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Abstract

The goal of this paper is to design a simplex algorithm for linear programs on
lattice polytopes that traces “short” simplex paths from any given vertex to an optimal
one. We consider a lattice polytope P contained in [0, k]n and defined via m linear
inequalities. Our first contribution is a simplex algorithm that reaches an optimal
vertex by tracing a path along the edges of P of length in O(n4k log(nk)). The length
of this path is independent from m and it is the best possible up to a polynomial
function. In fact, it is only polynomially far from the worst-case diameter, which
roughly grows as nk.

Motivated by the fact that most known lattice polytopes are defined via 0,±1
constraint matrices, our second contribution is a more sophisticated simplex algo-
rithm which exploits the largest absolute value α of the entries in the constraint
matrix. We show that the length of the simplex path generated by this algorithm is
in O(n2k log(nkα)). In particular, if α is bounded by a polynomial in n, k, then the
length of the simplex path is in O(n2k log(nk)).

For both algorithms, if P is “well-described”, then the number of arithmetic oper-
ations needed to compute the next vertex in the path is polynomial in n, m, and log k.
If k is polynomially bounded in n and m, the algorithm runs in strongly polynomial
time.
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1 Introduction

Linear programming (LP) is one of the most fundamental types of optimization models.
In an LP problem, we are given a polyhedron P ⊆ Rn and a cost vector c ∈ Zn, and we
wish to solve the optimization problem

max{cTx | x ∈ P}. (1)

The polyhedron P is explicitly given via a system of linear inequalities, i.e., P = {x ∈
Rn | Ax ≤ b}, where A ∈ Zm×n, b ∈ Zm. If P is nonempty and bounded, problem (1)
admits an optimal solution that is a vertex of P .
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In this paper, we consider the special class of LP problems (1) where P is a lattice
polytope, i.e., a polytope whose vertices have integer coordinates. These polytopes are
particularly relevant in discrete optimization and integer programming, as they correspond
to the convex hull of the feasible solutions to such optimization problems. A [0, k]-polytope
in Rn is defined as a lattice polytope contained in the box [0, k]n.

One of the main algorithms for LP is the simplex method. The simplex method moves
from the current vertex to an adjacent one along an edge of the polyhedron P , until an
optimal vertex x∗ is reached or unboundedness is detected, and the selection of the next
vertex depends on a pivoting rule. The sequence of vertices generated by the simplex
method is called the simplex path. The main objective of this paper is to design a simplex
algorithm for [0, k]-polytopes that constructs “short” simplex paths from any starting
vertex x0.

But how short can a simplex path be? A natural lower bound on the length of a
simplex path from x0 to x∗ is given by the distance between these two vertices, which
is defined as the minimum length of a path connecting x0 and x∗ along the edges of the
polyhedron P . The diameter of P is the largest distance between any two vertices of
P , and therefore it provides a lower bound on the length of a worst-case simplex path
on P . It is known that the diameter of [0, 1]-polytopes in Rn is at most n [23] and this
bound is attained by the hypercube [0, 1]n. This upper bound was later generalized to
nk for general [0, k]-polytopes in Rn [19], and refined to

⌊
n(k − 1

2)
⌋

for k ≥ 2 [8] and to
nk−

⌈
2
3n
⌉
− (k−3) for k ≥ 3 [10]. For k = 2 the bound given in [8] is tight. In general, for

fixed k, the diameter of lattice polytopes can grow linearly with n, since there are lattice
polytopes, called primitive zonotopes, that can have diameter in Ω(n) [9, 11]. Viceversa,
when n is fixed, the diameter of a [0, k]-polytope in Rn can grow almost linearly with k. In
fact, it is known that for n = 2 there are [0, k]-polytopes with diameter in Ω(k2/3) [4, 29, 1].

Moreover, for any fixed n, there are primitive zonotopes with diameter in Ω(k
n

n+1 ) for k
that goes to infinity [12, 11].

Can we design a simplex algorithm whose simplex path length is only polynomially far
from optimal, meaning that it is upper bounded by a polynomial function of the worst-case
diameter? In this paper, we answer this question in the affirmative. Our first contribution
is a preprocessing & scaling algorithm that generates a simplex path of length polynomially
bounded in n and k, thus polynomially far from optimal.

Theorem 1. The preprocessing & scaling algorithm generates a simplex path of length in
O(n4k log(nk)).

We remark that the upper bound O(n4k log(nk)) is independent from m. This is
especially interesting because, even for [0, 1]-polytopes, m can grow exponentially in n
(see, e.g., [26]).

The preprocessing & scaling algorithm is obtained by combining a preprocessing step by
Frank and Tardos [15] with a bit scaling technique [2]. Namely, we first replace the cost
vector c with a new cost vector c̆ such that log ‖c̆‖∞ is polynomially bounded in n and
log k. Next, we solve a sequence of LP problems where the cost vector is replaced with
finer and finer integral approximations of c̆, where each LP problem can be solved with
any simplex algorithm.
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Our next objective is that of decreasing the gap between the length O(n4k log(nk))
provided by the preprocessing & scaling algorithm and the worst-case diameter, for wide
classes of [0, k]-polytopes. We focus our attention on [0, k]-polytopes with bounded pa-
rameter α, defined as the largest absolute value of the entries in the constraint matrix A.
This assumption is based on the fact that the overwhelming majority of [0, k]-polytopes
arising in combinatorial optimization for which an external description is known, satisfies
α = 1 [26]. Our second contribution is a different simplex algorithm, named the face-fixing
algorithm, which exploits the parameter α to significantly improve the dependence on n.

Theorem 2. The face-fixing algorithm generates a simplex path of length in O(n2k log(nkα)).

It should be noted that the dependence on α is only logarithmic, thus if α is bounded
by a polynomial in n, k, then the length of our simplex path is in O(n2k log(nk)). For
[0, 1]-polytopes this bound reduces to O(n2 log n).

At each iteration of the face-fixing algorithm we consider a face F of P containing
all optimal solutions to (1). Then we compute a suitable approximation c̃ of c and we
maximize c̃Tx over F . In order to solve this LP problem, we trace a path along the edges
of P applying the same bit scaling technique introduced in our preprocessing & scaling
algorithm. We also compute an optimal solution to the dual, which is used to identify a
new constraint of Ax ≤ b that is active at each optimal solution of (1). The face F of
P is then updated for the next iteration by setting to equality such constraint, effectively
restricting the feasible region to a lower dimensional polytope. The final simplex path is
then obtained by merging together the different paths constructed at each iteration.

In both our simplex algorithms, under mild assumptions on the polytope P , the number
of operations needed to construct the next vertex in the simplex path is bounded by
a polynomial in n, m, and log k. If k is bounded by a polynomial in n,m, both our
simplex algorithms are strongly polynomial. This assumption is justified by the existence
of [0, k]-polytopes that, for fixed n, have a diameter that grows almost linearly in k [12].
Consequently, in order to obtain a simplex algorithm that is strongly polynomial also
for these polytopes, we need to assume that k is bounded by a polynomial in n and
m. We remark that in this paper we use the standard notions regarding computational
complexity in Discrete Optimization, and we refer the reader to Section 2.4 in the book [25]
for a thorough introduction.

2 The preprocessing & scaling algorithm

In the remainder of the paper, we study problem (1) where P is a [0, k]-polytope.
All our algorithms are simplex algorithms, meaning that they explicitly construct a

path along the edges of P from any given starting vertex x0 to a vertex maximizing the
linear function cTx. For this reason, we always assume that we are given a starting vertex
x0 of P . It should be noted that, if one is interested in obtaining an arbitrary starting
vertex x0, this can be accomplished via Tardos’ algorithm by performing a number of
operations that is polynomially bounded in size(A). Recall that the size of the matrix
A, denoted by size(A), is in O(nm logα) (see Section 2.1 in [25] for more details). In
a simplex algorithm one also expects that the next vertex in the simplex path can be
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computed in polynomial time. This is indeed the case for all our algorithms. In order to
streamline the presentation, we defer these complexity issues to Section 2.4.

The ultimate goal of this section is to prove Theorem 1 by presenting and analyzing
the preprocessing & scaling algorithm. Before doing that we need to introduce the basic
algorithm in Section 2.1 and the scaling algorithm in Section 2.2.

Next we introduce our oracle, which provides a general way to construct the next vertex
in the simplex path. In all our algorithms, the simplex path is constructed via a number
of oracle calls with different inputs.

Oracle
Input: A polytope P , a cost vector c ∈ Zn, and a vertex x̄ of P .
Output: Either a statement that x̄ is optimal to (1), or a vertex adjacent to x̄ with
strictly larger cost.

We note that, whenever x̄ is not optimal, our oracle has the freedom to return any
adjacent vertex with strictly larger cost. Therefore, our algorithms can all be customized
by further requiring the oracle to obey a specific pivoting rule.

2.1 The basic algorithm

The simplest way to solve (1) is to recursively invoke the oracle with input P , c, and
the vertex obtained from the previous iteration, starting from the vertex x0 in input. We
formally describe this basic algorithm, which will be used as a subroutine in our subsequent
algorithms.

Basic algorithm

Input: A [0, k]-polytope P , a cost vector c ∈ Zn, and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx.

for t = 0, 1, 2, . . . do
Invoke oracle(P, c, xt).
If the output of the oracle is a statement that xt is optimal, return xt.
Otherwise, set xt+1 := oracle(P, c, xt).

The correctness of the basic algorithm is immediate. Next, we upper bound the length
of the simplex path generated by the basic algorithm.

Observation 1. The length of the simplex path generated by the basic algorithm is bounded
by cTx∗ − cTx0. In particular, it is bounded by nk ‖c‖∞.

Proof. To show the first part of the statement, we only need to observe that each oracle
call increases the objective value by at least one, since c and the vertices of P are integral.

The cost difference between x∗ and x0 of P can be bounded by

cTx∗ − cTx0 =

n∑
i=1

ci(x
∗
i − x0

i ) ≤
n∑
i=1

|ci|
∣∣x∗i − x0

i

∣∣ ≤ nk ‖c‖∞ ,
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where, for the last inequality, we use
∣∣x∗i − x0

i

∣∣ ≤ k since P is a [0, k]-polytope. This
concludes the proof of the second part of the statement.

2.2 The scaling algorithm

The length of the simplex path generated by the basic algorithm is clearly not satisfactory.
In fact, as we discussed in Section 1, our goal is to obtain a simplex path of length
polynomial in n and k, and therefore independent from ‖c‖∞. In this section we improve
this gap by giving a scaling algorithm that yields a simplex path of length in O(nk log ‖c‖∞).

Our scaling algorithm is based on a bit scaling technique. For ease of notation, we
define ` := dlog ‖c‖∞e. The main idea is to iteratively use the basic algorithm with the
sequence of increasingly accurate integral approximations of the cost vector c given by

ct :=
⌈ c

2`−t

⌉
for t = 0, . . . , `.

Since c is an integral vector, we have c` = c.
Bit scaling techniques have been extensively used since the 1970’s to develop polynomial-

time algorithms for a wide array of discrete optimization problems. Edmonds and Karp
[14] and Dinic [13] independently introduced this technique in the context of the minimum
cost flow problem. Gabow [16] used it for shortest path, maximum flow, assignment, and
matching problems. The book [2] popularized bit scaling as a generic algorithmic tool in
optimization. Bit scaling techniques have also been employed by Schulz, Weismantel, and
Ziegler [27] (see also [20, 24]) to design augmenting algorithms for 0/1-integer program-
ming. To the best of our knowledge, bit scaling techniques have so far never been used to
obtain short simplex paths in general lattice polytopes.

Next, we describe our algorithm.

Scaling algorithm

Input: A [0, k]-polytope P , a cost vector c ∈ Zn, and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx.

for t = 0, . . . , ` do
Compute ct.
Set xt+1 := basic algorithm(P, ct, xt).

Return x`+1.

The correctness of the scaling algorithm follows from the correctness of the basic algo-
rithm, since the vector x`+1 returned is the output of the basic algorithm with input P and
cost vector c` = c.

Next, we analyze the length of the simplex path generated by the scaling algorithm.
The next two lemmas provide simple properties of the approximations ct of c and are
based on the common techniques used in most bit scaling algorithms.

Lemma 1. For each t = 0, . . . , `, we have
∥∥ct∥∥∞ ≤ 2t.
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Proof. By definition of `, we have |cj | ≤ ‖c‖∞ ≤ 2` for every j = 1, . . . , n, hence −2` ≤
cj ≤ 2`. For any t ∈ {0, . . . , `}, we divide the latter chain of inequalities by 2`−t and round
up to obtain

−2t =
⌈
−2t

⌉
=

⌈
−2`

2`−t

⌉
≤
⌈ cj

2`−t

⌉
≤
⌈

2`

2`−t

⌉
=
⌈
2t
⌉

= 2t.

Lemma 2. For each t = 1, . . . , `, we have 2ct−1 − ct ∈ {0, 1}n.

Proof. First, we show that for every real number r, we have 2 dre−d2re ∈ {0, 1}. Note that
r can be written as dre+ f with f ∈ (−1, 0]. We then have d2re = d2 dre+ 2fe = 2 dre+
d2fe. Since d2fe ∈ {−1, 0}, we obtain d2re − 2 dre ∈ {−1, 0}, hence 2 dre − d2re ∈ {0, 1}.

Now, let j ∈ {1, . . . , n}, and consider the jth component of the vector 2ct−1 − ct. By
definition, we have

2ct−1
j − ctj = 2

⌈ cj
2`−t+1

⌉
−
⌈ cj

2`−t

⌉
.

The statement then follows from the first part of the proof by setting r = cj/2
`−t+1.

We are ready to provide our bound on the length of the simplex path generated by
the scaling algorithm. Even though the scaling algorithm uses the basic algorithm as a
subroutine, we show that the simplex path generated by the scaling algorithm is much
shorter than the one generated by the basic algorithm alone.

Proposition 1. The length of the simplex path generated by the scaling algorithm is
bounded by nk(dlog ‖c‖∞e+ 1) ∈ O(nk log ‖c‖∞).

Proof. Note that the scaling algorithm performs a total number of `+ 1 = dlog ‖c‖∞e+ 1
iterations, and in each iteration it calls once the basic algorithm. Thus, we only need to
show that, at each iteration, the simplex path generated by the basic algorithm is bounded
by nk.

First we consider the iteration t = 0 of the scaling algorithm. In this iteration, the basic
algorithm is called with input P , c0, and x0. Lemma 1 implies that

∥∥c0
∥∥
∞ ≤ 1, and from

Observation 1 we have that the basic algorithm calls the oracle at most nk times.
Next, consider the iteration t of the scaling algorithm for t ∈ {1, . . . , `}. In this iteration,

the basic algorithm is called with input P , ct, and xt, and outputs the vertex xt+1. From
Observation 1, we only need to show that ct

T
xt+1 − ctTxt ≤ nk.

First, we derive an upper bound on ct
T
xt+1. From Lemma 2, the vector 2ct−1 − ct is

nonnegative. Since also xt+1 is nonnegative, we obtain ct
T
xt+1 ≤ 2ct−1Txt+1. Further-

more, by definition of xt we obtain ct−1Txt+1 ≤ ct−1Txt. We thereby obtain the upper

bound ct
T
xt+1 ≤ 2ct−1Txt+1 ≤ 2ct−1Txt.

We can now show ct
T
xt+1 − ctTxt ≤ nk. We have

ct
T
xt+1 − ctTxt ≤ 2ct−1Txt − ctTxt = (2ct−1 − ct)Txt ≤ nk.

The last inequality holds because, from Lemma 2, we know that each component of 2ct−1−
ct is at most one, while the vector xt is in [0, k]n.
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In the next section we use the scaling algorithm as a subroutine in the preprocessing &
scaling algorithm. We remark that, the scaling algorithm will also be a subroutine in the
face-fixing algorithm, which is described in Section 3.

2.3 The preprocessing & scaling algorithm

The length of the simplex path generated by the scaling algorithm still depends on ‖c‖∞,
even though the dependence is now logarithmic instead of linear. In this section we show
that we can completely remove the dependence on ‖c‖∞ by using our scaling algorithm in
conjunction with the preprocessing algorithm by Frank and Tardos [15]. This method relies
on the simultaneous approximation algorithm of Lenstra, Lenstra and Lovász [21]. Next,
we state the input and output of Frank and Tardos’ algorithm.

Preprocessing algorithm

Input: A vector c ∈ Qn and a positive integer N .
Output: A vector c̆ ∈ Zn such that ‖c̆‖∞ ≤ 24n3

Nn(n+2) and sign(cTz) = sign(c̆Tz) for
every z ∈ Zn with ‖z‖1 ≤ N − 1.

The number of operations performed by the preprocessing algorithm is polynomially
bounded in n and logN . For more details, we refer the reader to Section 3 in [15].

Next, we describe the algorithm obtained by combining the preprocessing algorithm and
the scaling algorithm.

Preprocessing & scaling algorithm

Input: A [0, k]-polytope P , a cost vector c ∈ Zn, and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx.

Set c̆ := preprocessing algorithm(c,N := nk + 1).
Set x∗ := scaling algorithm(P, c̆, x0).
Return x∗.

It is simple to see that the preprocessing & scaling algorithm is correct. In fact, due to
the correctness of the scaling algorithm, we have that c̆T(x∗−x) ≥ 0 for every x ∈ P . Note
that, for every x ∈ P ∩Zn, we have x∗ − x ∈ Zn and ‖x∗ − x‖1 ≤ nk = N − 1. Therefore,
the preprocessing algorithm guarantees that cT(x∗ − x) ≥ 0 for every x ∈ P ∩ Zn. The
correctness of the preprocessing & scaling algorithm then follows because all vertices of P
are integral.

We are now ready to give a proof of Theorem 1. We show that the obtained simplex
path length is polynomially bounded in n and k, thus only polynomially far from the
worst-case diameter.

Proof of Theorem 1. The vector c̆ returned by the preprocessing algorithm satisfies ‖c̆‖∞ ≤
24n3

(nk+ 1)n(n+2), hence log ‖c̆‖∞ ≤ 4n3 + n(n+ 2) log(nk+ 1). From Proposition 1, the
length of the simplex path generated by the preprocessing & scaling algorithm is bounded
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by

nk(dlog ‖c̆‖∞e+ 1) ≤ nk(4n3 + n(n+ 2) log(nk + 1) + 2) ∈ O(n4k log(nk)).

Next, we compare our bound on the length of the simplex path constructed by the
preprocessing & scaling algorithm with other known bounds for some classic pivoting rules
that can be applied to [0, k]-polytopes.

A result by Kitahara and Mizuno [17, 18] implies that, by using the dual simplex
algorithm with Dantzig’s or the best improvement pivoting rule, we can construct a
simplex path in P whose length is at most n2K log(nK), where K = max{k, S} and
S = max{‖b−Ax‖∞ | x ∈ P}. This has been recently extended to the steepest edge
pivoting rule by Blanchard, De Loera and Louveaux [6]. We remark that K critically de-
pends on the values of the slack variables of the constraints Ax ≤ b. It is known that, even

for k = 1, the value S can be as large as (n−1)
n−1
2

22n+o(n) (see [3, 30]), which is not polynomially
bounded in n, k. As a consequence, this upper bound on the simplex path length is not
polynomially bounded in n, k.

2.4 Complexity

The goal of this section is to analyze the number of operations performed by the prepro-
cessing & scaling algorithm in order to construct the next vertex in the simplex path or
to certify optimality of the current vertex. In particular we show that this number of
operations is polynomially bounded in size(A) and log k.

We start by analyzing the complexity of the basic algorithm. We recall that a d-
dimensional polytope is said to be simple if each vertex is adjacent to exactly d other
vertices. Throughout this paper we assume that a simple polytope is given by a minimal
system of linear equalities defining its affine hull and a system of linear inequalities defining
its facets.

Lemma 3. The number of operations performed by the basic algorithm to construct the next
vertex in the simplex path, or to certify optimality of the current vertex, is polynomially
bounded in size(A). If P is simple, the number of operations is O(nm).

Proof. To prove this proposition it suffices to show the following statement: An oracle call
can be performed with a number of operations polynomially bounded in size(A). If P is
simple, it can be performed in O(nm) operations.

First, consider the case where P is simple. We can then use a pivot of the dual simplex
method, where the primal is in standard form, and the feasible region of the dual is given
by the polytope P . This requires O(nm) operations [5].

Consider now the case where P may not be simple. Denote by A=x ≤ b= the subsystem
of the inequalities of Ax ≤ b satisfied with equality by x̄. Note that the polyhedron
T := {x ∈ Rn | A=x ≤ b=} is a cone pointed at x̄. Denote by dT the sum of all the rows
in A= and note that the vertex x̄ is the unique maximizer of dTx over T . Let T ′ be the
truncated cone T ′ := {x ∈ T | dTx ≥ dTx̄− 1} and note that there is a bijection between
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the vertices of P adjacent to x̄ and the vertices of T ′ different from x̄. We solve the LP
problem max{cTx | x ∈ T ′}. Using Tardos’ algorithm, this LP problem can be solved in
a number of operations that is polynomial in the size of the constraint matrix, which is
polynomial in size(A).

If x̄ is an optimal solution to the LP, then the oracle returns that x̄ is optimal. Other-
wise, Tardos’ algorithm returns an optimal solution that is a vertex z of T ′ different from
x̄. In this case the oracle needs to return the corresponding adjacent vertex z̄ of x̄ in P .
Let A′x ≤ b′ be the system obtained from Ax ≤ b by setting to equality the inequalities in
the subsystem A=x ≤ b= satisfied with equality by both x̄ and z. It should be noted that
the vectors that satisfy A′x ≤ b′ constitute the edge of P between x̄ and z̄. The vector z̄
can then be found by maximizing cTx over A′x ≤ b′ with Tardos’ algorithm.

Next we analyze the number of operations performed by the scaling algorithm.

Lemma 4. The number of operations performed by the scaling algorithm to construct the
next vertex in the simplex path, or to certify optimality of the current vertex, is polyno-
mially bounded in size(A) and log ‖c‖∞. If P is simple, the number of operations is in
O(nm log2 ‖c‖∞).

Proof. To construct the next vertex in the simplex path or to certify optimality of the
current vertex, in the worst case the scaling algorithm calls `+ 1 times the basic algorithm.
This happens if the first ` calls of the basic algorithm all return the current vertex. In
each iteration the scaling algorithm first computes an approximation ct of c and then calls
the basic algorithm. Computing ct can be done by binary search, and the number of
comparisons required is at most n log

∥∥ct∥∥∞, which is bounded by nt ≤ n` from Lemma 1.
Furthermore, from Lemma 3, each time the basic algorithm is called, it performs a number
of operations polynomially bounded in size(A), and by O(nm) if P is simple. Therefore
the scaling algorithm performs a number of operations bounded by a polynomial in size(A)
and in log ‖c‖∞. If P is simple, the number of operations is O((`+ 1) · (n`+O(nm))) =
O(nm log2 ‖c‖∞).

We are now ready to analyze the complexity of the preprocessing & scaling algorithm.

Proposition 2. The number of operations performed by the preprocessing & scaling al-
gorithm to construct the next vertex in the simplex path, or to certify optimality of the
current vertex, is polynomially bounded in size(A) and log k. If P is simple, the number
of operations is polynomially bounded in n,m, and log k.

Proof. The number of operations performed by the preprocessing & scaling algorithm to
construct the next vertex in the simplex path, or to certify optimality of the current
vertex, is the sum of: (i) the number of operations needed to compute c̆, and (ii) the
number of operations performed by the scaling algorithm, with cost vector c̆, to construct
the next vertex in the simplex path or to certify optimality of the current vertex. The
vector c̆ can be computed with a number of operations polynomially bounded in n and
log(nk) [15]. From Lemma 4, (ii) is polynomially bounded in size(A) and log ‖c̆‖∞, and
by O(nm log2 ‖c̆‖∞) if P is simple. To conclude the proof, we only need to observe that
log ‖c̆‖∞ is polynomially bounded in n and log k.
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3 The face-fixing algorithm

In this section, our task is to construct a simplex path shorter than the one computed by
the preprocessing & scaling algorithm, provided that the constraint matrix A has entries
with small absolute value. We define [m] := {1, 2, . . . ,m} and refer to the rows of A as
aTi , for i ∈ [m]. We recall that the parameter α denotes the largest absolute value of the
entries in A. Next, we state the algorithm that will be analyzed in this section.

Face-fixing algorithm

Input: A [0, k]-polytope P , a cost vector c ∈ Zn, and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx.

0: Let E := ∅ and x∗ := x0.
1: Let c̄ be the projection of c onto the subspace {x ∈ Rn | aTi x = 0 for i ∈ E} of Rn. If
c̄ = 0 return x∗, otherwise go to 2.

2: Let ĉ := n3kα
‖c̄‖∞

c̄ and define c̃ ∈ Zn as c̃i := bĉic for i = 1, . . . , n.

3: Consider the following pair of primal and dual LP problems:
max c̃Tx
s.t. aTi x = bi i ∈ E

aTi x ≤ bi i ∈ [m] \ E
(P̃ )

min bTy
s.t. ATy = c̃

yi ≥ 0 i ∈ [m] \ E .
(D̃)

Use the scaling algorithm to compute an optimal vertex x̃ of (P̃ ) starting from x∗.
Compute an optimal solution ỹ to the dual (D̃) such that (i) ỹ has at most n nonzero
components, and (ii) ỹj = 0 for every j ∈ [m] \ E such that aj can be written as a
linear combination of ai, i ∈ E .
Let H := {i | ỹi > nk}. Update E := E ∪ H, x∗ := x̃ and go back to step 1.

The above algorithm is iterative in nature. Precisely, an iteration of the algorithm
corresponds to one execution of steps 1, 2, and 3. The key idea is to identify, at each
iteration, at least one constraint of Ax ≤ b that is active at each optimal solution of (1).
Such constraint is then set to equality, effectively restricting the feasible region of (1) to
a lower dimensional face of P .

Throughout the algorithm, E contains the indices of the constraints that have been
set to equality so far. Correspondingly, at each iteration, we restrict the feasible region to
the face F of P defined as

F := {x ∈ Rn | aTi x ≤ bi for i ∈ [m] \ E , aTi x = bi for i ∈ E}. (2)

Note that, since F is a face of P , it is also a [0, k]-polytope. We also store and update at
each iteration a vertex x∗ of F . The vertex x∗ is initially set to x0 and it ends up being
an optimal solution of (1).

In step 1, we compute the projection c̄ of c onto {x ∈ Rn | aTi x = 0 for i ∈ E}.
Maximizing cTx over F is equivalent to maximizing c̄Tx over the same set. Therefore, if
c̄ = 0, then c is perpendicular to F and all the points in F are optimal. In this case the
algorithm terminates by returning x∗.
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In step 2, we first compute a scaling ĉ of c̄, and then an integer approximation c̃ of ĉ
such that ‖c̃‖∞ = n3kα. This will be the key to obtain a short simplex path.

In step 3, we solve problem (P̃ ) and its dual. Note that (P̃ ) differs from (1) in two
ways: first, the feasible region of (P̃ ) is the current face F of P . Second, the cost vector
defining the objective function of (P̃ ) is the approximation c̃ of ĉ computed in step 2. In
order to solve (P̃ ), we apply the scaling algorithm from x∗, and we trace a path along the
edges of F from x∗ to an optimal vertex x̃ of (P̃ ). We also compute an optimal solution
to the dual problem (D̃), which is used to identify a subset H of constraints of Ax ≤ b
that are active at each optimal solution of (1). Finally, we add the indices of H to E and
we set x∗ := x̃.

At the end, the final simplex path from the input vertex x0 to an optimal vertex of (1)
is obtained by merging together the different paths constructed by the scaling algorithm
at each iteration.

We remark that the face-fixing algorithm is well-defined, meaning that it can indeed
perform all the instructions stated in its steps. In particular, in step 3: (a) x∗ is a valid
input for the scaling algorithm and (b) a vector ỹ satisfying properties (i) and (ii) always
exists. To see (a) we need to show that the vector x∗ is in F . Consider the vectors x̃, ỹ and
an index h ∈ H from the previous iteration, and note that x̃ = x∗. We have ỹh > 0, which,
by complementary slackness, implies aTh x̃ = bh. This immediately implies that x∗ is indeed
feasible for the problem (P̃ ) of the current iteration. The proof of (b) is more technical
and it involves some standard LP arguments. We defer the proof of (b) to Section 3.3 (see
Lemma 8).

Our face-fixing algorithm is inspired by Tardos’ strongly polynomial algorithm for com-
binatorial problems [28]. Tardos’ algorithm solves a LP problem in standard form in a
number of operations bounded by a polynomial in the size of the constraint matrix. The
main similarity among the two algorithms is that both recursively restrict the feasible
region to a lower dimensional face of the feasible region. The three main differences be-
tween the face-fixing algorithm and Tardos’ algorithm are: (1) Tardos’ algorithm solves
LP problems in standard form, while we consider a polytope P in general form, i.e.,
P = {x ∈ Rn | Ax ≤ b}; (2) Tardos’ algorithm exploits as a parameter the largest ab-
solute value of a subdeterminant of the constraint matrix, while our algorithm relies on
parameters k and α; and (3) Tardos’ algorithm is not a simplex algorithm, while ours is,
since it traces a simplex path along the edges of P .

3.1 Correctness

Our first goal is to prove that the face-fixing algorithm is correct. First, we will prove that
the algorithm terminates in a finite number of iterations. Next, we will prove that the
algorithm returns a vertex of P maximizing cTx. Recall that, at each iteration, we are
restricting our search to the face F of P defined by (2), which is obtained by setting to
equality the constraints indexed by E .

To prove that the algorithm terminates in a finite number of iterations, we will show
that at the end of iteration j the dimension of F is at most n− j. This will immediately
imply that face-fixing algorithm performs at most n + 1 iterations. To prove this, we will
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show that at step 3 we always add at least an index to E . Equivalently, we will prove that
there is an index h ∈ [m] \ E such that ỹh > nk. The key idea of the proof consists in
relating the complexity of c̃ to the complexity of ỹ by exploiting the dual constraints. If
no dual variable is larger than the prescribed threshold of nk, then the infinity norm of c̃
is too small, and we obtain a contradiction.

Lemma 5. The face-fixing algorithm performs at most n+ 1 iterations.

Proof. It suffices to show that in step 3 of the face-fixing algorithm we have H \ E 6= ∅ at
each iteration. In fact, this implies that there exists an index h ∈ H \ E . In particular,
ỹh > nk and from property (ii) of the vector ỹ, we have that ah is linearly independent
from the vectors ai, i ∈ E . Hence, at each iteration, the rank of the row submatrix of A
indexed by E increases by at least one. Therefore, after at most n iterations, the subspace
{x ∈ Rn | aTi x = 0 for i ∈ E} in step 1 is the origin. Hence the projection c̄ of c onto this
subspace is the origin, and the algorithm terminates by returning the current vector x∗.
Therefore, in the remainder of the proof we show that in step 3 of the face-fixing algorithm,
we have H \ E 6= ∅ at each iteration.

Let c̄, ĉ, c̃, x̃ and ỹ be the vectors computed at a generic iteration of the face-fixing
algorithm. Recall that c̃ = bĉc. Moreover, we have ‖ĉ‖∞ = n3kα and, since this number is
an integer, we also have ‖c̃‖∞ = n3kα.

Let B = {i ∈ {1, . . . ,m} | ỹi 6= 0}. From property (i) of the vector ỹ we know |B| ≤ n.
From the constraints of (D̃) and from the definition of B we obtain

c̃ =
∑
i∈[m]

aiỹi =
∑
i∈B

aiỹi. (3)

Note that ỹj ≥ 0 for every j ∈ B \ E since ỹ is feasible to (D̃). Hence to prove this
lemma we only need to show that

|ỹj | > nk for some j ∈ B \ E . (4)

The proof of (4) is divided into two cases.
In the first case we assume B ∩ E = ∅. Thus, to prove (4), we only need to show that

|ỹj | > nk for some j ∈ B. To obtain a contradiction, we suppose |ỹj | ≤ nk for every j ∈ B.
From (3) we obtain

‖c̃‖∞ ≤
∑
j∈B
‖aj ỹj‖∞ =

∑
j∈B

(
|ỹj | ‖aj‖∞

)
≤
∑
j∈B

(nk · α) ≤ n2kα.

However, this contradicts the fact that ‖c̃‖∞ = n3kα. Thus |ỹj | > nk for some j ∈ B, and
(4) holds. This concludes the proof in the first case.

In the second case we assume that B ∩E is nonempty. In particular, we have |B \ E| ≤
n − 1. In order to derive a contradiction, suppose that (4) does not hold, i.e., |ỹj | ≤ nk
for every j ∈ B \ E . From (3) we obtain

c̃ =
∑
i∈B

aiỹi =
∑
i∈B∩E

aiỹi +
∑
j∈B\E

aj ỹj .
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Then ∥∥∥∥∥c̃− ∑
i∈B∩E

aiỹi

∥∥∥∥∥
∞

≤
∑
j∈B\E

‖aj ỹj‖∞ =
∑
j∈B\E

(
|ỹj | ‖aj‖∞

)
≤
∑
j∈B\E

(nk · α) ≤ (n− 1)nkα ≤ n2kα− 1.

(5)

Next, in order to derive a contradiction, we show that∥∥∥∥∥c̃− ∑
i∈B∩E

aiỹi

∥∥∥∥∥
∞

> n2kα− 1. (6)

By adding and removing c̃ inside the norm in the left-hand side below, we obtain∥∥∥∥∥ĉ− ∑
i∈B∩E

aiỹi

∥∥∥∥∥
∞

=

∥∥∥∥∥c̃− ∑
i∈B∩E

aiỹi − (c̃− ĉ)

∥∥∥∥∥
∞

≤

∥∥∥∥∥c̃− ∑
i∈B∩E

aiỹi

∥∥∥∥∥
∞

+ ‖c̃− ĉ‖∞ . (7)

Let us now focus on the left-hand side of (7). We have that ĉ is orthogonal to ai,
for every i ∈ E . This is because ĉ is a scaling of c̄ and the latter vector is, by definition,
orthogonal to ai, for every i ∈ E . We obtain∥∥∥∥∥ĉ− ∑

i∈B∩E
aiỹi

∥∥∥∥∥
∞

≥ 1√
n

∥∥∥∥∥ĉ− ∑
i∈B∩E

aiỹi

∥∥∥∥∥
2

≥
‖ĉ‖2√
n
≥
‖ĉ‖∞√
n

=
n3kα√
n
≥ n2kα, (8)

where the second inequality holds by Pythagoras’ theorem.
Using (7), (8), and noting that ‖c̃− ĉ‖∞ < 1 by definition of c̃, we obtain∥∥∥∥∥c̃− ∑

i∈B∩E
aiỹi

∥∥∥∥∥
∞

≥

∥∥∥∥∥ĉ− ∑
i∈B∩E

aiỹi

∥∥∥∥∥
∞

− ‖c̃− ĉ‖∞ > n2kα− 1.

This concludes the proof of (6).
Inequalities (5) and (6) yield a contradiction, thus (4) holds. This concludes the proof

in the second case.

Lemma 5 relies on proving that at step 3 we always add at least an index to E . This
is reminiscent of Lemma 1.2 in [28]. The first key difference is that in our setting the
primal is in general form, while in [28] the primal is in standard form. As a consequence,
the proof of Lemma 1.2 in [28] is a bit more direct, while in our setting the proof is more
technical. In particular, as explained above, a crucial step of our proof consists in using
the dual constraints to relate the infinity norm of c̃ to the infinity norm of ỹ. In this step,
we exploit the bound of α on the largest absolute value of an entry of A. The second
key difference is that the only parameter that is used in Lemma 1.2 in [28] is the largest
absolute value of a subdeterminant of the constraint matrix, while Lemma 5 relies on the
two parameters k and α.
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In the next two lemmas we will prove that, at each iteration, every optimal solution to
(1) lies in F . This is trivially true at the beginning of the algorithm, when E = ∅. Thus,
we will need to prove that when we update E in step 3 the property remains valid with
respect to the new face of P defined by E . Note that, to update E in step 3, we use an
optimal solution ỹ of the dual (D̃) with right-hand-side c̃. However, our ultimate goal is
to achieve optimality with respect to c, or equivalently to ĉ. In other words, we would like
to solve the problem (P̂ ) obtained from (P̃ ) by replacing c̃ with ĉ. How can we exploit ỹ
to detect a new constraint that is satisfied with equality by all optimal solutions to (P̂ )?

The standard complementary slackness conditions for LP state that, for each positive
component of ỹ, the corresponding constraint of (P̃ ) must be satisfied with equality by
all the optimal solutions to (P̃ ). In Lemma 6, we define a variant of these conditions that
relate the problems (P̂ ) and (D̃). We will obtain that, for each component of ỹ that is
above a prescribed threshold, the corresponding constraint of (P̂ ) must be satisfied with
equality by all the optimal solutions to (P̂ ). The key idea of the proof is to exploit the
fact that the cost vector ĉ in (P̂ ) and the right-hand-side vector c̃ in (D̃) are not very far
apart, since by definition c̃ = bĉc. Thus, the optimal solution ỹ of (D̃) is “almost feasible”
for the dual problem associated to (P̂ ).

In the following, 1 denotes the vector of all ones, and for u ∈ Rn we denote by |u| the
vector whose entries are |ui|, i = 1, . . . n.

Lemma 6. Let x̃ and ỹ be the vectors computed at step 3 of the face-fixing algorithm, and
denote by F the feasible set of (P̃ ). Then for any vector x̂ ∈ F ∩Zn such that ĉTx̂ ≥ ĉTx̃,
we have

ỹi > nk ⇒ aTi x̂ = bi i ∈ [m] \ E . (9)

Proof. First, since ỹ is feasible for (D̃), we have
∣∣ATỹ − ĉ

∣∣ = |c̃− ĉ| = ĉ− c̃. Since c̃ = bĉc
we obtain: ∣∣∣ATỹ − ĉ

∣∣∣ ≤ 1. (10)

Moreover, since x̃ and ỹ are optimal for (P̃ ) and (D̃), respectively, they satisfy the com-
plementary slackness conditions

ỹi > 0 ⇒ aTi x̃ = bi i ∈ [m] \ E . (11)

Let u := (x̂− x̃), and let u+, u− ∈ Rn+ be defined as follows. For j ∈ [n],

u+
j :=

{
uj if uj ≥ 0

0 if uj < 0,
u−j :=

{
0 if uj ≥ 0

−uj if uj < 0.

Clearly u = u+ − u− and |u| = u+ + u−. Since ĉTx̂ ≥ ĉTx̃, we have ĉTu ≥ 0.
We prove this lemma by contradiction. Suppose that there exists h ∈ [m]\E such that

ỹh > nk and aTh x̂ 6= bh. Since x̂ ∈ F and ah, x̂, bh are integral, we have aTh x̂ ≤ bh − 1. We
rewrite (10) as ATỹ − 1 ≤ ĉ ≤ ATỹ + 1. Thus

ĉTu = ĉTu+ − ĉTu− ≤ (ATỹ + 1)Tu+ − (ATỹ − 1)Tu−

= (ATỹ)T(u+ − u−) + 1T(u+ + u−) = (ATỹ)Tu+ 1T |u| . (12)
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We can upper bound 1T |u| in (12) by observing that |uj | ≤ k for all j ∈ [n], since F is a
lattice polytope in [0, k]n and u is the difference of two vectors in F . Thus

1T |u| ≤ nk. (13)

We now compute an upper bound for (ATỹ)Tu = ỹTAu in (12).

ỹTAu = ỹha
T
hu+

∑
i∈E

ỹia
T
i u+

∑
i∈[m]\E, i 6=h

ỹia
T
i u

< −nk +
∑
i∈E

ỹia
T
i u+

∑
i∈[m]\E, i 6=h

ỹia
T
i u (14)

= −nk +
∑

i∈[m]\E, i 6=h

ỹia
T
i u (15)

≤ −nk +
∑

i∈[m]\E, i 6=h, ỹi>0

ỹia
T
i u (16)

≤ −nk. (17)

To prove the strict inequality in (14) we show ỹha
T
hu < −nk. We have ỹh > nk > 0, thus

condition (11) implies aTh x̃ = bh. Since aTh x̂ ≤ bh − 1, we get aThu = aTh x̂− aTh x̃ ≤ −1. We
multiply ỹh > nk by aThu and obtain ỹh · aThu < nk · aThu ≤ −nk. Equality (15) follows
from the fact that, for each i ∈ E we have aTi x̂ = bi and aTi x̃ = bi since both x̂ and x̃ are
in F , thus aTi u = 0. Inequality (16) follows since ỹ ≥ 0. To see why inequality (17) holds,
first note that, from condition (11), ỹi > 0 implies aTi x̃ = bi. Furthermore, since x̂ ∈ F ,
we have aTi x̂ ≤ bi. Hence we have aTi u ≤ 0 and so ỹia

T
i u ≤ 0.

By combining (12), (13) and (17) we obtain ĉTu < 0. This is a contradiction since we
have previously seen that ĉTu ≥ 0.

Lemma 6 has a flavor similar to that of Lemma 1.1 in [28]. However, there are three
key differences. First, Lemma 6 deals with a primal in general form, while Lemma 1.1
in [28] considers a primal in standard form. Second, Lemma 6 deals with a polytope in
[0, k]n and exploits k as a parameter in condition (9), while Lemma 1.1 in [28] exploits the
maximum absolute value of a subdeterminant of the constraint matrix. It can be checked
that these two results cannot be obtained from each other by switching from the general
form representation to standard form, or vice versa. The third key difference is that the
vector x̂ in the statement of Lemma 6 is required to be integer, while this is not the case
in Lemma 1.1 in [28]. Essentially, we are able to detect if there is any constraint of Ax ≤ b
that is satisfied with equality by an integer vector in P that maximizes cTx. This result
could be of independent interest in the field of integer programming.

For a vector w ∈ Rn and a polyhedron Q ⊆ Rn, we say that a vector is w-maximal in
Q if it maximizes wTx over Q. We are now ready to show that, at each iteration, every
optimal solution to (1) lies in F .

Lemma 7. The set E updated in step 3 of the face-fixing algorithm is such that every vector
x∗ that is c-maximal in P satisfies aTi x

∗ = bi for i ∈ E.
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Proof. It suffices to prove the statement for a vertex x∗ of P that is c-maximal in P .
We prove this lemma recursively. Clearly, the statement is true at the beginning of the
algorithm, when E = ∅. Suppose now that the statement is true at the beginning of a
generic iteration. At the beginning of step 3 we have that x∗ is c-maximal in F . Our goal
is to prove that when we add an index h ∈ H \ E to E at the end of step 3, we have that
aThx

∗ = bh.
First, note that x∗ is also ĉ-maximal in F , as ĉ is a scaling of c̄. Since the vector x̃

computed in step 3 lies in F , we have ĉTx∗ ≥ ĉTx̃. Moreover, x∗ is integral, since it is
a vertex of P . Finally, for each h ∈ H \ E , we have ỹh > nk. Thus Lemma 6 implies
aThx

∗ = bh for all h ∈ H \ E .

We are now ready to show that the face-fixing algorithm is correct.

Proposition 3. The face-fixing algorithm returns an optimal solution to the LP problem
(1).

Proof. Consider the face F defined when the algorithm terminates. Lemma 7 implies that
F contains all optimal solutions to (1). Note that the affine hull of F is contained in
{x ∈ Rn | aTi x = bi for i ∈ E}. Hence, due to the termination condition, all vectors in F
have the same objective value cTx. Since the vector x∗ returned is in F , we obtain that
x∗ is an optimal solution to (1).

3.2 Length of simplex path

To bound the length of the simplex path constructed by the face-fixing algorithm from the
input vertex x0 to an optimal vertex of (1) we exploit the fact that this path is obtained by
merging together the different paths constructed by the scaling algorithm at each iteration.

Proof of Theorem 2. From Lemma 5 the face-fixing algorithm performs at most n + 1 it-
erations. Each time the face-fixing algorithm performs step 3, it calls the scaling algorithm
with input F , x∗, and c̃. Since F is a [0, k]-polytope, by Proposition 1, each time the scal-
ing algorithm is called, it generates a simplex path of length at most nk(dlog ‖c̃‖∞e + 1),
where ‖c̃‖∞ = n3kα. Since log ‖c̃‖∞ ∈ O(log(nkα)), each time we run the scaling algo-
rithm, we generate a simplex path of length in O(nk log(nkα)). Therefore, the simplex
path generated throughout the entire algorithm has length in O(n2k log(nkα)).

We immediately obtain the following corollary of Theorem 2.

Corollary 1. If α is polynomially bounded in n, k, then the length of the simplex path
generated by the face-fixing algorithm is in O(n2k log(nk)). If we also assume k = 1, the
length reduces to O(n2 log n).

Next, we compare our bound on the length of the simplex path constructed by the
face-fixing algorithm with other known bounds for some classic pivoting rules that can be
applied to [0, k]-polytopes.

As discussed in Section 2.3, a result by Kitahara and Mizuno [17, 18] implies that, by
using classic pivoting rules, we can construct a simplex path in P whose length is at most
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n2K log(nK), where K = max{k, S} and S = max{‖b−Ax‖∞ | x ∈ P}. In particular,
if each inequality of Ax ≤ b is active at some vertex of P , we have that S and K are in
O(nkα), thus in this case the upper bound implied by the result of Kitahara and Mizuno
is in O(n3kα log(nkα)). Note that the dependence on α is superlinear, while in our face-
fixing algorithm it is only logarithmic. Our upper bound is better also for small values of α.
In fact, for α = 1, their upper bound is in O(n3k log(nk)) and ours is in O(n2k log(nk)).

To show that the bound of O(nkα) on S and K just discussed can be tight, we now
provide an example of a [0, 1]-polytope with α = 1 and S ∈ Ω(n). Consider the stable set
polytope of a t-perfect graph G = (V,E), that is defined by the vectors x ∈ RV+ satisfying:

xi + xj ≤ 1 ij ∈ E∑
i∈V (C)

xi ≤
⌊
|V (C)|

2

⌋
C odd cycle in G, (18)

where V (C) denotes the nodes in the odd cycle C [26]. Note that x = 0 is the characteristic
vector of the empty stable set, thus it is a vertex of the stable set polytope. If G is an odd
cycle on |V | = n nodes, then G is t-perfect, and the inequality (18) corresponding to the
cycle containing all nodes of G is facet-defining. Furthermore, the slack in such constraint
can be as large as

⌊
n
2

⌋
, therefore S ∈ Ω(n). Consequently, the upper bound implied by

[17, 18] is in Ω(n3 log n), while the upper bound given by our face-fixing algorithm is in
O(n2 log n).

In a subsequent paper [22], Mizuno proposed an algorithm that can be used to trace
a simplex path on P whose length is at most O(n3m4∆3 log(n2m3∆3)), where ∆ is the
largest absolute value of a subdeterminant of the matrix A. Note that, while the upper
bound on the length of the simplex path generated by the face-fixing algorithm depends on
parameters n, k, α, the upper bound on the length of the simplex path generated by this
algorithm depends on parameters n,m,∆. Therefore these two bounds are not directly
comparable. In particular, it is known that ∆ can grow as αn ·n

n
2 . Moreover, as remarked

earlier, even in [0, 1]-polytopes m can grow exponentially in n (see, e.g., [26]).

3.3 Complexity

In this last section, we bound the number of operations performed by the face-fixing
algorithm to construct the next vertex in the simplex path or to certify optimality of the
current vertex. First, we upper bound the number of operations needed to compute an
optimal solution ỹ to the dual (D̃) with the properties stated in step 3.

Lemma 8. In step 3 of the face-fixing algorithm, a vector ỹ satisfying (i) and (ii) can
be computed in a number of operations that is polynomially bounded in size(A). If P is
simple, the number of operations is in O(nm+ n3).

Proof. First, assume that the polytope P is simple. Let problem (P̃ )’ be obtained from
(P̃ ) by dropping the inequalities that are not active at x̃. This can be done in O(nm)
operations. Since P is simple, the number of constraints in (P̃ )’ is n and the n × n
constraint matrix Ã of (P̃ )’ is invertible. Note that x̃ is an optimal solution to (P̃ )’ as
well. Let (D̃)’ be the dual of (P̃ )’. Note that (D̃)’ is obtained from (D̃) by dropping the
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variables yj corresponding to the inequalites of (P̃ ) dropped to obtain (P̃ )’. Since (P̃ )’
has an optimal solution, then so does (D̃)’ from strong duality. The constraint matrix
of (D̃)’ is the invertible matrix ÃT. The only feasible solution to the system of linear
equations in (D̃)’ is the vector ỹ′ := Ã−Tc̃ which can be computed in O(n3) operations.
Since (D̃)’ is feasible, then ỹ′ must satisfy all the constraints in (D̃)’, thus ỹ′ is optimal.
Let ỹ be obtained from ỹ′ by adding back the dropped components and setting them to
zero. The vector ỹ is feasible to (D̃), and, from complementary slackness with x̃, it is
optimal to (D̃). Furthermore, ỹ clearly satisfies (i). To see that it satisfies (ii), note that
the equalities aTi x = bi, i ∈ E , are all in (P̃ )’. Since the constraints in (P̃ )’ are all linearly
independent, problem (P̃ )’ cannot contain any constraint aTj x ≤ bj , for j ∈ [m] \ E such
that aj can be written as a linear combination of ai, i ∈ E . Hence, the corresponding dual
variable ỹj has been set to zero.

Consider now the general case where P may not be simple. First, we show how to
compute a vector ỹ that satisfies (i). Since (P̃ ) has an optimal solution, then so does (D̃)
from strong duality. Let (D̃)’ be obtained from (D̃) by replacing each variable yi, i ∈ E ,
with y+

i − y
−
i , where y+

i and y−i are new variables which are required to be nonnegative.
Clearly (D̃) and (D̃)’ are equivalent, so (D̃)’ has an optimal solution. Furthermore, since
(D̃)’ is in standard form, it has an optimal solution ỹ′ that is a basic feasible solution. In
particular, via Tardos’ algorithm, the vector ỹ′ can be computed in a number of operations
polynomially bounded in size(A). Let ỹ be obtained from ỹ′ by replacing each pair ỹ′i

+, ỹ′i
−

with ỹi := ỹ′i
+ − ỹ′i

−. It is simple to check that ỹ is an optimal solution to (D̃). Since ỹ′

is a basic feasible solution, it has at most n nonzero entries. By construction, so does ỹ.
Next, we discuss how to compute a vector ỹ that satisfies (i) and (ii). Let problem (P̃ )’

be obtained from (P̃ ) by dropping the inequalities aTj x ≤ bj , for j ∈ [m] \ E , such that aj

can be written as a linear combination of ai, i ∈ E . Since problem (P̃ ) is feasible, then (P̃ )
and (P̃ )’ have the same feasible region and are therefore equivalent. Let (D̃)’ be the dual
of (P̃ )’. Note that (D̃)’ is obtained from (D̃) by dropping the variables yj corresponding to
the inequalities of (P̃ ) dropped to obtain (P̃ )’. Note that (P̃ )’ has the same form as that
of (P̃ ), thus, from the the first part of the proof, we can compute a vector ỹ′ optimal to
(D̃)’ with at most n nonzero components. Furthermore, ỹ′ can be computed in a number
of operations polynomially bounded in size(A). Let ỹ be obtained from ỹ′ by adding back
the dropped components and setting them to zero. The vector ỹ is feasible to (D̃), and,
from complementary slackness with x̃, it is optimal to (D̃). Furthermore, ỹ satisfies (i)
and (ii).

Proposition 4. The number of operations performed by the face-fixing algorithm to con-
struct the next vertex in the simplex path, or to certify optimality of the current vertex, is
polynomially bounded in size(A) and log k. If P is simple, the number of operations is in
O(n4 + n2m log2(nkα)).

Proof. First, we discuss the number of operations performed in a single iteration of the
face-fixing algorithm:

(a) In step 1, computing the projection c̄ of c onto the subspace {x ∈ Rn | aTi x =
0 for i ∈ E} can be done in O(n3) operations via Gaussian elimination.
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(b) In step 2, computing the approximation c̃ of c̄ can be done by binary search, and
the number of comparisons required is at most n log ‖c̃‖∞.

(c) In step 3 we call the scaling algorithm to compute the vector x̃. From Lemma 4, the
number of operations performed to construct the next vertex in the simplex path, or
to certify optimality of the current vertex, is polynomially bounded in size(A) and
log ‖c̃‖∞. If P is simple, the number of operations is O(nm log2 ‖c̃‖∞).

(d) At the end of step 3 we compute the vector ỹ. From Lemma 8, the number of
operations performed to compute this vector is polynomially bounded in size(A),
and by O(nm+ n3) if P is simple.

Recall from Lemma 5 that the face-fixing algorithm performs at most n+ 1 iterations.
Moreover, each vector c̃ computed at step 2 is such that log ‖c̃‖∞ ∈ O(log(nkα)).

To construct the next vertex in the simplex path or to certify optimality of the cur-
rent vertex, in the worst case the face-fixing algorithm calls n times the scaling algorithm.
Therefore, the number of operations is bounded by the product of n with the sum of
the operations bounds in (a)–(d) above. In the general case, this number is polynomially
bounded in size(A) and log ‖c̃‖∞. If P is simple, this number is bounded by

O(n · (n3 + n log ‖c̃‖∞ + nm log2 ‖c̃‖∞ + nm+ n3)) ∈ O(n4 + n2m log2 ‖c̃‖∞).

The statement follows since size(A) is polynomial in n,m, logα, and log ‖c̃‖∞ ∈ O(log(nkα)).

The following proposition shows that if the polytope P is “well-described”, then the
number of operations performed by both the preprocessing & scaling algorithm and the face-
fixing algorithm to construct the next vertex in the simplex path is polynomially bounded
in n, m, log k. In particular, it is independent from α. Formally, we say that a full-
dimensional polytope P = {x ∈ Rn | Ax ≤ b} is well-described by the system Ax ≤ b
if each inequality in Ax ≤ b is facet-defining, and the greatest common divisor of the
entries in each row of A is one. It is well-known that given a system A′x ≤ b′ describing
a full-dimensional polytope P , we can obtain in polynomial time a system Ax ≤ b such
that P is well-described by Ax ≤ b.

Proposition 5. Assume that P is well-described. Then, the number of operations per-
formed by the preprocessing & scaling algorithm and by the face-fixing algorithm to construct
the next vertex in the simplex path, or to certify optimality of the current vertex, is poly-
nomially bounded in n, m, log k.

Proof. From Proposition 2 and Proposition 4, the number of operations performed by
either algorithm to construct the next vertex in the simplex path, or to certify optimality
of the current vertex, is polynomially bounded in size(A) and log k. Recall that size(A)
is polynomial in n, m, and logα. Therefore, it suffices to show that logα is polynomially
bounded in n and log k.

Denote by ϕ the facet complexity of P and by ν the vertex complexity of P . From
Theorem 10.2 in [25], we know that ϕ and ν are polynomially related, and in particular
ϕ ≤ 4n2ν. Since P is a [0, k]-polytope, we have ν ≤ n log k. Due to the assumptions in the
statement of the proposition, and Remark 1.1 in [7], we obtain that logα ≤ nϕ. Hence,
logα ≤ nϕ ≤ 4n3ν ≤ 4n4 log k.
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We highlight that all the obtained bounds on the number of operations performed
by our algorithms to construct the next vertex in the simplex path also depend on the
number m of inequalities in the system Ax ≤ b. This is in contrast with the lengths of the
simplex paths, which only depend on n and k. This is because, in order to determine the
next vertex, the algorithm needs to read all the inequalities defining the polytope, thus
the number of operations must depend also on m.

The total number of operations performed by our algorithms can be simply obtained
by multiplying the length of the simplex path with the number of operations performed to
construct the next vertex in the simplex path. If we assume that P is well-described and
that k is polynomially bounded in n and m, Proposition 5, Theorem 1, and Theorem 2
imply that the preprocessing & scaling algorithm and the face-fixing algorithm run in strongly
polynomial time.

To conclude, we remark that our algorithms can be used to solve a LP problem whose
feasible set is a lattice polytope, provided that a starting vertex is given in input. It
should be noted that in the face-fixing algorithm we use Tardos’ algorithm to compute an
optimal dual solution in step 3, if the lattice polytope is not simple. Thus, the number
of operations performed by our algorithm is clearly larger than that of Tardos’ algorithm.
This is to be expected, since our overall goal is not only of solving the given LP problem,
but also of tracing a simplex path from the starting vertex to an optimal vertex.
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