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In this paper, we solve a class of two-stage distributionally robust optimization problems which have the

property of supermodularity. We exploit the explicit worst-case expectation of supermodular functions and

derive the worst-case distribution for the robust counterpart. This enables us to develop an efficient method

to obtain an exact optimal solution to these two-stage problems. Further, we provide a necessary and

sufficient condition for checking whether any given two-stage optimization problem has the supermodularity

property. We also investigate the optimality of the segregated affine decision rules when problems have the

property of supermodularity. We apply this framework to several classic problems, including the multi-item

newsvendor problem, the facility location problem, the lot-sizing problem on a network, the appointment

scheduling problem, and the assemble-to-order problem. While these problems are typically computationally

challenging, they can be solved efficiently under our assumptions. Finally, numerical examples are conducted

to illustrate the effectiveness of our approach.

Key words : distributionally robust optimization; two-stage optimization; supermodularity;
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1. Introduction

Many real-world optimization problems with uncertainties can be formulated as two-stage opti-

mization models. In such problems, we first make a “here-and-now” decision. In the second stage,

after the uncertainties are realized, we choose an optimal action, which we call the “wait-and-see”

decision.

This two-stage optimization formulation has drawn extensive attention from both the operations

management and optimization communities as it can model a wide range of operational problems.

For instance, in an assemble-to-order (ATO) system, the here-and-now decision is the ordering

quantities of the components while the wait-and-see decision is the assembly plan which determines

the amount of each type of component to be used to assemble each type of product on demand. In
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appointment scheduling problems, the here-and-now decision is the scheduled appointment time

while we introduce auxiliary second-stage decisions to evaluate the nonlinear objective. Other

examples include multi-item newsvendor, facility location, unit commitment problems, etc.

One classic solution approach to two-stage optimization problems is stochastic programming

(e.g., Shapiro et al. 2009, Birge and Louveaux 2011), in which uncertainties are assumed to follow

some given probability distributions. To incorporate ambiguity, robust optimization is adopted

to solve the two-stage optimization problems. Using robust optimization, instead of optimizing

the expectation of objective functions, we seek solutions that are immune to a distribution-free

uncertainty set. However, this type of problem is still hard to solve in general because of its two-

stage nature. Some approximation methods have been proposed to address the intractable nature

of the problem, such as the linear decision rule (Ben-Tal et al. 2004), and more complex methods

including the polynomial (Bertsimas et al. 2011), segregated affine (Chen et al. 2008) and piecewise

linear (Ben-Tal et al. 2009) decision rules. These approaches restrict solutions to specific functions

of the uncertainty realizations (such as affine functions). The functions are parameterized by a

finite number of coefficients and lead to computational tractability.

In addition, if problems have some special structures, the approximated solutions can be proved

to be near-optimal or even optimal. Bertsimas and Goyal (2010) show that for a two-stage stochastic

problem, the static solutions derived from the corresponding robust version give a 2-approximation

to the original stochastic problem if both the uncertainty set and the probability measure are

symmetric. For the linear decision rule, Bertsimas et al. (2010b) prove its optimality in multi-

period robust optimization problems when the problem is one-dimensional with convex costs.

Bertsimas and Goyal (2012) further give the result that linear decision rules can be optimal in a

two-stage setting if the uncertainty set is a simplex. Kuhn et al. (2011) apply the linear decision

rule approximation to the primal and dual problems separately, in both stochastic programming

and robust optimization problems, where the gap between the two approximated values is used

to estimate the loss of optimality. The numerical example shows that in the specific setting they

adopt, the relative gap between the bounds can be consistently low.

However, since classic robust optimization does not use any frequency information, the solution

can be overly conservative and therefore too extreme for practical applications. To overcome this,

by incorporating an ambiguity set of probability distributions, distributionally robust optimization

(DRO) has been developed to seek solutions which protect against the worst-case distribution over

all admissible ones (Delage and Ye 2010, Goh and Sim 2010, Wiesemann et al. 2014). The distri-

butional ambiguity set containing all possible probability distributions is characterized by certain

distributional information, such as moment information or statistical measures. Chen et al. (2020)

recently propose a scenario-based distributional ambiguity set, which can model a broader class of
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uncertainty sets, e.g., uncertainty sets with both moment and Wasserstein distance information.

For the two-stage DRO, while solutions can be derived by many parametric decision rules as in

robust optimization, very few results have been reported to theoretically evaluate the performance

of these approximations. Ardestani-Jaafari and Delage (2016) show the optimality of segregated

affine decision rules to a distributionally robust multi-item newsvendor problem with budgeted

support, means and first order partial moments as distributional information. Incorporating auxil-

iary random variables and considering a class of lifted linear decision rules, Bertsimas et al. (2019)

prove the optimality of such approximations when the problem has complete recourse and only

one second-stage decision variable. Georghiou et al. (2021) identify five conditions for the objective

function and feasible region of the second-stage problem, and show that if all the five conditions

hold, linear decision rules can be optimal regardless of the structure of the ambiguity set. On the

other hand, examples are also given for the case where linear decision rules can be infeasible even

for problems with complete recourse (Bertsimas et al. 2019).

Further, few studies have been conducted to examine the equivalent reformulations and tractabil-

ity conditions required to solve for exact analytical solutions. Bertsimas et al. (2010a) investigate

the cases with ambiguity sets constructed using first and second moments and objective func-

tions being nondecreasing piecewise linear convex disutility functions of the second-stage costs.

They show that, if uncertainties only appear in the objective function of the second stage, then

the original problems can be equivalently reformulated as semidefinite programs. Bansal et al.

(2018) propose decomposition algorithms for two-stage distributionally robust linear problems with

discrete distributions, as well as conditions under which the algorithms are finitely convergent.

Hanasusanto and Kuhn (2018) show that for problems with complete recourse and the ambiguity

sets being 2-Wasserstein balls centered on a discrete distribution, if the uncertainty appears only

in constraints of the second-stage problem, then there exists a co-positive cone reformulation.

We extend the previous literature by exploiting the property of supermodularity for a broad

class of two-stage DRO problems. Hence, besides the DRO, supermodularity is another stream

of studies that are closely related to our work. The concept of supermodularity has proved its

importance in the areas of economics and operations research. In particular, it has economic impli-

cations in terms of complementarity between resources. A widely studied problem is to explore

supermodularity in parametric optimization problems in order to derive certain monotone compar-

ative statics. However, the results are rather scattered and the proof is usually problem-specific.

For the general case, Topkis (1998) first introduces lattice conditions on the feasible set to derive

the property of supermodularity. While the lattice condition is quite restrictive, Chen et al. (2013)

extend it and study the sufficient condition for a class of two-dimensional parametric optimization

problems. A recent work by Chen et al. (2021) has provided a systematic study of the conditions
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both necessary and sufficient to identify the property of supermodularity. Because of the essential

implication of complementarity, in a few studies, supermodularity is incorporated within robust

optimization to analyze the worst-case performance. Specifically, Agrawal et al. (2010) prove that

when the marginal distributions are two-point distributions and the cost function is convex and

supermodular, there exists a polynomial-time algorithm for the optimization problem under uncer-

tainties. In multi-stage robust optimization, Iancu et al. (2013) show that the linear decision rule

gives an optimal solution when the objective function is supermodular and the uncertainty set has

a certain lattice structure.

In this paper, we solve a class of two-stage DRO problems in which the second-stage optimal value

is supermodular in the realization of uncertainties. Under the setting of scenario-based ambiguity

sets with supports, means and upper bounds of mean absolute deviations (MADs), we exploit the

explicit worst-case expectation of supermodular functions and derive the worst-case distribution in

the robust counterpart. This can make the two-stage DRO problem tractable. Further, we provide

a necessary and sufficient condition to check whether any given two-stage optimization problem has

this property. We also discuss the optimality of the segregated affine decision rules when problems

have the property of supermodularity. We then illustrate the applicability of our theoretical results

by identifying a class of two-stage optimization problems with supermodularity. These include

several classic problems, e.g., multi-item newsvendor, facility location, lot-sizing on a network,

appointment scheduling with random no-shows, and general ATO systems. While these problems

are typically computationally challenging, they can be solved efficiently under our assumptions.

Our key contributions are summarized as follows.

1. In a two-stage optimization problem with mean and MAD as the distributional information,

whenever the second-stage problem has the property of supermodularity, we can explicitly find

its worst-case distribution in polynomial time. With this distribution, we obtain the worst-

case expectation of the second-stage cost, and the original two-stage problem can be reduced

to a deterministic optimization problem of polynomial size.

2. When the second-stage problem has a linear programming formulation, we provide a necessary

and sufficient condition to check its supermodularity. An algorithm is proposed to determine

whether the condition is satisfied.

3. Leveraging the special structure of the worst-case distribution, we show that when the property

of supermodularity holds, the segregated affine decision rules can return the same optimal

solution either when the constraints are relaxed to only on a given subset of uncertainty

realizations, or when the feasible region satisfies some given conditions.

4. We provide three extensions to generalize the results and further apply them to several impor-

tant problems, including multi-item newsvendor, facility location, lot-sizing, appointment
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scheduling, and the ATO problems. For the first four applications, the objective is supermod-

ular, and we can reduce them to tractable formulations. For ATO systems, we explore several

special structures in which supermodularity holds.

The rest of this paper is organized as follows. In Section 2, we define the model and illustrate the

requirement of supermodularity for tractability. In Section 3, we demonstrate the equivalent con-

ditions for checking the supermodularity. In Section 4, we investigate the relationship between the

optimality of affine decision rules and the supermodularity property. We then discuss applications

in Section 5, provide numerical studies in Section 6, and finally conclude the paper in Section 7. For

the sake of readability, we provide several extensions in Appendix B and all proofs are relegated

to Appendix C with a table of contents in the beginning.

Notation and convention: For any integer K ≥ 1, we define [K] = {1, · · · ,K}, which is the

set of positive running indices to K. We use | · | to represent the cardinality of a set. We represent

column vectors and matrices by lower- and upper-case boldface characters, respectively. An n-

dimensional column vector x is equivalently denoted by (x1, . . . , xn), where we put all elements

xi, i∈ [n] in parenthesis and separate each element with a comma. For several matrices (or vectors)

with compatible sizes, we use square brackets to join them together, e.g. [A B] or

[
A
B

]
. Given any

matrix A= (aij)i∈[m],j∈[n] ∈<m×n, we let a>i and Aj be its i-th row vector and j-th column vector,

respectively. Further, we use AI to represent its submatrix (aij)i∈I,j∈[n] ∈ <|I|×n for any I ⊆ [m].

We denote span(A) to be the column space of A. For any two vectors x′,x′′ ∈ <n, we denote by

x′ ≤ x′′ if x′i ≤ x′′i for all i ∈ [n]; moreover, we say x′,x′′ are ordered if either x′ ≤ x′′ or x′′ ≤ x′,

and they are unordered otherwise. We also define two operations join (“∨”) and meet (“∧”) such

that x′ ∨x′′ = (max{x′i, x′′i })i=1,...,n and x′ ∧x′′ = (min{x′i, x′′i })i=1,...,n for any vectors x′,x′′ ∈ <n.

We let ei be the vector with only the i-th entry being 1 and all others being 0, and 1 be the vector

with all the entries being 1. Random variables are represented by characters with the tilde sign,

for example, z̃ with z being its realization.

2. Tractability of Two-stage Problems with Supermodularity

In this section, we explore computational tractability in a special class of two-stage DRO problems

which exhibit the property of supermodularity.

2.1. Model

The decision maker faces a two-stage problem. In the first stage, the decision maker must make

the here-and-now decisions x ∈ <l before the uncertainty z̃, an n-dimensional random vector, is

realized. After that, the uncertainty is revealed and observed by the decision maker, who then

moves to the second stage and makes the wait-and-see decisions y ∈ <m. For a given first-stage
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decision x and an uncertainty realization z, we denote the second-stage cost by g(x,z). It can be

evaluated by the following linear program,

g(x,z) = min b>y

s. t. Wx+Uy≥V z+v0,
(1)

where b ∈<m,W ∈<r×l,U ∈<r×m,V ∈<r×n and v0 ∈<r are given constants, and g(x,z) =∞ if

Problem (1) is infeasible. In our current setting, the uncertainties only appear on the right-hand

side. This formulation has received extensive attention in the literature (see for instance, Zeng

and Zhao 2013, Gupta et al. 2014, Bertsimas and Shtern 2018, El Housni and Goyal 2021) and is

intractable in general (Feige et al. 2007, Bertsimas and Goyal 2012). Though it has uncertainties

on the right-hand side only, this model can cover a broad range of practical two-stage problems,

which will be introduced in Section 5. We will later generalize our results to include left-hand-side

uncertainty in Appendix B.1.

We consider the distributionally robust setting such that the true distribution of z̃ is only known

to belong to an ambiguity set F . Therefore, for a given first-stage decision x, the expected second-

stage cost is evaluated under the worst-case distribution and hence is

sup
P∈F

EP [g(x, z̃)] .

By choosing the first-stage decision x, the decision maker aims to minimize the sum of the deter-

ministic first-stage cost and the worst-case expected second-stage cost. It can be formulated as

min
x∈X

{
a>x+ sup

P∈F
EP [g(x, z̃)]

}
, (2)

where a ∈ <l is a given constant vector, X ⊆ <l is the set of all feasible first-stage decisions. We

assume that Problem (2) has a finite optimal value. We also consider risk averse objectives such

as an expected disutility or risk measure of the second-stage cost. Interested readers are referred

to Appendix B.2.

In order to capture the distributional information of z̃, we adopt a special case of the scenario-

wise ambiguity set which is recently proposed by Chen et al. (2020). Specifically, we assume

F =

P

∣∣∣∣∣∣∣∣∣∣
EP[z̃

∣∣k̃= k] =µk, ∀k ∈ [K]

EP
[
|z̃i−µki |

∣∣k̃= k
]
≤ δki , ∀k ∈ [K], ∀i∈ [n]

P
(
zk ≤ z̃ ≤ zk

∣∣k̃= k
)

= 1, ∀k ∈ [K]

P(k̃= k) = qk, ∀k ∈ [K]
q ∈Q

 . (3)

Here a random scenario k̃ is introduced and its realization affects the distributional information

of z̃. In particular, if the random scenario is realized as k ∈ [K], we have corresponding distri-

butional information for z̃: mean being µk, MAD of z̃i being bounded by δki for all i ∈ [n], and
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support being [zk,zk]. The probability that k̃ is realized as k is denoted by qk. We also allow

ambiguity in q = (qk)k∈[K] and only know that q is in a given polyhedron Q = {q | Rq ≤ ν,q ≥
0} ⊆

{
q ∈<K+ | 1>q= 1

}
. Without loss of generality (WLOG), we make the following assumptions

about F to avoid trivial cases. If there are i, k such that δki = 0, by the constraint on MAD, z̃i

realizes at µki almost surely when the random scenario k̃ takes value at k, and hence we can let

zki = µki = zki for notational simplification. Similarly, for any i, k with µki ∈ {zki , zki }, by the constraint

on mean and MAD, we can also let zki = µki = zki and δki = 0 for notational simplification. Moreover,

the polyhedron Q is such that for all k ∈ [K], there exists q ∈Q with qk > 0, otherwise the scenario

k almost surely does not happen and we can ignore it. Note that the distributional information

for each scenario can be generalized to other expected piece-wise linear forms of the uncertainty.

In Appendix B.3 we characterize the most general case of ambiguity sets that our methods can

handle.

We first consider the case of K = 1. The distributional ambiguity set F is reduced to a conven-

tional one with means, supports and MADs information, which has been studied in the literature.

Examples can be seen in Ben-Tal and Hochman (1972), Qi (2017), Postek et al. (2019), Conejo

et al. (2021), van Eekelen et al. (2022). In practice, the MAD information is also easy to esti-

mate (Postek et al. 2018). Comparing with the general moment information, the MAD information

allows us to derive a tractable formulation for the two-stage optimization problem and calculate

exact solutions, as we will show later.

The incorporation of random scenarios brings modeling flexibility and can capture a broad class

of information in a more intuitive way, e.g., multi-modal distribution or covariate information. It

can also result in less conservative solutions than the case with a fixed scenario. When the set Q
is a singleton and δki = 0 for any k ∈ [K], i ∈ [n], the information set F reduces to the case with a

known discrete distribution. More illustration on the modeling power of F can be seen in Ghosal

et al. (2021).

To explore the solvability of Problem (2), we will first investigate the worst-case distribution of z̃

conditioning on a given scenario. After that, we provide a computationally tractable reformulation

for Problem (2) with a random scenario, i.e., with F defined in Equation (3).

2.2. The case with a fixed scenario

When the scenario k̃ is realized as k for some k ∈ [K], we define Fk to be a set of probability

distributions in this specific scenario. That is,

Fk =

Pk
∣∣∣∣∣∣
EPk [z̃] =µk,
EPk [|z̃i−µki |]≤ δki , ∀i∈ [n]
Pk
(
zk ≤ z̃ ≤ zk

)
= 1

 . (4)

We show that the worst-case distribution in the case of k̃= k has the following characteristics.
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Proposition 1 For any x, there exists Pk∗ ∈ arg supPk∈Fk EPk [g(x, z̃)] such that for all i∈ [n], the

marginal distribution is independent of x and can be calculated as

Pk∗ (z̃i =w) =



δ̂ki
2(µki −z

k
i )

if w= zki

1− δ̂ki (z
k
i −z

k
i )

2(zki −µ
k
i )(µ

k
i −z

k
i )

if w= µki
δ̂ki

2(zki −µ
k
i )

if w= zki

0 otherwise,

(5)

where δ̂ki = min
{
δki ,

2(zki −µ
k
i )(µ

k
i −z

k
i )

zki −z
k
i

}
for all i∈ [n] with zki > z

k
i .

According to Proposition 1, there exists a worst-case distribution such that at each dimension

i, i ∈ [n], the marginal distribution of z̃i has non-zero probability mass at only three points: the

lower bound, mean and upper bound (for i with zki = zki , obviously Pk∗(z̃i = zki ) = Pk∗(z̃i = µki ) =

Pk∗(z̃i = zki ) = 1). Hence, to evaluate supPk∈Fk EPk [g(x, z̃)], it suffices to focus on the distributions

with support
{
z | zi ∈ {zki , µki , zki }, i∈ [n]

}
. Unfortunately, since the number of these points grows

exponentially in n, the two-stage problem is still computationally challenging to solve.

Postek et al. (2018) also consider the support-mean-MAD information and derive 3-point “worst-

case marginals”. There are two main differences between our ambiguity set and theirs. First, we

consider the inequality form for the MAD information, while they use equality correspondingly. This

inequality form incurs additional proof of monotonicity to show the optimality of 3-point marginals.

Second, Postek et al. (2018) additionally restrict the uncertainties to be independent of each other.

Hence, their worst-case joint distribution can be uniquely determined as the Cartesian product

of the marginals (with a 3n-point support). However, as we do not impose mutual independence

between uncertain factors, we can only show the existence of a worst-case distribution with such

marginals. Still, the exact joint distribution remains to be unknown in general.

We next show that if the function g(x,z) is supermodular in z, the joint distribution can

be characterized efficiently and hence the computational burden can be eased. We first define

supermodularity as follows.

Definition 1 A function f :<n→< is supermodular if f(w′) + f(w′′)≤ f(w′ ∧w′′) + f(w′ ∨w′′)

for all w′,w′′ ∈<n.

In transportation and copula theory, it is well-known that when the uncertainty is two-dimensional,

supermodularity leads to an explicit dependence structure of the worst-case distribution as follows.

Lemma 1 (Rachev and Rüschendorf 1998) Consider any supermodular function f :<2→<, and

any two-dimensional random vector w̃ with the marginal cumulative distribution function for w̃1, w̃2
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being F1,F2, respectively. Let P = {P | P(w̃i ≤ x) = Fi(x) ∀x∈<, i= 1,2} be the set of all possible

distributions for w̃. Then

EP [f(w̃1, w̃2)]≤
∫ 1

0

f(F−11 (u),F−12 (u))du ∀P∈P.

Clearly, the upper bound in Lemma 1 is achieved when (w̃1, w̃2)
d
= (F−11 (ũ),F−12 (ũ)) with ũ being

uniformly distributed on [0,1]. In this worst-case distribution, considering any two realizations

w′,w′′, we then have u′, u′′ ∈ [0,1] such that w′ = (F−11 (u′),F−12 (u′)) and w′′ = (F−11 (u′′),F−12 (u′′)).

This implies w′,w′′, and hence all pairs of realizations are ordered. Intuitively, this is because we

can move the probability mass of any unordered pair to the corresponding join and meet, such

that the marginal distribution is unchanged and the expectation of f(w̃) increases due to the

supermodularity of f . Interestingly, this result can be extended to the case with general dimensions

and significantly reduces the number of possible realizations for the worst-case distribution.1

Proposition 2 Consider any function f :<n→<. The following statements are equivalent.

1) f is supermodular.

2) Consider any given strictly positive integers mi and pij > 0, xij, j ∈ [mi] such that xi1 < · · ·<

ximi
and

∑
j∈[mi]

pij = 1, for all i ∈ [n]. Define P = {P | P(w̃i = xij) = pij, j ∈ [mi], i∈ [n]}.

Then there exists P∗ ∈ arg supP∈P EP [f(w̃)] such that the set WP∗ = {w ∈<n | P∗(w̃=w)> 0}

forms a chain of at most (
∑

i∈[n](mi− 1) + 1) points.

A chain is a partially ordered set which does not contain an unordered pair of elements. Moreover,

Proposition 2 also shows that the chained structure is embedded in the worst-case distribution

only if the function is supermodular. Figure 1 illustrates the intuition behind Proposition 2.

Intuitively, when moving the same amount of probability mass from any two points w′,w′′ to

w′ ∧w′′,w′ ∨w′′, the marginal distribution does not change but the expectation of f(w̃) is higher

because of the supermodularity of f . Hence, a worst-case distribution is to move all probability mass

from the unordered pair to their join and meet. This seemingly leads to a worst-case distribution

that is highly positively correlated and hence not always realistic in some applications. However,

we will show later that our adoption of the scenario-wise ambiguity set addresses this issue and

the worst-case distribution in our model can be correlated in any way.

According to Proposition 2, if g(x,z) is supermodular in z, then the worst-case distribution

for supPk∈Fk E[g(x, z̃)] has a chained support. Nevertheless, the number of possible chains within

the support can be exponentially large. Interestingly, with Proposition 1, which shows that the

1 A concurrent work (Chen et al. 2022) makes similar extensions, but only for the case of continuous functions. Our
work differs with theirs in two aspects. First, we do not restrict f to be a continuous function. Second, we show in
Proposition 2 the necessity of supermodularity for such a chained structure of the worst-case distribution.



Long, Qi, and Zhang: Supermodularity in Two-Stage DRO
10

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.5

1

w∧

w′

w′′

w∨f(w∧)

f(w′)

f(w′′)

f(w∨)

w1

w2

f(w)

Figure 1 Consider a distribution P placing positive probability masses at w′,w′′,w∧ = w′ ∧w′′,w∨ = w′ ∨w′′,

where w′,w′′ are unordered. Denote p◦ = min{P(z̃ = w′),P(z̃ = w′′)}. Moving the mass p◦ from w′

(w′′) to w∨ (w∧) does not change the marginal distributions, but we obtain a new probability distri-

bution with higher expectation and one less unordered pair in the support.

worst-case distribution for supPk∈Fk EPk [g(x, z̃)] has an explicit three-point distribution in each

dimension, we can find this chained support efficiently. We formalize the results, by the following

Algorithm 1 and Proposition 3, to explore this worst-case distribution.

Algorithm 1 algorithm for worst-case distribution

1: Input: Fk in Equation (4) with given µk, δk, zk, zk

2: Initialization:

• denote Pk∗ as the worst-case distribution in Proposition 1 and calculate Pk∗(z̃ki = w) for

w ∈ {zki , µki , zki }, i∈ [n] using Equation (5)

• z1 = zk, q1 = (Pk∗(z̃k1 = zk1),Pk∗(z̃k2 = zk2) . . . ,Pk∗(z̃kn = zkn)), p1 = min{q11, . . . , q1n} and j = 1

3: while j ≤ 2n do

4: choose rj as the minimal index in [n] such that qjrj = pj

5: zj+1 = zj, qj+1 = qj − pj1

6: update zj+1
rj

= µkrj if its existing value is zkrj , and zj+1
rj

= zkrj if its existing value is µkrj

7: update qj+1
rj

= Pk∗(z̃rj = zj+1
rj

)

8: pj+1 = min{qj+1
1 , qj+1

2 , . . . , qj+1
n }

9: update j = j+ 1

10: return z1,z2, . . . ,z2n+1 and p= (p1, p2, . . . , p2n+1)

Proposition 3 For any x, if g(x,z) is supermodular in z, we have supPk∈Fk E[g(x, z̃)] =∑
i∈[2n+1] pig(x,zi). Here p,zi, i ∈ [2n + 1] are output by Algorithm 1 whose time complexity is

O(n).
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By moving from zk to zk, Algorithm 1 identifies a feasible chain, subject to the marginal dis-

tribution provided by Proposition 1. Then Proposition 3 shows that such a feasible chain must

constitute the support of the worst-case distribution. The intuition is that there is only one feasible

chain satisfying the given marginals. Since the support of the worst-case distribution is a chain

(by Proposition 2), the chain identified by Algorithm 1 must be the right one and corresponds

to the worst-case distribution. Consequently, Proposition 3 provides an explicit formulation of the

worst-case joint distribution. Figure 2 provides examples when the dimension n is 2 or 3.

z2

z1
1 20

1

2

(a) dimension n= 2 with
P(z̃1 = 0)> P(z̃2 = 0)

z2

z1
1 20

1

2

(b) dimension n= 2 with
P(z̃1 = 0)< P(z̃2 = 0)

z2

z1

z3

(c) dimension n= 3

Figure 2 The support of worst-case distributions. For the case of n = 2, Figures (a) and (b) demonstrate how

the chained support can be uniquely determined. They both start from the origin, (0,0). For the

case of P(z̃1 = 0) > P(z̃2 = 0), as in (a), the next point cannot be (1,0). Similarly, for the case of

P(z̃1 = 0) < P(z̃2 = 0), as in (b), the next point has to be (1,0) and cannot be (0,1). Figure (c) gives

an example of 3-dimensional chain.

Since the worst-case distribution returned by Algorithm 1 has support on only (2n+ 1) points

and is also independent of the first-stage decision x, we can simplify the two-stage optimization

problem. While one might criticize that it is rather extreme to have a worst-case distribution

independent of the first-stage decision, we remark that such independence is only true when the

scenario probabilities qk, k ∈ [K] are pre-determined. Indeed, the overall worst-case distribution

depends on the first-stage decision since it affects the worst-case probability distribution of the

uncertain scenario. This will be demonstrated in the next subsection.

2.3. Incorporating the uncertain scenario

In solving the general two-stage optimization problem (2), Proposition 3 shows how to evaluate

the second-stage expected cost efficiently under the worst-case distribution when the uncertain

scenario realizes as k. We now incorporate the uncertainty in the scenario k̃.

Based on the definition of F and Fk in Equations (3) and (4), we have

sup
P∈F

EP [g(x, z̃)] = max
q∈Q

sup
Pk∈Fk,k∈[K]

∑
k∈[K]

qkEPk [g(x, z̃)] = max
q∈Q

∑
k∈[K]

qk sup
Pk∈Fk

EPk [g(x, z̃)] .
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We denote by zk,1, . . . ,zk,2n+1,pk the output of Algorithm 1 with input Fk for all k ∈ [K]. Since

Q is a polyhedron, we then have the following reformulation.

Theorem 1 If g(x,z) is supermodular in z for any x, Problem (2) is equivalent to the following

linear program,
min a>x+ν>l

s. t. R>k l≥
∑

i∈[2n+1]

pki b
>yk,i, k ∈ [K]

Wx+Uyk,i ≥V zk,i +v0, k ∈ [K], i∈ [2n+ 1]

l≥ 0, x∈X .

(6)

Intuitively, the reformulation in Theorem 1 incorporates all possible realizations in the worst-

case distribution, and assigns a corresponding second-stage decision to each of those realizations.

Therefore, the two-stage problem can be formulated as a static linear optimization problem. Nev-

ertheless, the classic approach using this idea has to handle an exponential number of realizations,

leading to computational intractability. Here, by exploring the potential property of supermodular-

ity in the uncertainties, we reduce the number of realizations to K(2n+ 1), which is of polynomial

size and makes the problem tractable.

Moreover, our approach works without requiring relatively complete recourse. This is because

Problem (6) is an equivalent reformulation of the original problem, and hence Problem (6) maintains

the same feasibility for any given first-stage decision x. Indeed, the feasibility issue, which is the

essential focus of the relatively complete recourse requirement in typical two-stage problems, is

addressed by the assumption of supermodularity of g(x,z) already. In particular, if Problem (6)

has a finite optimal value, then at the optimal x, the second-stage problem is feasible when z̃ takes

any pre-determined realizations (zk,i in Problem (6)). By supermodularity, these pre-determined

realizations constitute the worst-case distribution. It implies that when z̃ takes other realizations,

the second-stage cost should also be finite, i.e., the second-stage problem is feasible. We further

elaborate this by the following corollary.

Corollary 1 If xopt is optimal to Problem (6), then for all z ∈
⋃
k∈[K]

[
zk,zk

]
, g(xopt,z) is finite,

i.e., the second-stage problem is feasible when x=xopt.

We also remark that, given a scenario realization k, the worst-case distribution may be positively

correlated. However, by incorporating the random scenario, the correlation between any pair of

uncertain factors can be negative. For example, when δki = 0, for all i ∈ [n], k ∈ [K], we have that

Fk = {Pk | Pk(z̃ = µk) = 1}. The distributional uncertainty set F reduces to a set of discrete

distributions that can be positively or negatively correlated.
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3. Conditions for supermodularity of the second-stage problems

If the second-stage cost, g(x,z), is supermodular in z, Section 2 has shown that a tractable for-

mulation can be achieved. Unfortunately, supermodularity in z is not a feature embedded in all

two-stage problems. It depends on the structure of the two-stage problem. In this section, we aim

to identify a broad class of two-stage problems where the second-stage cost is supermodular in the

uncertain factors.

We reformulate the second-stage cost g(x,z) as

g(x,z) = min b>y

s. t. Uy−V z ≥−Wx+v0.
(7)

It is the optimal value of a parametric optimization problem which is parametrized by z, and

we need to explore the supermodularity in this parameter. Note that since we only focus on the

supermodularity in z but not in x, we do not consider x as a parameter in this parametric opti-

mization problem. Hence, we move x to the right-hand-side of the constraint. In the parametric

optimization literature, the supermodularity of the optimal value in parameters has been studied

systematically for maximization problems (Chen et al. 2013, 2021). However, in Equation (7), we

have a minimization problem, which leads to an essential difference from previous studies. It is

worth mentioning that while a minimization problem can be formulated as an equivalent max-

imization problem, inevitably, that reformulation exchanges supermodularity for submodularity.

In particular, if we equivalently represent g(x,z) =−max
{
−b>y

∣∣ Uy−V z ≥−Wx+v0
}

, then

the supermodularity condition for g is equivalent to the submodularity condition for the inner

maximization problem. It is then again different from the literature which is on supermodularity

for maximization problems. Therefore, we cannot rely on the literature of maximization problems

to resolve the challenge of the minimization problem. For further illustration, some operations

management literature has indicated the significant difference between the supermodularity in

maximization (which implies complementarity) and in minimization (which implies substitutabil-

ity) problems. For example, in perishable inventory control (Chen 2017) and ATO problems (e.g.,

Lu and Song 2005, Nadar et al. 2014), a monotone structure can be shown in the optimal policies

when components are complementary, but similar structural analysis cannot be obtained when

components are substitutable.

Typically, the lattice structure of the feasible set is a key for supermodularity in the paramet-

ric maximization problem. By contrast, to investigate the parametric minimization problem, we

introduce the following concept called the inverse additive lattice.

Definition 2 Given two positive integers m,n, a set S ⊆<m×<n is an inverse additive lattice if

for any p,q ∈ <m, z′,z′′ ∈ <n with (p,z′ ∧ z′′), (q,z′ ∨ z′′) ∈ S, there exist y′,y′′ ∈ <m such that

(y′,z′), (y′′,z′′)∈ S and y′+y′′ = p+ q.
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We now show that the inverse additive lattice is a necessary and sufficient condition for super-

modularity in the parametric minimization problem. Given any first-stage decision x, we denote

the set of all feasible pairs of (y,z) as S(x), i.e.,

S(x) =
{

(y,z) | Uy−V z ≥−Wx+v0
}
. (8)

Proposition 4 Given any x, g(x,z) is supermodular in z for any b if and only if S(x) is an

inverse additive lattice.

Proposition 4 presents a necessary and sufficient condition for the second-stage cost being super-

modular in the uncertainty z for a given first-stage decision x. Now it remains to characterize the

structure of the second-stage problem such that the condition can always be satisfied for any x.

Theorem 2 g(x,z) is supermodular in z for any x,b and v0 if and only if U ∈<r×m and V ∈<r×n

satisfy one of the following conditions:

1) rank(U) = r,

2) for all I ⊆ [r], β ∈<n+ satisfying |I|= rank(U)+1, rank(UI) = rank(U) and VIβ ∈ span(UI),

we must have βi(VI)i ∈ span(UI) holds for every i∈ [n].

For any matrices U ,V , we introduce an algorithm in Appendix A.1 to check explicitly whether

the condition in Theorem 2 is met. We next provide the following examples for illustration.

• U = Ir×r or U = [Ir×r U
◦] for some U ◦ ∈ <r×(m−r). The first condition of Theorem 2 is

satisfied, hence g(x,z) is supermodular in z for any arbitrary V ∈<r×n.

• U =

[
Im×m
u>r

]
for some ur ∈<m. In this case, span (U) =

{
ξ ∈<r

∣∣∣ ∑i∈[m] uriξi = ξr

}
. Corre-

spondingly, based on the second condition of Theorem 2, we can prove g(x,z) is supermodular

in z if and only if (ur,−1)>V1, . . . , (ur,−1)>Vn have the same sign.

• Given any g(x,z) = min
{
b>y | Uy−V z ≥−Wx+v0

}
, we consider the problem with par-

tial constraints, i.e., gI(x,z) = min
{
b>y | UIy−VIz ≥−WIx+v0

I
}

for some I ⊆ [r]. If

g(x,z) is supermodular in z, so is gI(x,z).

• U =

[
Im×m
U ◦

]
∈ <r×m,V =

[
V 1

0(r−m)×n

]
∈ <r×n. This choice of U and V includes the ATO

system, the detail of which will be discussed later, as a special case. The corresponding result

can be formalized as follows.

Proposition 5 Assume U =

[
Im×m
U ◦

]
∈ <r×m,V =

[
V 1

0(r−m)×n

]
∈ <r×m+ and for each row of U ◦,

all components have the same sign. The function g(x,z) is supermodular in z for any x,b,v0 and

V 1, if and only if every 2× 3 submatrix of U ◦ contains at least one pair of column vectors which

are linearly dependent.
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By now, given any two-stage optimization problem (2), we can use the conditions in Theorem 2

(or Algorithm 2 in Appendix A.1) to verify whether the second-stage cost function is supermodular

in z. If the answer is positive, we can use the result in Theorem 1 to obtain an equivalent formulation

as Problem (6), and derive the optimal solution efficiently.

4. Optimality of segregated affine decision rules

Though leading to sub-optimal solutions in general, affine decision rules have been widely applied

in solving two-stage problems due to their computational efficiency. Interestingly, leveraging the

benefits of the K(2n+ 1)-point worst-case distribution, which is derived from the ambiguity set F

and supermodularity, we show that a scenario-wise segregated affine decision rule, which generalizes

the classic one proposed by Chen et al. (2008), Goh and Sim (2010) to be scenario dependent, can

return the optimal solution for Problem (2) subject to some conditions.

We observe that in the two-stage problem, the second-stage decision y is indeed a function of the

uncertainty realization (k̃, z̃). With a slight abuse of notation, we denote the second-stage decision

as a function y(k,z), and hence our main problem (2) can be formulated equivalently as

min
x,y(k,z̃)

a>x+ sup
P∈F

EP[b>y(k̃, z̃)]

s. t. Wx+Uy(k,z)≥V z+v0 ∀z ∈ [zk, z̄k], k ∈ [K],

x∈X .

(9)

In general, the above formulation involves a functional decision y(k̃, z̃) and hence induces com-

putational complexity. We now prove that in our setting, it might suffice to consider the class of

segregated affine functions for the optimal decision.

To this end, we start by considering the case that the uncertain scenario k̃ realizes at a given

k ∈ [K]. Proposition 3 has shown that the worst-case distribution is a (2n+ 1)-point distribution.

We follow the notation in Section 2.3 and denote the corresponding support, which is the output

of Algorithm 1 with input Fk, as zk,1, . . . ,zk,2n+1 ∈<n. We first lift the support to <2n by defining

ζk,i =

[
ωk,i

υk,i

]
(10)

where ωk,i = (µk−zk,i)+,υk,i = (zk,i−µk)+, i∈ [2n+ 1]. The following result presents a geometric

property of ζk,i, i∈ [2n+ 1].

Lemma 2 For any given k ∈ [K], the convex hull of {ζk,1, . . . ,ζk,2n+1} is a 2n-simplex.



Long, Qi, and Zhang: Supermodularity in Two-Stage DRO
16

Using the above property, we first show the optimality of a segregated affine decision rule in a

revised formulation. Specifically, we restrain the recourse decision y(k,z) to be an affine function

in

[
(µk−z)+

(z−µk)+
]
, and obtain the following problem based on Problem (9),

min
x,Θk,φk,k∈[K]

a>x+ sup
P∈F

EP

[
b>
(

Θk̃

[
(µk̃− z̃)+

(z̃−µk̃)+

]
+φk̃

)]
s. t. Wx+U

(
Θk

[
(µk−z)+

(z−µk)+
]

+φk
)
≥V z+v0 ∀z ∈ {zk,1, . . . ,zk,2n+1}, k ∈ [K],

x∈X .
(11)

Denote the optimal solution for (x,yk,i) to Problem (6) by (xopt,y
k,i
opt), k ∈ [K], i ∈ [2n+ 1], which

can be considered as given constants. Further, for any k ∈ [K], we define a matrix Dk ∈<2n×2n, a

matrix Θk
opt ∈<m×2n and a vector φkopt ∈<m as follows,

Dk = [ζk,1− ζk,2n+1 · · · ζk,2n− ζk,2n+1] ,

Θk
opt =

[
yk,1opt−yk,2n+1

opt · · · yk,2nopt −yk,2n+1
opt

]
(Dk)

−1
,

φkopt = yk,2n+1
opt −Θk

optζ
k,2n+1,

where ζk,i is the lifted uncertainty realization defined in Equation (10). Note that Dk is invertible

since by Lemma 2, ζk,1, . . . ,ζk,2n+1 are affinely independent, and hence Θk
opt is well defined. We

then have the following result.

Proposition 6 If g(x,z) is supermodular in z for any x, then Problem (11) and Problem (9)

have the same optimal value. Specifically, x=xopt, Θk = Θk
opt and φk =φkopt, k ∈ [K] is an optimal

solution for Problem (11).

By Proposition 6, with the supermodularity of g(x,z) in z, the optimal value and optimal first-

stage decision can be solved by restricting the second-stage decision as affinely dependent on the

lifted uncertainty realization

[
(µk−z)+

(z−µk)+
]
.

It is worth mentioning that when we change the original optimization problem (9) to the affine

decision rule formulation (11), we do not enforce the constraint to be feasible for all possible z.

Instead, we only enforce the constraint for the (2n+1) realizations of z̃ at each scenario. This is for

two reasons. First, if we enforce the constraint for all possible z, the affine decision rule formulation

of the original problem becomes

min
x,Θk,φk,k∈[K]

a>x+ sup
P∈F

EP

[
b>
(

Θk̃

[
(µk̃− z̃)+

(z̃−µk̃)+

]
+φk̃

)]
s. t. Wx+U

(
Θk

[
(µk−z)+

(z−µk)+
]

+φk
)
≥V z+v0 ∀z ∈ [zk,zk], k ∈ [K],

x∈X .

(12)
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The lifted set
{

(ω,υ) | ω= (µk−z)+,υ= (z−µk)+,z ∈ [zk,zk]
}

is not guaranteed to be convex.

As a result, despite having an affine structure, Problem (12) is still computationally intractable.

We refer the interested readers to Sections 4.5, 4.6 of Goh and Sim (2010) for a detailed illustration

of lifted sets of such kind. Without computational tractability, it is meaningless to investigate the

corresponding affine decision rule formulation. The second reason is that the first-stage decision is

usually the essential focus in two-stage optimization problems. Proposition 6 shows that solving

Problem (11) can provide the optimal value as well as the optimal first-stage decision.

Indeed, in the segregated affine decision rule formulation, if enforcing the constraint to all possible

z, i.e., adopting the formulation (12) instead of (11), in general, we may not get the same optimal

solution as Problem (9). A counterexample is provided in Appendix A.2 for illustration. This

concludes that the supermodularity property in the second-stage function cannot guarantee the

optimality of the segregated affine decision rule in Problem (12). Interestingly, by adding slightly

more conditions, we can still obtain the optimal solution from the affine decision rule formulation

(12). Recall that S(x), as defined in Equation (8), is the feasible region of (y,z) given first-stage

decision x.

Theorem 3 Suppose S(x) satisfies that for any given x∈X , p,q,y′ ∈<m, z′,z′′ ∈<n with (p,z′∧

z′′), (q,z′ ∨ z′′), (y′,z′) ∈ S(x), we must have (p+ q− y′,z′′) ∈ S(x). Then Problem (12) has the

same optimal value with Problem (9). Specifically, x= xopt, Θk = Θk
opt and φk = φkopt, k ∈ [K] is

an optimal solution for Problem (12).

The condition in Theorem 3 is more restrictive than that for supermodularity given in Proposition

4. Given any x∈X , p,q ∈<m, z′,z′′ ∈<n with (p,z′ ∧z′′), (q,z′ ∨z′′)∈ S(x), it requires (p+q−

y′,z′′) ∈ S(x) for all y′ such that (y′,z′) ∈ S(x), while in Proposition 4 the requirement is only

for one such y′. Hence, compared with the condition in Proposition 4, the condition in Theorem

3 is indeed a sufficient condition for preserving supermodularity. We would also like to remark

that the obtained segregated affine decision rule, from the formulation of either (11) or (12), is not

implementable since the realization of the uncertain scenario k̃ might not always be observable.

Nevertheless, in most two-stage problems, it suffices to obtain an appealing first-stage decision,

to which the segregated affine decision rule approach can serve. After observing the uncertainty

realization z, the second-stage decision should be determined by solving the second-stage problem,

rather than simply by the affine function. Please see Bertsimas et al. (2019) for a related discussion.

For robust optimization which does not use any distributional information except the support,

Bertsimas and Goyal (2012) have shown the optimality of affine decision rules when the support is a

simplex. However, the optimality of affine decision rules is not true in general if we extend to DRO

problems even when the support is a simplex. In Proposition 6 and Theorem 3, we show that by
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lifting the uncertainty realization z ∈<n to

[
(µk−z)+

(z−µk)+
]
∈<2n, we can construct an affine decision

rule which turns out to be an optimal solution. This optimality relies on the chained structure of

the support of the worst-case distribution, which is due to the supermodularity of g(x,z).

Extending the result of Bertsimas and Goyal (2012), Iancu et al. (2013) show the optimality of

the affine decision rule for the unconstrained multi-stage problem when the objective function is

convex and supermodular in uncertain parameters and the uncertainty set is a union of simplices

that forms a sublattice of the unit hypercube. Our result differs in the sense that we focus on a

constrained DRO problem; moreover, the union of all supports from each given scenario realization

is not necessarily a lattice within our setting.

5. Applications

In this section, we apply the above theoretical results to several classic operational problems,

which are difficult to solve in general. Section 5.1 considers a single-period multi-item newsvendor

problem, where the objective is to optimize the retailer’s expected disutility or CVaR. In Sections

5.2 and 5.3, we revisit the facility location problem and the lot-sizing problem, respectively. By

proving the property of supermodularity, we provide new perspectives and simpler reformulations.

Section 5.4 presents an appointment scheduling problem with random no-shows. Finally, a general

formulation of ATO systems is discussed in Section 5.5, where we identify a class of systems which

are tractable under our assumption. In the following applications, some common notations may

have different meanings in different applications.

5.1. Multi-item newsvendor problems

Multi-item newsvendor problems seek the optimal inventory levels of multiple goods with fixed

prices and uncertain demands (Hadley and Whitin 1963). Since these items are correlated with

each other either through some budget constraint or by a particular utility function, the problem

may become much harder to solve. In the distributionally robust setting, Hanasusanto et al. (2015)

assume a risk-averse decision maker who minimizes a linear combination of CVaR and expecta-

tion of the profit function, and the demand distribution to be multi-modal. They show that the

resulting problem is NP-hard and solve it approximately with a semidefinite program by applying

the quadratic decision rule. Natarajan et al. (2017) use semi-variance to capture the asymmetry

of demand distributions, and also develop a semidefinite program to derive a lower bound for the

original problem. We next use our reformulation technique to show that the multi-item newsvendor

problem can be solved efficiently within our setting.

Consider a single-period multi-item newsvendor problem with n different items. The selling price,

ordering cost and salvage value of item i are denoted by ri, ti and si (si < ri), respectively. Before
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the random demand z̃ is resolved, we need to decide the ordering quantity x, which is subject

to a budget Γ. Our goal is to minimize the worst-case expected disutility of cost. This yields the

following optimization problem

min
x∈Xnews

sup
P∈F

EP

[
u
(
−r>x+ (r− s)> (x− z̃)

+
)]
, (13)

where X news =
{
x∈<n | t>x≤ Γ,x≥ 0

}
and u : < → < is a piecewise linear convex and non-

decreasing disutility function defined as u (w) = maxj∈[J] {cjw + dj},w ∈ <, for some constants

cj ≥ 0 and dj, j ∈ [J ]. We then have the following result.

Proposition 7 The function u
(
−r>x+ (r− s)> (x−z)

+
)

is supermodular in z, hence Problem

(13) can be reformulated as a linear optimization problem.

Alternatively, when minimizing the CVaR as Hanasusanto et al. (2015) do, for any ρ∈ (0,1), the

problem of CVaR minimization is

min
x∈Xnews

sup
P∈F

inf
θ∈<

{
θ+EP

[
1

ρ
·
(
−r>x+ (r− s)> (x−z)

+− θ
)+
]}

. (14)

This problem can also be reformulated as a linear optimization problem.

Proposition 8 Problem (14) has a polynomial size linear programming reformulation.

With the objective of minimizing CVaR and the multi-modal demand assumption, our work

differs from Hanasusanto et al. (2015) in the scenario-based distributional information. While their

work considers the first two moments and derive an approximate solution by solving a semidefi-

nite programming problem, we focus on partial marginal information and obtain an exact linear

programming reformulation of the original problem. Further, with the stockout costs considered

in Hanasusanto et al. (2015), we can show that the total cost function is still supermodular in the

demand z. Hence, the problem can be easily solved if only considering the expected cost. However,

when a general convex disutility is incorporated, due to the presence of the stockout cost, the total

cost no longer decreases with z and hence the supermodularity can not hold (the details can be

referred to Appendix B.2). We illustrate this with the following example. Consider a 2-item prob-

lem with the selling price r= (6,3), salvage value s= (2,2), stockout cost b= (2,2) and disutility

function u(w) = (w+ 5)+. Then the total cost is

−r>min{x,z}− s>(x−z)+ + b>(z−x)+ =−(8,5)>x+ (2,2)>z+ (6,3)>(x−z)+.

Let g(x,z) = (2,2)>z + (6,3)>(x− z)+ and consider x = (1,1), z′ = (2,0),z′′ = (0,2). By simple

calculation, we have u(−(r+b)>x+g(x,z′∧z′′)) +u(−(r+b)>x+g(x,z′∨z′′)) = 1 + 0< 0 + 2 =

u(−(r+ b)>x+ g(x,z′)) +u(−(r+ b)>x+ g(x,z′′)), which violates supermodularity.
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5.2. Reliable facility location

Consider the problem of locating facilities at a set of candidate locations i ∈ [n], to serve a set of

customers j ∈ [m]. In the first stage, the facility location decision x= (x1, . . . , xn) is made, where

xi = 1 if facility is opened at location i, and xi = 0 otherwise. Let ai be the fixed cost of opening

a facility at location i ∈ [n]. In the second stage, customers are allocated to the facilities. Denote

the transportation cost of location i serving customer j by cij. The facilities are subject to random

disruptions, captured by z̃ = (z̃1, . . . , z̃n), which are realized after the first-stage decision x is made.

We denote by zi = 0 if location i is disrupted, and by zi = 1 otherwise. The disruption happens at

location i with probability Mi. The cost minimization problem is formulated as

min
x∈Xfac

{
a>x+ sup

P∈Ffac

EP [g(x, z̃)]

}
,

where X fac = {0,1}n, Ffac = {P | P(z̃i = 0) =Mi,P(z̃i = 1) = 1−Mi, i∈ [n]}, and

g(x,z) = min
∑

i∈[n],j∈[m]

cijyij

s. t.
∑
i∈[n]

yij = 1, j ∈ [m],

0≤ yij ≤ xizi, i∈ [n], j ∈ [m].

(15)

We remark that the above second-stage problem always has an optimal solution yij ∈ {0,1} for all

i∈ [n], j ∈ [m], and hence we do not include the binary constraints on yij in the problem explicitly.

Lu et al. (2015) prove the supermodularity of g(x,z) by verifying the definition. We show that the

same result can be obtained by a direct application of Theorem 2.

Proposition 9 The function g(x,z) defined by Equation (15) is supermodular in z for all x ∈
X fac.

5.3. Lot-sizing on a network

Lot sizing is one of the most important and difficult problems in production planning. We adopt

the model setting from Bertsimas and de Ruiter (2016) and investigate the lot-sizing problem on a

network. Consider n stores in total, each corresponding to a random demand z̃i, i∈ [n]. In the first

stage, we determine an allocation xi for the i-th store. The feasible set X lot describes the capacity

of the stores, i.e. 0≤ xi ≤Ki for some (K1, . . . ,Kn)∈<n+. The unit storage cost at store i is denoted

as ai. In the second stage, after the demands are observed, we transport stock yij from store i to

store j at unit cost bij such that all the demands are met. The goal is to minimize the worst-case

expected total cost. We express the model as a two-stage linear optimization problem,

min
x∈X lot

a>x+ sup
P∈F

EP

min

 ∑
s,j∈[n]

bsjysj

∣∣∣∣∣∣
∑

j∈[n] yjs−
∑

j∈[n] ysj ≥ zs−xs, s∈ [n]

ysj ≥ 0, s, j ∈ [n]


 .

(16)
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While Bertsimas and de Ruiter (2016) derive an approximation for the robust version of Problem

(16) when the uncertainty set is a polyhedron, we next show that the problem can be solved exactly

in polynomial time within our setting. Let g(x,z) be the second-stage cost for a given allocation

x and realized demand z.

Proposition 10 The function g(x,z) defined by the inner minimization problem in (16) is super-

modular in z for all x. Hence, Problem (16) can be reformulated as a linear program.

When the transported amount ysj is bounded by a capacity csj, as in Bertsimas and Shtern

(2018), the second-stage cost becomes

ĝ(x,z) = min
∑
s,j∈[n]

bsjysj

s. t.
∑
j∈[n]

yjs−
∑
j∈[n]

ysj ≥ zs−xs, s∈ [n]

0≤ ysj ≤ csj, s∈ [n], j ∈ [n].

(17)

By a similar analysis, we can verify that ĝ(x,z) defined by Equation (17) is also supermodular.

Hence, our method can be applied to obtain an exact solution.

5.4. Appointment scheduling with random no-shows

The appointment scheduling problem, which schedules the arrival times of customers, has wide

applications in service delivery systems (Gupta and Denton 2008). In this section, we focus on

robust appointment scheduling problems where no-shows are possible. Jiang et al. (2017) assume

the means of no-shows and means, supports of the uncertain service times, and propose an integer

programming-based decomposition algorithm to minimize the worst-case expected sum of waiting

time and overtime. Further, Jiang et al. (2019) provide a copositive reformulation when the ambi-

guity set is a Wasserstein ball. When no-shows are not considered, Kong et al. (2013) and Mak

et al. (2014) conduct thorough studies with the same objective function. Specifically, Kong et al.

(2013) propose a tractable semidefinite approximation when the mean and covariance information

are known. Mak et al. (2014) provide an exact conic programming reformulation when marginal

moments are given. Although Qi (2017) also uses the mean and MAD information, and provides

a linear formulation, this linearity arises from the use of a different objective function. Given

the scenario-based ambiguity set with MAD information, we next show that the problem can be

reduced to a polynomial sized linear program, which is simpler than the formulations derived in

previous studies.

We schedule n appointments within a given time period Γ. For all i ∈ [n], we assume customer

i shows up with probability θi and use ξ̃i ∈ {0,1} to characterize this event, i.e., P(ξ̃i = 1) =

θi,P(ξ̃i = 0) = 1− θi. Let z̃i be the actual duration of the i-th service. We decide the scheduled
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duration xi for each appointment i to minimize the worst-case expected sum of waiting time

and overtime. For the i-th waiting time w̃i and the system overtime w̃n+1, we have w̃1 = 0 and

w̃i+1 = max
{
w̃i + ξ̃iz̃i−xi,0

}
, for all i ∈ [n− 1]. We follow Jiang et al. (2017) and formulate the

problem using a two-stage optimization structure as

min
x∈Xapp

sup
P∈G

EP

[
g(x, ξ̃, z̃)

]
, (18)

Here the feasible set is defined as X app =
{
x∈<n+ | 1>x≤ Γ

}
, and the second-stage problem can

be written as

g(x,ξ,z) = min

{
1>y

∣∣∣∣ yt ≥∑t

s=j(ξszs−xs), j ∈ [t], t∈ [n]
yt ≥ 0, t∈ [n]

}
,

where the optimal yt is indeed the realization of w̃t+1. The ambiguity set for (ξ̃, z̃) is specified

as G = {P | ΠξP∈Fξ,ΠzP∈F}, where ΠξP, ΠzP denotes the marginal distribution of ξ̃ and z̃,

respectively under P. The distributional uncertainty set Fξ is defined as

Fξ =

Pξ

∣∣∣∣∣∣ EPξ

[
ξ̃
∣∣∣ k̃= k

]
= θk,Pξ

(
k̃= k

)
= qk,q ∈Q

Pξ
(
ξ̃ ∈Ξk

∣∣∣ k̃= k
)

= 1

 (19)

with Ξk = {0,1}n and F is defined by Equation (3). Though the information set G differs slightly

from that in Equation (3), the key idea and process of our approach are still applicable. Using the

condition in Theorem 2, we next demonstrate the supermodularity of the function g(x,ξ,z).

Proposition 11 Function g(x,ξ,z) is supermodular in (ξ,z) for all x. Hence, Problem (18) has

a polynomial size linear programming reformulation.

Therefore, given the information set G, we can reformulate Problem (18) in a computation-

ally tractable manner. Our linear programming reformulation provides an exact solution and the

computational complexity is reduced significantly compared to the literature.

To rule out unlikely scenarios such as consecutive no-shows, we can modify our scenario-based

support set Ξk in Equation (19). For example, if we want to exclude the scenarios in which all

patients are absent (i.e. ξ= 0), we can let K = n and consider Ξk = {ξ ∈ {0,1}n | ξk = 1}= {0,1}×

· · · × {1} × · · · × {0,1} for all k ∈ [n]. The problem remains tractable, since the support of ξ is

still a Cartesian product with {0,1} modified to {1} at the k-th dimension; in other words, the

uncertainty at that dimension is reduced to be deterministic.

Chen et al. (2022) prove that when no-shows are not considered, the objective function is super-

modular in the uncertain appointment durations z. Our setting is more general since we consider

no-shows and scenario-based uncertainty set. Further, our proof is based on a systematic tool,

which verifies the general conditions in Theorem 2.
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5.5. Assemble-to-order systems

The ATO system is an important operational problem (Song and Zipkin 2003). Although this

problem has attracted substantial attention, it is still not clear how to derive the optimal decision

in general. We now apply our theoretical result and identify a class of systems where the optimal

decision can be obtained efficiently.

Here we formally describe the problem using the formulation of Song and Zipkin (2003). For any

component i, i∈ [l], first we decide the order-up-to inventory level xi. Then the uncertain demand

z̃j for end product j is realized as zj, j ∈ [n]. After that, we make the second-stage decision yj,

which is the quantity of product j to be assembled. To minimize the worst-case expected cost, we

have the following formulation,

min c>(x−xint) + sup
P∈F

EP
[
g(x, z̃)

]
s. t. x≥xint,

where
g(x,z) = min h>(x−Ay) +p>(z−y)− r>y

s. t. Ay≤x, y≤ z, y≥ 0.

Here c and xint are the per-unit ordering cost and initial inventory level of the components,

respectively; h is the per-unit inventory holding cost of the leftover components; p and r are the

per-unit penalty cost of the shortage and per-unit selling price of the end products, respectively.

The elements in matrix A, i.e., aij ≥ 0, represent the number of units of component i required to

assemble one unit of end product j. Different ATO systems are characterized by different matrices

A∈<l×n+ . We next provide a condition on A such that the function g(x,z) is supermodular in z,

hence the optimal order-up-to level for each component can be derived based on Theorem 1.

Theorem 4 The function g(x,z) is supermodular in z for any x,h,p,r if and only if every 2×3

submatrix of the matrix A contains at least one pair of column vectors which are linearly dependent.

We next test the condition of Theorem 4 on practical ATO systems. Consider the Tree Family

of systems proposed by Zipkin (2016). For any i ∈ [l], denote Si = {j ∈ [n] | aij 6= 0} being the

index set of products which require component i. A system belongs to the Tree Family if for any

two components i, i′ with Si ∩ Si′ 6= ∅, either Si ⊆ Si′ or Si′ ⊆ Si holds. That is, if a product uses

two distinct components i, i′, then the set of products using component i (or i′) must contain

that of component i′ (or i). Observing that general Tree Family systems do not guarantee the

supermodularity of g(x,z), we define the Proportional Tree Family as follows.

Definition 3 An ATO system belongs to the Proportional Tree Family, if it belongs to the Tree

Family and for any two components i, i′ with the set of common products Si∩Si′ 6= ∅, aij/ai′j takes

the same value for all j ∈ Si ∩Si′.
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With Theorem 4, Proportional Tree Family has the property of supermodularity.

Corollary 2 The function g(x,z) is supermodular in z for any x,h,p,r if the system belongs to

Proportional Tree Family.

We next discuss several typical ATO systems and check whether supermodularity holds or not.

• A ∈ <l×1+ or A ∈ <l×2+ , i.e. there are at most two products in the system. This does not

necessarily belong to the Proportional Tree Family but satisfies the condition in Theorem 4.

• Binary Tree Family (Zipkin 2016): a system belonging to Tree Family and with all elements

in A being binary. We can show it is in the Proportional Tree Family.

• The generalized W System (Zipkin 2016, Chen et al. 2021):A=

[
D
c>

]
∈<(n+1)×n

+ withD being

a diagonal matrix. This system has (n+ 1) components and n products. The last component

is a common component and used in all products; for all other components, each is specific to

a single product. Obviously, this belongs to Proportional Tree Family.

• The generalized M System (Lu and Song 2005, Nadar et al. 2014): A= [D c]∈<n×(n+1)
+ with

D being a diagonal matrix. This system has n components and (n+ 1) products. The last

product uses all components; for all other products, each is specific to a single component.

The generalized M system violates the condition of Theorem 4, and hence g(x,z) is not

supermodular in z.

Zipkin (2016) considers the Binary Tree Family systems with known demand distribution and

shows that an optimal inventory level can be solved approximately, while the computational com-

plexity is indeed not guaranteed. Recognizing that the Binary Tree Family is a special case of the

Proportional Tree Family, our method suggests that an exact linear programming reformulation of

polynomial size can be obtained in the distributionally robust setting.

6. Numerical studies

In this section, we investigate and compare the computational performances of our method against

other solution methods for two-stage DRO models. Specifically, we consider the column-and-

constraint generation (CCG) algorithm (see for instance, Zeng and Zhao 2013, Saif and Delage

2021) and the segregated linear decision rules. We use the three methods to solve the ATO prob-

lems. The program is coded in Python and run on an 12-Core Intel PC with a 2.7 GHz CPU.

6.1. Settings

To provide a brief and clear computational results, we consider the distributional uncertainty

set F given as Equation (4) with only one fixed scenario. We relegate the formulations of the

CCG algorithm and the segregated linear decision rule in Appendix A.3. We use the ATO system

with n products and n components as an example. The assemble matrix A ∈<n×n+ is specified as
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A =

[
I(n−1)×(n−1) σ1

ρ> σ

]
, where ρ = (1,2, . . . , n− 1). In this case, when σ = 0, the system reduces

to the generalized W system and the function g(x,z) in the ATO system is supermodular (see

Corollary 2). For all other parameters, we randomly generate the values from uniform distributions

(denoted by U(u,u), where u,u are respectively the lower and upper bounds). For each product i, i∈

[n], we generate the demand information µi ∼ U(45,55), zi ∼ U(40, µi − 2), zi ∼ U(µi + 2,60), δi ∈

U
(

0,
2(µi−zi)(zi−µi)

zi−zi

)
, with penalty cost pi ∼ U(10,20) and retail price ri ∼ U(10,20). For each

component j, j ∈ [n], we generate ordering cost cj ∼U(0,10) and holding cost hj ∼U(0,10).

We conduct experiments for n= 5 and n= 20. In both cases, we randomly generate 200 instances

using the procedures mentioned above. For each instance, we vary the parameter σ in the assemble

matrix A. Specifically, for instances with n= 5, we vary σ from 0 to 15 with the step size of 0.5;

for instances with n= 20, we vary σ from 0 to 60 with the step size of 2.

6.2. Quality of the solutions

The CCG algorithm derives the optimal value for Problem (2), while the segregated linear deci-

sion rule and our method provide the upper and lower bounds, respectively. We normalize the

optimal value derived by CCG algorithm as 1 and calculate the relative difference with the other

two methods as
OPTSupmLP−OPTCCG

OPTCCG
and

OPTSegLDR−OPTCCG

OPTCCG
. Here we abbreviate our method as

“SupmLP” and the segregated linear decision rule as “SegLDR”. We show the performance of

these three methods with 5× 5 ATO systems in Figure 3(a). For each value of σ, we consider all

the 200 instances and plot the average and quantile about the relative difference. When σ = 0,

these three methods provide the same optimal value, since the property of supermodularity holds.

When σ 6= 0, the property of supermodularity cannot be guaranteed. We observe that the relative

differences exist but are not large. Although the segregated linear decision rule performs closer to

the CCG algorithm than our method, the two approaches play different roles (upper and lower

bounds, respectively) in quantifying the optimal value of the problem.

Figure 3(b) shows the performance for the 20× 20 ATO systems. In this case, unfortunately,

the segregated linear decision rule formulation includes more than 320 constraints and cannot be

solved efficiently. Therefore, we only compare the performance of the CCG algorithm and our

method. We observe that our method performs quite well in general even though the property of

supermodularity is not guaranteed when σ 6= 0.

6.3. Computational time

We also compare the computational time for the three methods based on the ATO systems men-

tioned above. Within two hours, the segregated linear decision rule and the CCG algorithm can

solve the ATO problems when n = 11 and n = 120 respectively. For our method, the average

computational time to solve the ATO system when n= 120 is around 4 seconds.
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(a) 5× 5 ATO system (b) 20× 20 ATO system
Figure 3 Performance comparison in ATO systems.

7. Conclusion

This paper identifies a tractable class of two-stage DRO problems and derives exact optimal solu-

tions when the scenario-based ambiguity set is considered. Given any realization of the uncertain

scenario, we know the information of supports, means and MADs for the underlying uncertain-

ties. Our results show that any two-stage problem has a computationally tractable reformulation

whenever its second-stage cost function is supermodular in the uncertainty realization. This refor-

mulation relies on the common worst-case distribution, which can be pre-calculated via an efficient

algorithm. As a result, our reformulation preserves the original structure of the problem and retains

the same computational complexity as the nominal problem. While the reformulation is based

on the requirement for supermodularity in the second-stage problem, we provide a necessary and

sufficient condition to check whether this requirement is met for any given two-stage problem. We

also discuss the optimality of scenario-wise segregated affine decision rules in our setting.

Subsequently, it can be verified that a wide range of practical problems fit within our framework

of two-stage DRO with supermodularity. Instances include multi-item newsvendor, reliable facility

location, lot-sizing, appointment scheduling with random no-shows, and general ATO systems.

While these problems are considered computationally challenging in general, under our assumption,

they can be solved exactly and efficiently.

There are several promising directions to explore. Theoretically, it is interesting to investigate

whether our efficient solution method can be applied to a broader class of two-stage problems,

such as those with integer recourse decisions where the second-stage cost function might not even

be continuous. Moreover, whether our framework can be extended to multi-periods optimization

problems would also be an important research question. Last but not least, since there are numerous
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two-stage problems with significant practical impact, we can verify if supermodularity property

exists in those problems with our results and further validate the applicability of our approach.
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Rachev, Svetlozar T, Ludger Rüschendorf. 1998. Mass Transportation Problems: Volume I: Theory , vol. 1.

Springer Science & Business Media.



Long, Qi, and Zhang: Supermodularity in Two-Stage DRO
30

Saif, Ahmed, Erick Delage. 2021. Data-driven distributionally robust capacitated facility location problem.

European Journal of Operational Research 291(3) 995–1007.

Shapiro, Alexander, Darinka Dentcheva, Andrzej Ruszczyński. 2009. Lectures on Stochastic Programming:
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Appendices

A. Supplement

A.1. Algorithm for checking supermodularity in Section 3

For any given matrices U ,V , we provide the following algorithm to check explicitly whether the

condition in Theorem 2 is met.

Algorithm 2 algorithm for checking supermodularity

1: Input: U ∈<r×m,V ∈<r×n

2: Initialization: r0 = rank(U), s= 1

3: if r0 < r then

4: arbitrarily remove columns in U , if any, until U has only r0 linearly independent columns

5: for all I ⊆ [r] with |I|= r0 and UI invertible, do

6: for i∈ [r]\I do

7: d>i = v>i −u>i U−1I VI
8: if there exist components dia, dib such that diadib < 0 then

9: s= 0, go to line 10

10: return s

Theorem 5 The condition in Theorem 2 is satisfied if and only if Algorithm 2 returns s= 1.

We note that Algorithm 2 may take exponential number of steps. Specifically, the complexity is

reflected in line 5, where we search for all row index sets subject to conditions on the number of

rows and rank. The high complexity is essentially because this algorithm is for the necessary and

sufficient condition. Indeed, if we aim only for necessary conditions, then it can be simplified by

reducing the range of search. For example, only checking for submatrices containing consecutive

rows of U and V can also be a necessary condition. If the condition is violated for any tested index

set I, then the function g(x,z) must not be supermodular for all x,b,v0. On the other hand, if

we aim at sufficient conditions only, some matrices with simple structures can be easily shown to

satisfy the conditions.

A.2. A counterexample where segregated affine decision rules are suboptimal in
Section 4

For simplicity, we drop the first-stage decision and consider the problem

sup
P∈F

EP [g(z̃1, z̃2)]
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as an example, where we define

F =

P

∣∣∣∣∣∣
EP[z̃1] = 3, EP[z̃2] = 1
EP[|z̃1− 3|]≤ 1.2, EP[|z̃2− 1|]≤ 1.2
P(z̃1 ∈ [0,4]) = P(z̃2 ∈ [0,4]) = 1

 , g(z1, z2) = min

y
∣∣∣∣∣∣
y≥ z1 + z2− 4
y≥−z1− z2 + 4
y≤ 4


for the problem setting. Easily we can check that g(z1, z2) satisfies the condition in Theorem 2,

hence is supermodular in z. Applying Algorithm 1 we obtain a worst-case distribution P? with

P?(z̃ = (0,0)) = P?(z̃ = (3,0)) = P?(z̃ = (4,0)) = P?(z̃ = (4,1)) = P?(z̃ = (4,4)) = 0.2, hence the

problem has an optimal value

sup
P∈F

EP[g(z̃1, z̃2)] =EP? [g(z̃1, z̃2)]

= 0.2 (g(0,0) + g(3,0) + g(4,0) + g(4,1) + g(4,4))

= 0.2 (4 + 1 + 0 + 1 + 4)

= 2.

On the other hand, we consider the decision following the segregated linear decision rule, i.e.,

y(z1, z2) = θ> ((3− z1)+, (1− z2)+, (z1− 3)+, (z2− 1)+) + φ. The problem with segregated linear

decision rule (The detailed reformulation can be referred to Problem (26) in Appendix A.3) then

becomes

min θ> (0.6,0.6,0.6,0.6) +φ

s. t. θ>
(
(3− z1)+, (1− z2)+, (z1− 3)+, (z2− 1)+

)
≥ z1 + z2− 4, ∀(z1, z2)∈ {0,3,4}×{0,1,4}

θ>
(
(3− z1)+, (1− z2)+, (z1− 3)+, (z2− 1)+

)
≥−z1− z2 + 4, ∀(z1, z2)∈ {0,3,4}×{0,1,4}

θ>
(
(3− z1)+, (1− z2)+, (z1− 3)+, (z2− 1)+

)
≤ 4, ∀(z1, z2)∈ {0,3,4}×{0,1,4}.

This is a linear program with 27 constraints and 5 decision variables, hence can be handled by

ordinary solvers. The optimal segregated linear decision rule turns out to be y(z1, z2) = 1
3
(3−z1)+ +

(1− z2)+ + (z1 − 3)+ + 1
3
(z2 − 1)+ + 2, yielding the optimal value 0.6( 1

3
+ 1 + 1 + 1

3
) + 2 = 3.6> 2.

This implies that segregated linear decision rules can be suboptimal even if the second-stage cost

is supermodular in z.

A.3. The CCG algorithm and segregated affine decision rules in Section 6

CCG algorithm

The CCG algorithm we use in this paper mostly resembles Saif and Delage (2021), who study a

two-stage distributionally robust facility location problem. For Problem (2), the inner supremum

problem supP∈F can be equivalently written as an infimum problem and the strong duality holds.

Then, we reformulate Problem (2) as

min a>x+α+µ>β+ δ>γ

s. t. α+β>z+γ>(|z−µ|)≥ g(x,z), ∀z ∈ [z,z]

γ ≥ 0, x∈X .

(20)
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For the CCG algorithm, we assume that the relatively complete recourse holds and consider multiple

iterations. In iteration τ (τ = 0,1,2, . . .), we solve a relaxation of Problem (20) that imposes the

first constraint to hold only on a subset {z0,z1, . . . ,zτ} ⊆ [z,z]. Formally, let

L̂τ := min a>x+α+µ>β+ δ>γ

s. t. α+β>zi +γ>(|zi−µ|)≥ b>yi, i∈ [τ ]

Wx+Uyi ≥V zi +v0, i∈ [τ ]

γ ≥ 0, x∈X .

(21)

This problem provides a lower bound to the optimal value of the original problem (2). Denoting by(
x̂, α̂, β̂, γ̂,{ŷi}i∈[τ ]

)
a solution to Problem (21), we then examine the violation of the constraint

in Problem (20) by evaluating

h
(
x̂, β̂, γ̂

)
=max

{
g(x̂,z)− β̂>z− γ̂>(|z−µ|)

∣∣∣ z ∈ [z,z]
}

=max

{
g(x̂,z)− β̂>z− γ̂>θ

∣∣∣∣ θ≥ z−µ, θ≥µ−z, θ≤M01
z ∈ [z,z]

}

=max

(V z+v0−Wx̂)>η− β̂>z− γ̂>θ

∣∣∣∣∣∣
U>η= b, η≥ 0
θ≥ z−µ, θ≥µ−z, θ≤M01
z ∈ [z,z]


= max
η:U
>η=b
η≥0

(v0−Wx̂)>η+ max

(V >η− β̂)>z− (γ̂)>θ

∣∣∣∣∣∣∣∣∣
z−θ≤µ
−z−θ≤−µ
θ≤M01
z ≤ z
−z ≤−z


 .

(22)

Here the second equality follows from γ̂ ≥ 0, and the constraint θ ≤M01 with M0 being a suffi-

ciently large real number guarantees the boundedness of the feasible set while keeping the optimal

value unchanged. The third equality follows from the dual form of g(x̂,z), since the relatively

complete course assumption guarantees that the strong duality holds. In the last line we seperate

the maximization of η and z,θ. Further, replacing the constraints of the inner maximization by
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its KKT conditions, we get

h
(
x̂, β̂, γ̂

)
= max (v0−Wx̂)>η+µ>(φ−φ) +M01

>ξ+z>ρ−z>ρ

s. t. U>η= b

z−θ≤µ (φ)

−z−θ≤−µ (φ)

θ≤M01 (ξ)

z ≤ z (ρ)

−z ≤−z (ρ)

φ−φ+ρ−ρ=V >η− β̂ (z)

φ−φ− ξ= γ̂ (θ)

µ−z+θ≤M0λ
φ, φ≤M0(1−λφ)

−µ+z+θ≤M0λ
φ, φ≤M0(1−λφ)

M01−θ≤M0λ
ξ, ξ≤M0(1−λξ)

z−z ≤M0λ
ρ, ρ≤M0(1−λρ)

z−z ≤M0λ
ρ, ρ≤M0(1−λρ)

φ,φ,ξ,ρ,ρ,η≥ 0

λφ,λφ,λξ,λρ,λρ ∈ {0,1}n.

(23)

Here the variables in parentheses specify the associated dual variable for each constraint, and the

binary variables λφ,λφ,λξ,λρ,λρ are introduced such that µ− z + θ ≤Mλφ,φ≤M(1− λφ) is

equivalent to the complementary slackness condition (µi − zi + θi)φi = 0 (i ∈ [n]) for λφ and so

forth for the other binary variables. We hence reformulate the bilinear problem in the third line of

Equation (22) into a mixed integer program.

By solving Problem (23), we derive the optimal solution of z and denote as zτ+1. Further, we

obtain an upper bound of Problem (2) as

Ûτ := a>x̂+h
(
x̂, β̂, γ̂

)
+µ>β̂+ δ>γ̂ (24)

This is an upper bound because the fixed
(
x̂, β̂, γ̂

)
and α= h

(
x̂, β̂, γ̂

)
form a feasible solution to

Problem (20).

We terminate the algorithm when the upper and lower bounds converge. If the algorithm does

not stop in iteration τ , we then add a decision variable yτ+1 and the following constraints{
α+β>zτ+1 +γ>(|zτ+1−µ|)≥ b>yτ+1,

Wx+Uyτ+1 ≥V zτ+1 +v0
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to the lower bound problem (21) and solve for L̂τ+1 in iteration τ + 1. The full procedure is

formalized in Algorithm 3.

Algorithm 3 A CCG algorithm for two-stage DRO

1: Input: two-stage formulation (2), second-stage formulation of g(x,z), ε≥ 0

2: Initialization: LB =−∞,UB =∞, τ = 0, z0 =µ

3: while UB−LB > ε do

4: solve Problem (21) with {zi}i∈[τ ]
5: denote by (x̂, β̂, γ̂) the optimal solution, by L̂τ the optimal value

6: update LB = L̂τ

7: solve Problem (23) with (x̂, β̂, γ̂)

8: denote by zτ+1 the optimal solution for z, by h(x̂, β̂, γ̂) the optimal value

9: calculate Ûτ based on Equation (24) with h(x̂, β̂, γ̂)

10: update UB = min
{
UB, Ûτ

}
11: update τ = τ + 1

12: Output: optimal solution x̂

Segregated affine decision rule

For Problem (2), when we use the segregated decision rule method, the problem is reformulated as

min
x,Θ,φ

a>x+ sup
P∈F

EP

[
b>
(

Θ

[
(µ− z̃)+

(z̃−µ)+

]
+φ

)]
s. t. Wx+U

(
Θ

[
(µ−z)+

(z−µ)+

]
+φ

)
≥V z+v0, ∀z ∈ [z,z]

x∈X .

By the property of segregated linearity, we can equivalently impose the constraints only on the

breakpoints, hence obtain the following reformulation.

min a>x+ sup
P∈F

EP

[
b>
(

Θ

[
(µ− z̃)+

(z̃−µ)+

]
+φ

)]
s. t. Wx+U

(
Θ

[
(µ−z)+

(z−µ)+

]
+φ

)
≥V z+v0, ∀z ∈

∏
i∈[n]

{zi, µi, zi} ,

x∈X .

(25)

Similar to the proof of Proposition 1, we can derive a worst-case distribution P? and show that the

MAD under P? is EP? [|z̃−µ|] = δ̂. Observing that EP? [(µ− z̃)+ + (z̃−µ)+] = EP? [|z̃−µ|] = δ̂,
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EP? [(µ− z̃)+− (z̃−µ)+] = EP? [µ− z̃] = 0, we have EP? [(µ− z̃)+] = EP? [(z̃−µ)+] = δ̂/2. Hence,

Problem (25) can be further reformulated as

min a>x+ b>Θ

[
δ̂/2

δ̂/2

]
+ b>φ

s. t. Wx+U

(
Θ

[
(µ−z)+

(z−µ)+

]
+φ

)
≥V z+v0, ∀z ∈

∏
i∈[n]

{zi, µi, zi} ,

x∈X .

(26)

This problem is essentially a linear program with an exponential size of constraints.

B. Extensions

In this section, we introduce three possible extensions and show that, when the property of super-

modularity holds, the exact tractable reformulation can be applied to more general settings.

B.1. Left-hand-side uncertainties in the constraints

We consider that the matrix W on the left-hand side of the constraints is an affine function of the

uncertain vector z̃ as W (z̃) =W 0 +
∑

i∈[n]W
iz̃i. In this case, the second-stage problem becomes

gW (x,z) = min b>y

s. t.

W 0 +
∑
i∈[n]

W izi

x+Uy≥V z+v0,

where W i, i ∈ {0,1, . . . , n} are given constant matrices in <r×l. We next establish an equivalent

condition for the supermodularity of gW .

Theorem 6 gW (x,z) is supermodular in z for any x,b and v0 if and only if U ∈<r×m, V ∈<r×n

and Wi ∈<r×l, i∈ [n] satisfy one of the following conditions:

1) rank(U) = r,

2) for all I ⊆ [r],η ∈<|I| with |I|= rank(U) + 1, rank(UI) = rank(U) and U>I η= 0, we have

2a) (η>(VI)i) · (η>(VI)j)≥ 0, (W i
I)
>ηη>W j

I is positive semidefinite, for all i, j ∈ [n];

2b) (η>(VI)i) ·
(
η>W j

I
)

= (η>(VI)j) · (η>W i
I), for all i, j ∈ [n].

For Condition 2) in Theorem 6, considering any concerned I, i.e., |I| = rank(U) + 1 and

rank(UI) = rank(U), the null space of UI is of dimension 1. That is, there exists ηo such that for all

η with U>I η= 0 we have η= kηo for some k ∈<. We can easily observe that both Conditions 2a)

and 2b) hold for all such η if and only if they hold for ηo. Therefore, to verify whether Conditions

2a) and 2b) hold, it suffices to check for ηo only. Hence, as in Theorem 5, we can similarly build a

corresponding algorithm to check the supermodularity of gW .
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B.2. Non-linearity in the objective function

We extend our results by considering the objective as a more general function, which is nonlinear

of the second-stage cost. For example, the objective can be either an expected disutility or a risk

measure. Specifically, when the second-stage cost itself is supermodular in the uncertainty, the

following lemma identifies mild conditions which are sufficient to preserve supermodularity. We

subsequently show how our method can help us obtain tractable reformulations.

Lemma 3 Given any convex and non-decreasing function u :<→< and any monotone supermod-

ular function h :<n→<, the function φ :<n→< defined as φ(z) = u(h(z)) is supermodular.

This result can be applied when maximizing the decision maker’s expected utility, or equivalently,

minimizing the expected disutility. Consider the following problem

min
x∈X

sup
P∈F

EP
[
u
(
a>x+ g(x, z̃)

)]
, (27)

where g(x,z) is the second-stage cost function defined by (1), and u :<→< is a piecewise linear

convex and non-decreasing disutility function defined as

u (w) = max
j∈[J]

{cjw+ dj}, ∀w ∈<, (28)

for some constants cj ≥ 0 and dj, j ∈ [J ].

Proposition 12 If g(x,z) is monotone and supermodular in z for all x ∈X , then Problem (27)

is equivalent to the following problem

min ν>l

s. t. R>k l≥
∑

i∈[2n+1]

pki f
k,i, k ∈ [K]

Wx+Uyk,i ≥V zk,i +v0, k ∈ [K], i∈ [2n+ 1]

fk,i ≥ cj
(
a>x+ b>yk,i

)
+ dj, k ∈ [K], i∈ [2n+ 1], j ∈ [J ]

l≥ 0, x∈X ,

(29)

where pki ,z
k,i, i ∈ [2n + 1] are obtained from Algorithm 1 given the ambiguity sets Fk, k ∈ [K]

defined by (4).

We can also apply Lemma 3 when some risk measures are included in the objective. In particular,

we study the case where the objective function is based on Optimized Certainty Equivalent (OCE)

(Ben-Tal and Teboulle 1986). It is shown that the OCE models a broad range of risk measures
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(Ben-Tal and Teboulle 2007), and includes the Conditional-Value-at-Risk (CVaR) as a special case.

When evaluating the total cost by OCE, the two-stage problem is as follows,

min
x∈X

sup
P∈F

OCEu

(
a>x+ g(x, z̃)

)
= min
x∈X

sup
P∈F

inf
θ∈<
{θ+EP

[
u
(
a>x+ g(x, z̃)− θ

)]
}, (30)

where u(·) is a piecewise linear convex and non-decreasing disutility function taken the form of

(28). We now show that our method is applicable to Problem (30).

Corollary 3 If g(x,z) is monotone and supermodular in z for all x ∈ X , then the OCE mini-

mization problem (30) is equivalent to the following linear program

min θ+ν>l

s. t. R>k l≥
∑

i∈[2n+1]

pki f
k,i, k ∈ [K]

Wx+Uyk,i ≥V zk,i +v0, k ∈ [K], i∈ [2n+ 1]

fk,i ≥ cj
(
a>x+ b>yk,i− θ

)
+ dj, k ∈ [K], i∈ [2n+ 1], j ∈ [J ]

l≥ 0, x∈X ,

(31)

where pki ,z
k,i, i ∈ [2n + 1] are obtained from Algorithm 1 given the ambiguity sets Fk, k ∈ [K]

defined by (4).

B.3. General ambiguity set

While the previous results are based on the ambiguity set that is constructed by mean, support

and MAD in each scenario (see Equation (3)), now we extend that ambiguity set to a more general

one and show that it is the most general case in which our results are still applicable. We define

the ambiguity set based on piecewise linear convex functions, which are rather general and still

maintain the linear structure in the reformulation. For notational simplicity, we do not incorporate

the random scenario in this subsection. Specifically, we consider the ambiguity set defined as follows,

FG =

P

∣∣∣∣∣∣∣
P
(
z ≤ z̃ ≤ z

)
= 1

EP[z̃] =µ

EP
[
hji (z̃i)

]
≤ δji , i∈ [n], j ∈ [Ji]

 , (32)

where Ji ≥ 1 is an integer, hji is a given piecewise linear convex function, i∈ [n], j ∈ [Ji]. We assume

hji has at least two pieces in [zi, zi] to avoid the trivial case. The ambiguity set FG generalizes Fk,

defined in Equation (4), as it replaces the MAD information in Fk by the expectations of several

piecewise linear convex functions. Obviously, FG includes Fk as a special case by choosing Ji = 1

and hji (z) = |z−µi| for all z ∈<.

Unfortunately, as we will show later in this subsection, not all ambiguity sets FG defined by

Equation (32) can lead to a tractable reformulation using the procedures we discussed in Section 2.
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Here we aim to identify the conditions for FG such that the corresponding two-stage optimization

problem, whenever the property of supermodularity holds for the second-stage cost function, can

be solved with the methods in Section 2.

For any i∈ [n], we let z1i = zi, z
2
i = zi and denote z3i , z

4
i , . . . , z

Si
i ∈ (zi, zi) as the breakpoints of the

piecewise linear functions h1
i , . . . , h

Ji
i . We now have the following result, which is essential for using

the procedures in Section 2.

Theorem 7 The following two statements are equivalent.

1. Given any δji , i ∈ [n], j ∈ [Ji] satisfying FG 6= ∅, there exists pi = (pi1, . . . , piSi) ∈ <
Si
+ , i ∈ [n]

such that for all convex function f :<n→<, we have P∗ ∈ arg supP∈FG EP [f(z̃)] and for any

i∈ [n],

P∗ (z̃i =w) =

 pis if w= zsi , s∈ [Si],

0 otherwise.

2. For all i∈ [n], j ∈ [Ji], h
j
i has exactly two pieces on [zi, zi].

We observe that the worst-case distribution P∗ provided in Theorem 7 has the same structure

as that in Proposition 1. Essentially, we can characterize their marginal distributions for both

settings. Moreover, the marginal distribution depends only on the ambiguity set itself, and is

independent of the objective function f (in Theorem 7) or the first-stage decision x (in Proposition

1). Therefore, if FG satisfies the condition in Theorem 7, we can adopt a similar procedure to that

in Section 2 to solve the two-stage optimization problem. In particular, we first obtain the marginal

distribution, and then find the worst-case distribution based on the chained support, after which

we can reformulate the two-stage problem as a linear program with low dimension. By contrast,

if FG violates the condition in Theorem 7, there are two-stage problems such that the worst-case

distribution would depend on the first-stage decision x, and hence our method cannot work.
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C.1. Proof of Proposition 1

For a one-dimensional random variable, when its MAD is known exactly, Ben-Tal and Hochman

(1972, Theorem 3) have derived the worst-case distribution. Here since in Fk, it involves multiple

dimensions and only the upper bound of MADs is known, we need to prove differently as follows.

For notational brevity, we drop the superscript k.

We now consider any i ∈ [n] such that zi > zi. For the i-th marginal, given the support [zi, zi]

and mean µi, the maximum possible value of MAD is
2(zi−µi)(µi−zi)

zi−zi
(see Ben-Tal and Hochman

(1972, Lemma 1)). Hence, we let δ̂i = min
{
δi,

2(zi−µi)(µi−zi)
zi−zi

}
. Then, the worst-case expectation of

g(x, z̃) under the Fk defined in Equation (4) can be reformulated as

sup
P∈F

EP [g(x, z̃)] = sup

EP [g(x, z̃)]

∣∣∣∣∣∣
EP[z̃] =µ,
EP[|z̃−µ|]≤ δ,
P(z ≤ z ≤ z̄) = 1

= sup

EP [g(x, z̃)]

∣∣∣∣∣∣
EP[z̃] =µ,

EP[|z̃−µ|]≤ δ̂,
P(z ≤ z ≤ z̄) = 1


= sup

0≤d≤δ̂
V (d),

where

V (d) = sup

EP [g(x, z̃)]

∣∣∣∣∣∣
EP[z̃] =µ,
EP[|z̃−µ|] = d,
P(z ≤ z ≤ z̄) = 1

 .

We prove our proposition by two steps.
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Step 1. Considering any given d ∈ [0, δ̂], we will show that there must exist an optimal proba-

bility distribution, P∗, for the problem in defining V (d) such that the marginal distribution is as

follows,

P∗ (z̃i =w) =



di
2(µi−zi)

if w= zi

1− di(zi−zi)
2(zi−µi)(µi−zi)

if w= µi
di

2(zi−µi)
if w= zi

0 otherwise.

(33)

We prove this by discussing two scenarios, depending on whether V (d) is finite or not.

Consider the first case where V (d) =∞. In this case, there exists P′ such that EP′ [g(x′, z̃)] =

∞,EP′ [z̃] = µ,EP′ [|z̃ − µ|] = d and P′(z ≤ z ≤ z̄) = 1. We denote by supp(P) the support of any

probability distribution P. Observing that the feasible set of V (d) is nonempty (any distribution

with marginal distribution as in (33) is feasible), EP′ [g(x′, z̃)] =∞ implies that there must exist z′ ∈

supp(P′)⊆ [z,z] such that g(x,z′) =∞. We let P′′ be any probability distribution with marginal

distribution as defined in (33), then supp(P′′) =
∏
i∈[n]Si where Si = {µi} if di = 0, Si = {zi, µi, zi}

if di ∈ (0, δ̂i) and Si = {zi, zi} if di = δ̂i, i ∈ [n]. Now, consider any i ∈ [n]. If di = 0, we must have

P′(z̃i = µi) = 1; hence, z′i = µi ∈ conv(Si); if di > 0, z′i ∈ conv(Si) = [zi, zi] since z ∈ [z,z]. Hence, in

any case, z′i ∈ conv(Si). Consequently, we have z′ ∈ conv(supp(P′′)). Since function g(x,z) is convex

in z (see Theorem 2, Section 3.1 in Birge and Louveaux (2011)), there must exist z′′ ∈ supp(P′′)

such that g(x′,z′′) =∞. Hence, P′′ is also a worst-case distribution.

For the second case where V (d) is finite, by strong duality (e.g., Shapiro 2001),

V (d) = min
{
s+µ>t+d>r

∣∣ s+z>t+ (|z−µ|)>r≥ g(x,z), ∀z ≤ z ≤ z
}
. (34)

For any given t,µ,r, since g(x,z) is convex in z, the function g(x,z)−z>t− (|z−µ|)>r is convex

in z if z ∈ [a,b] where for all i∈ [n], (ai, bi) takes value of (zi, µi) or (µi, zi). Hence, the constraint

in (34) is equivalent to

s≥ g(x,z)−z>t− (|z−µ|)>r, ∀z ∈
∏
i∈[n]

{zi, µi, zi} . (35)

Substituting the constraints in Problem (34) by (35) and writing its dual form again, we obtain

V (d) = sup


3n∑
τ=1

pτg(x,zτ )

∣∣∣∣∣∣∣∣∣
∑3n

τ=1 pτz
τ
i = µi, i∈ [n]∑3n

τ=1 pτ |zτi −µi|= di, i∈ [n]∑3n

τ=1 pτ = 1
pτ ≥ 0, τ ∈ [3n]

 , (36)

where z1, . . . ,z3n represent all z ∈
∏
i∈[n] {zi, µi, zi}, and p1, . . . , p3n are the associated decision

variables. Therefore, we can find a distribution P∗ which is optimal to V (d), with its support
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being z1, . . . ,z3n . This implies P∗(z̃i = w) = 0 whenever w /∈ {zi, µi, zi}, for all i ∈ [n]. Given any

three-point support {zi, µi, zi}, mean µi and MAD value di ∈ [0, δ̂i], we observe that a distribution

which places di
2(µi−zi)

amount of mass at zi, 1− di(zi−zi)
2(zi−µi)(µi−zi)

at µi, and di
2(zi−µi)

at zi, is uniquely

determined. Hence, P∗ must have a marginal distribution as in (33).

Step 2. We next show that function V (d) is non-decreasing in d.

Consider any 0 ≤ d′ ≤ d′′ ≤ δ̂ with d′′ − d′ = θei◦ for some θ > 0, i◦ ∈ [n], and the probability

distribution P′ with P′(z̃ = zτ ) = p′τ , τ ∈ [3n] such that p′1, . . . , p
′
3n is the worst-case distribution in

Problem (36) when d= d′. WLOG, we let i◦ = 1. We define another distribution P′′ with P′′(z̃ =

zτ ) = p′′τ , τ ∈ [3n] as

P′′(z̃ = z) =


P′(z̃ = z) + ε(z)

µ1−z1
if z1 = z1,

P′(z̃ = z)− ε(z)

µ1−z1
− ε(z)

z1−µ1
if z1 = µ1,

P′(z̃ = z) + ε(z)

z1−µ1
if z1 = z1,

where ε :
∏
i∈[n]{zi, µi, zi}→ [0,1] is a mapping defined by

ε(z) = ε(z+ (z1−µ1)e1) = ε(z+ (z1−µ1)e1) =
θ/2

1− d′1
2

(
1

µ1−z1
+ 1

z1−µ1

)P′(z̃ = z) (37)

for all z ∈
∏
i∈[n]{zi, µi, zi} with z1 = µ1. We next verify that p′′1 , . . . , p

′′
3n satisfy the constraints in

(36) when replacing d by d′′.

From the definition of θ, we observe that for all z such that z1 = µ1,

ε(z)

µ1− z1
+

ε(z)

z1−µ1

=

d′′1−d
′
1

2

(
1

µ1−z1
+ 1

z1−µ1

)
1− d′1

2

(
1

µ1−z1
+ 1

z1−µ1

)P′(z̃ = z) =

1−
1− d′′1

2

(
1

µ1−z1
+ 1

z1−µ1

)
1− d′1

2

(
1

µ1−z1
+ 1

z1−µ1

)
P′(z̃ = z).

Because 0 < d′1 < d′′1 ≤ δ̂1 and the three-point distribution is uniquely determined, we have 1 −
d′1
2

(
1

µ1−z1
+ 1

z1−µ1

)
≥ 1− d′′1

2

(
1

µ1−z1
+ 1

z1−µ1

)
≥ 0. Hence P′′(z̃ = z)∈ [0,P′(z̃ = z)] for all z with z1 =

µ1. By the definition of P′′ we notice that
∑
z∈

∏
i∈[n]{zi,µi,zi} P

′′(z̃ = z) =
∑
z∈

∏
i∈[n]{zi,µi,zi} P

′(z̃ =

z) = 1, we have P′′(z̃ = z)∈ [0,1] for all z ∈
∏
i∈[n] {zi, µi, zi}.

To see EP′′ [z̃] =µ, we observe that for the first dimension,

3n∑
τ=1

p′′τz
τ
1 =

∑
z:z1=µ1

P′′(z̃ = z)µ1 +
∑

z:z1=z1

P′′(z̃ = z)z1 +
∑

z:z1=z1

P′′(z̃ = z)z1

=
∑

z:z1=µ1

(P′′(z̃ = z)µ1 +P′′(z̃ = z+ (z1−µ1)e1)z1 +P′′(z̃ = z+ (z1−µ1)e1)z1)

=
3n∑
τ=1

p′τz
τ
1 +

∑
z:z1=µ1

((
− ε(z)

µ1− z1
− ε(z)

z1−µ1

)
µ1 +

ε(z)

µ1− z1
z1 +

ε(z)

z1−µ1

z1

)
= µ1 +

∑
z:z1=µ1

(
ε(z)

µ1− z1
(z1−µ1) +

ε(z)

z1−µ1

(z1−µ1)

)
= µ1,
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where the third equality is due to the property of ε stated in (37). For any other dimension i with

i 6= 1, by the construction of P′′ we can observe that the marginal masses on the i-th dimension

remain identical with P′. Hence,
∑3n

τ=1 p
′′
τz

τ =µ.

For the MAD information, we start from the first dimension and notice that∑
z:z1=µ1

P′′(z̃ = z) =
∑

z:z1=µ1

P′(z̃ = z)−
(

1

µ1− z1
+

1

z1−µ1

) ∑
z:z1=µ1

ε(z)

=

1−
(

1

µ1− z1
+

1

z1−µ1

)
θ/2

1− d′1
2

(
1

µ1−z1
+ 1

z1−µ1

)
 ∑
z:z1=µ1

P′(z̃ = z)

=

1−
(

1

µ1− z1
+

1

z1−µ1

)
θ/2

1− d′1
2

(
1

µ1−z1
+ 1

z1−µ1

)
(1− d

′
1

2

(
1

µ1− z1
+

1

z1−µ1

))

= 1− d
′′
1

2

(
1

µ1− z1
+

1

z1−µ1

)
,

where the second equality is due to (37), the third equality holds since the marginal distribution

is uniquely determined in P′. Similarly, we have
∑
z:z1=z1

P′′(z̃ = z) =
d′′1

2(µ1−z1)
and

∑
z:z1=z1

P′′(z̃ =

z) =
d′′1

2(z1−µ1)
. It then follows that

∑3n

τ=1 p
′′
τ |zτ1 −µ1|= d′′1 . Since the marginal masses at all remaining

dimensions are unchanged, we have
∑3n

τ=1 p
′′
τ |zτ −µ|= d′′. Hence P′′ is a feasible solution to the set

(36) when we replace d by d′′.

Consequently,

V (d′′)≥
3n∑
τ=1

p′′τg(x,zτ )

=
3n∑
τ=1

p′τg(x,zτ ) +
∑

z:z1=µ1

(
− ε(z)

µ1− z1
− ε(z)

z1−µ1

)
g(x,z) +

∑
z:z1=z1

ε(z)

µ1− z1
g(x,z) +

∑
z:z1=z1

ε(z)

z1−µ1

g(x,z)

=
3n∑
τ=1

p′τg(x,zτ ) +
∑

z:z1=µ1

((
− ε(z)

µ1− z1
− ε(z)

z1−µ1

)
g(x,z)

+
ε(z)

µ1− z1
g(x,z+ (z1−µ1)e1) +

ε(z)

z1−µ1

g(x,z+ (z1−µ1)e1)

)
=

3n∑
τ=1

p′τg(x,zτ ) +
∑

z:z1=µ1

ε(z)

(
1

µ1− z1
(g(x,z+ (z1−µ1)e1)− g(x,z))

+
1

z1−µ1

(g(x,z+ (z1−µ1)e1)− g(x,z))

)
≥

3n∑
τ=1

p′τg(x,zτ ) = V (d′),

where the first inequality holds because p′′1 , . . . , p
′′
3n is a feasible solution, the second equality is based

on (37), and the second inequality follows from the convexity of g. Hence, V (d) is non-decreasing
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on [0, δ̂]. Therefore, supP∈F EP [g(x, z̃)] = sup0≤d≤δ̂ V (d) = V (δ̂). The worst-case is with the form

of (33) when d= δ̂, which is as proposed in our Proposition. �

C.2. Proof of Proposition 2

1) =⇒ 2). Consider any P ∈ P such that there exists an unordered pair w′,w′′ with p′ = P(w̃ =

w′)> 0, p′′ = P(w̃=w′′)> 0. WLOG, assume p′ ≤ p′′. We construct a new probability distribution

Po, such that

Po(w̃=w) =


0 if w=w′

p′′− p′ if w=w′′

P(w̃=w′ ∧w′′) + p′ if w=w′ ∧w′′
P(w̃=w′ ∨w′′) + p′ if w=w′ ∨w′′
P(w̃=w) otherwise.

In particular, based on P, we move the probability mass p′ from the realization of w′,w′′ to

w′ ∧w′′,w′ ∨w′′. That does not change the marginal distribution and hence Po ∈ P. Moreover,

compared with the support of P, that of Po has one less unordered pair. We also observe that

EPo [f(w̃)]−EP [f(w̃)] = p′ (f(w′ ∧w′′) + f(w′ ∨w′′)− f(w′)− f(w′′))≥ 0,

where the last inequality is due to the supermodularity of f . Therefore, we can always reduce the

number of unordered pairs (if there is any) in the support while the value of expectation on f(w̃)

either increases or remains unchanged. Since any P ∈ P has nonzero probability mass only at a

finite number of discrete points (by the definition of P), the number of unordered pairs must be

finite and hence will be decreased to zero after a finite number of such steps. Therefore, finally we

obtain P∗ ∈ arg supP∈P EP [f(w̃)] such that the support of P∗ has no unordered pair. Since there

are mi points in the support of the i-th marginal, moving along the chain in ascending order from

(x11, . . . , xn1) to (x1m1
, . . . , xnmn) takes mi−1 steps on the i-th dimension. Hence, the chain has its

maximum length being 1+the total number of steps, i.e.,
∑

i∈[n](mi− 1) + 1.

2) =⇒ 1). Assuming the contrary of 1), i.e., f is not supermodular, then there exists a pair of

unordered w′,w′′ ∈ <n such that f(w′) + f(w′′)> f(w′ ∧w′′) + f(w′ ∨w′′). We denote I ′ = {i ∈

[n] | w′i < w′′i }, I ′′ = {i ∈ [n] | w′i > w′′i } and Ie = {i ∈ [n] | w′i = w′′i }. As w′,w′′ are unordered,

we know I ′, I ′′ are both nonempty. For all i ∈ I ′ ∪ I ′′, we let mi = 2, xi1 = w′i ∧ w′′i , xi2 =

w′i ∨ w′′i , pi1 = pi2 = 0.5; for all i ∈ Ie, we let mi = 1, xi1 = w′i = w′′i and pi1 = 1. Correspond-

ingly, P = {P | P(w̃i = xij) = pij, j ∈ [mi], i∈ [n]}, and any P ∈ P must has its support in W =

Πi∈I′∪I′′{xi1, xx2}×Πi∈Ie{xi1}. Consider any Po ∈P such that its supportWPo = {w ∈<n | Po(w̃=

w)> 0} forms a chain. We now show that Po 6∈ arg supP∈P EP [f(w̃)] and hence statement 2) in the

proposition is false, then the proof can be completed. To this end, we notice since WPo forms a

chain, we can label the elements in WPo in ascending order, i.e., w1 ≤w2 ≤ . . ..
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We first show w1 =w′ ∧w′′. Consider any i∈ [n]. If w1
i <xi1, then w1

i 6∈ {xij | j ∈ [mi]}, contra-

dicts with Po ∈P. If w1
i >xi1, then wi >xi1 for all w ∈WPo , Po(w̃i = xi1) = 0, which also contradicts

with Po ∈P. Therefore, we must have w1
i = xi1 for all i∈ [n], i.e., w1 = (x11, . . . , xn1) =w′ ∧w′′.

We next show w2 =w′ ∨w′′. Assume that there exists i ∈ I ′ ∪I ′′ with w2
i =w1

i . Since w2 ≥w1

and w2 6= w1, we know that there exists j ∈ I ′ ∪ I ′′ with w2
j > w1

j . By w2
i = w1

i = xi1, Po(w̃ =

w1)+Po(w̃=w2)≤ Po(w̃i = xi1) = pi1 = 0.5, we know Po(w̃=w1)< 0.5; by w2
j >w

1
j = xj1, we know

Po(w̃ =w1) = pj1 = 0.5. Hence, we have contradiction. It follows that w2
i > w1

i for all i ∈ I ′ ∪ I ′′,

i.e., w2 =w′ ∨w′′. Moreover, we have |W|= 2 since w2 is the maximum element of W.

Therefore, Po is such that Po(w̃=w′ ∧w′′) = Po(w̃=w′ ∨w′′) = 0.5. Consider another distribu-

tion P∗ such that P∗(w̃=w′) = P∗(w̃=w′′) = 0.5. We can easily have P∗ ∈P, and

EPo [f(w̃)] = 0.5× (f(w′ ∧w′′) + f(w′ ∨w′′))< 0.5× (f(w′) + f(w′′)) =EP∗ [f(w̃)] .

�

C.3. Proof of Proposition 3

For notational simplicity, we drop the superscript k which represents the scenario k; we also assume

zi =−1, µi = 0, z̄i = 1 for all i∈ [n], since the general case can be proved in the same way.

During the progress of this algorithm, for each j ∈ [2n+1], we define mpj,i, which stands for the

remaining marginal probability for iteration j at dimension i, as

mpj,i =

 qji if zji = 1 (mpj,i ∈< in this case)
(qji , P∗(z̃i = 1)) if zji = 0 (mpj,i ∈<2 in this case)
(qji , P∗(z̃i = 0), P∗(z̃i = 1)) if zji =−1 (mpj,i ∈<3 in this case)

.

We also define cj = 1>mpj,1 which represents the remaining total probability mass. Correspond-

ingly, we denote the set of information Ij = {zj,mpj,1, . . . ,mpj,n, cj}.

Given a set of information Ij, we say it is valid if it satisfies the following four conditions: 1)

zj ∈ {−1,0,1}n; 2) mpj,i ∈ [0,1]2−z
j
i for all i ∈ [n]; 3) mpj,iend > 0 for all i ∈ [n], where we denote

mpj,iend as the last element of the vector mpj,i; and 4) 1>mpj,i = cj for all i∈ [n].

By induction, we now show that Ij is valid for all j ∈ [2n+ 1].

First, when j = 1, the conditions 1), 2) and 3) are obviously satisfied. The condition 4) is also

satisfied since 1>mp1,i = P∗(z̃i =−1) +P∗(z̃i = 0) +P∗(z̃i = 1) = 1 for all i∈ [n], and c1 = 1.

Suppose Ij is valid for some j ∈ [2n]. Based on the algorithm, the elements in Ij+1 are obtained as

follows. First, pj = min{mpj,11 , . . . ,mpj,n1 }, rj = min{i∈ [n] | mpj,i1 = pj}. After that, zj+1 = zj +erj .

We now prove that zjrj 6= 1 by contradiction. Assume to the contrary, i.e., zjrj = 1, then mpj,rj ∈<,

we have cj = 1>mpj,rj = mp
j,rj
1 = pj. For any i ∈ [n] \ {rj}, we observe i) mpj,i1 ≥ pj = cj (the

inequality is because of our choice of pj); ii) mpj,iend > 0; and iii) 1>mpj,i = cj and mpj,i ≥ 0.
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The last two observations are because Ij is valid and hence satisfies conditions 2), 3) and 4).

Hence, we have mpj,i ∈< and then zji = 1. That implies zj = 1. We notice that for any t∈ [j− 1],

zt+1 = zt+ei for some i∈ [n]. So moving from z1 =−1 to zj = 1 requires 2n steps, i.e., j = 2n+ 1,

which contradicts j ∈ [2n]. Hence, zjrj = 1 is false, and we must have zjrj ∈ {−1,0}. We can conclude

that zj+1 = zj +erj ∈ {−1,0,1}n, the condition 1) is satisfied for Ij+1. As a result, condition 2) is

obviously satisfied by the way mpj,i is calculated.

With the algorithm, we know mpj+1,rj can be obtained from the vector of mpj,rj by removing

the first component. Therefore, mp
j+1,rj
end = mp

j,rj
end > 0, the condition 3) is satisfied when i = rj.

Moreover, 1>mpj+1,rj = 1>mpj,rj − mp
j,rj
1 = cj − pj. We also observe cj − pj = 1>mpj+1,rj ≥

mp
j+1,rj
end > 0 and hence cj > pj.

For any i∈ [n] \ {rj}, since zj+1
i = zji , mpj+1,i and mpj,i are both of dimension (2− zj+1,i), they

differ only at the first dimension; in particular,

mpj+1,i
s =

{
mpj,i1 − pj if s= 1
mpj,is if zj+1

i ∈ {−1,0} and s 6= 1
. (38)

We note that if zj+1
i = zji = 1, then mpj,i,mpj+1,i ∈<+, and mpj,i1 = 1>mpj,i = cj > pj, mpj+1,i

end =

mpj+1,i
1 = mpj,i1 −pj > 0. If zj+1

i = zji ∈ {−1,0}, obviously mpj+1,i
end = mpj,iend > 0. Therefore, condition

3) is satisfied for i. Moreover, by Equation (38) we also know 1>mpj+1,i = 1>mpj,i− pj = cj − pj.

Since we have previously obtained 1>mpj+1,rj = cj−pj, condition 4) is also satisfied. We conclude

Ij+1 is also valid and it finishes the induction, i.e., Ij is valid for all j ∈ [2n+ 1].

Now, for any j ∈ [2n+ 1], we define Qj as the set of all mass functions with the marginal mass

given by mpj,1, . . . ,mpj,n and the possible realizations forming a chain. More specifically, define

wj,i ∈ {−1,0,1}2−z
j
i by

wj,i =

 (−1,0,1) if zji =−1
(0,1) if zji = 0
1 if zji = 1

,

which is the vector of all possible realizations at dimension i, i ∈ [n], and Wj = {z | zj ≤ z ≤

1}∩ {−1,0,1}n which is the set of all possible realizations of vector z; then

Qj =

{
f j :Wj→ [0,1]

∣∣∣∣ ∑z∈Wj :zi=w
j,i
s
f j(z) = mpj,is , i∈ [n], s∈ [2− zji ]

{z | f j(z)> 0} forms a chain

}
.

Noticing that Wj+1 =
{
z ∈Wj

∣∣∣ zrj 6= zjrj

}
, we define another set Q̂j by

Q̂j =

f j :Wj→ [0,1]

∣∣∣∣∣∣∣∣
f j(zj) = pj
f j(z) = 0, ∀z ∈Wj such that zrj = zjrj ,z 6= z

j

f j(z) = f j+1(z), ∀z ∈Wj+1

f j+1 ∈Qj+1

 .

We next prove Qj = Q̂j.
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First, consider any f j ∈ Qj. Suppose there exist zo ∈Wj with zorj = zjrj and zo 6= zj such that

f j(zo)> 0. That implies the existence of s∈ [n] \ {rj} such that zos > z
j
s . Hence,∑

z∈Wj :
zrj=z

j
rj

zs=z
j
s

f j(z) =
∑

z∈Wj :zrj=z
j
rj

f j(z)−
∑

z∈Wj :
zrj=z

j
rj

zs 6=zjs

f j(z) = pj −
∑

z∈Wj :
zrj=z

j
rj

zs 6=zjs

f j(z)≤ pj − f j(zo)< pj,

∑
z∈Wj :

zrj>z
j
rj

zs=z
j
s

f j(z) =
∑

z∈Wj :zs=z
j
s

f j(z)−
∑

z∈Wj :
zrj=z

j
rj

zs=z
j
s

f j(z)≥ pj −
∑

z∈Wj :
zrj=z

j
rj

zs=z
j
s

f j(z)> 0.

Therefore, we have z∗ ∈Wj such that z∗rj > zjrj = zorj , z
∗
s = zjs < z0s and f j(z∗) > 0, contradicting

that {z | f j(z) > 0} forms a chain. Therefore, f j(z) = 0 whenever z ∈Wj has zrj = zjrj ,z 6= zj,

and f j(zj) = mp
j,rj
1 −

∑
z∈Wj ,zrj=z

j
rj
,z 6=zj f

j(z) = pj − 0 = pj. Therefore, f j satisfies the first two

conditions in Q̂j. The corresponding f j+1 is in Qj+1 can be easily verified by showing the chain

structure and checking the equality constraints on the marginal mass. Hence, we have f j ∈ Q̂j.

We now prove the reverse. Consider any f j ∈ Q̂j and we check whether it satisfies the two

conditions in Qj. The first condition, which is on the marginal mass, can be verified by standard

algebra. The second condition, which is on the chain structure, is straightforward. Therefore, we

have f j ∈Qj. We can conclude that Qj = Q̂j for all j ∈ [2n+ 1].

Finally, by representing Qj in the form of Q̂j, with recursion we can easily get

Q1 =

f :Wj→ [0,1]

∣∣∣∣∣∣∣∣
f(zi) = pi, i∈ [2n]
f(z) = 0, ∀z ∈W1 \ {zi, i∈ [2n]} \W2n+1

f(z) = f̂(z), ∀z ∈W2n+1

f̂ ∈Q2n+1

 (39)

We note that since zj ∈ {−1,0,1}n, z1 = −1, and any time the movement from zj to zj+1 is to

increase one dimension by 1 while maintaining other dimensions unchanged, and hence we have

z2n+1 = 1. Therefore, W2n+1 = {z2n+1}. Then by Equation (39), we have

Q1 =

{
f :Wj→ [0,1]

∣∣∣∣ f(zi) = pi, i∈ [2n+ 1]
f(z) = 0, ∀z ∈W1 \ {zi, i∈ [2n+ 1]}

}
Hence, the result is proved. �

C.4. Proof of Theorem 1

We define the function f(x) as

f(x) = min ν>l

s. t. R>k l≥
∑

i∈[2n+1]

pki b
>yk,i, k ∈ [K]

Wx+Uyk,i ≥V zk,i +v0, k ∈ [K], i∈ [2n+ 1]

l≥ 0,
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then Problem (6) is equivalent with minx∈X f(x).

We further denote Xfea = {x∈X | supP∈F EP [g(x, z̃)]<∞}. Recall that we assume Problem (2)

has finite optimal value, so Xfea 6= ∅.

Consider any x∈X \Xfea, we have

∞= sup
P∈F

EP [g(x, z̃)] = max

∑
k∈[K]

qk sup
Pk∈Fk

EPk [g(x, z̃)]

∣∣∣∣∣∣ q ∈Q
 .

Since any feasible q ∈Q⊆ {q ∈<K+ |
∑

k∈[K] qk = 1} is bounded, there must be k ∈ [K] such that

∞= sup
Pk∈Fk

EPk [g(x, z̃)] =
∑

i∈[2n+1]

pki g(x,zk,i),

where the last equality follows from Proposition 3. Again, since pki ∈ [0,1] for all i ∈ [2n + 1],

there exists a specific i ∈ [2n+ 1] such that g(x,zk,i) =∞. It is equivalent to the infeasibility of

the constraint Wx+Uyk,i ≥ V zk,i + v0, which is involved in the problem defining f(x). Hence,

f(x) =∞.

Therefore, Problem (6) is equivalent with minx∈Xfea f(x). We notice that Problem (2) is

equivalent to minx∈Xfea supP∈F EP [g(x, z̃)]. Hence, for proving this theorem, now it suffices to

show that for all x ∈ Xfea, we have supP∈F EP [g(x, z̃)] = f(x). To this end, consider any

x ∈ Xfea, we then know supP∈F EP [g(x, z̃)] is finite. Notice that 1) supP∈F EP [g(x, z̃)] =

max
{∑

k∈[K] qk supPk∈Fk EPk [g(x, z̃)]
∣∣∣ q ∈Q} and 2) by the assumption on Q, for any k ∈ [K]

there exists q ∈Q with qk > 0. Hence, for all k ∈ [K], supPk∈Fk EPk [g(x, z̃)] must be finite. It implies

that g(x,z) is finite for all z ∈ [zk,zk]. Moreover,

sup
P∈F

EP [g(x, z̃)] = max

∑
k∈[K]

qk sup
Pk∈Fk

EPk [g(x, z̃)]

∣∣∣∣∣∣ Rq≤ ν,q≥ 0


= min

{
ν>l

∣∣∣∣∣ R
>
k l≥ sup

Pk∈Fk

EPk [g(x, z̃)] , k ∈ [K]

l≥ 0

}
= f(x),

where the second equality is due to strong duality. �

C.5. Proof of Corollary 1

It has been proved in the proof for Theorem 1. �

C.6. Proof of Proposition 4

We first prove the “if” part. Suppose S(x) is an inverse additive lattice, then given any z′,z′′,p,q

with (p,z′∧z′′), (q,z′∨z′′)∈ S(x), there exist y′,y′′ such that (y′,z′), (y′′,z′′)∈ S(x) and y′+y′′ =

p+ q. We then have

g(x,z′) + g(x,z′′)≤ b>y′+ b>y′′ = b>p+ b>q.
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Taking the minimum on the right-hand-side over all p,q with (p,z′ ∧ z′′), (q,z′ ∨ z′′) ∈ S(x), we

obtain g(x,z′) + g(x,z′′)≤ g(x,z′ ∧z′′) + g(x,z′ ∨z′′).

Next we prove the “only if” part by contradiction. Suppose S(x) is not an inverse additive

lattice, then there exist z′,z′′,p,q with (p,z′ ∧ z′′), (q,z′ ∨ z′′) ∈ S(x) but p+ q /∈W, where the

set W is defined as W = {r + s | (r,z′), (s,z′′) ∈ S(x)}. According to the definition of S(x), we

can easily see that W is convex and closed. By the Hyperplane Separation Theorem, there exist a

vector η and a real number λ such that,

η>(p+ q)<λ< η>w ∀w ∈W.

Consider the second-stage cost function g(x,z) (defined in Equation (1)) with coefficient b = η.

We have

g(x,z′) + g(x,z′′) = min
{
η>y

∣∣ (y,z′)∈ S(x)
}

+ min
{
η>y

∣∣ (y,z′′)∈ S(x)
}

= min
{
η>(r+ s)

∣∣ (r,z′), (s,z′′)∈ S(x)
}

= min
{
η>w

∣∣ w ∈W}>λ,
g(x,z′ ∧z′′) + g(x,z′ ∨z′′) = min

{
η>y

∣∣ (y,z′ ∧z′′)∈ S(x)
}

+ min
{
η>y

∣∣ (y,z′′ ∨z′′)∈ S(x)
}

≤ η>(p+ q)<λ.

Therefore, g(x,z′) +g(x,z′′)> g(x,z′∧z′′) +g(x,z′∨z′′), which contradicts the supermodularity.

The “only if” part is completed. �

C.7. Proof of Theorem 2

Based on Proposition 4, the above theorem is equivalent to this statement: S(x) is an additive

inverse lattice for all x and v0 if and only if U and V satisfy one of the two conditions in the

above theorem. We prove the equivalent statement as follows.

First we prove the “if” direction by contradiction. Suppose there exist x and v0 such that

S(x) is not an additive inverse lattice, i.e., we have z′,z′′,p,q with z∧ = z′ ∧ z′′,z∨ = z′ ∨ z′′ and

(p,z∧) , (q,z∨)∈ S(x), such that y′+y′′ 6= p+ q holds for all y′,y′′ with (y′,z′) , (y′′,z′′)∈ S(x).

We denote c=−Wx+ v0, t1 =Up−V z∧ ≥ c, t2 =Uq −V z∨ ≥ c. Here the two inequalities

are due to (p,z∧) , (q,z∨)∈ S(x) and the definition of S(x). We define a set W as

W =
{
y ∈<m

∣∣ (t1 ∧ t2) +V z′ ≤Uy≤ (t1 ∨ t2) +V z′
}
.

Note that W should be an empty set, otherwise there exists a y0 ∈W and hence

Uy0−V z′ ≥ (t1 ∧ t2)≥ c,

U(p+ q−y0)−V z′′ =Up−V z∧+Uq−V z∨− (Uy0−V z′)≥ t1 + t2− (t1 ∨ t2) = t1 ∧ t2 ≥ c,
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which implies both (y0,z′) , (p+ q−y0,z′′) ∈ S(x), and contradicts the previous statement on

y′,y′′ resulting from the assumption.

We now show that the first part of the condition in our theorem is not true. If rank(U) = r, we

can solve y with Uy = (t1 ∧ t2) + V z′ ≤ (t1 ∨ t2) + V z′, which contradicts the emptiness of W.

Therefore, rank(U)< r.

We then focus on the second part of the condition in our theorem. The emptiness of W leads to

the infeasibility of the following optimization problem:

max 0

s. t.

[
U
−U

]
y≤

[
(t1 ∨ t2) +V z′

− (t1 ∧ t2)−V z′
]
.

Furthermore, by Lemma 4 we know that there exists I ⊆ [r], |I|= rank(U) + 1 with rank(UI) =

rank(U) such that the problem

max 0

s. t.

[
UI
−UI

]
y≤

[
(t1I ∨ t2I) +VIz

′

− (t1I ∧ t2I)−VIz′
]

(40)

is also infeasible. We write the dual of (40) as follows,

min r>
(
(t1I ∨ t2I) +VIz

′)− s> ((t1I ∧ t2I) +VIz
′)

s. t. U>I (r− s) = 0

r,s≥ 0.

(41)

Observing that r = s= 0 gives a feasible solution of (41), the infeasibility of the primal problem

implies the unboundedness of the above dual problem. Therefore, there exist r,s≥ 0 with U>I (r−

s) = 0 such that the following inequalities holds,

0> r>
(
(t1I ∨ t2I) +VIz

′)− s> ((t1I ∧ t2I) +VIz
′)

= r>
(
(t1I ∨ t2I) +VIz

′−UIq
)
− s>

(
(t1I ∧ t2I) +VIz

′−UIq
)

≥ r>
(
t2I +VIz

′−UIq
)
− s>

(
t2I +VIz

′−UIq
)

= (r− s)>VI(z′−z∨),

where the first inequality is obtained from the unboundedness of (41), the first equality is due to

U>I (r− s) = 0, the second inequality follows from t1I ∧ t2I ≤ t1I ≤ t1I ∨ t2I , and the second equality

comes from t2I =UIq−VIz∨. We remark that in the above equation, if we use UIp instead of UIq

in the first equality, and t1I instead of t2I in the second inequality, then 0> (r−s)>VI(z′−z∧) can

be obtained similarly.

We define ∆1 = (r− s)>VI(z′−z∨), ∆2 = (r− s)>VI(z′−z∧), and β=
z′−z∨

∆1

− z
′−z∧

∆2

.

We have three observations on β. First, β≥ 0 since ∆1,∆2 < 0 and z∧ ≤ z′ ≤ z∨.
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Second, VIβ ∈ span(UI). To see this, recall that for any matrix, its column space is the orthog-

onal complement of the null space of its transpose; therefore, we can equivalently show that

null (U>I )⊆ null ((VIβ)>), where null (·) is the null space of a given matrix. Since |I|= rank(U) +

1 = rank (UI)+1 = rank (U>I )+1, null (U>I ) is of dimension 1. That implies for any w ∈ null (U>I ),

we have w= k(r− s) for some k ∈<. Therefore,

(VIβ)>w= k(r− s)>VIβ= k

(
(r− s)>VI(z′−z∨)

∆1

− (r− s)>VI(z′−z∧)

∆2

)
= k (1− 1) = 0.

That is, w ∈ null ((VIβ)>). Hence, null (U>I )⊆ null ((VIβ)>) and then we have VIβ ∈ span(UI).

The third observation is that there exists some i ∈ [n] such that (VI)iβi /∈ span(UI). To show

this, we denote H= {i ∈ [n] | z′i ≤ z′′i }. We then have for every i ∈H, z∧i = z′i, z
∨
i = z′′i and hence

βi =
z′i− z∨i

∆1

. In addition, since for every i∈ [n] \H, z′i > z
′′
i ,
z′i− z∨i

∆1

=
z′i− z′i

∆1

= 0, we have

(r− s)>
∑
i∈H

βi(VI)i = (r− s)>
∑
i∈H

βi(VI)i +
∑

i∈[n]\H

0 · (VI)i

= (r− s)>VI
z′−z∨

∆1

= 1.

Hence, (r − s) 6∈ null
((∑

i∈H βi(VI)i
)>)

, which implies that null (U>I ) is not a subset of

null
((∑

i∈H βi(VI)i
)>)

. Consequently we have
∑

i∈H βi(VI)i /∈ span(UI), implying that there

exists some i∈H such that (VI)iβi /∈ span(UI).

With the three observations, we have a contradiction of the second condition in Theorem 2.

We next prove the “only if” direction by contradiction. Assume the condition in the theorem is

not satisfied. That is, rank(U)< r and there exist some I ⊆ [r], β ∈<n+ satisfying |I|= rank(U)+1,

rank(UI) = rank(U) and VIβ ∈ span(UI), such that βi(VI)i /∈ span(UI) for some i∈ [n]. Note that

in this case, we can find a vector α∈<m such that UIα=VIβ.

We arbitrarily choose z∧ ∈<n,p∈<m and let z∨ = z∧+β≥ z∧,q= p+α, then UIp−VIz∧ =

UI(q −α)− VI(z∨ − β) = UIq − VIz∨. We also arbitrarily choose x, and then choose v0 such

that c=−Wx+ v0 is with cI =UIp−VIz∧ and cj being sufficiently small for all j /∈ I . Then

we have (p,z∧) , (q,z∨) ∈ S(x). We further define z′ = z∧ + βiei,z
′′ = z∨ − βiei so that z′ ∧ z′′ =

z∧,z′ ∨z′′ = z∨. Then we have

cI +VIz
′ = cI +VI(z

∧+βiei) =UIp−VIz∧+VI(z
∧+βiei) =UIp+βi(VI)i /∈ span(UI),

where the last relationship holds since UIp∈ span(UI) but βi(VI)i /∈ span(UI).

Hence, {y ∈<m | UIy= cI +VIz
′}= ∅, i.e. for any y′ satisfyingUy′−V z′ ≥ c, there exists j ∈ I

such that u>j y
′−v>j z′ > cj. If there exists some y′′ with Uy′′−V z′′ ≥ c satisfies y′+y′′ = p+ q,

UIy
′′−VIz′′ =UI (p+ q−y′)−VI (z∧+z∨−z′)

=UIp−VIz∧+UIq−VIz∨− (UIy
′−VIz′)

= 2cI − (UIy
′−VIz′),
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then we should have 2cj − (u>j y
′ − v>j z′) < cj for the above mentioned j, which contradicts the

assumption (y′′,z′′)∈ S(x). Hence we prove the necessity of the conditions on U ,V . �

Lemma 4 (Chen et al. 2021) Consider any matrix U ∈ <r×m with rank(U)< r. Suppose that

system

{
Ux≤ c
−Ux≤−c is infeasible. Then there exists I ⊆ [r] with |I|= rank(U)+1 and rank(UI) =

rank(U) such that system

{
UIx≤ cI
−UIx≤−cI

is also infeasible.

C.8. Proof of Proposition 5

“⇐” Assume there exists a 2× 3 submatrix of U ◦ such that any pair of columns in it are linearly

independent. WLOG, let U ◦{1,2},{1,2,3} be such matrix and we denote it by A= [A1 A2 A3]∈<2×3.

WLOG, assume A3 = t1A1 + t2A2 with t1, t2 > 0. Choose V 1 = Im×m, I = [m+ 2]\{3}, β= t1e1 +

t2e2 ≥ 0, α= t1e1 + t2e2−e3. We then have VIβ= t1e1 + t2e2; at the same time, UIα= t1e1 + t2e2

since A3 = t1A1 + t2A2. Hence, VIβ = UIα ∈ span(UI). However, (VI)1β1 = β1e1 6∈ span(UI).

Therefore, the second condition in Theorem 2 is violated, there exists an instance of g(x,z) which

is not supermodular in z.

“⇒” Assume that every 2 × 3 submatrix of U ◦ contains at least one pair of column vectors

which are linearly dependent. We prove the result by showing the second condition in Theorem

2 is always satisfied. To see this, consider any I ⊆ [r] such that |I| = m+ 1, rank(UI) = m. Let

I1 = I ∩ [m] and I0 = I ∩ {m+ 1, . . . , r} be a partition of I, hence the submatrix UI1 is extracted

from Im×m and UI0 is from U ◦. We further let J1, J0 be a partition of [m] such that UI1,J1 contains

all nonzero columns in UI1 and hence UI1,J0 = 0. Noting that UI1 contains rows extracted from

Im×m, we know I1 = J1. Hence, |I0|=m+ 1− |I1|=m+ 1− |J1|=m+ 1− (m− |J0|) = |J0|+ 1.

We illustrate the partition of UI as follows,

UI =

[
UI1
UI0

]
=

[
I|I1|×|I1| 0|I1|×|J0|
UI0,J1 UI0,J0

]
.

We first prove that there exists a unit vector p∈<|I0|, such that it is orthogonal to span(UI0,J0)

and span[UI0,J0 p] = <|I0|. Notice that UI is of full column rank, and hence so does its subma-

trix UI,J0 =

[
0|I1|×|J0|
UI0,J0

]
, which implies UI0,J0 ∈ <|I0|×|J0| is also of full column rank. Therefore,

span(UI0,J0) is of dimension |J0|= |I0| − 1, the existence of p can be proved.

We now show that the orthogonal unit vector p can be chosen such that for all i ∈ J1, there

exist some si ∈ span(UI0,J0) and γi ≥ 0 such that (UI0)i = si + γip. For those i∈J1 with (UI0)i ∈

span(UI0,J0), we always have γi = 0 regardless of the choice of orthogonal vector p. Now we consider

any given j ∈ J1 with (UI0)j 6∈ span(UI0,J0). Since span[UI0,J0 p] =<|I0|, we can surely represent

(UI0)j = sj +γjp for some sj ∈ span(UI0,J0) and γj 6= 0. Moreover, the unit vector p can be chosen

(as −p, if necessary) to make γj > 0. Consider any k ∈J1 \{j} with (UI0)j 6∈ span(UI0,J0). Denote
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Q= [(UI0)j (UI0)k UI0,J0 ]. Notice that every 2×3 submatrix of U ◦, and hence that of Q, contains

at least one pair of column vectors which are linearly dependent. By Lemma 5, there are at least

one pair of columns in Q which are linearly dependent. Since UI0,J0 is of full column rank and

(UI0)j, (UI0)k 6∈ span(UI0,J0), the two linearly dependent columns can only be (UI0)j, (UI0)k, i.e.,

(UI0)k = ζ(UI0)j for some ζ 6= 0 (recall that both (UI0)k and (UI0)j are nonzero vector since they

are not in span(UI0,J0)). As all components in the same row of U are with the same sign, we know

ζ > 0. Therefore, (UI0)k = ζ (sj + γjp) = ζsj + ζγjp where ζγj > 0.

We are now ready to prove the second condition in Theorem 2 holds. Consider any β ≥ 0 and

α such that VIβ =UIα. Observing the first block, characterized by I1, we have VI1β =UI1α=

(Im×m)I1α=αI1 ; since V ,β are both nonnegative, we have αI1 ≥ 0. Observing the second block,

characterized by I0, by VI0 = 0, we have

0 =VI0β=UI0α= [UI0,J1 UI0,J0 ]

[
αJ1
αJ0

]
=UI0,J1αJ1 +UI0,J0αJ0 = s+p

∑
i∈N

αiγi (42)

for some s ∈ span(UI0,J0). Here we denote the index set N = {i ∈J1 | (UI0)i 6∈ span(UI0,J0)} and

hence the last equality above holds due to the argument proved in the last paragraph. Moreover,

since s and p are orthogonal, by (42) we have
∑

i∈N αiγi = 0, which implies αi = 0 for all i ∈N ,

as we have already known γi > 0, αi ≥ 0 holds for all i∈N (recall that N ⊆J1 = I1, and αI1 ≥ 0).

Therefore, the equation 0 = αi = u>i α= v>i β holds for any i ∈ N , where the last equality is due

to VIβ = UIα. As V ,β ≥ 0 for all i ∈ N , v>i β = 0 implies vikβk = 0 for all k ∈ [m]. We now

consider any j ∈ [m] and it remains to show (VI)jβj =UIη for some η ∈<m. To this end, we choose

η ∈ <m with ηi = vijβj for all i ∈ J1 = I1 and we determine ηJ0 later. Then u>i η = ηi = vijβj for

all i∈J1 = I1. We additionally observe that ηi = 0 for all i∈N , following from vijβj = 0. We now

move on to I0, and have

UI0η= [UI0,J1 UI0,J0 ]

[
ηJ1
ηJ0

]
=UI0,J1ηJ1 +UI0,J0ηJ0 =

∑
i∈J1\N

siηi +UI0,J0ηJ0 ,

where the last equality is due to that when i ∈N , ηi = 0 and when j ∈ J1 \N , (UI0)j = sj + γju

with γj = 0. Since si ∈ span(UI0,J0), we can choose ηJ0 such that
∑

i∈J1\N siηi +UI0,J0ηJ0 = 0. In

this case, UI0η= 0 = (VI0)jβj. Hence, we conclude (VI)jβj =UIη ∈ span(UI). �

Lemma 5 (Chen et al. 2021) Consider any matrix Q ∈ <s×(s+1) with rank(Q) = s, s ≥ 2. If

every 2×3 submatrix of Q contains at least one pair of column vectors which are linearly dependent,

then Q has at least one pair of column vectors which are linearly dependent.
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C.9. Proof of Lemma 2

For notational simplicity, we remove the superscript k throughout this proof. To see ζ1, . . . ,ζ2n+1

are vertices of a 2n-simplex, it suffices to show these 2n+ 1 points are affinely independent. That

is, we need to prove that ζ2 − ζ1, . . . ,ζ2n+1 − ζ1 are linearly independent. First, we scale each

elements in ωi,υi,ζi such that all nonzero elements become 1 and denote the corresponding vectors

as ω̂i, υ̂i, ζ̂i. Notice that we still have ζ̂i =

[
ω̂i

υ̂i

]
. In this case, ω̂1 = 1, υ̂1 = 0 since z1 = z, ω̂2n+1 =

0, υ̂2n+1 = 1 since z2n+1 = z. Moreover, we have

{ω̂i− ω̂i+1, υ̂i+1− υ̂i}= {0,eκi}

for some κi ∈ [n], i∈ [2n]. This follows from that zi+1−zi has exactly one nonzero entry, the index

of which is denoted as κi. Specifically, for the κi-th entry where zi moves to zi+1, 1) if the move is

from the lower bound to the mean, then ω̂i+1 = ω̂i−eκi , υ̂i+1 = υ̂i and hence ζ̂i+1− ζ̂i =

[
−eκi

0

]
;

2) if the move is from the mean to the upper bound, then ω̂i+1 = ω̂i, υ̂i+1 = υ̂i + eκi and hence

ζ̂i+1 − ζ̂i =

[
0
eκi

]
. We also notice that for each dimension, there is exactly one move from the

lower bound to the mean, and one from the mean to the upper bound. Therefore, the matrix[
ζ̂2− ζ̂1 · · · ζ̂2n+1− ζ̂2n

]
=

[
−In×n 0

0 In×n

]
P for a 2n × 2n permutation matrix P . Notice that

ζi =

[
((µj − zj) · ω̂ij)j∈[n]
((zj −µj) · υ̂ij)j∈[2n]

]
=

[
diag (µ−z) 0

0 diag (z−µ)

]
ζ̂i for all i∈ [2n+ 1]. We then have

[ζ2− ζ1 · · · ζ2n+1− ζ2n] =

[
diag (µ−z) 0

0 diag (z−µ)

][
ζ̂2− ζ̂1 · · · ζ̂2n+1− ζ̂2n

]
=

[
diag (µ−z) 0

0 diag (z−µ)

][
−In×n 0

0 In×n

]
P

=

[
diag (z−µ) 0

0 diag (z−µ)

]
P .

This implies that the matrix [ζ2− ζ1 · · · ζ2n+1− ζ1] are also invertible. �

C.10. Proof of Proposition 6

We first let Vadapt and Vldr represent the optimal values for Problems (9) and (11), respectively.

Our aim is to show that Vadapt = Vldr.

We first prove Vadapt ≤ Vldr. To show this, we define a new problem by relaxing Problem (9) such

that the constraints of second-stage problem apply only to the realizations zk,i, k ∈ [K], i∈ [2n+ 1]

and denote the optimal value as Vrelax, i.e.,

Vrelax = min a>x+ sup
P∈F

EP

[
b>y(k̃, z̃)

]
s. t. Wx+Uy(k,zk,i)≥V zk,i +v0, k ∈ [K], i∈ [2n+ 1]

x∈X .

(43)
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By the minimax theorem (von Neumann 1928), we can interchange “supP” and “miny(k,z)” equiv-

alently. Omitting the dependency between y and the uncertainty realizations, we rewrite Vrelax =

minx∈X a
>x+ supP∈F EP [g′(x,z)], where

g′(x,z) =

{
min

{
b>y

∣∣ Wx+Uy≥V z+v0
}

if z ∈
⋃
k∈[K]{zk,1, . . . ,zk,2n+1},

−∞ otherwise.

Fixing any x∈X , we recall that pki ,z
k,i, k ∈ [K], i∈ [2n+1] returned by Algorithm 1 gives a worst-

case distribution to Problem (9), and, at the same time, is an admissible probability distribution

to Problem (11) because the two problems share the same ambiguity set. It follows that

Vadapt = min
x∈X

a>x+ sup
P∈F

EP [g(x,z)]

= min
x∈X

a>x+ max
q∈Q

∑
k∈[K],i∈[2n+1]

qkp
k
i g(x,zk,i)

= min
x∈X

a>x+ max
q∈Q

∑
k∈[K],i∈[2n+1]

qkp
k
i g
′(x,zk,i)

≤min
x∈X

a>x+ sup
P∈F

EP [g′(x,z)] = Vrelax,

where the second equality follows from Proposition 3, the third equality holds because g and g′

have the same value whenever z ∈
⋃
k∈[K]{zk,1, . . . ,zk,2n+1}, and the inequality follows from the

feasibility of the distribution characterized by pki ,z
k,i, i∈ [2n+ 1].

Further, we observe that Problem (11) can be directly obtained from Problem (43) by imposing

a restriction of linearity structure on y(k,z). This implies any feasible Θk,φk to Problem (11)

determines a function y(k,z) that is feasible to Problem (43). Hence, Vrelax ≤ Vldr. We then conclude

that Vadapt ≤ Vrelax ≤ Vldr.

We next show Vadapt ≥ Vldr. To this end, we construct a recourse decision rule that is feasible to

Problem (11) and returns the optimal value of Problem (9).

We first consider the case of fixed scenario; for brevity, we remove the notation k (or k̃) that

denotes realized (or random) scenarios. The construction is similar to the proof of Bertsimas and

Goyal (2012, Theorem 1). Define auxiliary uncertain factors ω̃= (µ− z̃)+, υ̃= (z̃−µ)+, ζ̃ = (ω̃, υ̃),

and let ω,υ,ζ be the counterpart when z̃ is realized as z. Then z̃ =µ−ω̃+ υ̃=µ+[−In×n In×n] ζ̃,

|z̃−µ|= ω̃+ υ̃= [In×n In×n] ζ̃. Define

yopt(z) = Θopt

[
(µ−z)+

(z−µ)+

]
+φopt = Θoptζ+φopt.

For all i∈ [2n+ 1],

yopt(z
i) = y2n+1

opt + Θopt(ζ
i− ζ2n+1)

= y2n+1
opt +

[
y1
opt−y2n+1

opt · · · y2n
opt−y2n+1

opt

]
D−1(ζi− ζ2n+1)

= y2n+1
opt +

[
y1
opt−y2n+1

opt · · · y2n
opt−y2n+1

opt

]
ei

= yiopt,

(44)
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where the third last equality holds because ζi − ζ2n+1 = Dei for all i ∈ [2n]. We notice that

b>yopt(z), as a linear combination of (µ− z)+ and (z −µ)+, is supermodular in z because it is

separable. Now, utilizing the worst-case distribution given by Algorithm 1, we get

sup
P∈F

EP
[
b>yopt(z̃)

]
=

∑
i∈[2n+1]

pib
>yopt(z

i)

=
∑

i∈[2n+1]

pib
>yiopt

=
∑

i∈[2n+1]

pimin
{
b>y

∣∣ Wxopt +Uy≥V zi +v0
}

= sup
P∈F

EP [g(xopt, z̃)] .

The first and last equalities follow from the supermodularity of b>yopt(z) and g(xopt,z) defined

by (1), respectively. The second equality holds since yopt(z
i) = yiopt, i∈ [2n+ 1] (as shown in (44)),

while the third one follows from the definition of yiopt. It follows that the worst-case expected cost

returned by xopt,yopt(z) is the same as the optimal value of Problem (9). Further, we can observe

easily that the solution xopt,yopt(z) is feasible for Problem (11).

We next consider the case of uncertain scenarios. Following the above proof, we define yopt(k,z)

as

yopt(k,z) = Θk
opt

[
(µk−z)+

(z−µk)+
]

+φkopt. (45)

It is supermodular in z and for any realized scenario k, supPk∈Fk EPk [b>yopt(k, z̃)] =

supPk∈Fk EPk
[
min

{
b>y

∣∣ Wxopt +Uy≥V z̃+v0
}]

. Hence

a>xopt + sup
P∈F

EP

[
b>yopt(k̃, z̃)

]
= a>xopt + max

q∈Q

∑
k∈[K]

qk sup
Pk∈Fk

EPk
[
b>yopt(k, z̃)

]
= a>xopt + max

q∈Q

∑
k∈[K]

qk sup
Pk∈Fk

EPk
[
min

{
b>y

∣∣ Wxopt +Uy≥V z̃+v0
}]

= a>xopt + sup
P∈F

EP [g(xopt, z̃)]

= Vadapt.

Similar to Equation (44), we can check that yopt(k,z
k,i)∈min

{
b>y

∣∣ Wxopt +Uy≥V z+v0
}

for

all k ∈ [K], i∈ [2n+1]. It follows that xopt,Θ
k
opt,φ

k
opt, k ∈ [K] is a feasible solution to Problem (11).

Therefore, we can conclude that Vldr ≤ Vadapt. Hence, we have Vadapt = Vldr and xopt,Θ
k
opt,φ

k
opt, k ∈

[K] is an optimal solution to Problem (11). �

C.11. Proof of Theorem 3

Following the proof for Proposition 6, we denote by yopt(k,z) the linear decision rule defined by

(45). To complete the proof for this theorem, based on Proposition 6, it suffices to show yopt(k,z)
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is feasible, i.e., (yopt(k,z),z) ∈ S(x), for all z ∈
⋃
k∈[K]Zk, where Zk = Πi∈[n]{zki , µki , zki }. We first

prove the following claim and then show the feasibility by induction.

Claim. Fix any scenario k. For all z′,z′′ ∈Zk with z∧ = z′ ∧ z′′,z∨ = z′ ∨ z′′, if (yopt(k,z
∧),z∧),

(yopt(k,z
∨),z∨), (yopt(k,z

′),z′)∈ S(x), then (yopt(k,z
′′),z′′) is also in S(x).

Proof of Claim. Since the function yopt(k,z) is separable in z, hence, it is both supermodular

and submodular in z. Therefore, yopt(k,z
′) +yopt(k,z

′′) = yopt(k,z
∧) +yopt(k,z

∨), or equivalently,

yopt(k,z
′′) = yopt(k,z

∧) +yopt(k,z
∨)−yopt(k,z′). With the condition in the theorem satisfied, the

claim follows directly.

For all k ∈ [K], i∈ [2n+ 1], recall that by the proof for Proposition 6, yopt(k,z
k,i) is the optimal

second-stage decision when the uncertainty is realized as zk,i. This implies yopt(k,z) is feasible

for all z ∈ {zk,i | k ∈ [K], i ∈ [2n+ 1]}. Fix any scenario k, define Zk,i =
{
z ∈Zk

∣∣ z ≤ zk,i} for all

i∈ [2n+ 1]. Observe that Zk,1 = {zk,1}, we know yopt(k,z) is feasible on Zk,i when i= 1. Next we

inductively show the feasibility on Zk,i for all i ∈ [2n+ 1]. Specifically, we assume the statement

holds for a given i∈ [2n+1], and consider for the set Zk,i+1. By definition, zk,i+1 deviates from zk,i

in only one dimension, i.e., zk,i+1
l > zk,il for some l ∈ [n] and zk,i+1

l′ = zk,il′ for all l′ 6= l. By assumption,

it suffices to prove the feasibility for any ẑ ∈ Zk,i+1 \ Zk,i. In this case, we have ẑl = zk,i+1
l and

ẑl′ ≤ zk,il′ for all l′ 6= l, i.e., ẑ = (ẑ1, . . . , ẑn) = (ẑ1, . . . , ẑl−1, z
k,i+1
l , ẑl+1, . . . , ẑn). Choosing z′ = zk,i =

(zk,i1 , . . . , zk,il−1, z
k,i
l , zk,il+1, . . . , z

k,i
n ) and z′′ = ẑ, we obtain

z∧ = z′ ∧z′′ = (ẑ1, . . . , ẑl−1, z
k,i
l , ẑl+1, . . . , ẑn)∈Zk,i,

z∨ = z′ ∨z′′ = (zk,i1 , . . . , zk,il−1, z
k,i+1
l , zk,il+1, . . . , z

k,i
n ) = zk,i+1.

Since yopt(k,z) is feasible when z = z′,z∧,z∨, by the Claim we conclude that yopt(k,z
′′) = yopt(k, ẑ)

is also feasible. Notice that Zk,i =Zk when i= 2n+ 1, and the same proof goes for any k ∈ [K], we

complete the proof. �

C.12. Proof of Proposition 7

It is obvious that −r>x + (r − s)(x − z)+ is decreasing and supermodular in z. Thus, we

can apply Proposition 12. Specifically, by substituting a = −r and g(x,z) = (r − s)(x − z)+ =

min
{

(r− s)>y
∣∣ y≥x−z,y≥ 0

}
in the formulation (29), we obtain the following reformulation
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for Problem (13),

min ν>l

s. t. R>k l≥
∑

i∈[2n+1]

pki f
k,i, k ∈ [K]

yk,i ≥x−zk,i, k ∈ [K], i∈ [2n+ 1]

yk,i ≥ 0, k ∈ [K], i∈ [2n+ 1]

fk,i ≥ cj
(
−r>x+ (r− s)>yk,i

)
+ dj, k ∈ [K], i∈ [2n+ 1], j ∈ [J ],

l≥ 0, x∈X news,

where pki ,z
k,i, k ∈ [K], i∈ [2n+1] are the output of Algorithm 1 given the ambiguity sets Fk, k ∈ [K]

defined by Equation (4). �

C.13. Proof of Proposition 8

Notice that (14) is a special case of the formulation (30) with u(w) = 1
ρ
w+, a=−r and g(x,z) =

min
{

(r− s)>y
∣∣ y≥x−z,y≥ 0

}
. Hence, a direct application of Corollary 3 gives the following

reformulation,

min θ+ν>l

s. t. R>k l≥
∑

i∈[2n+1]

1

ρ
· pki fk,i, k ∈ [K]

yk,i ≥x−zk,i, k ∈ [K], i∈ [2n+ 1]

yk,i ≥ 0, k ∈ [K], i∈ [2n+ 1]

fk,i ≥−r>x+ (r− s)>yk,i− θ, k ∈ [K], i∈ [2n+ 1]

fk,i ≥ 0, k ∈ [K], i∈ [2n+ 1]

l≥ 0, x∈X news,

where pki ,z
k,i, k ∈ [K], i∈ [2n+1] are the output of Algorithm 1 given the ambiguity sets Fk, k ∈ [K]

defined by Equation (4). �

C.14. Proof of Proposition 9

We prove the supermodularity by showing that Problem (15) satisfies the conditions in Theorem

2. We first reformulate Problem (15) as the sum of m sub-problems. Denote

gj(x,z) = min

∑
i∈[n]

cijyij

∣∣∣∣∣∣
∑

i∈[n] yij = 1

0≤ yij ≤ xizi, i∈ [n]

 .

Then it can be verified that g(x,z) =
∑

j∈[m] g
j(x,z). Hence, it suffices to prove the supermodular-

ity of gj(x,z) for all j ∈ [m]. Observing that x ∈ {0,1}n, we denote S = {i ∈ [n] | xi = 1} and T =



Long, Qi, and Zhang: Supermodularity in Two-Stage DRO
59

[n]\S. It follows that the constraints in defining gj(x,z) can be reformulated as U (y1j, . . . , ynj)−
V z ≥ v0, where

U =


1>

−1>

In×n
−IT
−IS

∈<(2+2n)×n, V =

[
0(2+n+|T |)×n
−IS

]
∈<(2+2n)×n, v0 =

 1
−1

02n×1

∈<2+2n.

Here IT ,IS are the submatrices of In×n consisting of rows which are indexed by elements in

T,S, separately. Note that rank (U) = n < 2n+ 2. We hence can apply Theorem 2 to prove the

supermodularity of gj. To this end, we consider any index set I such that |I|= n+1 and rank (UI) =

n, any β≥ 0∈<n,α∈<n such that

VIβ=UIα. (46)

Consider any j ∈ [n], we need to show βj(VI)j ∈ span(UI). If βj(VI)j = 0, the result is straightfor-

ward. We now consider only the case that βj > 0 and (VI)j 6= 0.

By (VI)j 6= 0, we have Vj 6= 0. Based on the structure of V , Vj has only one nonzero element

and indeed, there exists a unique i such that Vj =−ei ∈ <2n+2. Moreover, i ∈ I, i > 2 + n+ |T |,
Vij =−1 is the only nonzero element in the ith row, i.e., vi =−ej ∈<n. Therefore, by (46), we have

u>i α = v>i β = −βj, implying αj = βj since Uij = −1 is also the only nonzero element in ui. We

now show that for Uj, only zero element from blocks In×n and −IT are included in (UI)j. Assume

to the contrary, i.e., there is a k ∈ {3, . . . ,2 + n+ |T |} ∩ I with Ukj 6= 0. Note that Ukj is the only

nonzero element in uk. Hence, u>kα=Ukjαj 6= 0, v>k β= 0>β= 0, contradicts with (46) and k ∈ I.

Therefore, Ukj = 0 for all k ∈ {3, . . . ,2 +n+ |T |} ∩ I. Now we consider two scenarios.

In the first scenario, {1,2} ∩ I = ∅, then (UI)j has the only one nonzero element which is from

−IS, (UI)j = (VI)j, and hence βj(VI)j ∈ span(UI).

In the second scenario, {1,2}∩I 6= ∅. WLOG, let 1∈ I. We then have
∑

k∈[n]αk = 1>α=u>1 α=

v>1 β= 0>β= 0, where the third equality is due to (46). From the above analysis, we already have

αj = βj > 0, which implies that there exists k 6= j such that αk < 0. We now prove that for Uk, only

zero elements from blocks In×n and −IT are included in (UI)k. This can be done with the same

logic as that in above when we show only zero elements from blocks In×n and −IT are included

in (UI)j. We next show that for Uk, only zero elements from blocks −IS is included in (UI)k.

Assume to the contrary, i.e., there is an l ∈ {2 + n + |T | + 1, . . . ,2 + 2n} ∩ I such that ulk 6= 0.

Notice that ulk = −1 and vlk = −1 are the only nonzero elements in ul and vl, respectively. We

have u>l α=−αk, v>l α=−βk, and hence u>l α 6= v>l α since αk < 0 and β ≥ 0. It contradicts with

(46), and we have that only zero elements from blocks −IS are included in (UI)k. Therefore, from

the two observations above we can conclude that (UI)k has all elements as zero from the blocks

In×n, −IT and −IS. In other words, (UI)k and (UI)j only differs at uik = 0, uij =−1. We can then

easily have βj(VI)j = βj(UI)j −βj(UI)k ∈ span(UI). �



Long, Qi, and Zhang: Supermodularity in Two-Stage DRO
60

C.15. Proof of Proposition 10

Denote y= (y11, . . . , yn1, . . . , y1n, . . . , ynn)∈<n2 . Then the second-stage problem can be expressed

as
g(x,z) = min

∑
s,j∈[n]

bsjysj

s. t.

[
U 1 · · · Un

In2×n2

]
y−

[
In×n
0n2×n

]
z ≥

[
−x

0n2×1

]
.

For any s ∈ [n], the matrix U s ∈ <n×n has es − ej as its j-th column, j ∈ [n]. Denote U 0 =

[U 1 · · · Un] ,V 0 = In×n and U =

[
U 0

In2×n2

]
∈ <(n+n2)×n2 ,V =

[
V 0

0n2×n

]
. Obviously, rank(U) = n2

which is less than the number of rows in U . Therefore, to complete the proof, we now show that

U ,V meet the second condition in Theorem 2.

Consider any index set I such that |I| = rank(U) + 1 = n2 + 1, rank(UI) = n2. Denote I0 =

I ∩ [n],I1 = I\I0, then the rows of UI0 (or VI0) are extracted from U 0 (or V 0); the rows of UI1

(or VI1) are extracted from In2×n2 (or 0n2×n).

We first let the column index set J0 be such that the submatrix UI0,J0 = 0, and let J1 = [n2]\J0.

Hence, UI can be decomposed into four submatrices UI0,J0 ,UI0,J1 ,UI1,J0 ,UI1,J1 . Recalling that

UI1 is a submatrix of I, there is exactly one entry being one in its each row, and at most one

entry being 1 in its each column. Hence, in UI1 , the number of columns being 0 is n2 − |I1| =

n2− (|I|− |I0|) = |I0| − 1. Noticing UI is full column rank and UI0,J0 = 0, all of the |I0| − 1 zero

columns in UI1 must be in UI1,J1 . Denote the index set K1 as the set of column index for those zero

columns in UI1 , and K2 = J1 \K1. Then UI1,J1 can be further decomposed into two submatrices

UI1,K1
,UI1,K2

where UI1,K1
= 0|I1|×(|I0|−1).

Since UI0,K1
∈<|I0|×(|I0|−1) and it is of full column rank (otherwise it contradicts with UI being

full column rank and UI1,K1
= 0), we have that null(U>I0,K1

) is of dimension 1. Recalling that UI0,K1

is a submatrix of U 0, each column can only be either ±es or es1 −es2 for some s, s1, s2 ∈ [|I0|]. Let

Nj ⊆ [|I0|] be the index set
{
s | the s-th entry of (UI0)

j
is non-zero

}
for any j ∈K1. We observe

that

null
(
U>I0,K1

)
=

{
γ

∣∣∣∣ ∀j ∈K1 with |Nj|= 1 : γs = 0 for s∈Nj
∀j ∈K1 with |Nj|= 2 : γs1 = γs2 for s1, s2 ∈Nj

}
. (47)

Consider any nonzero γ ∈ null
(
U>I0,K1

)
, we now prove that there is no s1, s2 such that γs1 , γs2 are

both nonzero and γs1 6= γs2 . Assume to the contrary, i.e., we can find s1, s2 such that γs1γs2 6= 0

and γs1 6= γs2 . We construct a vector γ̂ such that γ̂i = 0 for all i such that γi = 0, and γ̂i = 1 for

all i such that γi 6= 0. As γ satisfies the condition in (47), so does γ̂, and hence γ̂ ∈ null
(
U>I0,K1

)
.

Nevertheless, γ and γ̂ are obviously linearly independent, and hence we have contradiction to that

null
(
U>I0,K1

)
is of dimension 1. Therefore, we can conclude that all nonzero elements in γ have the

same value.
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Consider any η0 ∈ <|I0|,η1 ∈ <|I1|,η = (η0,η1) such that U>I η = 0. It implies 0 = U>I,K1
η =

U>I0,K1
η0 + U>I1,K1

η1 = U>I0,K1
η0, where the last equality is due to UI1,K1

= 0. Hence, η0 ∈

null
(
U>I0,K1

)
, whose dimension has been shown as 1. Therefore, η0 = kγ for some k ∈ <. As we

have shown above, all nonzero elements in γ are equal, WLOG, we can have η0 ≥ 0. We are now

ready to verify the second condition in Theorem 2.

Given any β ∈ <n+ with VIβ ∈ span (UI), as η ∈ null(U>I ), we have 0 = η>VIβ = (η0)
>
VI0β+

(η1)
>
VI1β= (η0)

>
VI0β=

∑
i∈[n] βi (η

0)
>

(VI0)
i
, where the third equality is due to VI1 = 0. Since

η0 ≥ 0,VI0 ≥ 0,β ≥ 0, we have that η>βi (VI)i = βi (η
0)
>

(VI0)
i

= 0 for all i ∈ [n]. Recall that

null(U>I ) is of dimension 1, we then have βi (VI)i ∈ span (UI), and the second condition in Theorem

2 is satisfied. Thus g(x,z) is supermodular in z for all x, and we obtain the following reformulation

as a simple corollary of Theorem 1,

min a>x+ν>l

s. t. R>k l≥
∑

i∈[2n+1]

pki
∑
s,j∈[n]

bsjy
k,i
sj , k ∈ [K]∑

j∈[n]

yk,ijs −
∑
j∈[n]

yk,isj ≥ zk,is −xs, s∈ [n], k ∈ [K], i∈ [2n+ 1]

yk,isj ≥ 0, s∈ [n], j ∈ [n], k ∈ [K], i∈ [2n+ 1]

l≥ 0, x∈X lot,

where pki ,z
k,i, k ∈ [K], i∈ [2n+1] are the output of Algorithm 1 given the ambiguity sets Fk, k ∈ [K]

defined by Equation (4). �

C.16. Proof of Proposition 11

Let ẑ ∈ <n be such that ẑi = ξizi for all i ∈ [n], and we define ĝ(x, ẑ) =

min

{
1>y

∣∣∣∣ yt ≥∑t

s=j(ẑs−xs), j ∈ [t], t∈ [n]
yt ≥ 0, t∈ [n]

}
. Notice that ĝ(x, ẑ) = ĝ (x, (ξ1z1, . . . , ξnzn)) =

g(x,ξ,z) defined by Equation

g(x,ξ,z) = min

{
1>y

∣∣∣∣ yt ≥∑t

s=j(ξszs−xs), j ∈ [t], t∈ [n]
yt ≥ 0, t∈ [n]

}
. (48)

To prove the supermodularity of g, we first show ĝ(x, ẑ) is supermodular in ẑ, and then prove that

g(x,ξ,z) = ĝ (x, (ξ1z1, . . . , ξnzn)) is supermodular in (ξ1, . . . , ξn, z1, . . . , zn).

To show the supermodularity of ĝ, we first rewrite the problem defining ĝ in its matrix form, i.e.,

ĝ(x, ẑ) = min
{
1>y

∣∣ Uy−V ẑ ≥−Wx
}

, where U =


Ū 1

...
Ūn

Ūn+1

∈<n2+3n
2 ×n, V =W =


V̄ 1

...
V̄ n

V̄ n+1

∈
<n2+3n

2 ×n are such that

Ū t ∈<t×n are with elements of ūtjs =

{
1 if s= t
0 otherwise

for j ∈ [t], s, t∈ [n],
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V̄ t ∈<t×n are with elements of v̄tjs =

{
1 if j ≤ s≤ t
0 otherwise

for j ∈ [t], s, t∈ [n],

Ūn+1 = In×n, V̄
n+1 = 0n×n.

We prove ĝ(x, ẑ) is supermodular in ẑ by verify that U ,V satisfy the condition in Theorem 2.

To this end, consider any I ⊆ [(n2 + 3n)/2],β ∈ <n+ with |I| = n+ 1, rank(UI) = n, and VIβ ∈

span(UI). Note that rank(U) = n, and each row of UI ∈ <(n+1)×n has only one nonzero element

which takes the value of 1. Therefore, there exists ω ∈ [n] such that U has two row vectors being

eω, and exactly one row vector being ei for each i ∈ [n] \ {ω}. WLOG, we let RI1, . . . ,RIn+1 be

the distinct row indices such that I = {RI1, . . . ,RIn+1}, uRIi = ei for all i ∈ [n], uRIn+1
= eω, and

RIω < RIn+1. Moreover, for notational brevity, we arrange the rows in UI , VI with the order of

RI1, . . . ,RIn+1, which would not change the satisfaction/violation of the condition in Theorem

2. Therefore, UI =

[
I
e>ω

]
. In this case, for any α ∈ <n, UIα =

[
α
αω

]
. This implies that, given

any γ ∈ <n+1, we have γ ∈ span(U) if and only if γω = γn+1. Therefore, consider any β with

VIβ ∈ span(UI), we know v>RIωβ = v>RIn+1
β. Our objective is to show βi(VI)i ∈ span(UI), i.e,

βivRIω ,i = βivRIn+1,i, for all i∈ [n]. To see this, we consider two cases.

• Case 1: both uRIω and uRIn+1
are extracted from Ūω, i.e., RIω,RIn+1 ∈{

ω(ω−1)
2

+ 1, . . . , ω(ω−1)
2

+ω
}

. We denote jω = RIω − ω(ω−1)
2

and jn+1 = RIn+1 − ω(ω−1)
2

, i.e.,

u>RIω and u>RIn+1
are the jω-th and jn+1-th rows in Ūω, respectively. By the structure of V̄ ω,

we know for all s∈ [n],

vRIω ,s = v̄ωjω ,s =

{
1 s= jω, . . . , ω
0 s= 1, . . . , jω − 1 or s= ω+ 1, . . . , n,

vRIn+1,s = v̄ωjn+1,s
=

{
1 s= jn+1, . . . , ω
0 s= 1, . . . , jn+1− 1 or s= ω+ 1, . . . , n.

In this case, v>RIωβ = v>RIn+1
β implies

ω∑
j=jω

βj =
ω∑

j=jn+1

βj; and hence βj = 0 for all j ∈

{jω, . . . , jn+1− 1} since β≥ 0. Now for any arbitrary i∈ [n], the equation βivRIω ,i = βivRIn+1,i

always holds since 1) vRIω ,i = vRIn+1,i = 0 when i = 1, . . . jω − 1 or i = ω + 1, . . . , n; 2) βi = 0

when i= jω, . . . , jn+1− 1; 3) vRIω ,i = vRIn+1,i = 1 when i= jn+1, . . . , ω.

• Case 2: uRIω is extracted from Ūω while uRIn+1
is extracted from Ūn+1. The submatrix

V̄ n+1 = 0n×n implies in this case vRIn+1
= 0. Hence, v>RIωβ = v>RIn+1

β implies 0 = v>RIωβ =∑
i∈[n]

βivRIω ,i. Since vRIω ≥ 0 and β≥ 0, we then have βivRIω ,i = 0 = βivRIn+1,i for all i∈ [n].

Therefore, ĝ(x, ẑ) is supermodular in ẑ for all x. We next prove that g(x,ξ,z) is supermodular

in every two distinct components of (ξ,z), and hence is jointly supermodular in (ξ,z).

We first consider argument as the pair (ξi, zi) for some i∈ [n] and fix all ξs, zs with s∈ [n] \ {i}.

As all the remaining elements are fixed, we define gi : <2 → < and h : < → < to be such that
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gi(ξi, zi) = h(ẑi) = h(ξizi) = ĝ (x, (ξ1z1, . . . , ξnzn)) = g(x,ξ,z). Hence, it is equivalent to show that

gi, as a function of ξi, zi, is supermodular in its arguments. To this end, we first observe that ξizi

is increasing and supermodular in (ξi, zi) (recall that ξi, zi ≥ 0). Further, as a second-stage cost

function, ĝ(x, ẑ) has been shown as convex in ẑ by literature (e.g., Birge and Louveaux 2011,

Theorem 2), and it implies that h(ẑi) is convex in ẑi. In addition, h(ẑi) is also increasing in ẑi by

the definition in (48). Therefore, the supermodularity of gi follows as a corollary of Lemma 3, and

g(x,ξ,z) is supermodular in (ξi, zi) for all i∈ [n].

Next, if the argument is the pair (ξi, zj) for some distinct i, j ∈ [n], we prove the supermodularity

of gij(ξi, zj) = ĝ (x, (ξ1z1, . . . , ξnzn)). Consider ξ′,ξ′′,z′,z′′ ∈<n with ξ′i < ξ
′′
i , z
′
j > z

′′
j , ξ′s = ξ′′s , z

′
s = z′′s

and we denote their common values as ξs, zs, respectively, for all s∈ [n]\{i, j}. Since ξ ∈ {0,1}n, by

ξ′i < ξ
′′
i we know ξ′i = 0, ξ′′i = 1. Define ẑ′, ẑ′′, ẑmin, ẑmin ∈<n such that ẑ′k = ξ′kz

′
k, ẑ

′′
k = ξ′′kz

′′
k , ẑ

min
k =

(ξ′k ∧ ξ′′k )(z′k ∧ z′′k ), ẑmax
k = (ξ′k ∨ ξ′′k )(z′k ∨ z′′k ) for all k ∈ [n]. Then these four vectors differ only in

their ith, jth elements. In particular, (ẑ′i, ẑ
′
j) = (0, ξjz

′
j), (ẑ′′i , ẑ

′′
j ) = (zi, ξjz

′′
j ), (ẑmin

i , ẑmin
j ) = (0, ξjz

′′
j ),

(ẑmax
i , ẑmax

j ) = (zi, ξjz
′
j). Hence, denoting ẑ◦ ∈ <n such that ẑ◦i = ẑ◦j = 0 and ẑ◦s = ξszs for all s ∈

[n] \ {i, j}, we have

gij(ξ′i ∧ ξ′′i , z′j ∧ z′′j ) + gij(ξ′i ∨ ξ′′i , z′j ∨ z′′j )− gij(ξ′i, z′j)− gij(ξ′′i , z′′j )

= ĝ
(
x, ẑmin

)
+ ĝ (x, ẑmax)− ĝ (x, ẑ′)− ĝ (x, ẑ′′)

= ĝ
(
x, ẑ◦+ ξjz

′′
j ej
)

+ ĝ
(
x, ẑ◦+ ziei + ξjz

′
jej
)
− ĝ

(
x, ẑ◦+ ξjz

′
jej
)
− ĝ

(
x, ẑ◦+ ziei + ξjz

′′
j ej
)

≥ 0,

where the inequality holds because g (x, ẑ) is supermodular in ẑ. Hence, gij is supermodular and

therefore g(x,ξ,z) is supermodular in (ξi, zj).

For (zi, zj) or (ξi, ξj) with 1≤ i < j ≤ n, the proof is similar to the second case. We now conclude

that g(x,ξ,z) is supermodular in (ξ,z).

Noticing that Fkξ (or Fkz ) determine a set of 0-1 (or three-point) worst-case marginals for ξ̃ (or

z̃), we claim that applying Algorithm 1 yields a (3n+ 1)-point joint distribution of (ξ̃, z̃) for each

realized scenario. The number of points follows from one plus the number of steps it takes when

moving from (0,zk) to (1,zk) only in the positive directions. The number of steps is 3n, since there

are exactly 3 steps on the i-th dimension—from ξi = 0→ 1, and from zi = zki → µi→ zki . We then
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utilize the results in Theorem 1 and obtain the reformulation as follows.

min ν>l

s. t. R>k l≥
∑

i∈[3n+1]

pki 1
>yk,i, k ∈ [K]

yk,it ≥
t∑

s=j

(ξk,izk,is −xs), j ∈ [t], t∈ [n], k ∈ [K], i∈ [3n+ 1]

yk,i ≥ 0, k ∈ [K], i∈ [3n+ 1]

l≥ 0, x∈X app,

where pki ,ξ
k,i,zk,i, k ∈ [K], i ∈ [3n + 1] are the output of Algorithm 1, given the ambiguity sets

Gk, k ∈ [K] defined as Gk =
{
Pk
∣∣ ΠξPk ∈Fkξ ,ΠzPk ∈Fkz

}
, where ΠξPk, ΠzPk denotes the marginal

distribution of ξ̃ and z̃, respectively under Pk. Fkξ is the conditional ambiguity set of Fξ when k̃ is

realized as k, and Fkz is defined by (4). �

C.17. Proof of Theorem 4

The constraint of the second-stage problem

g(x,z) = min h>(x−Ay) +p>(z−y)− r>y

s. t. Ay≤x, y≤ z, y≥ 0.

can be represented as Uy−V z ≥−Wx+v0, where U =

 −II
−A

 ,V =

−I0
0

 and W =

0
0
I

.

We first prove the “if” direction. Suppose the condition for A in this theorem is satisfied. By

Theorem 2, whether U ,V lead to supermodularity of g is equivalent to whether −U ,−V do so.

Therefore, here we verify the supermodularity based on −U ,−V . Observing that −U and −V

have the structure as in Proposition 5 with U ◦ =

[
−I
A

]
, we now show that every 2× 3 submatrix

of U ◦ contains at least one pair of columns which are linearly dependent. If both rows of the 2× 3

submatrix are extracted from A, then this submatrix must have two linearly dependent columns

by the assumption on A. If at least one of the rows are from −I, since the rows from −I have at

least two zero elements, then this submatrix must have two linearly dependent columns.

We now prove the “only if” direction by contradiction. We first consider the case that A ∈

<2×3
+ . Assume the contrary, i.e., every two columns in A are in different directions. Given that

A ≥ 0, there must be one column in A being a conical combination of the other two columns.

WLOG, let A3 be a conical combination of A1,A2. We remark that multiplying any strictly

positive constant by a row/column in A, or switching rows, or switching columns does not affect

whether the corresponding function g is supermodular. Therefore, we can make the following

simplification on A. Since A1,A2 are linearly independent, WLOG, we can let A=

[
1 a c
b 1 d

]
with
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ab < 1. Since A3 is a conical combination of A1,A2, we have cd > 0; WLOG, we can let d= 1, i.e.,

A=

[
1 a c
b 1 1

]
. Multiplying the first row by 1/c, and then multiplying the first column by c, we have

A=

[
1 a/c 1
bc 1 1

]
. Let a/c, bc be the new a, b, we have A=

[
1 a 1
b 1 1

]
with ab < 1. Again, since A3 is

a conical combination of A1,A2, we have either a, b < 1 or a, b > 1. Together with ab < 1, we know

a, b < 1. In summary, WLOG, we let A=

[
1 a 1
b 1 1

]
with a, b∈ [0,1).

We define ḡ(x,z) = g(x,z)−p>z, then it is equivalent to prove that ḡ(x,z) is not supermodular

in z. We now construct such a counterexample. Let h= 0, r= 0, p= (1,1, ε) with any ε∈ (0,1). We

choose x= (1−ab)1, z′ = (1−a,0,1−ab), z′′ = (0,1− b,1−ab). Denote z∧ = z′∧z′′, z∨ = z′∨z′′,

we have z∧ = (0,0,1− ab), z∨ = (1− a,1− b,1− ab). We notice that

ḡ(x,z) =min
{
−p>y

∣∣ Ay≤x,0≤ y≤ z}
=min

−y1− y2− εy3
∣∣∣∣∣∣
y1 + ay2 + y3 ≤ 1− ab
by1 + y2 + y3 ≤ 1− ab
(0,0,0)≤ (y1, y2, y3)≤ (z1, z2, z3).

 (49)

Hence,

ḡ(x,z′) = min

{
−y1− εy3

∣∣∣∣ y1 + y3 ≤ 1− ab,
0≤ y1 ≤ 1− a, y2 = 0, y3 ≥ 0

}
,

ḡ(x,z′′) = min

{
−y2− εy3

∣∣∣∣ y2 + y3 ≤ 1− ab,
y1 = 0, 0≤ y2 ≤ 1− b, y3 ≥ 0

}
,

ḡ(x,z∧) = min

{
−εy3

∣∣∣∣ y3 ≤ 1− ab,
y1 = y2 = 0, y3 ≥ 0

}
,

ḡ(x,z∨) = min

−y1− y2− εy3
∣∣∣∣∣∣
y1 + ay2 + y3 ≤ 1− ab,
by1 + y2 + y3 ≤ 1− ab,
0≤ y1 ≤ 1− a, 0≤ y2 ≤ 1− b, y3 ≥ 0

 .

Since 0 < ε < 1, in the optimization problem for ḡ(x,z′), the optimal solution should be that y1

goes to the upper bound, i.e, y1 = 1− a, y2 = 0 and y3 = (1− ab)− (1− a) = a(1− b). Similarly, in

the optimization problem for ḡ(x,z′′), the optimal y= (0,1− b, b(1− a)); in that for ḡ(x,z∧), the

optimal y= (0,0,1− ab); in that for ḡ(x,z∨), the optimal y= (1− a,1− b,0). We then have

ḡ(x,z′) + ḡ(x,z′′)− ḡ(x,z∧)− ḡ(x,z∨)

= − ((1− a+ εa(1− b)) + (1− b+ εb(1− a))− ε(1− ab)− (1− a+ 1− b))

= ε(1− a)(1− b)> 0,

where the last equality holds since 0<a, b < 1. Therefore, ḡ(x,z∧) + ḡ(x,z∨)< ḡ(x,z′) + ḡ(x,z′′),

this function ḡ is not supermodular.

For the general case of A∈<l×n+ , we can prove the result by the same contradiction. WLOG, we

assume the 2×3 submatrix of A, which is obtained by deleting all rows except the first two and all

columns except the first three, is such that each pair of columns in it are linearly independent. We
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can then let z′i = z′′i = 0 for i∈ {4,5, . . . , n} and xi be sufficiently large for i∈ {3,4, . . . , l} such that

it would not affect the feasible region of y. We then have ḡ(x,z) with exactly the same expression

in Equation (49). Therefore, we still have ḡ(x,z∧) + ḡ(x,z∨)< ḡ(x,z′) + ḡ(x,z′′). �

C.18. Proof of Corollary 2

We first prove the “if” direction using Theorem 4. Consider any 2 × 3 submatrix of A, which,

WLOG, is C =A{1,2},{1,2,3}. Let Ŝi = Si ∩{1,2,3}, i= 1,2. If Ŝ1 ∩ Ŝ2 = ∅, then at least one of the

rows in C has two zero elements, and hence C has at least one pair of columns which are linearly

dependent. If Ŝ1 ∩ Ŝ2 6= ∅, by the definition of Tree Family, we have either Ŝ1 ⊆ Ŝ2 or Ŝ2 ⊆ Ŝ1.

WLOG, we let Ŝ1 ⊆ Ŝ2. If |Ŝ1|= 1, then the first row of C has two zero elements and hence C has

at least one pair of columns which are linearly dependent. If |Ŝ1| ≥ 2, WLOG, {1,2} ⊆ Ŝ1, by the

definition of Proportional Tree Family, we have a11/a21 = a12/a22, hence C has at least one pair

of columns which are linearly dependent. In summary, C always have at least one pair of columns

which are linearly dependent. �

C.19. Proof of Theorem 5

The case for rank(U) = r is straightforward, so we only consider the case where rank(U) < r.

In that case, we only need to verify whether U ,V satisfy the second part of the condition in

Theorem 2, which depends solely on the relationship between V and span(U). Thus, removing the

dependent columns in U does not change the satisfaction or violation of the conditions. Therefore,

the procedure in line 4 of the algorithm does not change the result and WLOG, we can assume U

has r0 columns, i.e., m= r0.

First we look into the case where Algorithm 2 returns s= 0. This implies that there exists an

index set I ⊆ [r] and indices i∈ [r]\I, a, b∈ [r0] with |I|= r0, UI invertible and diadib < 0. WLOG,

we let dia > 0, dib < 0.

Denote β=
ea
dia
− eb
dib
≥ 0, α=U−1I

(
(VI)a
dia

− (VI)b
dib

)
, then

[
VI

v>i

]
β=


(VI)a
dia

− (VI)b
dib

via
dia
− vib
dib

=


(VI)a
dia

− (VI)b
dib

dia +u>i U
−1
I (VI)a

dia
− dib +u>i U

−1
I (VI)b

dib

=

[
UI

u>i

]
α,

We let Î = I ∪ {i}. The above equality implies VÎβ = UÎα ∈ span(UÎ). On the other hand, for

βa(VÎ)a we have

βa

[
(VI)a
via

]
=


(VI)a
dia

dia +u>i U
−1
I (VI)a

dia

=

[
UI
u>i

]
U−1I (VI)a

dia
+

[
0
1

]
=UÎ

U−1I (VI)a
dia

+

[
0
1

]
.
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Since UI is invertible, there is no γ ∈ <r0 such that UÎγ =

[
UI

u>i

]
γ =

[
0
1

]
. Hence βa(VÎ)a /∈

span(UÎ) and the second part of the condition in Theorem 2 is violated.

We now investigate the case where the second part of the condition in Theorem 2 is violated. That

means, there exist Î ⊆ [r], β≥ 0 and a∈ [r0] such that |Î|= r0 + 1, rank(UÎ) = r0, VÎβ ∈ span(UÎ)

but βa(VÎ)a /∈ span(UÎ). We choose I ⊆ Î such that |I|= r0 and UI is invertible, and denote i as

the unique index in Î\I. It follows that

VÎβ=

[
VI
v>i

]
β=

[
0

v>i −u>i U−1I VI

]
β+

[
UI
u>i

]
U−1I VIβ=

[
0
d>i

]
β+UÎU

−1
I VIβ,

βa(VÎ)a = βa

[
(VI)a
via

]
= βa

([
0

via−u>i U−1I (VI)a

]
+

[
UI
u>i

]
U−1I (VI)a

)
=

[
0

βadia

]
+βaUÎU

−1
I (VI)a.

Since VÎβ,UÎU
−1
I VIβ, βaUÎU

−1
I (VI)a ∈ span(UÎ) and βa(VÎ)a /∈ span(UÎ), the above equations

imply

[
0
d>i

]
β ∈ span(UÎ) and

[
0

βidia

]
/∈ span(UÎ). According to

[
0
d>i

]
β ∈ span(UÎ), there exists

α ∈ <r0 with UIα = 0,u>i α = d>i β. Since UI is invertible, α = 0 and hence d>i β = u>i α = 0.

According to

[
0

βidia

]
/∈ span(UÎ), we obtain βadia 6= 0. As β≥ 0, βadia 6= 0 and d>i β= 0, we must

have an index b ∈ [r0] such that dib, dia are of different signs. Hence the algorithm returns s= 0.

�

C.20. Proof of Theorem 6

We first reformulate the second-stage problem as

gW (x,z) = min b>y

s. t. Uy−
(
V −

[
W 1x · · ·W nx

])
z ≥−W 0x+v0,

where [W 1x · · ·W nx] stands for an r×n matrix with its i-th column being W ix. We denote V̄ x =

V − [W 1x · · ·W nx] for convenience. Following Theorem 2, it suffices to show that the proposed

conditions hold if and only if U , V̄ x satisfy the conditions in Theorem 2 for any x. The case

of rank(U) = r is straightforward. Hence, in the rest of the prove, we only focus on the case of

rank(U)< r, i.e., the second condition in this theorem and that in Theorem 2, which are called

Condition 2) and Condition 2̃) throughout this proof. In particular, Condition 2̃) can be stated as

2̃) for all I ⊆ [r], β ∈ <n+, x ∈ <l with |I| = rank(U) + 1, rank(UI) = rank(U) and V̄ x
I β ∈

span(UI), we must have βi(V̄
x
I )i ∈ span(UI) holds for every i∈ [n].

We now prove that Condition 2) is equivalent to Condition 2̃).

First, we make an equivalent interpretation for Condition 2) and Condition 2̃). Notice that

both conditions are for the same set of index sets. We consider any such index set I. Since |I|=

rank(UI) + 1, span(UI) is a hyperplane in <|I|. Therefore, there exists a unit vector η ∈<|I| such
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that it is orthogonal to all vectors in span(UI), and all elements in <|I| can be represented as linear

combinations of η and a vector in span(UI). Therefore, for any i, j ∈ [n],

(VI)i = ξi +λiη, W i
Ix= ζxi +µxi η,

(VI)j = ξj +λjη, W j
Ix= ζxj +µxj η.

(50)

for some λi, λj, µ
x
i , µ

x
j ∈< and ξi,ξj,ζ

x
i ,ζ

x
j ∈ span(UI). Since η is a unit vector, we have

0 = η>
(
(VI)i−ηη>(VI)i

)
= η>(VI)i−η>ηη> (ξi +λiη) = η>(VI)i−λi,

and hence λi = η>(VI)i. The same logic applies to (VI)j and W i
Ix,W

j
Ix.

In Condition 2), we notice that (η>(VI)i) · (η>(VI)j) ≥ 0 is equivalent to λiλj ≥ 0; moreover,

(W i
I)
>ηη>W j

I is positive semidefinite if and only if (η>W i
Ix) ·

(
η>W j

Ix
)
≥ 0 for all x. Hence,

we conclude that Condition 2a) is equivalent to “λiλj ≥ 0, µxi µ
x
j ≥ 0 for all x and i, j ∈ [n]”. For

Condition 2b), since the equality holds if and only if (η>(VI)i) ·
(
η>W j

Ix
)

= (η>(VI)j) · (η>W i
Ix)

for all x, we conclude that it is equivalent to the condition “λiµ
x
j = λjµ

x
i for all x and i, j ∈ [n]”.

For Condition 2̃), by the definition of V̄ x
I ,

(V̄ x
I )i = (VI)i−W i

Ix= (ξi− ζxi ) + (λi−µxi )η,
(V̄ x
I )j = (VI)j −W j

Ix= (ξj − ζxj ) + (λj −µxj )η.

Observing that Condition 2̃) is violated if and only if there exist i, j ∈ [n] with (λi−µxi )(λj−µxj )< 0,

we obtain its equivalent condition as

(λi−µxi )(λj −µxj )≥ 0 ∀x∈<l, i, j ∈ [n]. (51)

We now prove the direction “Condition 2̃) =⇒ Condition 2)”. Consider any two distinct indexes

i, j ∈ [n]. We first choose x= 0, hence V̄ x = V . We assume the contrary to the first argument of

Condition 2a), i.e., λiλj < 0, WLOG, λi > 0, λj < 0. We then choose β =−λjei + λiej ∈ <n+, and

have VIβ=−λjξi +λiξj ∈ span(UI). However, βj(VI)j = λiξj +λiλjη 6∈ span(UI). We hence have

contradiction with Condition 2̃), and conclude λiλj ≥ 0, the first argument of Condition 2a) is true.

Next we show the second argument of Condition 2a) by contradiction. Notice for any constant

θ ∈ <, (V̄ θx
I )i = (ξi − θζxi ) + (λi − θµxi )η, (V̄ θx

I )j = (ξj − θζxj ) + (λj − θµxj )η. If µxi µ
x
j < 0, we can

always find θ such that (λi− θµxi )(λj − θµxj ) = µxi µ
x
j θ

2− (λiµ
x
j +µxi λj)θ+λiλj < 0. Therefore, the

equivalent condition for Condition 2̃), i.e., (51), is violated for θx. Hence, we have contradiction,

and conclude that µxi µ
x
j ≥ 0, the second argument of Condition 2a) is true.

We now prove Condition 2b). By Condition 2a), we already have λiλj ≥ 0, µxi µ
x
j ≥ 0. WLOG, we

assume λi, λj, µ
x
i , µ

x
j ≥ 0. Assume the opposite to Condition 2b), i.e., λiµ

x
j 6= λjµ

x
i . WLOG, we let

0≤ λiµxj <λjµxi , which implies λj, µ
x
i > 0. By Condition 2̃), i.e., (51), we have (λi−µxi )(λj−µxj )≥

0. Combining with λj, µ
x
i > 0, we know that at least one of λi, µ

x
j is nonzero. Consider the case
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that µxj 6= 0. Define θi = λi/µ
x
i , θj = λj/µ

x
j , then following the assumptions of λiµ

x
j <λjµ

x
i we have

θi < θj. Choosing any θ ∈ (θi, θj), we have λi < θµxi , λj > θµxj . Hence, the equivalent condition for

Condition 2̃), i.e., (51), is violated for θx. The case of λj 6= 0 can be proved similarly. Hence, we

always have contradiction, and conclude that Condition 2b) is true.

Now it remains to prove the direction “Condition 2) =⇒ Condition 2̃)”. Given any x ∈<l, we

let λi, λj, µ
x
i , µ

x
j ∈< and ξi,ξj,ζ

x
i ,ζ

x
j ∈ span(UI) be constants as defined in (50). By Condition 2),

we know λiλj ≥ 0, µxi µ
x
j ≥ 0 and λiµ

x
j = λjµ

x
i . WLOG, we let λi, λj ≥ 0. Possible realizations of the

parameters are as follows.

• λi = λj = 0. Then either µxi , µ
x
j ≥ 0 or µxi , µ

x
j ≤ 0, it always implies (λi−µxi )(λj −µxj )≥ 0.

• λi = 0, λj > 0 (or λi > 0, λj = 0). Then λiµ
x
j = λjµ

x
i = 0, implying µxi = 0 (or µxj = 0). In either

case we have (λi−µxi )(λj −µxj )≥ 0.

• λi > 0, λj > 0. Denote θ= λi/µ
x
i = λj/µ

x
j , then (λi−µxi )(λj −µxj ) = µxi µ

x
j (θ− 1)2 ≥ 0.

So we always have (λi−µxi )(λj −µxj )≥ 0, Condition 2̃) holds. �

C.21. Proof of Lemma 3

Consider any z′,z′′ ∈ <n, we denote a = h(z′ ∧ z′′), b = h(z′), c = h(z′′), d = h(z′ ∨ z′′) and d0 =

b+ c− a. From the supermodularity of f we know b+ c≤ a+ d; hence, d0 ≤ d. We then have

φ(z′) +φ(z′′) = u(b) +u(c)≤ u(a) +u(d0)≤ u(a) +u(d) = φ(z′ ∧z′′) +φ(z′ ∨z′′), (52)

where the second inequality holds since u is non-decreasing, and the first equality can be proved as

follows. We notice that either a≤min{b, c} ≤max{b, c} ≤ d0 (if h is increasing) or a≥max{b, c} ≥

min{b, c} ≥ d0 (if h is decreasing) holds; since a+d0 = b+ c and u is convex, we then have the first

inequality in Equation (52). That proves the supermodularity of φ. �

C.22. Proof of Proposition 12

Applying Lemma 3, we have that u (a>x+ g(x,z)) is supermodular in z for all x ∈ X . Hence,

following Theorem 1 by treating u (a>x+ g(x, z̃)) in Problem (27) as the g(x, z̃) in Problem (2),

Problem (27) can be solved equivalently by

min ν>l

s. t. R>k l≥
∑

i∈[2n+1]

pki u
(
a>x+ b>yk,i

)
, k ∈ [K]

Wx+Uyk,i ≥V zk,i +v0, k ∈ [K], i∈ [2n+ 1]

l≥ 0, x∈X ,

Introducing auxiliary variables fk,i with fk,i ≥ u (a>x+ b>yk,i) = maxj∈[j]{cj (a>x+ b>yk,i)+dj},

we then obtain the equivalent reformulation as in (29). �
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C.23. Proof of Corollary 3

By the minimax Theorem in Sion (1958), in Problem (30), we can interchange the maximization

over P∈F and the minimization over θ ∈<. Hence, Problem (30) is equivalent to

min θ+ sup
P∈F

EP
[
u
(
a>x+ g(x, z̃)− θ

)]
s. t. x∈X .

Its equivalent reformulation (31) can be obtained as a direct application of Proposition 12. �

C.24. Proof of Theorem 7

We first prove the direction of “1” → “2”, by contradiction. Assume “2” is false, i.e., there exists

i ∈ [n], j ∈ [J ] such that hji has at least three pieces on [zi, zi], then it suffices to show there are

f1, f2 that are associated with worst-case distributions with distinct marginals.

WLOG, let h1
1 be the function which at least three pieces on [z1, z1]. We choose functions f1, f2 :

<n → < such that f1(z) = g1(z1), f
2(z) = g2(z1),z ∈ <n for some g1, g2 : < → <. Moreover, for

all j ∈ {2, . . . , J}, we choose δj1 to be sufficiently large such that EP
[
hj1(z̃1)

]
≤ δj1 holds for all

P∈ {P | P(z1 ≤ z̃1 ≤ z1) = 1,EP[z̃1] = µ1}. We then have for i= 1,2,

sup
P∈FG

EP
[
f i(z̃)

]
= sup

P∈G
EP
[
gi(z̃1)

]
where

G =

P

∣∣∣∣∣∣
P
(
z1 ≤ z̃1 ≤ z1

)
= 1

EP[z̃1] = µ1

EP
[
h1
1(z̃1)

]
≤ δ11.

 ,

For notational simplicity, we omit the superscript and subscript of h and δ, as well as the subscript

of z and µ. That is, we consider supP∈G EP [gi(z̃)] with G =

P

∣∣∣∣∣∣
P
(
z ≤ z̃ ≤ z

)
= 1

EP[z̃] = µ
EP
[
h(z̃)

]
≤ δ

, where h has

at least three pieces on [z, z]. Now it suffices to find g1, g2 :<→< such that there does not exist a

common worst-case distribution.

Let J + 1 be the number of pieces of h on [z, z] for some J ≥ 2, and denote the corresponding

breakpoints by z = z0 < · · ·< zJ+1 = z. We define two functions l1, l2 :<+→< such that

l1(p1)∈
{
p0h(z0) + p1h(z1) + pJ+1h(zJ+1) | p0 + p1 + pJ+1 = 1, p0z

0 + p1z
1 + pJ+1z

J+1 = µ
}

l2(p2)∈
{
p0h(z0) + p2h(z2) + pJ+1h(zJ+1) | p0 + p2 + pJ+1 = 1, p0z

0 + p2z
2 + pJ+1z

J+1 = µ
} (53)

Notice that the sets in Equation (53) are singleton since for any given p1 or p2, we have unique p0

and pJ+1. Therefore, the functions l1, l2 are indeed uniquely determined by Equation (53). We have

two observations on l1, l2. First, l1(0) = l2(0), and when p1 = p2 = 0, their corresponding p0 and

pJ+1 (in the set defined in Equation (53)) are strictly positive. Second, both l1, l2 are continuous

function, and they are also increasing function due to the convexity of h. By the two observations,
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we can find ε1, ε2 > 0 which are sufficiently small and such that l1(ε1) = l2(ε2), and when p1 = ε1

and p2 = ε2, their corresponding p0 and pJ+1 are strictly positive. Define

H1 =

 1 1 1
z0 z1 zJ+1

h
(
z0
)
h
(
z1
)
h
(
zJ+1

)
 , H2 =

 1 1 1
z0 z2 zJ+1

h
(
z0
)
h
(
z2
)
h
(
zJ+1

)
 .

We hence can find p1,p2 ∈ <3
++ and choose δ ∈ < such that H1p1 = H2p2 = (1, µ, δ). Let the

discrete probability P1,P2 be with

P1 (z̃ =w) =


p11 if w= z0

p12 if w= z1

p13 if w= zJ+1

0 otherwise

, P2 (z̃ =w) =


p21 if w= z0

p22 if w= z2

p23 if w= zJ+1

0 otherwise

.

Then P1,P2 have the support Z1 = {z0, z1, zJ+1},Z2 = {z0, z2, zJ+1}, respectively.

Consider any i ∈ {1,2}. Since h is piecewise linear convex, we can choose a convex function gi

such that gi(z) = h(z) for z ∈Z i and gi(z)<h(z) for all z ∈ [z, z] \Z i. Therefore, we have

EPi
[
gi(z)

]
=
∑
z∈Zi

P(z̃ = z)gi(z) =
∑
z∈Zi

P(z̃ = z)h(z) =EPi [h(z)] = δ,

where the first and and third equalities are by the definition of Pi, the second equality holds since

gi(z) = h(z) when z ∈ Z i, and the last equality is due to the way we choose pi. Since gi(z) ≤

h(z), we have EP [gi(z)] ≤ EP [h(z)] ≤ δ for any P ∈ G. Hence Pi is a worst-case distribution to

supP∈G EP [gi(z̃)]. In what follows, we show that Pi is the only worst-case distribution.

We first consider any P ∈ G with support Z such that Z \ Z i 6= ∅, then there exists [z′, z′′] ⊆

[z, z] \Z i such that P(z̃ ∈ [z′, z′′])> 0. Therefore,

EP
[
gi(z)

]
=

∫
[z,z]

gi(z)dP<
∫
[z,z]

h(z)dP=EP [h(z)]≤ δ,

where the first inequality follows from that gi(z) < h(z) for all z ∈ [z, z] \ Z i, the last inequality

is due to P ∈ G. Hence, P 6∈ arg supP∈G EP [gi(z̃)]. It implies that for any P∗ ∈ arg supP∈G EP [gi(z̃)],

the support of P∗ must be a subset of Z i, and P∗ can be fully characterized by a vector p∗ ∈ <3
+

such that H ip∗ = (1, µ, δ). Observing that H i is invertible (due to that h is not linear), p? is

unique and is exactly the aforementioned pi. Therefore, Pi is the unique worst-case distribution to

supP∈G EP [gi(z̃)]. Hence, there does not exist a common worst-case distribution to supP∈G EP [g1(z̃)]

and supP∈G EP [g2(z̃)]. “1” is false.

We next prove the direction of “2”→“1”.

By strong duality,

sup
P∈FG

EP [f(z̃)] = inf

{
s+µ>t+

n∑
i=1

Ji∑
j=1

δji r
j
i

∣∣∣∣∣ s+z>t+
∑n

i=1

∑Ji
j=1 h

j
i (zi)r

j
i ≥ f(z), ∀z ∈ [z,z]

rji ≥ 0, i∈ [n], j ∈ [Ji]

}
.
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Let Z =
{
z | zi ∈ {z1i , . . . , z

Si
i }, i ∈ [n]

}
which contains all z such that each of its dimension is on

the breakpoints. Then we observe that [z,z] can be decomposed as [z,z] =∪Si=1Z i for some S and

disjoint Z1, . . . ,ZS such that all Z i are boxes with extreme points in Z and
∑n

i=1

∑Ji
j=1 h

j
i (zi) are

linear within each Z i. Together with the convexity of f , the dual problem is equivalent to

inf

{
s+µ>t+

n∑
i=1

Ji∑
j=1

δji r
j
i

∣∣∣∣∣ s+z>t+
∑n

i=1

∑Ji
j=1 h

j
i (zi)r

j
i ≥ f(z), ∀z ∈Z

rji ≥ 0, i∈ [n], j ∈ [Ji]

}
.

Writing its dual form again, we conclude that there exists a worst-case distribution with its support

as Z. Hence, for supP∈FG EP [f(z̃)], it suffices to consider the probability distributions with support

Z.

Assuming “2” is true, i.e., hji , i ∈ [n], j ∈ [Ji] are piecewise linear convex functions with exactly

two pieces on [zi, zi], we will show “1” is true. In other words, we will show the existence of

a P∗ ∈ arg supP∈FG EP[f(z̃)] such that for any dimension i, P∗(z̃i = w) has the structure as in

“1”. WLOG, we let such i be n. Further, for notational simplicity, we drop the subscript n for

z̃n, zn, zn, zn, µn, h
j
n, δ

j
n, Jn. Hence, we have z̃ = (z̃1, . . . , z̃n−1, z̃), z = (z1, . . . , zn−1, z) and so on, and

we will prove that P∗(z̃ =w) has the structure as in “1”.

The proof will be done by induction. Starting from the case of J = 1, with an approach almost

the same as that in the proof for Proposition 1, we can show that P∗ has the structure in “1”.

More specifically, denoting the breakpoint of h1 by ẑ ∈ (z, z), then we move the probability mass

on z with z = ẑ to z− (ẑ− z)en and z+ (z− ẑ)en until we cannot move any further. Such move

will terminate at a probability distribution which has marginals in the form given by “1”, and the

expected value of EP[f(z̃)] is no less.

Suppose when J = Ĵ − 1 for some Ĵ ≥ 2, we have “1” being true. We now consider the case of

J = Ĵ . We separately analyze the following two scenarios.

• Scenario I: There are distinct i, j ∈ [J ] such that hi, hj have the same breakpoint in (z, z).

WLOG, we let h1, h2 be both with breakpoint ẑ ∈ (z, z). Define Ĝ = {P | P (z ≤ z̃ ≤ z) = 1,EP [z̃] =

µ}, Gi = {P | EP [hi (z̃)]≤ δi}, i∈ {1,2}.

If Ĝ ∩ G1 ∩G2 = Ĝ ∩ G2, then denote G′ to be the ambiguity set obtained from FG by removing

the constraint on EP [h1(z̃)]. We have G′ = FG, and hence supP∈FG EP [f(z̃)] = supP∈G′ EP [f(z̃)].

Therefore, we have a problem with J = Ĵ − 1, in which case we know “1” is true by the induction

assumption.

If Ĝ ∩ G1 ∩G2 6= Ĝ ∩ G2, we next show Ĝ ∩ G1 ∩G2 = Ĝ ∩ G1.
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Consider any P ∈ Ĝ, we define a vector (sP1, s
P
2, s

P, ŝP, sP) which is uniquely determined by the

following system of equations, 

∫
z≤ẑ

zdP(z) = zsP + ẑsP1

P (z̃ ≤ ẑ) = sP + sP1∫
z>ẑ

zdP(z) = ẑsP2 + z̄sP

P (z̃ > ẑ) = sP2 + sP

ŝP = sP1 + sP2

. (54)

In this case, for any piecewise linear convex function with two pieces and with breakpoint at ẑ,

which can be denoted by h(z) =

{
az+ b if z ≤ ẑ
az+ b if z ≥ ẑ where a< a, we have

EP [h(z̃)] =

∫
z≤ẑ

(az+ b)dP(z) +

∫
z>ẑ

(
az+ b

)
dP(z)

= a

∫
z≤ẑ

zdP(z) + bP (z̃ ≤ ẑ) + a

∫
z>ẑ

zdP(z) + bP (z̃ > ẑ)

= a
(
zsP + ẑsP1

)
+ b
(
sP + sP1

)
+ a

(
ẑsP2 + z̄sP

)
+ b
(
sP2 + sP

)
= sPh(z) + ŝPh(ẑ) + sPh(z),

where the third and fourth inequalities are due to (54). Moreover, by (54) we can easily have

sP + ŝP + sP = 1 and sPz+ ŝPẑ+ sPz = µ, which imply

sP =
z−µ− (z− ẑ)ŝP

z− z
, sP =

µ− z− (ẑ− z)ŝP

z− z
.

Therefore,

EP [h(z̃)] =
z−µ− (z− ẑ)ŝP

z− z
h(z) + ŝPh(ẑ) +

µ− z− (ẑ− z)ŝP

z− z
h(z) = ch + ∆hŝP, (55)

where ch,∆h are constants depending on h but independent from P; moreover,

∆h = h(ẑ)−
(
z− ẑ
z− z

h(z) +
ẑ− z
z− z

h(z)

)
<h(ẑ)−h

(
z− ẑ
z− z

z+
ẑ− z
z− z

z

)
= h(ẑ)−h(ẑ) = 0, (56)

where the inequality follows from the convexity of h.

Recall that Ĝ ∩ G1 ∩ G2 6= Ĝ ∩ G2, then there exists Po ∈
(
Ĝ ∩ G2

)
\ G1. Therefore, consider any

P̂∈ Ĝ ∩G1,

ch
1

+ ∆h1 ŝP
o

=EPo
[
h1(z̃)

]
> δ1 ≥EP̂

[
h1(z̃)

]
= ch

1

+ ∆h1 ŝP̂,

where the two equalities follow from (55), the two inequalities are due to Po 6∈ G1 and P̂∈ G1. Hence,

we have ŝP
o
< ŝP̂ since (56) results in ∆h1 < 0. It then implies

EP̂

[
h2(z̃)

]
= ch

2

+ ∆h2 ŝP̂ < ch
2

+ ∆h2 ŝP
o

=EPo
[
h2(z̃)

]
≤ δ2,
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where the last inequality holds since Po ∈ G2. Therefore, P̂∈ G2, and we have Ĝ ∩ G1 ∩G2 = Ĝ ∩ G1.

Similar to the case of Ĝ ∩ G1 ∩ G2 = Ĝ ∩ G2, we now can reduce the problem supP∈FG EP [f(z̃)] to

one with J = Ĵ − 1, and hence “1” is true by induction.

• Scenario II: All hj, j ∈ [Ĵ ], have distinct breakpoints in (z, z). In this case, denote the

breakpoint of hj by zj, j ∈ [Ĵ ]. WLOG, assume z = z0 < z1 < · · · < zĴ < zĴ+1 = z. Consider any

P∈FG. Denote by pj = P(z̃ = zj) the marginal probability mass at z = zj, j = 0, . . . , Ĵ+1. Recalling

that we just focus on the distribution with support at the breakpoints, then the constraint P∈FG

is equivalent to the following system,

Ĵ+1∑
j=0

pj = 1, (57a)

Ĵ+1∑
j=0

zjpj = µ, (57b)

Ĵ+1∑
j=0

hi(zj)pj ≤ δi, i∈ [Ĵ ], (57c)

pj ≥ 0, j ∈ {0, . . . , Ĵ + 1}. (57d)

By (57a) and (57b) we have

p0 =
z−µ−

∑Ĵ

j=1(z− zj)pj
z− z

, pĴ+1 =
µ− z−

∑Ĵ

j=1(z
j − z)pj

z− z
, (58)

which implies that p0, pĴ+1 can be determined by p= (p1, . . . , pĴ). In what follows, we simplify the

constraints (57a)-(57d).

We first investigate the constraint (57c) for any given i∈ [Ĵ ]. Since hi is convex and has break-

points {z, zi, z}, we can denote hi(z) =

{
hi(zi)− γi(zi− z) if z ∈ [z, zi]
hi(zi) + ξi(z− zi) if z ∈ [zi, z]

for some γi < ξi. It follows

that

Ĵ+1∑
j=0

hi(zj)pj

= hi(zi)− γi(zi− z)p0− γi
i∑

j=1

(zi− zj)pj + ξi

Ĵ∑
j=i

(zj − zi)pj + ξi(z− zi)pĴ+1

= hi(zi)− γi
z− z

(zi− z)
(
z−µ−

Ĵ∑
j=1

(z− zj)pj
)

+ (z− z)
i∑

j=1

(zi− zj)pj


+

ξi
z− z

(z− zi)
(
µ− z−

Ĵ∑
j=1

(zj − z)pj
)

+ (z− z)
Ĵ∑
j=i

(zj − zi)pj


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= hi(zi) +
ξi(z− zi)(µ− z)

z− z
− γi(z−µ)(zi− z)

z− z

− γi
z− z

 i∑
j=1

(
(z− z)(zi− zj)− (z− zj)(zi− z)

)
pj −

Ĵ∑
j=i+1

(z− zj)(zi− z)pj


+

ξi
z− z

− i−1∑
j=1

(z− zi)(zj − z)pj +
Ĵ∑
j=i

(
(zj − zi)(z− z)− (z− zi)(zj − z)

)
pj


= hi(zi) +

ξi(z− zi)(µ− z)
z− z

− γi(z−µ)(zi− z)
z− z

+
γi

z− z

− i−1∑
j=1

(zi− z)(zj − z)pj + (z− zi)(zi− z)pi +
Ĵ∑

j=i+1

(z− zj)(zi− z)pj


− ξi
z− z

 i−1∑
j=1

(z− zi)(zj − z)pj + (z− zi)(zi− z)pi−
Ĵ∑

j=i+1

(zj − z)(zi− z)pj


= hi(zi) +

ξi(z− zi)(µ− z)
z− z

− γi(z−µ)(zi− z)
z− z

− ξi− γi
z− z

Ĵ∑
j=1

(
z− zmax{i,j}) (zmin{i,j}− z

)
pj.

Hence the i-th constraint of (57c) is equivalent to

Ĵ∑
j=1

(
z− zmax{i,j}) (zmin{i,j}− z

)
pj ≥ di,

where di = z−z
ξi−γi

(
hi(zi) + ξi(z−zi)(µ−z)

z−z − γi(z−µ)(zi−z)
z−z − δi

)
. Denote λj = z − zj, πj = zj − z for all

j ∈ [Ĵ ], and let

A=
(
λmax{i,j}πmin{i,j}

)
i,j∈[Ĵ] =


λ1π1 λ2π1 λ3π1 · · · λĴπ1

λ2π1 λ2π2 λ3π2 · · · λĴπ2

λ3π1 λ3π2 λ3π3 · · · λĴπ3

...
...

...
...

λĴπ1 λĴπ2 λĴπ3 · · · λĴπĴ

 .

Then (57c) is equivalent to Ap≥ d, where both A and d are constants determined by FG.

For (57d), by (58) we have that p0 ≥ 0 is equivalent to
∑Ĵ

j=1(z− zj)pj ≤ z− µ, and pĴ+1 ≥ 0 is

equivalent to
∑Ĵ

j=1(z
j− z)pj ≤ µ− z. Recalling the definition of A, the constraints p0 ≥ 0, pĴ+1 ≥ 0

can be further reformulated as

a>1 p≤ bl,a>Ĵ p≤ bu,

respectively, where bl = (z−µ)π1, bu = (µ− z)λĴ .

Therefore, p0, . . . , pĴ+1 satisfy (57a)-(57d) if and only if (p0,p, pĴ+1)∈P where

P =

{
(p0,p, pĴ+1)∈<Ĵ+2

∣∣∣∣∣ Ap≥ d, a
>
1 p≤ bl, a>Ĵ p≤ bu, p≥ 0

p0 = z−µ
z−z −

a>1 p
(z−z)π1

, pĴ+1 = µ−z
z−z −

a>
Ĵ
p

(z−z)λ
Ĵ

}
, (59)
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where the equalities on p0 and pĴ+1 are from the equalities in (58). Note that P 6= ∅ as we assume

FG 6= ∅. Denote by (Ci), i ∈ [Ĵ ] the i-th constraint of Ap≥ d, i.e., a>i p≥ di. We say a constraint

(Ci) is redundant if the strict inequality a>i p>di holds for any p∈ P̂ = {p∈RĴ+ | Ap≥ d}.
Consider the case that there exists i ∈ [Ĵ ] such that (Ci) is redundant. WLOG, we let the

redundant constraint be (CĴ). In this case, we define Po = {p∈RI+ | a>i p≥ di, i∈ [Ĵ−1]} and will

show that P̂ =Po. Obviously, P̂ ⊆ Po since all constraints in defining Po are also used in defining

P̂. We now show Po ⊆ P̂ by contradiction. Assume that there exists po ∈Po\P̂, we have a>
Ĵ
po <dĴ .

Choosing any p ∈ P̂, as (CĴ) is redundant, a>
Ĵ
p> dĴ . Therefore, we can find λ ∈ (0,1) such that

pλ = λp+ (1− λ)po such that a>
Ĵ
pλ = dĴ . Moreover, by po ∈ Po and p ∈ P̂, we have pλ ≥ 0 and

a>i p
λ ≥ di, i ∈ [Ĵ − 1]. Therefore, we conclude pλ ∈ P̂, which is a contradiction since we assume

(CĴ) is redundant. Hence, Po ⊆ P̂, and it implies Po = P̂. Consequently, removing the constraint

a>
Ĵ
p≥ dĴ from the constraints in (59) does not change the set P. Investigating its reformulation

back to the form as constraints (57a)-(57d), we can see that now the problem of supP∈FG EP [f(z̃)]

is equivalent to supP∈G′ EP [f(z̃)] where G′ is the ambiguity set obtained from FG by removing the

constraint on hĴ . Therefore, we have a problem with J = Ĵ − 1, in which case we already have “1”

being true by induction.

Now it suffices to consider the case that there is no redundant constraint among (C1), . . . , (CĴ).

We will prove that there exists a unique (p?0,p
?, p?

Ĵ+1
) ∈ P with Ap? = d. Recall that the system

Ap= d is 

λ1π1p1 +λ2π1p2 +λ3π1p3 + · · ·+λĴπ1pĴ = d1

λ2π1p1 +λ2π2p2 +λ3π2p3 + · · ·+λĴπ2pĴ = d2

λ3π1p1 +λ3π2p2 +λ3π3p3 + · · ·+λĴπ3pĴ = d3
...

λĴπ1p1 +λĴπ2p2 +λĴπ3p3 + · · ·+λĴπĴpĴ = dĴ

(B1)

(B2)

(B3)

(BĴ)

Combining (B1) and (B2) we have π1p1 = d1π2−d2π1
λ1π2−λ2π1

. Combining (B2) and (B3) we obtain π2p2 =
d2π3−d3π2
λ2π3−λ3π2

−π1p1. Continuing the same procedure, we have

p?1 =
1

π1

d1π2− d2π1

λ1π2−λ2π1

p?2 =
1

π2

(
d2π3− d3π2

λ2π3−λ3π2

−π1p
?
1

)
p?3 =

1

π3

(
d3π4− d4π3

λ3π4−λ4π3

−π1p
?
1−π2p

?
2

)
...

p?
Ĵ−1 =

1

πĴ−1

(
dĴ−1πĴ − dĴπĴ−1
λĴ−1πĴ −λĴπĴ−1

−π1p
?
1− · · ·−πĴ−2p?Ĵ−2

)
p?
Ĵ

=
1

λĴ

λĴ−1dĴ −λĴdĴ−1
λĴ−1πĴ −λĴπĴ−1
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is the unique solution to Ap= d. p?0 and p?
Ĵ+1

can be uniquely determined by the equalities in (59).

Moreover, since P 6= ∅, we must have d1 ≤ bl, dĴ ≤ bu, which implies a>1 p
? = d1 ≤ bl, a>Ĵ p

? = dĴ ≤ bu.

To see (p?0,p
?, p?

Ĵ+1
)∈P, it remains to prove for any j ∈ [Ĵ ], p?j ≥ 0. We show that this must be the

case, otherwise the constraint (Cj) is redundant. Recall that by the definition of λj and πj, j ∈ [Ĵ ],

we have λ1 > · · ·>λĴ > 0 and 0<π1 < · · ·<πĴ .

We first show that p?1 ≥ 0, i.e., d1π2− d2π1 ≥ 0. Assume to the contrary that d1π2 <d2π1, then

a>1 p− d1 = λ1π1p1 +π1(λ2p2 + · · ·+λĴpĴ)− d1

≥ λ1π1p1 +
π1

π2

(d2−λ2π1p1)− d1

=
π1

π2

d2 +

(
λ1−

π1

π2

λ2

)
π1p1− d1

≥ π1

π2

d2− d1 > 0

for all p ∈P. Here the first inequality follows from a>2 p≥ d2; the second inequality holds because

λ1 > λ2, π1 < π2, and the last inequality follows from the assumption d1π2 < d2π1. Hence (C1) is

redundant.

Next, for p?
Ĵ
, we show λĴ−1πĴ − λĴπĴ−1 ≥ 0 by contradiction. Assume λĴ−1πĴ < λĴπĴ−1, then

similar as above we have

a>
Ĵ
p− dĴ = λĴ(π1p1 + · · ·+πĴ−1pĴ−1) +λĴπĴpĴ − dĴ

≥ λĴ
λĴ−1

(dĴ−1−λĴπĴ−1pĴ) +λĴπĴpĴ − dĴ

=
λĴ
λĴ−1

dĴ−1 +

(
πĴ −

λĴ
λĴ−1

πĴ−1

)
λĴpĴ − dĴ

≥ λĴ
λĴ−1

dĴ−1− dĴ > 0

for all p ∈ P. Here the first inequality follows from a>
Ĵ−1p ≥ dĴ−1; the second inequality holds

because λĴ <λĴ−1, πĴ >πĴ−1, and the last inequality follows from the assumption λĴ−1πĴ <λĴπĴ−1.

Hence (CĴ) is redundant.

Finally, for all j ∈ {2, . . . , Ĵ − 1}, we show that πjp
?
j =

djπj+1−dj+1πj
λjπj+1−λj+1πj

−
∑j−1

k=1 πkp
?
k ≥ 0. Suppose

not, i.e.,
djπj+1−dj+1πj
λjπj+1−λj+1πj

<
∑j−1

k=1 πkp
?
k =

dj−1πj−djπj−1

λj−1πj−λjπj−1
. Consider any p∈P. We then have

a>j p− dj = λj(π1p1 + · · ·+πjpj) +πj(λj+1pj+1 + · · ·+λĴpĴ)− dj

≥ λj(π1p1 + · · ·+πjpj) +
πj
πj+1

(dj+1−λj+1(π1p1 + · · ·+πjpj)− dj

=
1

πj+1

(dj+1πj − djπj+1− (λj+1πj −λjπj+1)(π1p1 + · · ·+πjpj)) ,
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where the inequality follows from a>j+1p≥ dj+1. Further, we also have

a>j p− dj = λj(π1p1 + · · ·+πj−1pj−1) +πj(λjpj + · · ·+λĴpĴ)− dj

≥ λj(π1p1 + · · ·+πj−1pj−1) +
πj
πj−1

(dj−1−λj−1(π1p1 + · · ·+πj−1pj−1)− dj

=
1

πj−1
(dj−1πj − djπj−1− (λj−1πj −λjπj−1)(π1p1 + · · ·+πj−1pj−1)) ,

where the inequality follows from a>j−1p≥ dj−1. Define two <→< functions φ′(t) = 1
πj+1

(
dj+1πj −

djπj+1 − (λj+1πj − λjπj+1)t
)
, φ′′(t) = 1

πj−1

(
dj−1πj − djπj−1 − (λj−1πj − λjπj−1)t

)
, then a>j p− dj ≥

max
{
φ′(π1p1 + · · ·+ πjpj), φ

′′(π1p1 + · · ·+ πj−1pj−1)
}

. By defintion, λj+1πj − λjπj+1 < 0, hence φ′

is increasing, which implies φ′(π1p1 + · · ·+πjpj)≥ φ′(π1p1 + · · ·+πj−1pj−1). Thus

a>j p− dj ≥max{φ′(π1p1 + · · ·+πj−1pj−1), φ
′′(π1p1 + · · ·+πj−1pj−1)} .

Notice that φ′(t) = 0 if and only if t=
djπj+1−dj+1πj
λjπj+1−λj+1πj

. Together with that φ′(t) is increasing, we have

that φ′(t) > 0 if t >
djπj+1−dj+1πj
λjπj+1−λj+1πj

. Similarly, since λj−1πj − λjπj−1 > 0, φ′′ is decreasing, and we

obtain φ′′(t)> 0 if t <
dj−1πj−djπj−1

λj−1πj−λjπj−1
. By assumption we have

djπj+1−dj+1πj
λjπj+1−λj+1πj

<
dj−1πj−djπj−1

λj−1πj−λjπj−1
, therefore

we can find some τ ∈
(
djπj+1−dj+1πj
λjπj+1−λj+1πj

,
dj−1πj−djπj−1

λj−1πj−λjπj−1

)
such that φ′(τ) = φ′′(τ)> 0. Now, for all t∈<,

max{φ′(t), φ′′(t)} ≥ φ′(t)>φ′
(
djπj+1− dj+1πj
λjπj+1−λj+1πj

)
= 0 if t≥ τ,

max{φ′(t), φ′′(t)} ≥ φ′′(t)>φ′
(
dj−1πj − djπj−1
λj−1πj −λjπj−1

)
= 0 if t≤ τ,

which implies

a>j p− dj ≥max{φ′(π1p1 + · · ·+πj−1pj−1), φ
′′(π1p1 + · · ·+πj−1pj−1)}> 0.

Hence (Cj) is redundant. We then conclude p? ≥ 0.

In summary, we have a unique (p?0,p
?, p?

Ĵ+1
)∈P with Ap? = d.

Related to (p?0,p
?, p?

Ĵ+1
), we next prove the following observation.

Observation: Considering any (p0,p, pĴ+1) ∈ P with (p0,p, pĴ+1) 6= (p?0,p
?, p?

Ĵ+1
), there exists i ∈

{0,1, . . . , Ĵ − 1}, i+ 1≤ k≤ Ĵ , such that

1) pj = p∗j ∀j ∈ {0, . . . , i− 1} if i≥ 1;

2) pi < p
∗
i ;

3) pj = 0 ∀j ∈ {i+ 1, . . . , k− 1} if k≥ i+ 2;

4) pk > 0;

5) a>k p>dk
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Specifically, parts 1) and 2) mean that i is the index of the first distinct component when com-

paring (p0,p, pĴ+1) and (p?0,p
?, p?

Ĵ+1
); parts 3) and 4) mean that k is the index of the first nonzero

component in (p0,p, pĴ+1) after pi.

To prove parts 1) and 2), we consider any i∈ {0, . . . , Ĵ − 1}, and have

z−µ
z− z

−
a>i+1p

(z− z)πi+1

=
z−µ
z− z

− 1

z− z

 Ĵ∑
j=i+1

λjpj +
1

πi+1

(λi+1π1p1 + · · ·+λi+1πipi)


=
z−µ
z− z

− 1

z− z

 Ĵ∑
j=1

λjpj +
1

πi+1

(λi+1π1p1 + · · ·+λi+1πipi−λ1πi+1p1− · · ·−λiπi+1pi)


= p0 +

1

(z− z)πi+1

i∑
j=1

αi+1,jpj,

where we define αi+1,j = λjπi+1−λi+1πj > 0 for all j ≤ i since in this case λj >λi+1 and πj <πi+1.

Hence,

a>i+1p= (z−µ)πi+1− (z− z)πi+1p0−
i∑

j=1

αi+1,jpj. (60)

Consider i= 0, by (60) we have

p0 =
z−µ
z− z

− a>1 p

(z− z)π1

≤ z−µ
z− z

− d1
(z− z)π1

=
z−µ
z− z

− a>1 p
?

(z− z)π1

= p?0,

where the first inequality is due to Ap≥ d, the second equality follows from Ap? = d and the last

equality holds since Equation (60) also applies to (p?0,p
?, p?

Ĵ+1
). Hence, if p0 6= p?0, we must have

p0 < p
∗
0. Now, consider the case where p0 = p?0, we then denote i≥ 1 as the index of the first distinct

component, i.e., pj = p?j for all j ∈ {0, . . . , i−1}, and pi 6= p?i . Note that i≤ Ĵ−1, otherwise the only

distinct components are the last two dimension, i.e., the marginal masses at zĴ and zĴ+1, which is

impossible since (p0,p, pĴ+1) and (p?0,p
?, p?

Ĵ+1
) correspond to the same mean. As i≤ Ĵ −1, by (60),

a>i+1p = (z−µ)πi+1− (z− z)πi+1p
?
0−
∑i

j=1αi+1,jp
?
j +αi+1,i(p

?
i − pi)

= a>i+1p
? +αi+1,i(p

?
i − pi)

= di+1 +αi+1,i(p
?
i − pi)

≤ a>i+1p+αi+1,i(p
?
i − pi),

which implies pi < p
?
i since pi 6= p?i . Therefore, parts 1) and 2) in Observation are proved.

Parts 3) and 4) in Observation are straightfoward. Specifically,

Ĵ+1∑
j=i+1

pj = 1−
i∑

j=0

pj = 1−
i∑

j=0

p?j + (p?i − pi)≥ p?i − pi > 0.

Hence, there must be a nonzero component in pi+1, . . . , pĴ+1. We then just let k be the index of

the first nonzero component, parts 3) and 4) in Observation are proved.
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Part 5) can be proved by the adoption of (60), which leads to

a>k p= (z−µ)πk− (z− z)πkp0−
k−1∑
j=1

αk,jpj > (z−µ)πk− (z− z)πkp?0−
k−1∑
j=1

αk,jp
?
j = dk.

Here the inequality is due to parts 1) and 2), and 0 = pj ≤ p?j for all j ∈ {i+ 1, . . . , k− 1}.

Now, base on Observation, we prove “1” is true by proposing a process to construct new distri-

bution. Given any P∈FG, let the associated marginals on z̃ at z0, . . . , zĴ+1 be (p0,p, pĴ+1). Consider

the case where (p0,p, pĴ+1) 6= (p?0,p
?, p?

Ĵ+1
). We now construct a new probability distribution P′

with support only at the breakpoints and defined as

P′ (z̃ = z) =


P (z̃ = z) if z 6∈ {zk−1, zk, zk+1}
(1− θ)P (z̃ = z) if z = zk

P (z̃ = z) + zk+1−zk
zk+1−zk−1 θP (z̃ = z+ (zk− zk−1)en) if z = zk−1

P (z̃ = z) + zk−zk−1

zk+1−zk−1 θP (z̃ = z− (zk+1− zk)en) if z = zk+1

(61)

for some θ ∈ (0,1). Intuitively, for all z1, . . . , zn−1, we move θ portion of the probability mass at

(z1, . . . , zn−1, z
k) to (z1, . . . , zn−1, z

k−1) and (z1, . . . , zn−1, z
k+1), keeping the mean unchanged. Hence

P′ has the same marginal for (z̃1, . . . , z̃n−1) as P. Denote the marginal of P′ on z̃ by p′0,p
′, p′

Ĵ+1
such

that P′(z̃ = zj) = p′j for all j = 0, . . . , Ĵ + 1. By (61),
p′j = pj, ∀j 6∈ {k− 1, k, k+ 1},
p′k = pk− θpk,

p′k−1 = pk−1 + zk+1−zk
zk+1−zk−1 θpk,

p′k+1 = pk+1 + zk−zk−1

zk+1−zk−1 θpk.

There are three properties of P′.

(P1) EP′ [f(z̃)]≥EP [f(z̃)]. This is because EP′ [f(z̃)]−EP [f(z̃)] equals∑
zi∈

{
z1i ,...,z

Si
i

}
,i∈[n−1]

θP
(
z̃ = (z1, . . . , zn−1, z

k)
)( zk+1− zk

zk+1− zk−1
f(z1, . . . , zn−1, z

k−1)

+
zk− zk−1

zk+1− zk−1
f(z1, . . . , zn−1, z

k+1)− f(z1, . . . , zn−1, z
k)

)
,

which is nonnegative since f is convex.

(P2) a>j p
′ = a>j p for all j 6= k and a>k p

′ < a>k p. To see this, for any j ∈ [Ĵ ], we observe

EP′
[
hj(z̃)

]
−EP

[
hj(z̃)

]
= θpk

(
zk+1− zk

zk+1− zk−1
hj(zk−1) +

zk− zk−1

zk+1− zk−1
hj(zk+1)−hj(zk)

)
≥ 0, (62)

where the inequality is due to the convexity of h. Moreover, the “≥” takes “=” if j 6= k since hj is

linear on [zk−1, zk+1] for such j; by contrast, “≥” becomes “>” for j = k since hk has a breakpoint

at zk. Therefore, by the definition of A, this property is proved.

(P3) a>k p
′ is continuously decreasing in θ, which is implied by (62) and the definition of A.
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Based on the Observation and (P1)-(P3), given any P∈FG whose marginal on z̃ is different

from (p?0,p
?, p?

Ĵ+1
), we can use the procedure as in (61) to construct a new probability distribution

P′. In this construction, we either choose θ = 1 or the maximal value less than 1 such that a>k p
′

drops to the value of dk (note that when θ= 0, a>k p
′ = a>k p>dk, where the inequality is due to the

part 5) in Observation). Hence, P′ ∈FG. Moreover, by (P1), with P′, the expectation of f(z̃) is

no less. Therefore, for any P ∈FG, by this procedure we construct a new probability distribution

P′ ∈FG such that the objective is improved and the marginal masses after zi is moved towards zi,

the smallest breakpoint where the marginal mass of P differs from (p?0,p
?, p?

Ĵ+1
). Repeating such

process, the margin converges to (p?0,p
?, p?

Ĵ+1
). We hence conclude that there must be a worst-case

distribution whose n-th marginal is (p?0,p
?, p?

Ĵ+1
). �
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