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Abstract

We give a finite state approximation scheme to countable state infinite horizon
robust Markov decision processes, whose transition density is not known with certainty.
A convergence theorem to the optimal stationary policy along with the corresponding
rate for this approximation is established. Our results show a fundamental difference
between the finite state approximations for Markov decision processes whose transition
densities are known with certainty and those with uncertain transition densities. In
the latter case, depending on the level of uncertainty, the discount factor 0 < β < 1
must be small enough to compensate for it, otherwise the convergence can not be
guaranteed. This is not to be seen in finite state approximations for Markov decision
processes whose transition kernel is given in advance.

Keywords: Robust optimization; Finite Approximations for Markov Decision Processes.

1 Introduction

Markov Decision Processes (MDP’s) with expectation criteria are well-studied in the litera-

ture (see [5, 6] for an extensive treatment on the subject). However, using the expectation

operator for the evaluation necessitates that the underlying transition density is known in

advance. In particular, the decision maker assumes there is no ambiguity in conditional

distributions of controlled Markov chain, i.e. the decision maker is ambiguity-neutral. On

the other hand, we follow an ambiguity-averse approach, where we have a reference tran-

sition density p(y|x, a) on the decision model (S,A, p, r, β) and an uncertainty ball with a

fixed radius around p(y|x, a). This implies that we have an estimate p(y|x, a) but diffident
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about the underlying dynamics and want to evaluate the system in a robust way by con-

sidering alternative transition densities. Based on this robust framework, we give a finite

state approximation scheme to a countable state ambiguity-averse controlled Markov chain

in infinite horizon with discounted bounded rewards. We show the existence of the opti-

mal stationary policy, and a finite scheme approximation to the optimal stationary policy is

also provided. We observe a fundamental difference between approximations of ambiguity-

neutral and ambiguity-averse Markov decision processes. In the former case, the discount

factor 0 < β < 1 is sufficient for the convergence of the finite approximations to the optimal

value, whereas in the latter, this is not the case. In particular, in the latter case, the un-

certainty in the underlying transition density should not be too large to cancel the discount

factor β. Equivalently, for a given ambiguity-awareness level, the discount factor β should

be small enough to compensate for it.

2 Decision Model

We first briefly summarize our decision model. We let (S,A, p, r, β) be the decision model,

where S = {0, 1, 2, . . .} is the countable state space, and A = {0, 1, 2, . . . , N} is the finite

action space. We denote the set of all probability measures on S and on A as P(S) and

P(A), respectively. The initial state X0 = x0 ∈ S is known and nonrandom. If action

a ∈ A is chosen in state s ∈ S, then the transition density is the conditional distribution

on S denoted by p(·|s, a) for (s, a) ∈ S × A. We condense these conditional probability

distributions to a transition kernel Psa ∈ [P(S)]S×A, where Psa := p(·|s, a) for (s, a) ∈ S×A.

The decision maker’s reward is denoted by r(x, a, y) for a chosen action a ∈ A in state

x ∈ S and the subsequent state is y ∈ S. The MDP is controlled using π = (πn)n≥0,

where πn : (S × A)n × S → P(A) with πn(·|s0, a0, s1, a1, . . . , sn) represents the conditional

probability measure over A. The subsequent action is chosen according to πn(·|s0, a0, . . . , sn),

if the state-action history is given by (s0, a0, . . . , sn). We denote the set of all policies by

Π. A policy π ∈ Π is called Markov, if πn(·|s0, a0, s1, a1, . . . , sn) = π(·|sn) for all n ≥ 0.

A Markov policy is deterministic, if πn(sn) = an for some mapping πn : S → A for all

n ≥ 0. A deterministic Markov policy π = (πn) is called stationary, if there is a function

f : S → A such that πn ≡ f for all n ≥ 0 such that π = (f, f, . . .). In this paper, we take

that only Markov deterministic policies are admissible and with some abuse of notation, we

denote them as Π, as well. With the transition kernel P , π ∈ Π induces stochastic process

(sn, an)n≥0 on the space (S×A)∞, whose existence is guaranteed by Ionescu-Tulcea theorem

(see [5]). We use the notation EP,π[·|sn, an] to denote conditional expectation with respect

to probability measure P and policy π conditioned on (sn, an). Finally, 0 < β < 1 is the
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discount factor applied at each time in infinite time horizon.

2.1 Uncertainty Ball

We assume that for any π ∈ Π, there exists a reference transition kernel P ∈ [P(S)]S×A. In

particular, if action a ∈ A is chosen in state x ∈ S, conditional on (x, a), p(·|x, a) defines

a probability measure on S. We further consider the alternative probability measures Q ∈
[P(S)]S×A that are absolutely continuous with respect to p(·|x, a), in particular q(·|x, a) = 0,

whenever p(·|x, a) = 0 for (x, a) ∈ S × A, and take that for any (x, a) ∈ S × A, the

corresponding density q(·|x, a) satisfies supy∈S
q(y|x,a)
p(y|x,a)

≤ CK for CK > 1 with
∑

y∈S q(y|x, a) =

1. We denote the set Kxa as the set of probability measures on S conditioned on (x, a) ∈ S×A
with

Kxa ,
{
q(·|x, a) ∈ P(S) : sup

(x,a,y)

q(y|x, a)

p(y|x, a)
≤ CK

}
(2.1)

Remark 2.1. Our method does not assume there exists a true unknown transition density

P 0. Instead, for any fixed π, we assume there exists a set of alternative transition densities

of marginal sets Kxa in some ball of uncertainty with a pre-specified radius CK with respect

to a reference transition density P ∈ [P(S)]S×A as in (2.1), and we evaluate the MDP with

the worst case transition density among Kxa for each state-action pair (x, a) ∈ S × A.

2.2 Value Function

We define the value function as

v(π, x0) := lim
T→∞

ρ0

(
r(x0, a0, X1) + βρ1

(
r(x2, a2, X3) (2.2)

+ . . .+ βρT−1(r(xT , aT , XT+1)
)
. . .

)
,

where ρn(r(xn, an, Xn+1)) for n ≥ 0 are defined as

ρn(r(xn, an, Xn+1)) , inf
q∈Kxa

∑
y∈S

r(xn, an, y)
q(y|xn, an)

p(y|xn, an)
p(y|xn, an) (2.3)

= inf
q∈Kxa

∑
y∈S

r(xn, an, y)q(y|xn, an)

= inf
q∈Kxa

Eq,π[r(xn, an, Xn+1)|(xn, an)]

Finally, the optimization problem reads as

v∗(x0) = sup
π∈Π

v(π, x0). (2.4)
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We note that CK = 1 in (2.1) corresponds at each (x, a) ∈ S × A to the single transition

kernel Kxa = {p(·|x, a) ∈ P(S)}(x,a)∈S×A. Hence, ρn(·) becomes the conditional expectation

Ep,π[·|xn, sn] in (2.2), where the expectation is taken with respect to the conditional prob-

ability measure p(·|xn, an), and the problem turns into the classical performance evaluation

using expectation operator (see e.g. [4, 7]).

Remark 2.2. The framework can also be applied for cost minimization problems. In that

case, the decision maker would look for a cost minimizing policy among the alternative max-

imizing transition densities. In particular, the results of this manuscript are valid via a sign

change (see Example 3.1).

Remark 2.3. The construction in (2.3) corresponds to a general family of operators called

dynamical coherent risk measures that is first introduced for one period case in [1], and later

extended to multiperiod case via nested static operators conditioned on the history applied at

each time epoch ([2, 3, 8]). Generally, they are defined as follows. Let Ω be an abstract space

and (Fn)n≥0 be the filtration on Ω with F0 = {Ω, ∅}. Let (Zn)n≥0 be an Fn adapted sequence

of bounded random variables on some measurable space (Ω,Fn,P). Then, dynamic coherent

risk measures are operators that are of the form ρn : Fn+1 → Fn such that for a given Fn+1

measurable random variable Zn+1, ρn(Zn+1) is measurable with respect to Fn. (ρn)n≥0 are

monotone, translation invariant, positive homogeneous and convex (See [10], Chapter 6).

In particular, the dynamic operator in (2.3) corresponds to a variant of dynamic Average-

Value-at-Risk. We refer the reader to [3, 9] for further exposure in this direction.

3 Finite Dimensional Scheme

Assumption 3.1. We put the following assumptions on the decision model (S,A, p, r, β).

(A1) sup(x,a,y)∈S×A×S |r(x, a, y)| ≤ R <∞.

(A2) ε(n) := sup(x,a,y)∈S×A×S
∑

y>n p(y|x, a)→ 0, as n→∞.

(A3) The discount factor β and CK in (2.1) satisfy 0 < βCK < 1.

Next, we give the finite approximations denoted by vn to v∗ in (2.4) along with the



5

optimal policies fn on vn, as follows.

v−1 ≡ 0

vn(x) := sup
a∈A(x)

{
inf
q∈Kxa

∑
y<n

q(y|x, a)(r(x, a, y) + βvn−1(y))

}
, if x ≤ n. (3.5)

:= 0 if x > n, n ≥ 0.

fn(x) := arg max
a∈A(x)

{
inf
q∈Kxa

∑
y<n

q(y|x, a)(r(x, a, y) + βvn−1(y))(r(x, a, y) + βvn−1(y))

}
, if x ≤ n,

(3.6)

:= arbitrary point in A(x) if x > n, n ≥ 0.

We denote for any mapping u on S with n ∈ N

‖u‖n := sup
x≤n
|u(x)|,

‖u‖ := sup
x∈S
|u(x)|.

Theorem 3.1. Under Assumption 3.1, the sequence {vn(·)} in (3.5) converges to v∗(·) uni-

formly in x ≤ n. Namely, for some C independent of n, we have

‖v∗ − vn‖n ≤ C max{CKβbn/2c, ε(bn/2c)} (3.7)

Proof. For any f and g real-valued and bounded functions on S, we have

| sup
x∈S

f(x)− sup
y∈S

g(y)| ≤ sup
x∈S
|f(x)− g(x)|.

Let u = −f and v = −g to conclude that

| inf
x∈S

u(x)− inf
y∈S

v(y)| ≤ sup
x∈S
|u(x)− v(x)|.

By Assumption 3.1, v∗ and vn are uniformly bounded for all n. Then

C1 :=
R

1− β
(3.8)

‖v∗‖ ≤ C1, and ‖R
n∑
k=0

βk‖ ≤ C1.
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Hence, for x ≤ n+ 1, we have

|vn+1(x)− v∗(x)|
= | sup

a∈A(x)

{
inf
q∈Kxa

∑
y≤n

q(y|x, a)(r(x, a, y) + βvn(y))}

− sup
a∈A(x)

{
inf
q∈Kxa

∑
y∈S

q(y|x, a)(r(x, a, y) + βv∗(y))}|

≤ sup
a∈A(x)

| inf
q∈Kxa

∑
y≤n

q(y|x, a)(r(x, a, y) + βvn(y))

− inf
q∈Kxa

∑
y

q(y|x, a)(r(x, a, y) + βv∗(y))|

≤ β sup
a∈A(x)

sup
q∈Kxa

∑
y≤n

q(y|x, a)|vn(y)− v∗(y)|

+ β sup
a∈A(x)

sup
q∈Kxa

∑
y>n

q(y|x, a)|v∗(y)|

≤ β sup
a∈A(x)

CK
∑
y≤n

p(y|x, a)|vn(y)− v∗(y)|

+ β sup
a∈A(x)

CK
∑
y>n

p(y|x, a)|v∗(y)|

Hence, we get

‖vn+1 − v∗‖n+1 ≤ CKβ‖vn − v∗‖n + CKβ‖v∗‖ε(n)

By iterating, we get for m ≥ 1

‖vn+m − v∗‖n+m ≤ (CKβ)m‖vn − v∗‖n + ‖v∗‖
m∑
k=1

(CKβ)kε(n+m− k)

≤ (CKβ)m‖vn − v∗‖+ ε(n)‖v∗‖
m∑
k=1

(CKβ)k

≤ 2C1(CKβ)m + ε(n)C1
CKβ

1− CKβ
.

where C1 is as in (3.8). Thus,

‖vn+m − v∗‖n+m ≤ 2 max{2C1, C1
CK

1− CKβ
}max{(CKβ)m, ε(n)}

We plug C = 2 max
{

2C1, C1
CK

1−CKβ

}
, k = n + m, n = bk/2c and m = k − bk/2c ≥ bk/2c in

(3.7). Hence, we conclude the proof. �
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We define the optimality equation as

φ(x, a) , inf
q∈Kxa

∑
y∈S

q(y|x, a)(r(x, a, y) + βv∗(y))− v∗(x), (3.9)

which gives the difference between the optimal action in state x ∈ S and an arbitrary action

a ∈ A(x). The optimality equation (3.9) can be equally stated as

max
a∈A(x)

φ(x, a) = 0, x ∈ S. (3.10)

(3.10) gives also the existence of optimal Markovian stationary policy. Indeed, since the

available controls in each state x ∈ S with A(x) ⊂ A is finite, there exists an optimal control

a∗(x) for (3.10) for each x ∈ S. By S being countable, defining g∗(x) = a(x) for each x,

we reach the optimal stationary Markov policy g∗ : S → A. Next, we show that the finite

scheme in (3.6) is convergent to the optimal stationary policy g∗.

Theorem 3.2. Let π∗ = {fn(·)} be the Markov policy that is defined as in (3.6). Then,

under Assumption 3.1 and 0 < CKβ < 1, we have

‖φ‖n , sup
x≤n

∣∣ inf
q∈Kxa

∑
y∈S

q(y|x, fn(x))(r(x, fn(x), y) + βv∗(y))− v∗(x)
∣∣

→ 0, as n→∞.

Proof. For x ≤ n and for the maximizing fn as in (3.6), we have

φ(x, fn(x)) = φ(x, fn(x))− vn(x) + vn(x)

= [ inf
q∈Kxa

∑
y∈S

q(y|x, fn(x))(r(x, fn(x), y) + βv∗(y))]− v∗(x)− vn(x) + vn(x).

Then, we have

φ(x, fn(x))− vn(x) = [ inf
q∈Kxa

∑
y∈S

q(y|x, fn(x))(r(x, fn(x), y) + βv∗(y))]

− v∗(x)− vn(x)

= [ inf
q∈Kxa

∑
y∈S

q(y|x, fn(x))(r(x, fn(x), y) + βv∗(y))

− inf
q∈Kxa

∑
y∈S

q(y|x, fn(x))(r(x, fn(x), y) + βvn−1(y))]− v∗(x)
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Hence,

φ(x, fn)− vn(x) + vn(x) ≤ β sup
q∈Kxa

∑
y∈S

q(y|x, fn(x))(fn(x))|v∗(y)− vn−1(y)|+ vn(x)− v∗(x)

≤ CKβ
∑
y<n

p(y|x, fn(x))|v∗(y)− vn−1(y)|

+ CKβ
∑
y≥n

p(y|x, fn(x))|v∗(y)|+ [vn(x)− v∗(x)].

Thus, by Theorem 3.1,

‖φ‖n ≤ CKβ‖v∗n−1 − v∗‖n−1 + CKβ‖v∗‖ε(n− 1) + ‖v∗ − vn‖n
→ 0, as n→∞.

Hence, we conclude the proof. �

Finally, we give an example to show that the approximation scheme is not necessarily con-

vergent, if the discount factor together with the uncertainty radius is not sufficiently small,

even though the same scheme is convergent, if it is applied on the expected value criteria.

Example 3.1. We consider a Markov chain with two states S = {0, 1} and take that only

one control is possible in each state with A(x) = {1} for x ∈ S and let β = 1
2
. We further

suppose that the Markov chain has the following transition probabilities: p(j|i, 1) = 1/2 for

i, j = 0, 1. The decision maker wants to minimize the discounted cost in infinite horizon.

The cost of transition from state 0 equals 2, i.e. c(0, 1) = 2, whereas c(1, 1) = 0. Let the

uncertainty set Kxa be defined as all those transition probabilities q(·|i, 1) with 0 ≤ q(j|i,1)
p(j|i,1)

≤ 2

for i, j = 0, 1, i.e. CK = 2, and
∑j=1

j=0 q(j|i, 1) = 1 for i = 0, 1. Let x0 = 0. Thus,

βρn(c(Xn+1)) = β max
q∈Kxa

Eq[c(Xn+1, 1)|xn, 1], (3.11)

= βmax
j=0,1

c(j, 1)

= 1,

Note that (A1) and (A2) satisfied, whereas (A3) is violated with CKβ = 1 in Assumption

3.1. Our value function reads as

v(x0) = c(0, 1) + lim
T→∞

ρ0

(
β
(
c(X1, 1) + βρ1(c(X2, 1) + . . .+ ρT−1(βc(XT , 1)

)
. . .

)
.

Hence, by (3.11), ρn(1
2
c(Xn+1, 1)) = 1 for all n ≥ 1 and v(0) → ∞. Also, the scheme in

(3.5) does not converge neither with v0(0) = 2 and vk(0) = 2 + k for k = 1, 2, . . ..
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On the other hand, we note that, when there is no uncertainty in transition probabilities,

namely, when CK = 1, we have

v(0) = c(0, 1) + lim
T→∞

Ep0
(
β
(
c(X1, 1) + Ep1(βc(X2, 1) + . . .+ EpT−1(βc(XT , 1)

)
. . .

)
= 2 +

∞∑
i=1

(
1

2
)i =

7

2

and the scheme is convergent, as well. This is indeed so, since 1
2

= βCK < 1, when we use

the expectation for performance evaluation.
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