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Abstract In this paper, we consider multi-stage robust convex optimization problems of the
minimax type. We assume that the total uncertainty set is the cartesian product of stagewise
compact uncertainty sets and approximate the given problem by a sampled subproblem. Instead
of looking for the worst case among the infinite and typically uncountable set of uncertain
parameters, we consider only the worst case among a randomly selected subset of parameters.
By adopting such a strategy, two main questions arise: (1) Can we quantify the error committed
by the random approximation, especially as a function of the sample size? (2) If the sample size
tends to infinity, does the optimal value converge to the “true” optimal value? Both questions will
be answered in this paper. An explicit bound on the probability of violation is given and chain of
lower bounds on the original multi-stage robust optimization problem provided. Numerical results
dealing with a multi-stage inventory management problem show that the proposed approach
works well, given that the sample size is large enough. Due to the fact that we solve a very
complex problem and not a surrogate with no quality guarantee, large sample sizes cannot be
avoided.

Keywords convex multi-stage robust optimization · constraint sampling · scenario approach in
optimization · randomized algorithms

1 Introduction

We consider a multi-stage decision problem, i.e. a problem, where the decisions xt have to be
taken at discrete time instants t = 1, . . . , H +1, where H +1 is the horizon length. In our setup,
some relevant parameters are not known at time t of decision and become revealed only at time
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t+1. We look for the optimal decision strategy under the objective to minimize the costs for the
worst case among all possible parameter values. Thus we look for a multi-stage robust solution.

The usual robust optimization models deal with static problems, where all the decision vari-
ables have to be determined before the uncertain parameters are revealed. A vast literature
focused on uncertainty structure to obtain computationally tractable problems is available, see
for instance [22] and [43] for polyhedral uncertainty sets and [6] for ellipsoidal uncertainty sets,
respectively. However, this approach cannot directly handle problems that are multiperiod in
nature, where a decision at any period should take into account data realizations in previous
periods, and the decision maker needs to adjust his/her strategy to the information revealed
over time. This means that some of the variables (non-adjustable variables) must be determined
before the realization of the uncertain parameters, while the other variables (adjustable variables)
have to be chosen after the uncertainty realization. For a recent overview of multiperiod robust
optimization, we refer to [8,21,26]. In order to describe such a situation, and extend robust op-
timization to a dynamic framework, the concept of Adjustable Robust Counterpart (ARC) has
been first introduced and analyzed in [5]. This approach opened up the research in several new
application areas, such as portfolio optimization [39,46], inventory management [4,12], schedul-
ing [48], facility location [3], revenue management [37] and energy generation [49]. ARC is clearly
less conservative than the static robust approach, but in most cases it turns out to be computa-
tionally intractable. One of the most recent methods to cope with this difficulty is obtained by
approximating the adjustable decisions by decision rules, i.e. combinations of given basis func-
tions of the uncertainty. A particular case is the Affinely Adjustable Robust Counterpart (AARC)
[5], where the adjustable variables are affine functions of the uncertainty. The decision rule ap-
proximation often allows to obtain a formulation which is equivalent to a tractable optimization
problem (such as linear, quadratic and second-order conic [7], or semidefinite [28]), transforming
the original dynamic problem into a static robust optimization problem whose decision variables
are the coefficients of the linear combination. In [40] a methodology for constructing decision
rules for integer and continuous decision variables has been provided. The authors show by itera-
tively splitting the uncertainty set into subsets, how one can determine the later-period decisions
based on the revealed uncertain parameters.

However, in many practical cases, also the static robust optimization problem ensuing from
the decision rule approximation is still numerically intractable. In these situations, one can recur
to approximate solutions based on constraint sampling, which consists in taking into account only
a finite set of constraints, chosen at random among the possible continuum of constraint instances
of the uncertainty. The attractive feature of this method is to provide explicit random bounds
on the measure of the original constraints of the static problem that are possibly violated by the
randomized solution. The properties of the solutions provided by this approach, called scenario
approach have been studied in [15,18,20], where it has been shown that most of the constraints
of the original static problem are satisfied provided the number of scenarios sufficiently large.
The constraint sampling method has been also extensively studied within the chance constraint
approach through different directions by [24,30,36].

In [9,16,47] multi-stage convex robust optimization problems are solved by combining general
nonlinear decision rules and constraint sampling techniques. This means that the dynamic robust
optimization problem is transformed into a static one through decision rules approximation and
then solved via a scenario counterpart. In practice, the novelty of [47] is to introduce, besides
polynomial decision rules, also trigonometric monomials and basis functions based on sigmoidal
and Gaussian radial functions, thus allowing more flexibility. A rigorous convergence proof for
the optimal value, based on the decision rule approximation and of the constraint randomization
approach is also given. Convergence is proved when both the complexity parameter (the number
of basis functions in the decision rule approximation) and the number of scenarios tend to infinity.



Multi-stage robust optimization problems: A sampled scenario tree based approach 3

The work [9] proposes a technique based on structured adaptability that results in sample
complexity, i.e. the minimum number of samples required to achieve the desired probabilistic
guarantees, that is polynomial in the number of stages. This allows to provide a hierarchy of
adaptability schemes, not only for continuous problems, but also for discrete problems.

In the context of randomized methods for uncertain optimization control problems, the sce-
nario with certificates approach has been proposed in [25], based on an original idea of [35].
This approach has been then extended and exploited for anti-windup augmentation problems
[25]. The main idea of this approach is to distinguish between design variables (corresponding to
non-adjustable variables) and certificates (corresponding to adjustable variables).

Linear decision rules have a long history also in stochastic programming (see, e.g., [27]), and
have been adapted to Multi-stage Linear Stochastic Programming (MSLP) in [42], and recently
in Kuhn et al. [29] who analyzed their application in the dual of the MSLP. Under certain as-
sumption such as stagewise independence, compact and polyhedral support, if uncertainty is
limited to the right-hand side of the constraints, [29,42] have shown that the static approxi-
mations obtained restricting the primal and dual policies to be linear decision rules are both
tractable linear programs. Better policies have been obtained in [2,19] by considering polynomial
decision rules and piecewise linear decision rules respectively, while binary decision rules have
been considered in [10]. Recently [13] present a new use of linear decision rules for MLSP named
two-stage linear decision rule approach based on the idea of partitioning the decision variables
into state and recourse decisions and applying linear decision rules only to the state variables.
This approach allows to reduce the problem to a two-stage stochastic linear program with a
potentially improved policy and bounds. The approach is also applied to the dual of an MSLP,
imposing the restriction only on the dual variables associated with the state equations and they
show to obtain better bounds and policies than the the ones provided by the standard static
approach.

In this paper, we consider randomized methods for robust convex multi-stage optimization
problems. We approximate the given robust problem by a sampled subproblem via a scenario-tree
approximation, where instead of looking for the worst case among the infinite and typically un-
countable set of uncertain parameters, we consider only the worst case among a randomly selected
subset of parameters. In this way, we establish a link between multi-stage robust optimization
and multi-stage stochastic optimization. By adopting such a strategy, two main questions arise:
(1) Can we quantify the error committed by the random approximation, especially as a function
of the sample size and provide a bound on the violation probability of the ignored constraints?
(2) If the sample size tends to infinity, does the optimal value converge to the “true” optimal
value? Both questions will be answered in this paper.

To simplify the understanding, we first consider the two-stage case, and we show that the
theoretical sample complexity depends only on the number of first-stage variables. For the multi-
stage case, the contributions can be summarized as follows: (i) define the probability of violation
at each decision stage; (ii) provide a bound on the probability of violation by a function of
the number of nodes of the tree up to that stage, the number of decision variables at that
stage and the pre-specified violation tolerance; (iii) come up with an iterative scheme to define
a sufficiently large number of nodes of the tree at each stage; and lastly, (iv) define the total
violation probability as the probability of violation at any stage. Moreover, lower bounds on the
true optimal value by extending two commonly used relaxations from the stochastic programming
literature such as the wait-and-see problem, and the two-stage relaxation are provided. The
proposed ideas are illustrated on a simple inventory model for which the true optimal value can
be computed exactly. The way how the proposed algorithm works is shown by analyzing the
optimality gaps and empirical violation probabilities of the scenario-problem solutions, for many
levels of the violation threshold, for the two- and three-stage cases. While the main application
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considered deals with a linear objective and convex constraints, our bounds are valid also in the
more general setup of a convex objective and convex constraint sets.

The main difference between the approach proposed in this paper and the one in [47], is that
we do not change the decision model to a simpler one restricting the decision functions spaces
via decision-rule approximation. The asymptotic result they provide holds only, if the chosen
function space is such large that any continuous function can be uniformly approximated with
a sup-distance less than some chosen ǫ. By more sampling alone, the optimization gap cannot
be brought to zero. In our setup, we keep the model as it is and approximate it by sampling.
Moreover, the authors in [47] consider only sampled paths from the uncertain parameters, while
we consider complete sampled scenario trees, leading to a much stricter notion of the so called
violation probability, as it will be explained in detail in section 2.5. Furthermore, if the uncertainty
set is finite and we have sampled all points, then our solution is exact, while the decision-rule
approximation approach is typically not.

The rest of the paper is organized as follows. Section 2 discusses the formulations of two-
stage, multi-stage robust linear and convex programs, and provides a result on the probability
of violation. Bounds on the number of scenarios needed to obtain a user-prescribed guarantee of
violation is given. Section 3 provides a chain of inequalities among lower bounds on the optimal
value of the multi-stage robust optimization problem. Section 4 presents numerical results dealing
with a multi-stage inventory management problem. The conclusions follow.

2 Main results

2.1 Basic facts

We consider a multi-stage discrete-time decision problem, where the decisions at times t =
1, . . . , H + 1, denoted by xt ∈ Rnt have to be made under the presence of parameters ξt, t =
1, . . . , H. At time t, the values ξ1, . . . , ξt−1 are known, but for ξt it is known only that it lies in
some uncertainty set Ξt. The problem is to find optimal decisions under a worst-case objective,
making the problem of nested minimax type.

Typically, the uncertainty sets are uncountable and the only way of treating this problem is
by approximating the large uncertainty set by well chosen finite one. Notice that, in this paper,
we do not restrict the class of possible decisions.

The uncountable sets Ξt are replaced by finite subsets Ξ̃t. These subsets may be chosen by
minimizing the Pompeiu-Hausdorff distance between the large sets Ξt and the finite sets Ξ̃t, i.e.
by an optimal selection of points. However, in this paper we use the simplest way of extracting
points from larger sets: we do random sampling.

Notice that for a sampling method we need to define a probability measure P on Ξ = X
H
t=1Ξt.

While the proposed methods work for any probability measure on Ξt which has a Lebesgue
density which is bounded away from zero, we recommend to use, if possible, a uniform distribution
on Ξt for a ”fair” treatment of all points in Ξt and the product measure on Ξ. Notice that
we have to use the same probability measure for sampling and for calculation of the violation
probability. Theoretically, one could also try to construct a probability measure which makes the
”extremal” points more likely, but by treating some points less likely, we may have difficulties in
interpretating the violation probability.

By considering Nt independent random samples from Pt, for each t, finite subsets Ξ̂Nt

t of
sizes Nt are extracted from Ξt, and the multi-stage worst-case problem is solved with

Ξ1 × · · · × ΞH ,
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replaced by the finite sets
Ξ̂N1

1 × · · · × Ξ̂NH

H .

The technique to replace a possible infinite set of convex constraints by a random finite selection
of these constraints was originally introduced by Calafiore and Campi [15] and later improved
independently by Calafiore [14] as well as by Campi and Garatti [18]. The sampled sets Ξ̂Nt

t are
referred to as sampled scenarios. We remark that in the stochastic optimization literature the
use of a finite number of scenarios to represent the infinite possible realization of the uncertain
quantities ξt is rather popular, see e.g. [23,38,41].

We report here the Calafiore, Campi and Garatti main result, which is crucial for this paper.

Proposition 2.1 (CCG Theorem, Calafiore [14] and Campi and Garatti [18]) Consider
the robust optimization problem:

RO : min
x∈X

c⊤x (1)

s.t. f(x, ξ) ≤ 0, ∀ξ ∈ Ξ ,

or equivalently

RO : min
x∈X

{
c⊤x : sup

ξ∈Ξ

f(x, ξ) ≤ 0
}
, (2)

where x ∈ X ⊆ Rn is the optimization variable, X is convex and closed and f(x, ξ) : X× Ξ → R

is a convex function in x for all ξ ∈ Ξ. The optimal objective value v(·) of problem (1) is
denoted by v(RO). Suppose that Ξ is a compact set and P is a probability measure on it with
nonvanishing density. Let ξ(1), . . . , ξ(N) be independent scenarios from Ξ, sampled according to
PN = P× · · · × P, N times. The “scenario” approximation of problem (2) is defined as follows:

R̂O
N

: min
x∈X

{
c⊤x : max

i=1,...,N
f(x, ξ(i)) ≤ 0

}
, (3)

with the understanding that, in (3), we let the optimal solution v(R̂O
N
) = ∞ whenever the

random extraction ξ(1), . . . , ξ(N) leads to an infeasible problem. 1 The “violation probability”
V (·) of the sample Ξ̂N :=

{
ξ(1), . . . , ξ(N)

}
is defined as:

V (Ξ̂N ) := P

{
ξ(N+1) : min

x∈X

{
c⊤x : max

i=1,...,N+1
f(x, ξ(i)) ≤ 0

}
> v(R̂O

N
)

}
, (4)

where also ξ(N+1) is sampled from P. Notice that V is a random variable taking its values in
[0, 1]. Then the tail probability of V under P can be bounded by

P{V (Ξ̂N )>ǫ} ≤ B(N, ǫ, n) =
n∑

j=0

(
N
j

)
ǫj(1− ǫ)N−j . (5)

For any probability level ǫ ∈ (0, 1) and confidence level β ∈ (0, 1), let:

N(ǫ, β, n) := min



N ∈ N :

n∑

j=0

(
N
j

)
ǫj(1− ǫ)N−j ≤ β



 . (6)

Then N(ǫ, β, n) is a sample size which guarantees that the ǫ-violation probability given in (5) lies
below β.

1 Notice that v(R̂O
N
) = ∞ in (3) implies that also v(RO) = ∞ in (2) and detecting this, one may stop

sampling.
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Remark 2.1 (On the CCG Theorem) Notice that, in the CCG Theorem, we defined the violation
probability in terms of the cost function, following the approach in [14]. This allows to define
the violation also for possible situations in which the ensuing scenario problem (3) turns out to
be infeasible. It should also be remarked that the previous result holds under some assumptions
on the scenario problem (3). Namely, the CCG Theorem requires that it is guaranteed that
when problem (3) admits an optimal solution, this solution is unique (uniqueness), and that
it is nondegenerate with probability one (nondegeneracy). These assumptions are of technical
nature, and, as observed in [14], can be usually relaxed. For instance, uniqueness of the solution
can essentially be always obtained by imposing some suitable tie-breaking rule. Regarding the
definition degeneracy, we refer the reader to [14, 3.4] for a detailed discussion.

We remark that, in the literature, the minimum number of samples for which B(N, ǫ, n) ≤ β
holds for given ǫ ∈ (0, 1) and β ∈ (0, 1) is referred to as sample complexity , see for instance [45].
There exist several results in the literature about bounding the sample complexity. In particular,
in Lemma 1 and 2 in [1], it is proved that given ǫ ∈ (0, 1) and β ∈ (0, 1):

N(ǫ, β, n)≤ N∗(ǫ, β, n) :=
1

ǫ

e

e− 1

(
ln

1

β
+ n

)
, (7)

where e is the Euler constant and n is the dimension dim(·) of vector x, i.e. n = dim(x). This
bound gave a (numerically) significant improvement upon other bounds available in the literature
[14,17]. Notice that while bound (7) is certainty useful for estimating N , the problem in (6) can
be solved by using bisection or ready-made tools such as Matlab betainv, in order to get the
exact (tight) value of N .

The CCG Theorem can also be applied to the problem:

min
x

sup
ξ∈Ξ

{
g(x, ξ) : x ∈ X(ξ)

}
, (8)

where g : x 7→ g(x, ξ) is convex in x and X(ξ) are convex sets for all ξ ∈ Ξ. To see this, set:

f(x, ξ): = g(x, ξ) + ψX(ξ)(x) , (9)

where

ψB(x) :=

{
0 if x ∈ B

∞ otherwise.
(10)

Then f is convex in x and (8) can be written as:

min
x

sup
ξ∈Ξ

f(x, ξ) .

Finally, observe that this problem is equivalent to:

min
x,γ

{
γ : sup

ξ∈Ξ

f(x, ξ)− γ ≤ 0
}
.

This problem is of the standard form (2). Note that, in this case, the dimension of the decision
variable vector is dim(x) + dim(γ) = n+ 1.
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2.2 Two-stage robust linear case

To simplify our exposition, we first analyze a two-stage robust linear program, formally defined
as follows:2

RO2 : min
x1

c⊤1 x1 + sup
ξ1∈Ξ1

[
min
x2(ξ1)

c⊤2 (ξ1)x2(ξ1)

]
(11)

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ1)x1 +W2(ξ1)x2(ξ1) = h2(ξ1), x2(ξ1) ≥ 0, ∀ξ1 ∈ Ξ1 ,

where c1 ∈ Rn1 and h1 ∈ Rm1 are known vectors and A ∈ Rm1×n1 is a given (known) matrix.
The uncertain parameter vectors and matrices as functions of the uncertain factor ξ1 are given
by h2(ξ1) ∈ Rm2 , c2(ξ1) ∈ Rn2 , T1(ξ1) ∈ Rm2×n1 , and W2(ξ1) ∈ Rm2×n2 . Ξ1 is a compact set in
Rk1 . The goal is to find a first-stage decision x1 and a second-stage decision function ξ1 7→ x2(ξ1),
such that the cost function in the worst-case realization of ξ1 ∈ Ξ1 is minimized. To this end, we
first remark that problem (11) can equivalently be rewritten as follows:

RO2 : min
x1∈X1

{
c⊤1 x1 + R(x1)

}
, (12)

where
X1 := {x1 ≥ 0 : Ax1 = h1} , (13)

and R(x1) is the worst-case recourse function

R(x1) := sup
ξ1∈Ξ1

Q (x1, ξ1) ,

with Q (x1, ξ1) being the recourse function

Q(x1, ξ1) := min
x2(ξ1)

c⊤2 (ξ1)x2(ξ1) (14)

s.t. T1(ξ1)x1 +W2(ξ1)x2(ξ1) = h2(ξ1)

x2(ξ1) ≥ 0 .

Since RO2 in (11) is of minimax type, we have to make the used notion of feasibility more
precise. This is discussed in the next remark.

Remark 2.2 (On the feasibility of RO2) Define the feasible set at stage 2 for given x1 and ξ1 as
follows:

X2(x1, ξ1) := {x2 ≥ 0 : T1(ξ1)x1 +W2(ξ1)x2 = h2(ξ1)} . (15)

Notice that the worst-case recourse function can be expressed in terms of (15):

R(x1) = sup
ξ1∈Ξ1

min
x2∈X2(x1,ξ1)

c⊤2 (ξ1)x2(ξ1) .

Define X2(x1) :=
⋂

ξ1∈Ξ1
X2(x1, ξ1). For all x1 such that X2(x1) = ∅, we set R(x1) = ∞. Then,

we set Feas = {x1 ≥ 0 : Ax1 = h1,X2(x1) 6= ∅}. Notice that the problem has relatively complete
recourse iff Feas = X1. If Feas = ∅, we set the optimal objective value v(RO2) to ∞.

It may happen that all second-stage problems are unbounded, i.e. R(x1) = −∞ for some
x1 ∈ Feas 6= ∅. In this case we assign the value v(RO2) = −∞. However an infeasible first-stage

2 We adopt the convention of putting as lower indices the number of stages of the problem, e.g. RO2 denotes
a two-stage robust linear problem (H = 1).
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(i.e. Feas = ∅ with v(RO2) = ∞) is not compensated by an unbounded second stage and gives
the value v(RO2) = ∞. This resolves the problem about ∞−∞. An infeasible second stage for
some ξ1 makes the problem infeasible, even if the first-stage would be unbounded.

If RO2 is feasible and bounded, its optimal value is neither ∞ nor −∞. In this case, the
optimum v(RO2) may be attained or not in general (but by our assumptions the optimum is
always attained). Suppose that the optimal value v(RO2) with −∞ < v(RO2) < ∞ is attained.
Then a solution set consists of all pairs (x1, ξ1 7→ x2(ξ1)) such that x1 ∈ Feas and x2(ξ1) ∈
X2(x1, ξ1) for all ξ1 ∈ Ξ1 such that

c⊤1 x1 + sup
ξ1∈Ξ1

c⊤2 (ξ1)x2(ξ1) = v(RO2) .

Notice that we do not require that x2(ξ1) are in the argmins of minx2(ξ1){c
⊤
2 (ξ1)x2(ξ1) : x2(ξ1) ∈

X2(x1, ξ1)} for all ξ1 ∈ Ξ1.

It is immediate to observe that problem RO2 rewrites as follows:

RO2 : min
x1∈X1

{
c⊤1 x1 + γ : sup

ξ1∈Ξ1

Q (x1, ξ1)− γ ≤ 0

}
. (16)

A key observation of this section is the fact that the above problem is exactly in the form of
the CCG Theorem. Indeed, we remark that the function Q (x1, ξ1) as defined in (14) is a convex
function in x1. This follows from the structure of (14) and the fact that if (x, y) 7→ f(x, y) is
jointly convex, then x 7→ miny f(x, y) is also convex.

The above observation justifies the adoption of a sampling approach, based on the random
extraction of N1 independent identically distributed (iid) scenarios:

Ξ̂N1
1 :=

{
ξ
(1)
1 , . . . , ξ

(N1)
1

}
,

of the random variable ξ1, similarly to what is proposed in [47]. Recall that P has a nonvanishing

density on the compact set Ξ. Let T1(ξ
(i)
1 ), h2(ξ

(i)
1 ), c2(ξ

(i)
1 ) be the realization of T1(ξ1), h2(ξ1)

and c2(ξ1) under scenario ξ
(i)
1 , i = 1, . . . , N1, and let x

(i)
2 be the second-stage (adjustable) design

variables created for the scenarios ξ
(i)
1 , i = 1, . . . , N1.

These scenarios are used to construct the following sample-based approximation based on N1

instances of the uncertain constraints:

R̂O
N1

2 : min
x1∈X1,γ

{
c⊤1 x1 + γ : max

i=1,...,N1

Q
(
x1, ξ

(i)
1

)
− γ ≤ 0

}
.

We note that the above problem explicitly rewrites as follows:

R̂O
N1

2 : min
x1∈X1,γ,x

(1)
2 ,...,x

(N1)
2

c⊤1 x1 + γ (17)

s.t. c⊤2 (ξ
(i)
1 )x

(i)
2 ≤ γ, i = 1, . . . , N1

T1(ξ
(i)
1 )x1 +W2(ξ

(i)
1 )x

(i)
2 = h2(ξ

(i)
1 ), i = 1, . . . , N1

x
(i)
2 ≥ 0, i = 1, . . . , N1 .

We define now the violation probability V1 for the two-stage case as:

V1(Ξ̂
N1
1 ) := P

{
ξ(N1+1) : v(R̂O

N1+1

2 ) > v(R̂O
N1

2 )
}
. (18)
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The interpretation of the violation probability is as follows: if we consider the sampled

problem R̂O
N1

2 , then V1(Ξ̂
N1
1 ) is the probability that we encounter an (yet unseen) uncertainty

realization ξ
(N1+1)
1 leading to a cost v(R̂O

N1+1

2 ) larger than v(R̂O
N1

2 ). Notice that, in the light
of Remark 2, a larger cost could also mean that the problem becomes infeasible at stage two (we
have in this case that the cost is infinite). Hence, the smaller is V1, the higher is the probability
that the solution at stage one will lead to a feasible stage two problem, and that no cost increase
is observed.

We are hence in the position of providing a rigorous result connecting the violation probability

to the number of scenarios N1 adopted in the construction of the R̂O
N1

2 problem.

An easy consequence of the basic Proposition 2.1 is the following result (see [25]).

Theorem 2.1 (two-stage robust linear case) Given an accuracy level ǫ ∈ (0, 1), the violation

probability of the sample-based problem R̂O
N1

2 , based on the random extraction of N1 iid scenarios
of ξ1, is bounded as:

P

{
V1(Ξ̂

N1
1 ) > ǫ

}
≤ B(N1, ǫ, n1 + 1) , (19)

where B(N1, ǫ, n1 + 1) is as in (5) with n1 = dim(x1) and 1 = dim(γ).

Note that equation (7) can be used to obtain a priori the number of scenarios N1 (i.e. the
sample complexity) necessary to guarantee the desired level of confidence β that the violation
probability V1(Ξ̂

N1
1 ) is less than a pre-determined desired level ǫ. It is important to highlight that

the number of scenarios N1 in formula (7) depends only on the dimension of first-stage variables
(non-adjustable variables); thus it reduces the number of scenarios needed to satisfy a prescribed
level of violation with respect to that proposed in [47].

2.3 Connections with scenario with certificates approach

It is interesting to observe that problem RO2 can be restated as the following robust with certifi-
cates RwC2 problem:

RwC2 : min
x1∈X1,γ

c⊤1 x1 + γ

s.t. ∀ξ1 ∈ Ξ1, ∃ x2(ξ1) satisfying

c⊤2 (ξ1)x2(ξ1) ≤ γ

x2(ξ1) ≥ 0, T1(ξ1)x1 +W2(ξ1)x2(ξ1) = h2(ξ1) ,

where we distinguish between design variables (x1, γ) and certificates x2(ξ1). This problem does
not contain a nested optimization as RO2. It is just a standard optimization problem with possibly
infinitely many variables and infinitely many constraints. RwC2 is feasible, if its constraint set
is non-empty (otherwise we set its optimal value to ∞). It is bounded, if it is feasible and its
optimal value is not −∞. We set the optimal value v(RwC2) to ∞ if RwC2 is not feasible and
to −∞ if it is unbounded.

It should be noted that the two formulations are equivalent, as formally proved in the next
Theorem. We remark that a similar result can be found in [44]. We provide the proof in Ap-
pendix A for completeness.
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Theorem 2.2 RO2 and RwC2 are equivalent formulations, i.e. RO2 is feasible and bounded if
and only if RwC2 is feasible and bounded. In the case of feasibility and boundedness, the optimal
value is either attained by both or by none. If the optimal value is attained, the optimal solution
values coincide.

We note that in problem R̂O
N1

2 , a certificate x
(i)
2 is constructed for every scenario ξ

(i)
1 . The

rationale behind this approach is the following: We are not interested in the explicit knowledge of
the function x2(ξ1), we are content with the fact that for every possible value of the uncertainty
there exists a possible choice of x2 compatible with the ensuing realization of the constraints.
Note that this represents a key difference with respect to other sampling based approaches. In
particular, in [47] different explicit parametrizations of the decision function x2(ξ1) forming an
M -dimensional subspace are introduced. It is easy to infer how this latter approach is bound to
being more conservative, since the an extra constraint on the solution space is introduced.

Indeed, in the proof of Corollary 1 in [47], the number of required scenarios of the decision-rule
approximation, which has extra first-stage decision variables corresponding to the basis functions,
depends on the size of the basis and on the number of decision variables at each stage i.e. in (7)
they need to set the dimension n of the decision vector to n = 1+n1 ·M instead of n = 1+n1 of
our approach. On the other hand, the number of decision variables used in our approach is larger
than those used in [47], due to the introduction of sample-dependent certificates (or second-stage
decision variables). In Section 2.5 we will analyze in details the main differences between our
approach and the decision-rule approximation one proposed in [47].

It is clear that the approximate solution returned by problem R̂O
N1

2 is optimistic, since it
considers only a subset of possible scenarios. That is, the following bound holds for all N1:

v(R̂O
N1

2 ) ≤ v(RO2) . (20)

Hence, we have derived a lower bound, which by construction is better than bounds derived
using wait-and-see approaches, as discussed in Section 3. Moreover, it is easy to show that the
formulation is consistent, that is:

lim
N1→∞

v(R̂O
N1

2 ) = v(RO2) a.s.

A proof of the convergence of R̂O
N1

2 to RO2 is given in the Appendix B in a more general setting.

2.4 Multi-stage robust linear case

We are now ready to introduce the multi-stage generalization of RO2, see (11). We denote by
ξ
t
:= (ξ1, . . . , ξt) the history of the uncertainty up to time t. We consider the following robust
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linear program over H + 1 stages:

ROH+1 : min
x1

c⊤1x1 + (21)

+ sup
ξ1∈Ξ1

[
min
x2(ξ1)

c⊤2(ξ1)x2(ξ1) + sup
ξ2∈Ξ2

[
· · ·+ sup

ξH∈ΞH

[
min

xH+1(ξ
H
)
c⊤H+1(ξH)xH+1

(
ξ
H

)]]]

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ1)x1 +W2(ξ1)x2(ξ1) = h2(ξ1), ∀ξ1 ∈ Ξ1

...

TH(ξH)xH(ξ
H−1

) +WH+1(ξH)xH+1(ξH) = hH+1(ξH), ∀ξH ∈ ΞH

xt(ξt−1
) ≥ 0 ∀ξt−1 ∈ Ξt−1; t = 2, . . . , H + 1 ,

where c1 ∈ Rn1 and h1 ∈ Rm1 are known vectors and A ∈ Rm1×n1 is a known matrix. The
uncertain parameter vectors and matrices depending on the parameters ξt ∈ Ξt are then given
by ht ∈ Rmt , ct ∈ Rnt , Tt−1 ∈ Rmt×nt−1 , and Wt ∈ Rmt×nt , t = 2, . . . , H + 1. Ξt are compact
sets in Rkt .

There is an important difference between the two-stage case and the three- (or more-) stage
case, due to the dynamic character of the multi-stage model: Since the optimization problems in
(21) over stages are nested, they cannot be written as one big optimization problem unless new
additional constraints are formulated, that is decisions at stage t are not allowed to depend on
ξ-values from later stages. This property of non-anticipativity requires to reconsider the notion
of random sampling and constraint violation. Indeed, the correct data structure for a multi-stage
(non-anticipative) robust optimization problem is a tree of ξ-values and not just a collection of
ξ-vectors. This tree has height H. A relevant random draw from the uncertainty set Ξ = X

H
t=1Ξt

is the collection of independently sampled values:

Ξ̂N1
1 = {ξ

(1)
1 , . . . , ξ

(N1)
1 } ,

Ξ̂N2
2 = {ξ

(1)
2 , . . . , ξ

(N2)
2 } ,

...

Ξ̂NH

H = {ξ
(1)
H , . . . , ξ

(NH)
H } ,

which can be organized as a tree T̂ N1,...,NH , where {ξ
(1)
1 , . . . , ξ

(N1)
1 } are the successors of the root,

and recursively all nodes at stage t+ 1 get all values from ΞNt

t as successors. Notice that this is
a random tree (as it depends on the sample) and that the number of nodes at stage t+ 1 of the
tree is N̄t :=

∏t
s=1Ns. The total number of nodes of the tree is hence:

Ntot := 1 +

H∑

i=1

N̄i = 1 +N1 +N1N2 + · · ·+N1N2 · · ·NH .

For each node of the finite tree T̂ N1,...,NH one has to consider a decision variable x. Let
ξ
(i1)
1 , ξ

(i2)
2 , . . . , ξ

(iH)
H with i1 = 1, . . . , N1, i2 = 1, . . . , N2, . . . , iH = 1, . . . , NH be a path of the

tree and let x
(i1)
1 , x

(i1i2)
2 , . . . , x

(i1...iH)
H the corresponding decision variables3. The finite problem

3 Because of the general setup of the model, the decisions may be path dependent.
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on the sampled tree can be written as:

R̂O
N1···NH

H+1 : min
x1

c⊤1x1 + (22)

+max
i1

[
min
x
(i1)
2

c⊤2(ξ
(i1)
1 )x

(i1)
2 +max

i2

[
· · ·+max

iH

[
min

x
(i1...iH )

H+1

c⊤H+1(ξ
(iH)
H )x

(i1...iH)
H+1

]]]

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ
(i1)
1 )x1 +W2(ξ

(i1)
1 )x

(i1)
2 = h

(i1)
2 , ∀i1 = 1, . . . , N1

...

TH(ξ
(iH)
H )x

(i1...iH−1)
H +WH+1(ξ

(iH)
H )x

(i1...iH)
H+1 = hH+1(ξ

(iH)
H ), ∀iH = 1, . . . , NH

x
(i1...it)
t ≥ 0 , t = 1, . . . , H + 1; ∀i1, . . . , iH .

The purpose of this paper is to compute a bound for the violation probability of the optimal

value obtained by the sampled version R̂O
N1···NH

H+1 given by (22), and to show that the optimal
values of the sampled version converge to those of the basic problem ROH+1 (see (21)), when the
sampling rates tend to infinity.

2.5 The violation probability at stage t

First note that there is a one-to-one correspondence between a multisample Ξ̂N1
1 ×· · ·×Ξ̂NH

H and

the sample scenario tree T̂ N1,...,NH . For a fixed tree T̂ N1,...,NH , the robust optimization problem
(22) may be solved, leading to an optimal value of:

v(T̂ N1,...,NH ):= v(R̂O
N1···NH

H+1 ) .

Notice that this value is by construction a lower bound to the optimal value v(ROH+1) of the
original infinite problem (21).

As a first step, we define the probability of violation at stage t. To this end, we add a new

scenario ξ
(Nt+1)
t from Ξt to the original data set, and form the associated tree T̂ N1,...,Nt+1,...,NH .

Then, a violation at stage t occurs, if solving the finite problem on this new extended tree leads to
a higher value than for the smaller tree T̂ N1,...,NH . Given the previously sampled tree T̂ N1,...,NH ,
the probability of stage t violation is therefore given by:

Vt(T̂
N1,...,NH ) := Vt(Ξ̂

N1
1 , . . . , Ξ̂NH

H ): = P

{
ξ
(Nt+1)
t : v(T̂ N1,...,Nt+1,...,NH ) > v(T̂ N1,...,NH )

}
.

(23)
Before discussing how to derive bounds on the probability distribution of Vt, we illustrate

with a simple example the meaning of the concepts introduced so far.

Illustration. For a simple illustration, assume that Ξ1 = Ξ2 = [0, 1]. We sampled from

Ξ1 the three values ξ
(1)
1 = 0.2, ξ

(2)
1 = 0.6, ξ

(3)
1 = 0.8 and from Ξ2 the two values ξ

(1)
2 = 0.3,

ξ
(2)
2 = 0.8. The corresponding sampled tree T̂ 3,2 is shown in Figure 1. As before, we denote the

optimal value based on the (random) data of tree T̂ 3,2 by v(T̂ 3,2). In order to define the stage

1 violation probability, we sample a new point ξ
(4)
1 = 0.4 ∈ Ξ1 and form the new, extended

tree T̂ 4,2 (see Figure 2). A violation V1 occurs, if v(T̂ 4,2) > v(T̂ 3,2) and the stage 1 violation
probability is the probability of the random draw ξ41 which results in a violation. Similarly, we
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may define the stage 2 violation probability. Sample a new point ξ
(3)
2 = 0.5 and form the tree

given in Figure 3. A stage 2 violation occurs, if the optimal value on tree T̂ 3,3 is larger than the
optimal value on tree T̂ 3,2, i.e. whenever v(T̂ 3,3) > v(T̂ 3,2).
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Fig. 1 The original sampled tree T̂ 3,2.
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Fig. 2 The randomly extended tree T̂ 4,2. The new nodes are in bold.

There is an important difference between the work of Vayanos et al. [47] and our approach.
We assume that the total uncertainty set is the cartesian product set Ξ = ×H

t=1Ξt and consider
therefore trees, while [47] consider always paths. To illustrate it, suppose that we sample N paths

from the product set Ξ = Ξ1,× · · ·×ΞH denoted by (ξ
(i)
1 , . . . , ξ

(i)
H ) for i = 1, . . . , N . Since Ξ has

product structure, any combination of points from Ξt, t = 1, . . . , H is a valid point in Ξ. Thus
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Fig. 3 The randomly extended tree T̂ 3,3. The new nodes are in bold.

by sampling N path, we get in fact NH points

(ξ
(i1)
1 , . . . , ξ

(it)
t , . . . , ξ

(iH)
H ), it ∈ {1, . . . , N} ,

i.e. all possible selections of N points from Ξ̂t, t = 1, . . . , H. These selections can be organised
in a tree with NH leaves. Since our tree contains NH paths and not just N , a violation is much
more likely to occur and be detected earlier than in the path-oriented approach.

The calculation ignoring the combined samples leads to an underestimation of the true value
(the true costs) of the underlying problem and also the violation probability. Compared to [47],
our notion of violation is different and stronger. The tree structure as we consider it in this paper
guarantees the best (lower) bound of the true value, which is obtainable from all the samples
obtained so far.

Moreover, we allow different sample sizes Nt for different stages, which may be important,
since often the sizes of the uncertainty sets vary and increase by stages (see Remark 2.3). In the
case that Ξ is not a product set, not all combinations of selections are valid points in Ξ and
the tree may smaller, i.e. contain less leaves than NH . However, the product form is a standard
assumption in robust multi-stage optimization.

In the following, we further illustrate the difference between the path-oriented approach as
in [47] and the tree structured model.

Example. Consider a three-stage problem (H = 2) with two sampled points ξ
(1)
1 , ξ

(2)
1 ∈ Ξ1

and two sampled points ξ
(1)
2 , ξ

(2)
2 ∈ Ξ2. In Figure 4, the path-oriented problem as in [47] and our

tree-structured problem are depicted for illustration.
W.l.o.g. we set A = I;h1 = 0 and therefore x1 = 0 and T1(ξ1) = 0. Set

cji := cj(ξ
(i)
j−1), i = 1, 2; j = 2, 3

Tji := Tj(ξ
(i)
j ), i = 1, 2; j = 2

Wji := Wj(ξ
(i)
j−1), i = 1, 2; j = 2, 3

hji := hj(ξ
(i)
j−1), i = 1, 2; j = 2, 3

xji := xj(ξ
(i)
j ), i = 1, 2; j = 2, 3 .
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Fig. 4 Left: A fan with 2 paths. Right: The pertaining tree using the same data has 22 = 4 paths.

We consider a problem including equality and inequality constraints, which can be brought to
the form (21) by introducing slack variables:

min (max (c21x21, c22x22) + max (c31x31, c32x32))

s.t. W21x21 = h21

W22x22 = h22

T21x21 +W31x31 ≤ h31

T22x22 +W32x32 = h32

T21x21 +W32x32 = h32 (24)

T22x22 +W31x31 ≤ h31 (25)

xji ≥ 0, i = 1, 2; j = 2, 3 .

If one argues pathwise then there are only two paths: (ξ
(1)
1 , ξ

(1)
2 ) and (ξ

(2)
1 , ξ

(2)
2 ) and the con-

straints (24) and (25) disappear.
For the concrete choice consider:

(W21,W22,W31,W32) = (1, 1, 1, 1)

(T21, T22) = (1, 1)

(h21, h22, h31, h32) = (1, 2, 2, 2) .

One can see that the path-oriented problem without constraints (24) and (25) is feasible, while
the tree-structured problem including these two constraints is infeasible. Therefore the tree-
structured problem may detect violation earlier than the path-oriented problem since we allow
violation to occur at every stage by adding a new point from ξNt+1

t ∈ Ξt and not only sampling

a complete new path
(
ξ
(N+1)
1 , . . . , ξ

(N+1)
H

)
as is done in [47].

In order to prove the main result of this section, we use a variable-split notation for the tree
T̂ N1,...,NH . The tree has N̄H =

∏H
s=1Ns leaves, indexed by ℓ = 1, . . . , N̄H . Notice that the leaves

represent the random scenarios, i.e. there is a one-to-one correspondence between the scenarios
and the tree leaves. Hence, to select a sample path ξ

H
, we may equivalently select a leaf index ℓ.

For every leaf ℓ the index of the predecessor at stage t is denoted by pt(ℓ). Moreover, we
introduce the relation ℓ1 ∼t ℓ2, to denote the fact that the leaves ℓ1, ℓ2 share the same predecessors
at stage t, i.e. pt(ℓ1) = pt(ℓ2). We denote by xt,ℓ the decision variable at stage t for the scenario
ℓ. Note that, in principle, a different decision xt,ℓ has to be made at each stage t ∈ 1, . . . , H + 1
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and for each scenario ℓ ∈ 1, . . . , N̄H . However, the non-anticipativity condition requires that
xt,ℓ1 = xt,ℓ2 , if ℓ1 ∼t ℓ2, that is if the leaves ℓ1, ℓ2 share the same predecessor at stage t.

Formally, at each stage t we have an N̄H -vector xt,·, containing the different decisions at stage
t corresponding to the different scenarios/sample-paths. However, as observed, the relation ∼t –
and the related non-anticipativity constraints – dissects the set {1, 2, . . . , N̄H} into equivalence
classes. The constraint that decisions in the same equivalence class must share the same value
can be expressed by the condition (xt,·) ∈ It where It is a linear subspace. For instance, all
vectors (x1,·) ∈ I1 have all identical components, and for t > 1 some subgroups of components
must share the same value.

These considerations allow us to reformulate our basic multi-stage robust problem. To this
end, let, X1 = {x1 ≥ 0 : Ax1 = h1} as in (13), and define:

Xt(xt−1, ξt−1) := {xt ≥ 0 : Tt−1(ξt−1)xt−1 +Wt(ξt−1)xt = ht(ξt−1)} .

The basic problem R̂O
N1···NH

H+1 formulated on the sampled tree can be written in a compact
form as:

R̂O
N1···NH

H+1 : min
(x1,·)∈I1

max
ℓ

min
(x2,·)∈I2

max
ℓ

min
(x3,·)∈I3

. . .max
ℓ
fℓ(x1,ℓ, . . . , xH,ℓ, xH+1,ℓ) , (26)

where the functions fℓ are defined as follows, for ℓ = 1, . . . , N̄H

fℓ(x1,ℓ, . . . , xH+1,ℓ) := c⊤1 x1,ℓ + ψX1
(x1,ℓ) +

H+1∑

t=2

(c⊤t,ℓxt,ℓ + ψXt(xt−1,ℓ,ξpt(ℓ))
(xt,ℓ)) ,

where ψ(·) is defined in (10) and ct,ℓ is the cost at stage t in scenario ℓ. Notice that, in (26), the
minima can be taken over all paths ℓ, since if ℓ1 ∼t ℓ2, then the function values for ℓ1 and ℓ2 are
identical.

Let us now introduce the first-stage objective function:

f̄(x1, ℓ) = min
(x2,·)∈I2

max
ℓ

min
(x3,·)∈I3

. . .max
ℓ
fℓ(x1,ℓ, . . . , xH+1,ℓ) .

Two crucial observations can be made about the function f̄(x1, ℓ):

1. The function f̄(x1, ℓ) is constant on the equivalence classes given by I2. In particular, one
may write it as f̄(x1, ξ1).

2. The function is convex in the variable x1 for given ℓ (and hence, for given ξ1).
In particular, the convexity of f̄ in x1 can be seen from the following two facts:
i) If (x, y) 7→ f(x, y) is jointly convex, then x 7→ miny f(x, y) is also convex.
ii) The maximum of convex functions is convex.
These properties hold for our case at hand (and it is the basic underlying reason in the
scenario with certificates results in [25]).

Now, we keep the samples Ξ̂2, . . . , Ξ̂H fixed and look only at the dependency on ξ1. In
particular, to analyze the first-stage violation, we introduce a previously unobserved random

value ξ
(N1+1)
1 at stage one, keeping all the other stages fixed. It is immediate to observe that we

are again in the standard setup of Proposition 1. Indeed, we find that the violation probability
at stage one is the violation probability of the problem:

min
x1

max
ξ1

f̄(x1, ξ1) .
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Therefore, we get the estimate:

P

{
V1(Ξ̂

N1
1 , . . . , Ξ̂NH

H )>ǫ
}
≤ B(N1, ǫ, n1 + 1) , (27)

where n1 = dim(x1) and 1 = dim(γ1) with

γ1 := max
ℓ

min
(x2,·)∈I2

max
ℓ

min
(x3,·)∈I3

. . .max
ℓ
fℓ(x1,ℓ, . . . , xH,ℓ, xH+1,ℓ) .

Similarly, at stage t, there are N̄t−1 =
∏t−1

s=1Ns nodes of the tree. Denoting with T̂ Nt,...,NH

j the
sub-tree born from node j, the violation probability at stage t and a fixed node j defined as

Vt,j(Ξ̂
N1
1 , . . . , Ξ̂NH

H ) := P

{
ξ
(Nt+1)
t : v(T̂ Nt+1,...,NH

j ) > v(T̂ Nt,...,NH

j )
}
, (28)

and it follows that

P

{
Vt,j(Ξ̂

N1
1 , . . . , Ξ̂NH

H )>ǫ
}
≤ B(Nt, ǫ, nt + 1),

where as before nt = dim(xt) and 1 = dim(γt−1) with

γt−1 := min
(xt,·)∈It

. . .max
ℓ
fℓ(x1,ℓ, . . . , xH,ℓ, xH+1,ℓ) .

Notice that this bound does not depend on j. Now:

Vt(Ξ̂
N1
1 , . . . , Ξ̂NH

H ) = P

{
Violation at any node at stage t|Ξ̂N1

1 , . . . , Ξ̂NH

H

}

≤

N̄t−1∑

j=1

P

{
Violation at node j at stage t |Ξ̂N1

1 , . . . , Ξ̂NH

H

}

=

N̄t−1∑

j=1

Vt,j(Ξ̂
N1
1 , . . . , Ξ̂NH

H ) ,

where the inequality follows by the fact that Vt,j , j = 1, . . . , N̄t−1 are possibly dependent random
variables. Now, we use the following result (whose proof is reported in Appendix C):

Lemma 2.1 Let Z1, . . . , ZK be a sequence of identically distributed, but possibly dependent ran-
dom variables. Then

P

{
K∑

i=1

Zi ≥ z

}
≤ KP {Zi ≥ z/K} . (29)

This gives:

P





N̄t−1∑

j=1

Vt,j(Ξ̂
N1
1 , . . . , Ξ̂NH

H )>ǫ



 ≤ N̄t−1B(Nt, ǫ/N̄t−1, nt+1) ,

assuming that the probability distribution P has nonvanishing Lebesgue density.
The above line of reasoning proves the following theorem, which constitutes the main result of
this paper.
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Theorem 2.3 (Violation probability at stage t of sampled scenario tree) Given an

accuracy level ǫ ∈ (0, 1), let N̄t−1 =
∏t−1

s=1Ns and ǫt := ǫ/N̄t−1. Then, the probability of violation

at stage t, Vt(Ξ̂
N1 , . . . , Ξ̂NH ) defined in (23), is bounded as:

P

{
Vt(Ξ̂

N1 , . . . , Ξ̂NH )>ǫ
}
≤ N̄t−1B(Nt, ǫt, nt + 1) , (30)

where nt = dim(xt).

Remark 2.3 In the light of the above result, we can derive the required sample size to guarantee
an ǫ-exceedance of the stagewise violations Vt, t = 1, . . . , H being smaller than β:

– N1 has to be chosen larger than N∗
1 = 1

ǫ
e

e−1 (ln
1
β
+ n1 + 1).

– Given N∗
1 , the number N2 has to be at least N∗

2 =
N∗

1
2

ǫ
e

e−1 (ln
1
β
+ n2 + 1).

– Given the valuesN∗
1 , . . . , N

∗
t−1, form N̄∗

t−1 =
∏t−1

s=1N
∗
s and chooseNt at leastN

∗
t =

N̄∗2
t−1

ǫ
e

e−1 (ln
1
β
+

nt + 1).

Example. Notice that these sample sizes are calculated under a worst-case setup. In practical
cases one needs much fewer samples. Here is a table for the required sample size resulting from
our above calculations, assuming that nt = 2.

ǫ β N∗
1 N∗

2

0.2 0.1 42 74088
0.1 0.1 84 592704
0.2 0.05 48 110592
0.1 0.05 95 857375

Remark 2.4 Notice that the sample complexity result given in Theorem 2.3 can be easily extended
with similar considerations to multi-stage convex robust programs of the following type:

CROH+1 : min
x1,x2(ξ1),...,xH+1(ξ

H
)
sup

ξ
H
∈Ξ

g(x1, x2(ξ1), . . . , xH+1(ξH), ξ
H
)

s.t. h(x1, x2(ξ1), . . . , xH+1(ξH), ξ
H
) ≤ 0, ∀ξ

H
∈ Ξ

x1 ≥ 0 , xt(ξt−1
) ≥ 0 , t = 2, . . . , H + 1 ,

where g : R
∑H+1

t=1 nt ×Ξ → R and h : R
∑H+1

t=1 nt ×Ξ → R are convex in xt ∈ R
nt

+ , t = 1, . . . , H + 1
and continuous in (xt, ξH).

2.6 The “total” violation probability

Theorem 2.3 provides a way to bound the probability of violation at stage t. This result can be
used to bound the probability of “total” violation, which we define as the probability of violating
at any stage t. Formally we write:

Vtot(Ξ̂
N1
1 , . . . , Ξ̂NH

H ) :=P

{
ξ
(N1+1)
1 , . . . , ξ

(NH+1)
H : ∃t s.t. v(T̂ N1,...,Nt+1,...,NH )>v(T̂ N1,...,NH )

}
. (31)

We note that that the above quantity may be immediately bounded as follows:

Vtot(Ξ̂
N1
1 , . . . , Ξ̂NH

H ) ≤ V1(Ξ̂
N1
1 , . . . , Ξ̂NH

H ) + · · ·+ VH(Ξ̂N1
1 , . . . , Ξ̂NH

H ) .
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3 Lower Bounds for Multi-stage Linear Robust Optimization Problems

Due to the large number of required samples, problem R̂O
N1...NH

H+1 is typically difficult to solve.
Consequently, it is advisable to solve simpler problems allowing to obtain at least guaranteed

bounds for it. Notice that R̂O
N1...NH

H+1 gives a lower bound for the original problem ROH+1 for any
size of the random extractions. As to upper bounds, any feasible decision of the original problem
gives an upper bound. Thus, by extending the solution of the sampled subproblem to a solution
of the original problem, guaranteed upper bounds are obtained. An extension would assign the
decision xt to a history (ξ1, . . . , ξt), by taking the same value as assigned to the nearest history

(ξ
(i1)
1 , ξ

(i112)
2 , . . . , ξ

(i1,...,it)
t in the sample.

Several construction priciples for lower bounds are known in the context of stochastic pro-
gramming, see for instance [31,32,33,34]. Here we adapt them for the sampled scenario approach
and compare them in terms of optimal objective function values for the case of robust multi-stage
linear programs. We remark that a general principle for obtaining lower bounds is to relax some
of the constraints. Relaxing non-anticipativity constraints leads typically to a computationally
much simpler problem, especially for the sampled approximations (see later).

First, we introduce the robust multi-stage wait-and-see problem RWSH+1, where the realiza-
tions of all the history of the random parameters ξ

H
= (ξ1, . . . , ξH) are assumed to be known at

the first-stage. This problem takes the following form:

RWSH+1 : sup
ξ
H

min
x1(ξ

H
),...,xH+1(ξ

H
)
c⊤1 x1(ξH) +. . .+ c⊤H+1(ξH)xH+1(ξH) (32)

s.t. Ax1(ξH) = h1, x1(ξH) ≥ 0

T1(ξ1)x1(ξH) +W2(ξ1)x2(ξH) = h2(ξ1)

...

TH(ξH)xH(ξ
H
) +WH+1(ξH)xH+1(ξH)=hH+1(ξH)

xt(ξH) ≥ 0 , t = 2, . . . , H + 1 .

Notice that, in the above setup, the minimum and supremum have been exchanged. Hence, the
decision process has become anticipative, since the decisions x1, x2, . . . , xH+1 depend on a given
realization of ξ

H
.

We introduce the following definition, which is an immediate extension of the concept of
Expected Value of Perfect Information for stochastic programs:

Definition 3.1 The difference

RVPIH+1 := v(ROH+1)− v(RWSH+1) , (33)

denotes the Robust Value of Perfect Information and compares robust multi-stage wait-and-see
RWSH+1 with robust multi-stage ROH+1.

Note that the RVPIH+1 can be interpreted as a measure of the advantage of reaching perfect
information in advance: A small RVPIH+1 indicates a small advantage for reaching the perfect
information since all possible realizations of uncertainty have similar costs. In particular, the
following inequality can be proven.

Proposition 3.1 (lower bound for ROH+1) Given the robust multi-stage linear optimization
problem ROH+1 defined in (21), and the robust multi-stage wait-and-see problem RWSH+1 defined
in (32), the following inequality holds true:

v(RWSH+1) ≤ v(ROH+1) . (34)
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The proof is given in Appendix D.

A second lower bound for problem ROH+1 can be obtained by relaxing the non-anticipativity
constraints only at stages 2, . . . , H and replacing the future from stage 2 with a single sample path
(see [31]). The ensuing program is the so-called robust two-stage relaxation RTH+1. Formally,
consider the discrete random process as follows:

ξ̃
t
:= (ξ1, ξ̃2, . . . , ξ̃t), t = 2, . . . , H ,

where ξ̃t, is a deterministic realization of the random process ξt. We denote the robust two-stage
relaxation problem RTH+1, as follows:

RTH+1 : min
x1

c⊤1 x1+sup
ξ1

[
min

x2,...,xH+1

c⊤2(ξ1)x2(ξ̃H)+c⊤3 (ξ̃2)x3(ξ̃H)+. . .+c⊤H+1(ξ̃H)xH+1(ξ̃H)

]
(35)

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ1)x1+W2(ξ1)x2(ξ̃H) = h2(ξ1), ∀ξ1 ∈ Ξ1

...

TH(ξ̃H)xH(ξ̃H)+WH+1(ξ̃H)xH+1(ξ̃H)=hH+1(ξ̃H), ∀ξ1 ∈ Ξ1

xt(ξ̃H) ≥ 0, t = 2, . . . , H + 1, ∀ξ1 ∈ Ξ1 .

There are no non-anticipativity conditions here (except for the first-stage decisions).

Finally we remark that one may introduce intermediate relaxation steps by just relaxing
some of the later non-anticipativities (or moving the max-operators to left only for stages later
than a given stage P ). Relaxing the non-anticipativity constraints in stages P, . . . ,H with P =
3, . . . , H − 1 and replacing the future from stage P with a single sample path, hence considering
a discrete random process:

ξ̃
P,H

:= (ξ1, . . . , ξP−1, ξ̃P , . . . , ξ̃H) ,

we can get a sequence of lower bounds by stepwise relaxation from the end to the beginning.
Denoting by v(ROP,H+1) the value of this robust P -stage relaxation, and following reasons similar
to those in the proof of Proposition 3.1, the following bounds can be proven. In particular, it is
clear that RO1,H+1 = RWSH+1 and RO2,H+1 = RTH+1.

Proposition 3.2 (Chain of lower bounds for ROH+1) Given the robust multi-stage lin-
ear optimization problem ROH+1 (21), the robust multi-stage wait-and-see problem RWSH+1

(32), the robust two-stage relaxation problem RTH+1 and the robust P -stage relaxation problem
ROP,H+1, P = 3, . . . , H − 1, the following inequalities hold true

v(RWSH+1)=v(RO1,H+1)≤v(RTH+1)=v(RO2,H+1)≤. . .≤v(ROP,H+1)≤. . .≤v(ROH+1). (36)

The above results have a clear theoretical meaning. However, it should be remarked that, in
the general case, problems ROP,H+1 may be hard to solve in practice. In such case, it becomes of

great interest to introduce and study the sampled versions of them. In particular, given R̂O
N1...NH

H+1

and a collection of independently sampled values Ξ̂N1
1 , . . . , Ξ̂NH

H , we can introduce the sampled
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robust wait-and-see problem R̂WS
N̄H

H+1, based on the extraction of N̄H = N1 · N2 · . . . · NH iid

samples ξ(1)
H
, . . . , ξ(N̄H)

H
from Ξ̂N1

1 , Ξ̂N2
2 , . . . , Ξ̂NH

H :

R̂WS
N̄H

H+1 : maxi=1,...,N̄H
min

x1(ξ
(i)
H

),...,xH(ξ
(i)
H

)

c⊤1 x1(ξ
(i)

H
) +. . .+ c⊤H+1(ξ

(i)
H )xH+1(ξ

(i)

H
) (37)

s.t. Ax1(ξ
(i)

H
) = h1, x1(ξ

(i)

H
) ≥ 0

T1(ξ
(i)
1 )x1(ξ

(i)

H
) +W2(ξ

(i)
1 )x2(ξ

(i)

H
) = h2(ξ

(i)
1 )

...

TH(ξ
(i)
H )xH(ξ(i)

H
) +WH+1(ξ

(i)
H )xH+1(ξ

(i)

H
)=hH+1(ξ

(i)
H )

xt(ξ
(i)

H
) ≥ 0 , t = 2, . . . , H + 1, i = 1, . . . , N̄H .

Similarly, one can extract N1 iid scenarios ξ
(i)
1 , i = 1, . . . , N1 and keep the rest ξ̃2, . . . , ξ̃H

deterministic such that ξ̃
(i)

H
:= (ξ

(i)
1 , ξ̃2, . . . , ξ̃H) and construct the sampled robust two-stage re-

laxation problem R̂T
N1

H+1 given by:

R̂T
N1

H+1 : min
x1,γ1

c⊤1 x1 + γ1 (38)

s.t. Ax1 = h1, x1 ≥ 0

Q1(x1, ξ̃
(i)

H
) ≤ γ1, i = 1, . . . , N1 ,

where

Q1(x1, ξ̃
(i)

H
) := min

x2,...,xH+1

c⊤2 (ξ
(i)
1 )x2(ξ

(i)
1 ) + c⊤3 (ξ̃2)x3(ξ̃

(i)

2
) + . . .+ c⊤H+1(ξ̃H)xH+1(ξ̃

(i)

H
) (39)

s.t. T1(ξ
(i)
1 )x1 +W2(ξ

(i)
1 )x2(ξ

(i)
1 ) = h2(ξ

(i)
1 )

...

TH(ξ̃H)xH(ξ̃
(i)

H
)+WH+1(ξ̃H)xH+1(ξ̃

(i)

H
)=hH+1(ξ̃H)

xt(ξ̃
(i)

t−1
) ≥ 0, t = 2, . . . , H + 1 .

The violation probability at stage one, V1(Ξ̂
N1
1 , ξ̃2, . . . , ξ̃H), of the objective function value re-

turned by R̂T
N1

H+1 depends only on dim(x1) + dim(γ1) = n1 + 1, i.e.:

P

{
V1(Ξ̂

N1
1 , ξ̃2, . . . , ξ̃H) > ǫ

}
≤ B(N1, ǫ, n1 + 1) .

The dimension of the variables at stages greater than 1 is irrelevant, which is a quite remarkable
fact.

Similarly a sampled robust P -stage relaxation R̂O
N1...NP−1

P,H+1 of problem ROP,H+1 can be de-

fined. Again, probabilistic guarantees of the solution of problem R̂O
N1...NP−1

P,H+1 can be obtained on
the same lines of Theorem 2.3.

We conclude this section by providing the following proposition, which shows the relationship
between the various lower bounds based on sampling presented in this paper.
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Proposition 3.3 (Chain of sampling-based lower bounds for ROH+1) Given the robust
multi-stage linear optimization problem ROH+1 (21), the sampled robust optimization problem

R̂O
N1...NH

H+1 (22), the sampled robust multi-stage wait-and-see problem R̂WS
N̄H

H+1 (37), the sampled

robust two-stage relaxation R̂T
N1

H+1 (38) and the sampled robust P -stage relaxation R̂O
N1...NP−1

P,H+1

for a fixed collection of independently sampled values Ξ̂N1
1 , . . . , Ξ̂NH

N , the following chain of in-
equalities holds true:

v(R̂WS
N̄H

H+1) ≤ v(R̂T
N1

H+1) ≤ . . . ≤ v(R̂O
N1...NP−1

P,H+1 ) ≤ . . . ≤ v(R̂O
N1...NH

H+1 ) ≤ v(ROH+1) . (40)

4 Numerical Results: Inventory Management with Cumulative Orders Constraints

In this section, to show the effectiveness of the proposed approach, we consider a problem from
inventory management which was originally considered in [4], describing the negotiation of flexible
contracts between a retailer and a supplier in the presence of uncertain orders from customers.
In particular, we analyze the performance of the approach proposed in this paper on a simplified
version discussed in [11] and in [47]. We remark that the considered numerical problem is such
that the optimal solution of the original multi-stage robust optimization problem can be assessed:
This allows to evaluate the performance of the scenario tree based approach.

The problem setting can be summarized as follows: A retailer received orders ξt at the be-
ginning of each time period t ∈ {1, . . . , H}, ξ

t
represents the demand history up to time t. The

demand needs to be satisfied from an inventory with filling level sinvt by means of orders xot at
a cost dt per unit of product. Unsatisfied demand may be backlogged at cost pt and inventory
may be held in the warehouse with a unitary holding cost ht. Lower and upper bounds on the
orders xot (xot and x̄ot ) at each period as well as on the cumulative orders scot (scot and s̄cot ) up to
period t are imposed. We assume that there is no demand at time t = 1 and that the demand at
time t lies within an interval centered around a nominal value ξ̄t and uncertainty level ρ ∈ [0, 1]
resulting in a box uncertainty set as follows: Ξ = X

H
t=1

{
ξt ∈ R :

∣∣ξt − ξ̄t
∣∣ ≤ ρξ̄t

}
. Denoting with

xct the retailer’s cost at stage t, the problem with Cumulative Order Constraints (COC) can be
modeled as a convex poblem of the following form

ROH+1(COC) : min
xo
t ,x

c
t ,s

co
t ,sinv

t

[
xc1 +max

ξ∈Ξ

∑

t∈T

xct+1(ξt)

]
(41a)

s.t. xc1 ≥ d1x
o
1 +max

{
h1s

inv
1 ,−p1s

inv
1

}
(41b)

xct+1(ξt) ≥ dt+1x
o
t+1(ξt) +

+max
{
ht+1s

inv
t+1(ξt),−pt+1s

inv
t+1(ξt)

}
, t = 1, . . . , H−1 (41c)

xcH+1(ξH) ≥ max
{
hH+1s

inv
H+1(ξH),−pH+1s

inv
H+1(ξH)

}
(41d)

sinv2 (ξ
1
) = sinv1 + xo1 − ξ1 (41e)

sinvt+1(ξt) = sinvt (ξ
t−1

) + xot (ξt−1
)− ξt , t = 2, . . . , H (41f)

sco2 (ξ
1
) = sco1 + xo1 (41g)

scot+1(ξt) = scot (ξ
t−1

) + xot (ξt−1
) , t = 2, . . . , H (41h)

xo1 ≤ xo1 ≤ x̄o1, sco1 ≤ sco1 ≤ s̄co1 (41i)

xot ≤ xot (ξt−1
) ≤ x̄ot , scot ≤ scot (ξ

t−1
) ≤ s̄cot , t = 2, . . . , H + 1 .(41j)
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The objective function (41a) corresponds to minimizing the worst-case cumulative cost. Con-
straints (41b)-(41c)-(41d) define the stagewise costs xct+1(ξt), t = 1, . . . , H while constraints
(41e)-(41f) and (41g)-(41h) respectively define the dynamics of the inventory level and cumulative
orders. Finally, constraints (41i)-(41j) denote the lower and upper bounds on the instantaneous
and cumulative orders. Notice that the decision process is non-anticipative.

We consider specific instances of problem ROH+1(COC) as summarized in Table 1 under
the assumption of two-stage (H = 1) and three-stage (H = 2) and uncertainty level ρ = 30%
meaning that for a given value v, the uncertainty set is [v(1 − ρ), v(1 + ρ)]. The data presents
some slight modifications of the data presented in [47].

Parameters of the Problem COC t = 1 t = 2
(pt, dt, ht) (11,1,10) (11,1,10)
sinv
1 0
(xo

t , x̄
o
t ) (0,∞) (0,∞)

scot 47 134
s̄cot 94 248

ξ̄t = 100
(
1 + 1

2
sin
(

π(t−2)
6

))
75 100

Table 1 Input data for the inventory management problem.

We define optimality gaps of the scenario problem R̂O
N1...NH

H+1 (COC) as:

optimality gap :=
v(R̂O

N1...NH

H+1 (COC))− v(ROH+1(COC))

v(ROH+1(COC))
. (42)

We note that the optimality gap in (42) can be computed, since problem ROH+1(COC) can be
solved exactly by using a scenario tree that consists of the vertices of the polytopic uncertainty
set Ξ reported in Table 2 (see [11]).

Vertex Ξ1

1 52.5
2 97.5

Vertex Ξ1 Ξ2

1 52.5 70
2 52.5 130
3 97.5 70
4 97.5 130

Table 2 Vertices of Ξ for the inventory management problem in the two-stage (H = 1) and three-stage (H = 2)
cases.

To assess the performance of our approach, we compute the empirical violation probability
V̂t(T̂

N1,...,NH ) at stage t = 1, . . . , H of the solution of a given scenario tree T̂ N1,...,NH associated

with the scenario problem R̂O
N1...NH

H+1 (COC), defined as:

V̂t(T̂
N1,...,NH ) :=

1000∑

i=1

(
v(T̂ N1,...,Nt+1,...,NH

i )− v(T̂ N1,...,NH )
)

1000
, t = 1, . . . , H , (43)

where T̂ N1,...,Nt+1,...,NH

i , i = 1, . . . , 1000 is a new scenario tree with one new independent scenario

ξ
(Nt+1)
t from Ξt with respect to the tree T̂ N1,...,NH and

(α) :=

{
1 if α > 0
0 otherwise ;
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notice that the extended tree T̂ N1,...,Nt+1,...,NH

i contains
∏H

j=t+1Nj new independent scenarios

belonging to the sub-tree generated by the new scenario ξNt+1
t at stage t. In the two-stage case

the extended tree T̂ N1+1
i contains only one new independent scenario extracted from Ξ1.

The numerical results are obtained as follows:

- we fix a confidence level of β = 0.001 for the two-stage case and β = 0.1 for the three-stage
case;

- we select the target violation probability ǫ = 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3;

- we compute the corresponding sample size N∗
1 = 1

ǫ
e

e−1 (ln
1
β
+n1+1) and N∗

2 =
N∗2

1

ǫ
e

e−1 (ln
1
β
+

n2 + 1).

- we solve 100 instances of problem R̂O
N∗

1 ...N
∗

H

H+1 each based on a different scenario tree T̂ N∗

1 ,...,N
∗

H ;
- for each instance, we compute the optimality gap given in formula (42) and empirical violation
probability given in formula (43);

- we compute statistics over 100 instances.

The problems derived from the case study have been formulated and solved under AMPL
environment along with CPLEX 20.1.0.0 solver. All computations have been performed on a
64-bit machine with 32 GB of RAM and an Intel Core i7-1065G7 CPU 1.30 GHz processor.

First, we evaluate the performance of the sample-based approximation R̂O
N∗

1

2 (COC) in the

two-stage case (H = 1). Figure 5 displays the optimality gaps of problem R̂O
N∗

1

2 (COC) with
respect to RO2(COC) for different values of violation probability ǫ (%) ranging from 30% down to
0.05%. The number of scenarios N∗

1 , constraints and variables of the corresponding optimization
models are reported in Table 3.

ǫ (%) N∗
1 # of const. # of var.

30 35 420 246
20 53 636 372
10 105 1260 736
5 209 2508 1464
1 1045 12540 7316
0.5 2090 25080 14631
0.1 10450 125400 73151
0.05 20899 250788 146294

Table 3 Number of scenarios N∗
1 , constraints and variables for decreasing values of ǫ (%) in the two-stage case

(H = 1) for the inventory management problem.

From the results shown in Figure 5 we can observe that the variance of R̂O
N∗

1

2 (COC) decreases
substantially as ǫ decreases as well as the optimality gaps passing from −4.4% (in average) to
−10−5%. The distribution of the empirical violation probability as function of ǫ is plotted in
Figure 6, for the two-stage case. As expected, as ǫ decreases, the violation converges to 0. We
also note that the empirical violation probability is smaller than ǫ in all the considered cases.

Finally, Figure 7 shows the average solver time (solid lines) and the number of scenarios

(dashed lines) for problem R̂O
N∗

1

2 (COC) as a function of Log(1/ǫ). In particular, they are con-
siderably lower than those used in [47], where the number of scenarios depends on the size of
the basis and on the number of decision variables at each stage. On the other hand, we should
remark that the number of variables used in our approach is larger, due to the introduction of
sample-dependent certificates (or second-stage decision variables).
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Fig. 5 Optimality gaps for R̂O
N∗

1
2 (COC) (boxes and whiskers) for decreasing values of ǫ for the two-stage (H = 1)

case.

ǫ (%) N∗
1 N∗

2 N̄2 # of const. # of var. average CPU time
30 23 12003 276069 1380488 828304 1586
20 35 41691 1459185 7296140 4377700 42149.7

Table 4 Number of scenarios at first period N∗
1 , at second period N∗

2 and in total N̄2, constraints, variables and
average CPU time (in seconds) for ǫ = 30, 20 (%) in the three-stage case (H = 2) for the inventory management
problem.

Secondly, we evaluate the performance of the sample-based approximation R̂O
N∗

1 N
∗

2

3 (COC) in
the three-stage case (H = 2). The number of scenarios N∗

1 , N
∗
2 and N̄2, constraints and variables

of the corresponding optimization models with average CPU time over 100 instances are reported
in Table 4 for ǫ = 20% and 30%.

Results shows that the average solver time to solve problem R̂O
N∗

1 N
∗

2

3 (COC) pass from 1586
CPU seconds (with ǫ = 30%) with a scenario tree with N∗

1 = 23 and N∗
2 = 12003 to 42149.7

CPU seconds (with ǫ = 20%), for a tree with N∗
1 = 35, N∗

2 = 41691 and N2 = N∗
1N

∗
2 = 1459185

scenarios.

From the results shown in Figure 8 we can observe that the optimality gaps of R̂O
N∗

1 N
∗

2

3 (COC)
decrease as ǫ decreases passing from−0.03% (in average) when ǫ = 30% to−0.02% when ǫ = 20%.

The distribution of the empirical violation probabilities V̂1(T̂
N∗

1 N
∗

2 ) and V̂2(T̂
N∗

1 N
∗

2 ) as func-
tion of ǫ are plotted in Figures 9, for the three-stage case. We note that both the empirical
violation probabilities are always smaller than ǫ. Results on V̂1(T̂

N∗

1 N
∗

2 ) and V̂2(T̂
N∗

1 N
∗

2 ) show
that as ǫ decreases from 30% to 20%, both the empirical violation probabilities decrease passing
from an average value of 6.8% to 5% and of 0.04% to 0%, respectively. Results also show that
V̂1(T̂

N∗

1 N
∗

2 ) is always larger than V̂2(T̂
N∗

1 N
∗

2 ).
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Fig. 6 Empirical violation probability for R̂O
N∗

1
2 (COC) (boxes and whiskers) for increasing values of ǫ for the

two-stage (H = 1) case.

4.1 Bounds for the Inventory Management with Cumulative Orders Constraints

In this section, we evaluate possible relaxations to problem ROH+1(COC) as described in Sec-
tion 3. In particular we consider the multi-stage wait-and-see problem RWSH+1(COC) for prob-
lem ROH+1(COC), and the robust two-stage relaxation problem RTH(COC) where the non-
anticipativity constraints are relaxed in stages 2, . . . , H. Again, we remark that for the case at
hand these two problems can be computed exactly by considering only the vertices of Ξ. Similarly
to formula (42), we define optimality gaps of the problem RWSH+1(COC) as:

(optimality gap)RWSH+1(COC) :=
v(RWSH+1(COC))− v(ROH+1(COC))

v(ROH+1(COC))
, (44)

and in the same way for RTH+1(COC).

The optimality gap of RWS3(COC) turned out to be equal to −68%, passing from an objec-
tive function value of 725.35 for RO3(COC) to 227.5; consequently the Robust Value of Perfect
Information RVPI3((COC)) is 497.85.

The optimality gap of TP3(COC) turned out to be equal to −39%, passing from an objective
function value of 725.35 for RO3(COC) to 439.64.
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Fig. 7 Mean solver times (black line) and number of scenarios (dashed line) as a function of Log(1/ǫ) for problem

R̂O
N∗

1
2 (COC) in the two-stage (H = 1) case.

We now compute the optimality gaps by using the scenario approach. Figures 10 shows that

the optimality gaps of R̂T
N∗

1

3 (COC) with respect to RO3(COC) slightly decrease as ǫ decreases
passing from −44% (in average) to −43%. Notice that the best optimality gap which can be

attained by the sampled two-stage relaxation R̂T
N∗

1

3 (COC) is given by the two-stage relaxation
itself RT3(COC) i.e., -39%.

The distribution of the empirical violation probability V̂1(R̂T
N∗

1

3 ) as function of ǫ is plotted in

Figure 11, for the three-stage case. We note that the empirical violation probability V̂1(R̂T
N∗

1

3 )
is always smaller than ǫ and it decreases as ǫ decreases from 30% to 0.1%, passing from an
average value of 6.6% to 0.06%. On the other hand, the empirical violation probability at stage

2, V̂2(R̂T
N∗

1

3 ), is equal to 1, independently on the value of ǫ showing the inappropriateness of the
two-stage relaxation consisting in just one scenario per sub-tree at stage two.

Finally Figure 12 the average solver time (solid line) and the number of scenarios (dashed
line). We again note that the number of required scenarios is considerably smaller than the one

corresponding to the sampled robust problem R̂O
N∗

1 N
∗

2

3 allowing us to solve the approximated

problem R̂T
N∗

1

3 in a reasonable amount of time (4 CPU seconds in the case of β = 0.1, ǫ = 0.1%
and N∗

1 = 6807) at expenses of larger optimality gaps.
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Fig. 9 Empirical violation probabilities V̂1(T̂ N∗

1 N∗

2 ) (on the left) and V̂2(T̂ N∗

1 N∗

2 ) (on the right) for

R̂O
N∗

1 N∗

2
3 (COC) for decreasing values of ǫ for the three-stage (H = 2) case.

5 Conclusions

In this paper probabilistic guarantees for constraint sampling in multi-stage convex robust op-
timization problems have been proposed. A sampled-based problem taking into account the
non-anticipativity of the decision process has been considered. For this approach, which avoids
the conservative use of parametrization through decision rules proposed before in literature, a
bound on the probability of violation of the randomized solution and a proof of convergence have
been provided. Chains of lower bounds by relaxing the non-anticipativity constraints and sam-
pling are also discussed. Because we use a worst-case approach, the numbers for needed sample
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Fig. 12 Mean solver times (solid lines) and number of scenarios (dashed lines) as a function of Log(1/ǫ) for

problem R̂T
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3 (COC) for the three-stage (H = 2) case.

sizes are very high. However, our numerical results show that the empirical violation probabil-
ities are much smaller than their predetermined values used in the calculation of the sample
sizes. Morevoer, since we distinguish between violations at different stages, it was observed that
violation in earlier stages are more probable than in later ones. It was also observed that for a
three stage problem with 2-stage relaxation, the approximation provides good decisions at stage
1, but at stage 2 the violation probability is always 1, independently of the chosen ǫ. This shows
that such a relaxation may be inappropriate for later stage decisions.
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A Proof of Theorem 2

Proof Let v(RO2) = −∞. Fix any γ ∈ R. Then there is a x1 ∈ Feas such that R(x1) = −∞, meaning that there
are functions ξ1 7→ x2(ξ1) such that:

sup
ξ1∈Ξ1

{c⊤2 (ξ1)x2(ξ1) : x2(ξ1) ∈ X2(x1, ξ1)} ≤ γ − ν ,

where ν = c⊤1 x1 < ∞. Notice that:

Feas = {x1 ≥ 0 : Ax1 = h1; ∀ξ1 ∈ Ξ1 there exists a x2(ξ1) ∈ X2(x1, ξ1)} .
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Thus γ together with (x1, ξ1 7→ x2(ξ1)) is feasible for RwC2 and since γ is arbitrary, v(RwC2) = −∞. The same
argumentation shows that v(RwC2) = −∞ implies that v(RO2) = −∞.

Suppose now that v(RO2) = ∞. This means that either the first-stage problem or at least one second-stage
problem is infeasible and this implies and is implied by the fact that RwC2 is infeasible.

It remains to show what happens in the case −∞ < v(RO2) < ∞. In case the the optimal value is attained,
let (x1, ξ1 7→ x2(ξ1)) be in the solution set of RO2, then (x1, γ, ξ1 7→ x2(ξ1)) is feasible for RwC2, iff γ ≥ v(RO2)
and it is in the solution set of RwC2, if γ = v(RO2). Conversely, if a (γ, x1, ξ1 7→ x2(ξ1)) is feasible for RwC2,
then (x1, ξ1 7→ x2(ξ1)) is feasible for RO2 and v(RO2) ≤ γ. The optimal γ equals v(RwC2).

B Proof of convergence

In this section we show that by letting the sample sizes N1, N2, . . . , NH tend to infinity, the optimal value of
the sampled problem (22) converges almost surely to the optimal value of the basic problem (21). To this end,
introduce the following assumptions.

Assumption A.

(i) The sets Ξt are compact with nonempty interior.
(ii) The probability P defined on Ξ = Ξ1 × · · · ×ΞH has a nonvanishing density, such that the probability of all

relative open sets in Ξ is positive.
(iii) The functions ξt 7→ ct+1(ξt), ξt 7→ Tt(ξt), ξt 7→ Wt+1(ξt), ξt 7→ ht+1(ξt) defined on Ξ are continuous and

therefore uniformly continuous for t = 1, . . . , H.
(iv) There is a constant K such that the optimal values of (21) are uniformly bounded, i.e. ‖xt‖ ≤ K, t =

1, . . . , H + 1.
(v) The rank of the matrices Wt+1(ξt) is mt+1 for all ξt ∈ Ξt.

Recall that we sample Nt independent replicates from distribution Pt in Ξt. Notice the following Lemma.

Lemma B.1 Under Assumption A,

lim
Nt→∞

max
ξt∈Ξt

min
ξ
(i)
t ∈Ξ̂

Nt
t

‖ξ
(i)
t − ξt‖ = 0

almost surely.

Proof Notice that maxξt∈Ξt
min

ξ
(i)
t ∈Ξ̂

Nt
t

‖ξ
(i)
t − ξt‖ is decreasing in Nt. Suppose that there is a ξt ∈ Ξt such

that min
ξt∈Ξ̂

Nt
t

‖ξ
(i)
t − ξt‖ ≥ η for all Nt. Let Bη be the closed ball with radius η and center ξt. By assumption

P(Bη) = δ (say) with δ > 0. Now

P{ξ
(1)
t /∈ Bη , . . . , ξ

(Nt)
t /∈ Bη} = (1− δ)Nt .

By choosing Nt such large that (1− δ)Nt < η leads to a contradiction.

Corollary B.1 If g is a continuous functions on Ξt, then min
ξ
(i)
t ∈Ξ̂

Nt
t

g(ξ
(i)
t ) converges to minξt∈Ξt

g(ξt) a.s.

for Nt → ∞. The same is true for the maximum.

Proposition B.1 Under Assumption A, if min(N1, . . . , NH) → ∞, then the optimal value of the sampled prob-
lem (22) converges to the optimal value of the basic problem (21).

Proof For the sake of simplicity we give the proof for the three-stage problem, i.e. we assume that H = 2. The
proof of the general case is analogous. The optimization problem (21) can be written as follows:

RO3 := min
x1,γ1

c⊤1 x1 + γ1 (45)

s.t. Ax1 = h1, x1 ≥ 0

Q1(x1, ξ1) ≤ γ1, ∀ξ1 ∈ Ξ1 ,

where the function Q1(x1, ξ1) can be written as

Q1(x1, ξ1) := min
x2,γ2

c⊤2 (ξ1)x2 + γ2 (46)

s.t. T1(ξ1)x1 +W2(ξ1)x2(ξ1) = h2(ξ1)

Q2(x2, ξ2) ≤ γ2, ∀ξ2 ∈ Ξ2

x2 ≥ 0 ,
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with

Q2(x2, ξ2) := min
x3

c⊤3 (ξ2)x3 (47)

s.t. T2(ξ2)x2 +W3(ξ2)x3 = h3(ξ2)

x3 ≥ 0 .

Now let Ξ̂N1
1 = {ξ

(i1)
1 : i1 = 1, . . . , N1} resp. Ξ̂N2

2 = {ξ
(i2)
2 : i2 = 1, . . . , N2}, be independent random scenarios

from of Ξ1 resp. Ξ2. We set:

R̂O3 := min
x1,γ1

c⊤1 x1 + γ1 (48)

s.t. Ax1 = h1, x1 ≥ 0

Q̂1(x1, ξ1) ≤ γ1, ∀ξ1 ∈ Ξ̂N1
1 ,

where the function Q̂1(x1, ξ1) can be written as

Q̂1(x1, ξ1) := min
x2,γ2

c⊤2 (ξ1)x2 + γ2 (49)

s.t. T1(ξ1)x1 +W2(ξ1)x2 = h2(ξ1)

Q2(x2, ξ2) ≤ γ2, ∀ξ2 ∈ Ξ̂N2
2

x2 ≥ 0 ,

with

Q2(x2, ξ2) := min
x3

c⊤3 (ξ2)x3 (50)

s.t. T2(ξ2)x2 +W3(ξ2)x3 = h3(ξ2)

x3 ≥ 0 .

as before.

Notice that the functions Q2 are identical for the original problem and the sampled problem. We show that
the functions Q̂t(xt, ξt), t = 1, 2 are continuous in xt and ξt. For the function Q2 = Q̂2 this follows from the
fact that W3(ξ2) has rank m3 < n3 for all ξ2 ∈ Ξ2. Suppose that the polyhedron X3(x2, ξ2) = {x3 ≥ 0 :
W3(ξ2)x3 = h3(ξ2)− T2(ξ2)x2} has extremals x3,1(x2, ξ2), . . . , x3,ℓ(x2, ξ2). The fact that W3(ξ2) has maximal
rank for all ξ2 implies that the extremals are continuous in W3 as well as in the r.h.s. h3(ξ2)−T2(ξ2)x2. Therefore,
by assumption, the extremals are continuous in ξ and in x. By continuity of c3, one sees that Q2(x2, ξ2) is
continuous in both arguments and since both x2 and ξ2 lie in a compact set, it is uniformly continuous, that is:

sup
‖x2‖≤K

| sup
ξ2∈Ξ2

Q2(x2, ξ2)− sup
ξ2∈Ξ̂

N2
2

Q2(x2, ξ2)| → 0 (51)

almost surely as N2 → ∞.

Now consider the function Q̂(x1, ξ1). As in the previous case, the extremals of X2(x1, ξ1) = {x2 ≥ 0 :
W2(ξ1)x2 = h2(ξ1) − T1(ξ1)x1} are continuous in x1 and ξ1. Together with (51) this implies that both Q1 and

Q̂1 are continuous in x1 and ξ1 and therefore:

sup
‖x1‖≤K

| sup
ξ1∈Ξ1

Q1(x1, ξ1)− sup
ξ1∈Ξ̂

N1
1

Q̂N2
1 (x1, ξ1)| → 0 (52)

almost surely as min(N1, N2) → ∞.

The function Q2(x2, ξ2) is uniformly continuous in ξ2 and x2. Therefore for ǫ > 0 there is an η > 0 such that
‖ξ12 − ξ22‖ ≤ η implies that |Q2(x2, ξ12)−Q2(x2, ξ22)| ≤ ǫ. Thus by the previous Lemma:

max
ξ2∈Ξ2

Q2(x2, ξ2)− max
ξ2∈Ξ̂

N2
2

Q2(x2, ξ2) → 0 .

The same argument applies also to the function Q1(x1, ξ1).
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C Proof of Lemma 2.4

Proof

P

{
K∑

i=1

Zi ≥ z

}
≤ P

(
K⋃

i=1

{Zi ≥ z/K}

)
≤ KP{Zi ≥ z/K}.

This inequality is sharp: To see this, consider a discrete probability space having K > 1 atoms {ω1, . . . , ωK},
each with same probability P{ωi} = 1/K. On ωi define the random variables Z1, . . . , ZK as

Zi = (z +K − 1)/K; Zj = (z − 1)/K for j 6= i.

Then the Zi have all identical distributions and
∑

i Zi = z. Consequently

P

{
K∑

i=1

Zi ≥ z

}
= 1 = K · (1/K) = K · P{Zi ≥ z/K}.

D Proof of Proposition 3.2

Proof Since in RWSH+1 the non-anticipativity constraints are relaxed, we get the inequality (34). More formally,

denoting by f
[(

x1(ξH), . . . , xH+1(ξH)
)
, ξ

H

]
in a compact way the objective function and constraints of problem

(32), we can write:

RWSH+1 : sup
ξ
H

min
(x1(ξH

),...,xH+1(ξH
))
f
[(

x1(ξH), . . . , xH+1(ξH)
)
, ξ

H

]
.

For every realization, ξ
H
, we have the relation:

f
[(

x̃1(ξH), . . . , x̃H+1(ξH)
)
, ξ

H

]
≤ f

[(
x∗
1, . . . , x

∗
H+1(ξH)

)
, ξ

H

]
,

where
(
x∗
1, . . . , x

∗
H+1(ξH)

)
denotes an optimal solution to the ROH+1 problem (21), and

(
x̃1(ξH), . . . , x̃H+1(ξH)

)
denotes the optimal solution for each realization of ξ

H
. Taking the supremum of both

sides yields the required inequality.
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