gangster constraint, 10557

Mm, partition matrices, 5558

M+
m := conv(Mm), 30559

Mat(x), 5560

NS(x), normal cone of S at x, 26561

Ωc, 9562

1S(S), indicator function, 26563

∆0:nk := {ij : 0 ≤ i ≤ j ≤ nk},triangular indices,564

9565

V, vertex set, 3566

arrow(Y ), arrow constraint, 7567

δ(S), cut of a partition S, 5568

diag, 5569

m̂one ∈ Rk−1, 18570

m̂k−1, 19571

Lβ(R, Y, Z), 25572

‖S‖F , Frobenius norm, 5573

Y , 6574

ĴI := J0 ∪ (0, 0), gangster indices, 12575

ζd, 27576

ζo(⊆ Jc0), 27577

ζr, 27578

e, ones vector, 5579

ej , 5580

ej , ones vector dimension j, 7581

fR(R) = 1R(R), 26582

gY(Y ) = traceLsY + 1Y(Y ), 26583

I := {i ∈ K : mi = 1}, 9584

K := {1, . . . , k}, 9585

R, 25586

Ro, 25587

Y, 25588

Yd, 27589

Yg, 27590

Yo, 25, 27591

Yr, 27592

vec(X), 5593

DNN, doubly nonnegative (cone), 1594

FRSMR , 25, 30595

FR, facial reduction, 11596

MC , minimum cut problem, 3597

SDP, semidefinite programming, 1, 3598

sPRSM, strictly contractive Peaceman-Rachford599

splitting method, 4600

adjacency matrix, A, 5601

adjoint linear transformation, 5602

alternating direction method of multipliers, ADMM ,603

4604

arrow constraint, arrow(Y ), 7605

block diagonal constraint, Dd(Y ), 8606

block off-diagonal constraint, Do(Y ), 8607

block trace constraint, Dt(Y ), 8608

cut of a partition S, δ(S), 5609

diagonal matrix, Diag(m), 5610

doubly nonnegative (cone), DNN, 1611

edge set, E , 3612

facial reduction, FR, 11613

facial reduction, FR, 11614

Fröbenius norm, ‖S‖F , 5615

gangster indices bottom, J0, 9616

gangster indices, ĴI := J0 ∪ (0, 0), 12617
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gangster subsets, Ji, i = 1, 2, 3, 10618

graph, G = (V, E), 3619

Hadamard product, A ◦B, 6620

indicator function, 1S(S),, 25621

indicator vector, 5622

matrix of ones, E, 9623

minimal face, F , 11624

minimum cut problem, 3625

normal cone of S at x, NS(x), 26626

objective, LA =

[
0 0
0 B ⊗A

]
, 6627

ones vector dimension j, ej , 7628

ones vector, e, 5629

partition matrices, Mm, 5630

restricted gangster constraint, GJI (Y ), 10631

restricted gangster set, JI , 10632

Robinson regularity, 12633

semidefinite programming, SDP, 1634

semidefinite programming, SDP, 3635

Slater condition, 11636

strict feasibility, 11637

strictly contractive Peaceman-Rachford splitting638

method, sPRSM, 4639

strictly contractive Peaceman-Rachford splitting640

method, sPRSM, 4641

strictly contractive Peaceman-Rachford splitting642

method, sPRSM , 26643

trace inner product, 5644

triangular indices, ∆0:nk := {ij : 0 ≤ i ≤ j ≤645

nk}, 9646

undirected graph G = (V, E), 3647

vertex set, V, 3648
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