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Abstract

This paper presents a novel trust-region method for the optimization of
multiple expensive functions. We apply this method to a biobjective opti-
mization problem in fluid mechanics, the optimal mixing of particles in a flow
in a closed container. The three-dimensional time-dependent flows are driven
by Lorentz forces that are generated by an oscillating permanent magnet lo-
cated underneath the rectangular vessel. The rectangular magnet provides a
spatially non-uniform magnetic field that is known analytically. The magnet
oscillation creates a steady mean flow (steady streaming) similar to those ob-
served from oscillating rigid bodies. In the optimization problem, randomly
distributed mass-less particles are advected by the flow to achieve a homoge-
neous distribution (objective function 1) while keeping the work done to move
the permanent magnet minimal (objective function 2). A single evaluation of
these two objective functions may take more than two hours. For that reason,
to save computational time, the proposed method uses interpolation models
on trust-regions for finding descent directions. We show that, even for our
significantly simplified model problem, the mixing patterns vary significantly
with the control parameters, which justifies the use of improved optimization
techniques and their further development.

1 Introduction

The use of electromagnetic induction to manipulate electrically conducting flu-
ids is common in industrial applications, most notably in metallurgy, where
time-dependent magnetic fields are used to generate a stirring motion inside a
molten metal that is supposed to mix additives. A homogeneous distribution
of these additives is desired since it usually has a strong influence on the qual-
ity of the final ingot. The electromagnetic forcing is then achieved by rotating
magnetic fields that are, for example, generated by electromagnets [12, 10, 6].
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Permanent magnets offer an interesting alternative to resistive electromag-
nets since they do not require a continuous supply of electrical currents that
generate the electromagnet’s magnetic field.

A possible scenario of generating a stirring motion inside a liquid metal is
either by moving one or more permanent magnets with respect to the liquid
metal [24, 28, 5] or by injecting an electric current that interacts with the
magnetic field of a permanent magnet [19]. Flows considered in the present
manuscript are of the first type. In most cases, the length scale of the perma-
nent magnet is small compared to the flow domain. Hence, induced Lorentz
forces only affect a small fraction of the liquid. When the motion of the con-
ducting fluid is driven by external forces, such as an applied pressure gradient,
and passes a region of a non-uniform magnetic field, vorticity is generated,
and the flow behaves similarly to hydrodynamic flow past a solid obstacle [8].

In general, the investigation of mixing processes in liquid metal flows is
challenging. For experiments, one challenge lies in the opaqueness of the
liquid metal, which precludes optical measurement techniques. There are ad-
ditional dangers due to the reactivity and the elevated temperatures of many
liquid metals. For numerical simulations that are used in the present work,
the main difficulty is the computational demand, since such flows are usu-
ally three-dimensional and time-dependent. Furthermore, the generated flow
and, therefore, its stirring properties, depend on the particular configuration
characterized, e.g., by the movement of the magnet,the geometry of the flow
domain as well as the distribution and the strength of the magnetic field.

In the present paper we study a relatively simple numerical model for
mixing in a liquid metal layer that is stirred by a harmonically oscillating
permanent magnet. The generated flows are laminar and time-dependent.
Mixing in such flows can be described and analyzed by methods that have
been developed in the research field of chaotic advection [2]. Although it
would be interesting in its own right, we do not attempt to achieve a detailed
understanding of the physical mechanisms and mathematical properties of the
particular flows from the viewpoint of chaotic advection.

Instead, we are interested in an optimization of the stirring process. The
goals are to obtain a relatively homogeneous distribution of an initial local
cloud of Lagrangian particles across the layer with a minimal amount of work
that needs to be done for moving the permanent magnet. The control param-
eters are the oscillation amplitude and frequency as well as the magnet field
strength.

A function evaluation is only possible by a time consuming simulation
which can be considered as a black-box. Owing to that, the application of
classical optimization methods such as gradient based descent methods is not
possible. To reduce the computational work we propose a new algorithm based
on the idea of trust regions [7]. The algorithm is based on [32]. There, a trust-
region based solver for multi-objective optimization problems was proposed
which was developed for so called heterogeneous problems. This means that
one of the objective functions is expensive in terms of computational time,
while the others are inexpensive, i.e. given analytically.
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The algorithm used in this work differs in two aspects. First, we apply it
for two expensive functions rather than to a cheap and an expensive objective.
This has only minor impact, as it only requires that the Taylor model used
in [32] for the cheap function has to be replaced by an interpolation model.
Second, we apply an acceptance test for the candidates for the next iterate.
This has a strong impact, as it guarantees a strict descent in each objective
function from some starting configuration, which is of interest especially for
our application.

In the literature there are a lot of solution methods for multi-objective
optimization problems. One common approach is scalarization [20], i.e. to
formulate a parameter dependent single-objective replacement problem. By
using a weighted sum approach for such a scalarization we might lose the
property of a strict descent in each objective function. With the ε-constraint
method we lose the structure of our original problem which has box constraints
only. For these reasons we will not scalarize our optimization problem.

Other methods for multi-objective optimization problems, like the gener-
alized steepest descent method [11, 14] or the generalized Newton method [13]
require derivative information. However, in our setting the derivatives are not
available with reasonable efforts. There are also derivative-free methods such
as direct search [3, 9, 4]. This approach only needs function values. As our
objectives are supposed to be smooth, we propose here to use model functions
on trust regions to reduce the numerical effort. For heterogeneous problems,
this was advantageous in the considered test instances, see [31].

There are also other trust-region based multi-objective optimization solvers
for expensive functions, see [29]. Trust region methods can easily be adapted
for expensive functions as the original Taylor models can be replaced by in-
terpolation models of the functions. The algorithm in [29] is for bi-objective
problems. It uses a scalarization technique and approximates the Pareto front,
which is the set of optimal solutions in the image space. As the evaluation
of the objective functions is such expensive in our setting, we abstain from
finding an approximation of the Pareto front. Our approach is limited to
improving a starting value toward one optimal solution.

The manuscript is structured as follows. First, we introduce the multi-
objective optimization problem in Section 2. We give the basic definitions
and present the new optimization procedure. In particular, we discuss the
used acceptance test. In Section 4 we describe the application problem in
detail, together with the physical model including the governing equations and
the used numerical methods to solve them. Moreover, the general structure
of the flow is briefly described. In Section 5 we present the results of the
optimization. Concluding remarks are given in section 6.
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2 The Multi-objective Optimization Prob-

lem and Basic Definitions

In this paper we study an application problem which can be modeled as
an optimization problem with three variables, also called parameters. With
p ∈ R3 we will denote the parameter vector, i.e.

p = (p1, p2, p3)> = (β,KC,Ha)> , (1)

where the meaning of β, KC and Ha will be explained in Section 4.
The two objective functions f1 : R3 → R and f2 : R3 → R will have to be

minimized w.r.t. box constraints. The constraint set for the main calculations
is

Ω = {p ∈ R3 | 100 ≤ p1 ≤ 1000, 1 ≤ p2 ≤ 5, 10 ≤ p3 ≤ 40} . (2)

The intervals for the parameters are chosen in a way that the numerical sim-
ulations can be reproduced by experiments under conventional laboratory
conditions.

The considered multi-objective optimization problem (MOP) is then as
follows:

min
p∈Ω

(f1(p), f2(p))T (MOP)

where we will choose as first objective function the quality of the mixing, i.e.
f1(p) = ξ(p), and for the second objective function the work to be done by
the magnet, i.e. f2(p) = W (p). The interpretation and calculation of these
two objective functions will be given in detail in Section 4.

We will describe the novel numerical approach for solving problems of the
type (MOP) in Section 3. The proposed method can also easily be applied
to more than two objective functions. It assumes that all objective functions
are expensive, i.e. not analytically given, and that function values are only
accessible by time-consuming black-box simulations. Nevertheless, the ap-
proach assumes that the objective functions are smooth, i.e. differentiable,
even though derivatives will neither be calculated nor approximated. The lat-
ter would be too time consuming as many function evaluations are required
for numerical differentiation.

The algorithm can also be applied to problems with a larger dimension
of the parameter space. This just influences the number of function evalu-
ations which will be required for building models of the objectives. For the
constraint set we have much stricter assumptions. The algorithm is developed
for unconstrained problems and can be applied to problems with lower and
upper bounds of the variables. However, more complex constraints cannot be
handled.

We give all definitions and results for the specific formulation (MOP) as
we need them only for this setting. Naturally, the definitions extend to more
than three parameters and to more than two objective functions.
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The algorithm attempts to find efficient solutions of (MOP). Recall that
a feasible point p ∈ Ω is efficient for (MOP) if there is no other feasible point
p′ ∈ Ω with fi(p

′) ≤ fi(p), for i = 1, 2 and with fj(p
′) < fj(p) for at least

one j ∈ {1, 2}.
In fact, the algorithm cannot guarantee to find an efficient solution of

(MOP). The algorithm generates a sequence of points where the accumulation
points satisfy some necessary optimality condition for a point to be efficient.
But note that points which satisfy necessary optimality conditions might also
not be efficient or only locally efficient. For more details we refer to [32]. The
necessary optimality condition is formulated in the next definition:

Let fi : R3 → R, i = 1, 2, be continuously differentiable. A point p ∈ R3

is called Pareto critical for (MOP) if for every vector d ∈ R3 there exists an
index j ∈ {1, 2} such that ∇fj(p)>d ≥ 0 holds.

This concept is a generalization of the stationarity notion for single-objective
optimization problems. Numerical methods for single-objective optimization
typically also do not guarantee to find a globally optimal solution but only a
point which satisfies some optimality conditions which are necessary for local
optimality. Pareto criticality is a necessary condition for local weak efficiency,
see for example [14], and thus for efficiency as defined above.

The following lemma gives a characterization of Pareto critical points. It
stems from multi-objective descent methods [11, 13, 14]. It is important for
the description of the convergence of the proposed algorithm.

Let fi : R3 → R be continuously differentiable functions for all i = 1, 2.
For the function

ω(p) := − min
‖d‖≤1

max
i=1,2
∇fi(p)>d (3)

the following statements hold.

(i) The mapping p 7→ ω(p) is continuous.

(ii) It holds ω(p) ≥ 0 for all p ∈ Rn.

(iii) A point p ∈ R3 is Pareto critical for (MOP) if and only if it holds
ω(p) = 0.

3 The Trust-region based Solver for Ex-

pensive Multi-objective Optimization

To solve the optimization problem (MOP), we use an iterative algorithm which
is based on the algorithm in [32], see also [30]. The first modification compared
to the algorithm there is that we use interpolation models for both objective
functions, and we built the models by using a joint base of interpolation
points. This also allows us to handle problems with two objective functions
where function values are obtained by one simulation run. Another aspect
is the trial point acceptance test for a new iterate, which guarantees a strict
descent in each objective function. We discuss it in Section 3.3.
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3.1 Description of the method

Let k ∈ N be an iteration index and pk ∈ R3 the current iteration point, i.e.,
we also have done a simulation of the fluid flow problem with parameter vector
pk. In every iteration the computations are restricted to the local sphere

Bk :=
{
p ∈ R3 |

∥∥∥p− pk
∥∥∥ ≤ δk}

called trust region defined by the current iteration point pk, a radius δk > 0,
and the Euclidean norm ‖·‖. The objective functions f1 and f2 are replaced
by model functions mk

1,m
k
2 : R3 → R, in every iteration k. For both functions

quadratic interpolation models based on Lagrange polynomials are used that
satisfy the interpolation conditions

f1(pk) = mk
1(pk) and f2(pk) = mk

2(pk) .

Then, a search direction is computed by so-called local ideal points qk =
(qk1 , q

k
2 )> ∈ R2 which use the individual minima of the model functions, i.e.

qk1 = min
p∈Bk

mk
1(p) and qk2 = min

p∈Bk

mk
2(p).

This guarantees a descent for the model functions and, depending on the
quality of the approximations, also for the original functions. Thus, the aim
is to move as far as possible –as far as the trust region Bk allows– in this search
direction qk. This is done by solving the auxiliary optimization problem

min t
s.t. f1(pk) + t(f1(pk)− qk1 )−mk

1(p) ≥ 0
f2(pk) + t(f2(pk)− qk2 )−mk

2(p) ≥ 0
t ∈ R, p ∈ Bk.

(4)

The optimal solution is denoted by (tk+,pk+)>. The newly generated
point pk+ is accepted or discarded based on a comparison of the model be-
havior with the original functions. The algorithm produces a sequence of
iterates that converges to a Pareto critical point.

The criterion for deciding whether a newly generated point is discarded or
not, i.e. the trial point acceptance test, differs from the criterion in [32]. As can
be seen from the numerical experiments with this algorithm provided in [31,
Fig. 11], the original acceptance test does not necessarily guarantee a descent
for both objective functions in each iteration. However, from a practical
point of view it is better to improve both objective functions from some good
starting guess. Therefore, we use another acceptance test in Subsection 3.3.

The algorithm uses a combination of three stopping criteria. Since the
objective functions are expensive, the number of function evaluations is limited
and the algorithm stops if the maximum allowed number is reached. Besides,
it is proved in [32] that the trust region radius δk converges to zero if the
iteration points pk converge to a Pareto critical point. Thus, the algorithm
stops if the radius δk is smaller than a pre-defined constant ε > 0. The third
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stopping criterion also characterizes the behavior of approaching a Pareto
critical point and is based on the accuracy of the model functions mk

1, mk
2 and

the step size that is obtained by solving the auxiliary optimization problem
in Eq. (4).

Running the algorithm produces one Pareto critical point in case all as-
sumptions as detailed in [30] (and adapted for two expensive functions, which
is straightforward) are satisfied. Due to the design of the algorithm different
starting points result in general in different Pareto critical points. For the
mixing problem, it cannot be expected to approximate the whole set of effi-
cient points within a reasonable amount of time. This is due to the expensive
simulation-given functions.

3.2 Algorithm

For the full algorithm see Algorithm 1.

Algorithm 1 Expensive multi-objective trust region algorithm

Input: Functions f1, f2, initial point p0, initial trust region radius δ0 > 0, pa-
rameters 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1
Step 0: Initialization

Set k = 0 and compute initial model functions mk
i for i = 1, 2.

Step 1: Ideal point
Compute qk = (qk1 , q

k
2) by qki = minp∈Bk

mk
i (p) for i = 1, 2.

Step 2: Trial point
If rki = fi(p

k)− qki > 0 holds for all i ∈ {1, 2}, compute (tk+,pk+) by
solving (4).
Otherwise, set (tk+,pk+) = (0,pk).

Step 3: Trial point acceptance test
If tk+ = 0 or φkm(pk)− φkm(pk+) = 0, set ρ̃k = 0.
Otherwise, compute fi(p

k+), i = 1, 2, and

ρki = fi(p
k)−fi(pk+)

mk
i (pk)−mk

i (pk+)
for i = 1, 2.

Set ρ̃k = mini=1,2 ρ
k
i .

If ρ̃k ≥ η1, set pk+1 = pk+, otherwise set pk+1 = pk.
Step 4: Trust region update

Set δk+1 ∈


[γ1δk, γ2δk] , if ρ̃k < η1

[γ2δk, δk] , if η1 ≤ ρ̃k < η2

[δk,∞) , if ρ̃k ≥ η2

.

Step 5: Model update
Compute new model mk+1

i for i = 1, 2, set k = k + 1 and go to Step 1.

The function φkm : R3 → R is defined by φkm(p) = maxi=1,2m
k
i (p) and will be

explained in the next subsection.
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3.3 Trial Point Acceptance Test

Step 3 of Algorithm 1 is the trial point acceptance test in which it is decided
if pk+ is accepted as next iteration point. In case it is not accepted, the trust
region radius is reduced for the next iteration and the model functions are
updated to improve their accuracy.

For the trial point acceptance test, the function values mk
i (p

k+), i = 1, 2,
of the model functions are compared to the function values fi(p

k+), i = 1, 2,
of the original functions, i.e. the prediction of the model functions is compared
to the actual behavior of the original functions.

In the single-objective trust region approach with a scalar valued objective
function g : R3 → R this is realized by considering the quotient

g(pk)− g(pk+)

mg(pk)−mg(pk+)
.

The model function of g is denoted by mg : R3 → R. If this quotient is larger
than a given nonnegative constant, the trial point is accepted. This criterion
can be transferred to multi-objective trust region approaches by applying it
to the maximum over all functions. This was done in [32] and is based on [34]:

ρkφ =
φ(pk)− φ(pk+)

φkm(pk)− φkm(pk+)

with the functions

φ(p) = max
i=1,2

fi(p) and φkm(p) = max
i=1,2

mk
i (p) .

The trial point pk is then accepted if ρkφ ≥ η1 holds with η1 > 0.

Due to the determination of pk+ by (4) it holds mk(pk+) ≤ mk(pk) in all
iterations k ∈ N. Therefore,we conclude

φkm(pk)− φkm(pk+) ≥ 0

for all k ∈ N. Thus, if ρkφ < 0 holds, it follows φ(pk) − φ(pk+) < 0. As
described in [32], this guarantees only a descent for at least one objective
function.

Another possibility to extend the trial point acceptance test from single-
objective optimization to multi-objective optimization is to formulate it for
every function individually, that is by considering the quotients

ρki =
fi(p

k)− fi(pk+)

mk
i (p

k)−mk
i (p

k+)
for i = 1, 2. (5)

If both quotients are larger than a given nonnegative constant, the trial point
is accepted. This trial point acceptance test is used for example in the trust
region approach from [29]. Using the acceptance test with ρki , i = 1, 2, guar-
antees a descent for every objective function. Thus, the latter acceptance
criterion is stricter. This is proved in Lemma 3.3 below.
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The difference is schematically illustrated in Figure 1. Two areas are
depicted: the gray shaded area includes the images of all points that would
be accepted by the strict version of the acceptance test, as for example p̂.
This area is a subset of the area contoured by dashed lines. This larger region
contains the images of those points that would be accepted by the trial point
acceptance test defined by ρkφ.

f2

f1

f(Bk)

f(pk)

f(p̃)
f(p̂)

Figure 1: Trial point acceptance test with ρkφ and ρki , i = 1, 2.

Let k ∈ N be an arbitrary index, η1 ∈ (0, 1) a constant and let the inter-
polation condition hold. If ρki ≥ η1 for all i ∈ {1, 2}, then it holds ρkφ ≥ η1.

Let ρki ≥ η1 hold for i = 1, 2. According to the interpolation condition, it
holds f(pk) = mk(pk) for all k ∈ N. This implies together with the definition
of ρki

fi(p
k)− fi(pk+) ≥ η1

(
mk
i (p

k)−mk
i (p

k+)
)

= η1

(
fi(p

k)−mk
i (p

k+)
)

for i = 1, 2. This is equivalent to

(1− η1) fi(p
k) ≥ fi(pk+)− η1m

k
i (p

k+)

for i ∈ 1, 2. Since it holds η1 ∈ (0, 1), fi(p
k) ≤ φ(pk) and mk

i (p
k+) ≤ φkm(pk+)

for i = 1, 2, it follows that

(1− η1)φ(pk) ≥ fi(pk+)− η1m
k
i (p

k+) ≥ fi(pk+)− η1φ
k
m(pk+)

for i ∈ 1, 2. Let j ∈ {1, 2} be the index with fj(p
k+) = φ(pk+). Then it holds

(1− η1)φ(pk) ≥ fj(pk+)− η1φ
k
m(pk+) = φ(pk+)− η1φ

k
m(pk+).

It follows from the interpolation condition that

φ(pk)− φ(pk+) ≥ η1

(
φ(pk)− φkm(pk+)

)
= η1

(
φkm(pk)− φkm(pk+)

)
.

From the definition of ρkφ it then follows that ρkφ ≥ η1. Since the version of

the trial point acceptance test using ρki , i = 1, 2, is stricter than the version
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Figure 2: Sketch of the present problem— the domain of the liquid metal cell is
Lx×Ly×Lz = 3×3×1; a permanent magnet of size Lm,x×Lm,y×Lm,z = 1×1×0.5
oscillates in the x-direction with neutral position x = 0. The gap between the
permanent magnet and the bottom of the liquid metal layer is 0.25; at t = 0, 1000
Lagrangian particles are seeded in subsection with the dimension 1× 1× 0.5 in the
center of the liquid metal layer.

using ρkφ, it is possible that not as many iterations are successful when using

ρki , i.e. the trial point is not accepted as often as with ρkφ. Thus, the softer
acceptance test can save function evaluations. However, we lose the property
of improving the starting situation for each objective. Thus we use here the
strict test.

With this strict version of the trial point acceptance test the convergence
results from [32] can be transferred with slight modifications. The sufficient
decrease condition for the function φkm has to be replaced by an analogous
assumption for the model functions mk

i for all i ∈ {1, 2}. The remaining
assumptions are quite technical but typical for convergence results for trust-
region based methods with expensive functions. The convergence proof itself
is analogous to the proof in [32]. It is discussed in detail in Subsection 4.6.3 in
[30]. The result is that the algorithm generates a sequence of iterates

{
pk
}
k

with
lim
k→∞

ω(pk) = 0.

If the sequence
{
pk
}
k

has accumulation points, then all these points are
Pareto critical for (MOP).

4 Description of the Application

In this section, we describe the application problem and the numerical calcu-
lation of the objective functions in detail.

4.1 Physical model

Figure 2 shows an illustration of the present problem. The origin of the
coordinate system is the geometric center of the liquid metal layer. The length
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scale L is the thickness of the liquid metal layer. In the following, we specify
dimensions based on this scale, i.e. the thickness Lz = 1. The quadratic
footprint of the box is 3×3 for Lx×Ly. The rectangular permanent magnet has
the dimensions of 1×1×0.5 for Lm,x×Lm,y×Lm,z. It is uniformly magnetized
along the z-direction. The center of the permanent magnet is at zm = −1, i.e.
the gap between the bottom of the liquid metal layer and the surface of the
magnet is 0.25. At t = 0, the position of the magnet is xm(t = 0) = ym = 0
and Np mass-less particles are randomly seeded in a rectangular subsection of
the domain with the dimensions 1×1 in the horizontal, and 0.5 in the vertical
direction. The subsection is centered in the liquid metal layer. The magnetic
field is normalized by B, which is the maximal value in the middle plane of
the computational domain. All boundaries Γ are electrically insulating, i.e.,
the electrical current density vector field j has a vanishing normal component
j · n = 0 on Γ, where n is the surface-normal vector. The velocity vector field
u satisfies the no-slip condition u = 0 on Γ.

For low magnetic Reynolds numbers, the quasi-static approximation of
the full magnetohydrodynamic equations can be applied [10]. We define the
oscillation period

T =
1

f
=

2π

ω
(6)

as time scale and the maximal velocity

U = ωA (7)

as velocity scale based on the amplitude A of the oscillation. Introducing
further B, ρU2, and LUB as scales for the magnetic field, pressure (ρ is the
mass density of the fluid), and electric potential, respectively, the full set of
non-dimensional equations reads

∇ · u = ∇ · j = 0, (8)

1

KC

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u +

Ha2

Re
(j×B) , (9)

j = −∇φ+ ((u− um)×B) , (10)

∇2φ = ∇ · ((u− um)×B) , (11)

where

xm(t) = xm(t)ex, xm(t) = xm,0 +
KC

2π
sin(2πt), (12)

um(t) = um(t)ex, um(t) = cos(2πt). (13)

Equations (8,9) are the incompressible Navier-Stokes equations for the three-
dimensional velocity vector field, which is generated by the Lorentz force
j×B. Equation (10) is Ohm’s law for a moving conductor with the induced
electric field represented by the gradient of the scalar electric potential in
accordance with the quasistatic approximation. The condition (11) ensures
that the current density field is solenoidal. The quantity p denotes the pressure
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field and φ the electric potential. The quantities xm(t) and um(t) denote the
position and the velocity of the permanent magnet at time t, respectively.
The non-uniform magnetic field B is computed using an analytical expression
presented in [15]. Note that the induction (i.e., Eqns. (10) and (11)) results
from the relative motion between the fluid and the permanent magnet. More
details on the derivation can be found in [24]. In Eq. (9), the following three
non-dimensional parameters

Re =
UL

ν
, KC =

2πA

L
, Ha = BL

√
σ

ρν
(14)

occur. These are the Reynolds number Re, the Keulegan-Carpenter number
KC, and the Hartmann number Ha. The quantities ν and σ in equation (14)
are the kinematic viscosity and the electrical conductivity. A further useful
parameter is the interaction parameter N (also called Stuart number). It
characterizes the strength of the Lorentz force relative to inertial forces and
is defined by

N =
Ha2

Re
=
B2Lσ

ρU
. (15)

In addition to the magnet motion one has to specify its duration. One
could take a fixed number of cycles but this would imply a change of the
duration with the frequency for a given liquid and vessel geometry. We have
therefore decided to limit the duration of the stirring to 10% of the viscous
diffusion time, i.e., 0.1 L2/ν, which does not depend on the frequency. Based
on the period T , the non-dimensional duration is

Tmax =
0.1L2

Tν
= 0.1β, (16)

where

β =
Re

KC
=
fL2

ν
(17)

denotes the frequency parameter [33]. It is also useful later on to define time
in units of the duration, i.e.

t̃ =
t

Tmax
. (18)

Here, the tilde indicates proportionality to the viscous scale L2/ν.
The first objective of the optimization is to generate a well-mixed particle

distribution. To quantify the mixing process, we introduce a mixing norm ξ
according to

ξ =
1

M

√√√√M−1∑
i=0

(
Np

M
−Ni

)2

. (19)

For other norms in a Brownian particle cloud, we refer to [22]. To maintain
a large particle to cell ratio, we compute ξ on an equidistant mixing grid
consisting of 6×6×3 rectangular cells in the x, y, and z-direction, respectively.
In Eq. (19), M denotes the total number of cells (here M = 108), Ni denotes
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the number of particles in cell i of the mixing grid, and Np is the total number
of Lagrangian particles (here Np = 2500).

The second objective function is the work W =
∫
F · dr done by the

permanent magnet on the flow over the duration of the magnet motion. The
force is the total Lorentz force on the flow. Non-dimensionalization of W needs
to be done with care since time and velocity scales depend on the magnet
motion. For a comparison between different frequencies and amplitudes the
reference unit for W should be independent of A and f . Since the magnet
displacement is only in x, dr = exumKC dt. We therefore obtain the non-
dimensional expression

W = Ha2Re KC

∫ Tmax

0
um(t)Fx dt, (20)

for the work in units ρLν2, where

Fx =

∫ 1/2

−1/2

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2
(j×B)x dx dy dz (21)

is the integral of the x-component of the non-dimensional Lorentz force den-
sity.

4.2 Numerical method for objective function eval-
uation

The governing equations are solved by a code which is adapted from [16]. The
code was extensively used to perform DNS and LES of turbulent magneto-
hydrodynamic shear flows in various setups [35, 17, 25, 26]. The equations
are discretized on a structured mesh by a second-order finite-volume scheme
within a collocated variable arrangement following the definitions of [21]. The
incompressibility condition is incorporated by a standard projection method.
The elliptic problems for pressure p and electric potential φ are solved by
adapting the FishPack libraries [1]. To adequately resolve the thin magne-
tohydrodynamic boundary layers, the computational mesh can be refined in
vertical (z) direction by using a coordinate transformation based on the hyper-
bolic tangent, which transforms the uniform coordinate η to the non-uniform
coordinate z, i.e.

z(η) =
tanh(αη)

tanh(α)
, (22)

where α is a constant that determines the grid-clustering. To avoid particle
communication, the parallelization is based on shared-memory paralleliza-
tion (OpenMP) solely. The particles are advected with a second-order Euler
scheme; trilinear interpolation is used to obtain the velocity field at the La-
grangian coordinates.

All simulations are conducted on a mesh with 642 equidistantly spaced
grid points in both horizontal directions (i.e., in the x and y-direction), and
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Figure 3: Dependence of the kinetic energy on the variables of the optimization
problem— (a) dependence on β for KC = π and Ha = 35, (b) dependence on KC
for β = 500 and Ha = 35, and (c) dependence on Ha for KC = 3 and β = 200; 〈·〉T
denotes averaging over one period.

32 grid points resolve the vertical direction while α from Eq. (22) is set to 1.0
to better resolve the Hartmann boundary layer. Furthermore, all simulations
are initiated from a quiescent state.

4.3 General structure of the flow

For a better understanding of the mixing process, it is useful to consider some
characteristics of the obtained laminar flows. We conducted three series of
simulations where only one parameter is varied. The remaining parameters
are kept constant at values that fall into the range of the optimization problem,
as described later. The parameters are

• β = 100 . . . 1000, KC = π, and Ha = 35,

• β = 500, KC = 1 . . . 5, and Ha = 35, as well as

• β = 200, KC = 3, and Ha = 10 . . . 40.

The flow is evaluated after 50 periods.
Figure 3 shows the dependence of the integral kinetic energy (one half of

〈Ek〉T , where Ek = 1
V

∫ (
u2
x + u2

y + u2
z

)
dV and 〈·〉T denotes averaging over

one period) on the varied quantities. Figure 3a shows a decrease of the kinetic
energy with increasing β. This behavior is, in general, similar to an oscillating
boundary layer in the hydrodynamic case and resembles the reduced penetra-
tion depth for increasing frequencies. Furthermore, the Stuart number N , i.e.,
the ratio between Lorentz to inertial forces, decreases as β increases when KC
and Ha remain fixed.

Figure 3b shows that, for the studied parameters, the kinetic energy first
increases almost linearly with increasing KC, reaches a maximum for KC ≈ 4,
and decreases for KC ≥≈ 4. The non-monotonic on KC is a geometrical
effect, i.e., the side-walls of the computational domain affect the evolution of
the flow. To ensure that this effect is not due to a change in the flow structure,
we computed the same parameters on a larger domain (not shown) resulting
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Figure 4: Steady streaming motion visualized by three-dimensional streamlines for
β = 100, KC = π, and Ha = 40— (a) viewed from the y-direction; (b) viewed from
the x-direction.

in a purely monotonic increase of 〈Ek〉T for KC = 1 . . . 5. Figure 3c shows a
monotonic increase of 〈Ek〉T for increasing Ha.

For the chosen parameters, the instantaneous flow structure behaves sim-
ilarly to that described by the two-dimensional numerical simulations of [5],
i.e., the flow is characterized by a symmetric pair of vortices changing sign in
each half cycle. A more detailed description of the flow and an analysis of its
mixing properties by concepts of chaotic advection [2] is beyond the scope of
the present manuscript.

However, an important mechanism, not shown in [5], is the presence of
the steady-streaming motion revealed by time-averaging the three-dimensional
flow field. From classical hydrodynamics, it is known that the steady-streaming
motion provides an efficient mechanism for mixing processes [27, 18]. For the
present flows, a steady streaming motion is detected that shows substantial
similarity to the streaming motion reported for an oscillating sphere [23].

Figure 4 shows the steady-streaming motion visualized by three-dimensional
streamlines for β = 100, KC = π, and Ha = 40, viewed from the y-direction
(Fig. 4a), and viewed from the x-direction (Fig. 4b). For this, the velocity
field is time-averaged over one period after transitional effects vanished. The
three-dimensional flow motion consists of a pair of vortices, mainly aligned
in the y-direction. The streaming motion affects the complete flow domain
and, as shown later, appears to play a significant role in the spreading of the
Lagrangian particles.

5 Results from the optimization

In the following we collect the results of the numerical experiments on the
optimization problem as well as the results of the new numerical optimization
approach described in section 3.

15



1 2 3 4 5
KC

200

400

600

800

1000

β

0.0

0.2

0.4

0.6

0.8

1.0
ξ∗

1 2 3 4 5
KC

200

400

600

800

1000

β

0.0

0.2

0.4

0.6

0.8

1.0
W ∗a) b)

Figure 5: Normalized objective functions in a two-dimensional discretized parameter
plane— (a) the mixing norm (Eq. (19)), and (b) the work done by the permanent
magnet (Eq. (20)). Note that the visualized contours are interpolated.

5.1 Preliminary study with two control parameters

To show that the optimization problem is well-defined, we performed a test
where two variables, β and KC, are varied while the Hartmann number is
kept constant at Ha = 30. The simulations are performed using the same
number of grid points as in section 4.3. Since only two variables are consid-
ered, the problem can be addressed and visualized by a systematic analysis
of the parameter space. Both variables, β and KC, are chosen to match the
boundaries that are also used in the optimization problem in the next sub-
section, i.e., 100 ≤ β ≤ 1000 and 1 ≤ KC ≤ 5. This parameter space is
discretized by a 10× 10 grid. For simplicity, the results of the objective func-
tions are normalized by their maximal values over the grid, i.e., ξ∗ = ξ/ξmax
and W ∗ = W/Wmax, where ξmax = 74.95 and Wmax = 766.64.

Figure 5 shows contours of the normalized objective functions. Both objec-
tive functions are competing, i.e., the mixing norm decreases for parameters
where the work done by the permanent magnet increases.

Figure 6a shows the approximated efficient solutions. They were found
by plotting the values ξ∗ and W ∗ for all grid points and retaining a set that
visually corresponds to a smooth lower boundary.

Figure 6b shows the values of both objective functions plotted against the
Stuart number N . The intersection between both functions happens for a
Stuart number of about unity. For N ≥ 1, the work required to move the
permanent magnet rapidly decreases, while the mixing norm increases.

Overall, the results from the two-dimensional discretized parameter plane
show that the present problem is well suited for a multivariate optimization
study, as conducted for three variables in the next section.

5.2 Results for three parameters

In addition to the frequency parameter β and the amplitude parameter KC, we
now consider the strength of the magnetic field represented by the Hartmann
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Figure 6: Normalized objective functions in a two-dimensional discretized parameter
plane— (a) extracted efficient solutions in the image space and (b), the values of
both objective functions plotted against the Stuart number N .

number Ha as a control parameter.
For the optimization, we study an experiment where the geometry and the

fluid properties are constant and frequency, amplitude and magnet strength
can be varied as stated in Section 2. Hence, the corresponding non-dimensional
quantities β, KC and Ha are the variables for the optimization problem. The
two objective functions are ξ and W .

We performed optimization runs with different starting points. The algo-
rithm results each time in a single approximated efficient solution. Thereby,
several runs resulted in –from a physical perspective– unsatisfactory solu-
tions, such as very large ξ and small W (or vice versa). Albeit mathemati-
cally correct, these solutions do not allow meaningful physical interpretations.
Hence, we only present the result of one optimization run for the starting point
p(0) = (710, 3, 40), see Table 1. The optimization algorithm called in total 62
simulations lasting in total 3477.6 hours of single processor CPU time. All
simulations were conducted on the computing facility of TU Ilmenau.

Table 1: Values for selected feasible points of the optimization problem (MOP);
rows 2 to 4 show the variables of the optimization p; row 5 states the Reynolds
number Re and row 6 the interaction parameter N . Values of the objective functions
(normalized by the maximal value that was obtained in the optimization run) are
given in rows 7 and 8.

starting pt. p(0) solution pS example pE lowest ξ∗ lowest W ∗

β 710.00 375.78 1000.00 392.14 146.08
KC 3.00 3.54 5.00 4.42 1.00
Ha 40.00 37.33 15.88 39.98 22.07
Re 2130.00 1330.52 5000.00 1731.57 146.08
N 0.75 1.05 0.05 0.92 3.33
W ∗ 0.2505 0.1505 0.1648 0.2758 0.0017
ξ∗ 0.2504 0.2471 0.5571 0.1937 0.9928
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Figure 7: Results of the optimization run— image space; p(0) denotes the starting
point, pS denotes the solution of the algorithm, and pE denotes a example point.

Figure 7 shows the result of applying the proposed algorithm to the multi-
objective optimization problem. Again, the values of the objective functions
are normalized by their maximal values that were obtained within the opti-
mization run, which are 71.99 for ξmax and 1.32× 103 for Wmax. Each black
dot represents an individual simulation, i.e., an evaluation of the objective
functions, for instance, to build a model of the objectives. Hence it can be
seen that already for just three optimization variables many function evalu-
ations are necessary, even while we are using models of the functions. The
starting point p(0), the solution of the algorithm pS, as well as an example
pE that will be used for the further discussion are highlighted.

The optimization run finds a set of variables that reduces the work done by
the magnet by about 40% and improves the mixing efficiency slightly by about
1%. Thus both objective function values have been improved by the algorithm,
which is a direct implication of the new acceptance test. All variables are
significantly altered from p(0) = (710, 3, 40) to pS = (375.78, 3.54, 37.33), see
Table 1. The domain space is shown in Fig. 8.

The example point pE demonstrates the complexity since roughly the same
amount of work required to move the permanent magnet results in very dif-
ferent mixing efficiencies. Consistently with the previous subsection, the opti-
mization run tends towards values of N about unity to provide a good mixing
efficiency and reasonable work required to move the permanent magnet.

Further insight into the mixing processes is provided in Fig. 9 and Fig.
10, where time-dependent quantities are plotted. Figure 9 shows the temporal
development of ξ∗ for three selected cases, i.e., the starting point p(0), the
solution obtained by the algorithm pS, and the example points pE. Starting
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Figure 9: Results of the optimization run— temporal development of the mixing
norm ξ∗; p(0) denotes the starting point, pS denotes the solution of the algorithm,
and pE denotes a example point.

from t̃ = 0, ξ∗ decreases in all cases. For the mixing efficiency, the evolution
between the starting point p(0) and the solution pS is similar. However,
it should be kept in mind that this concerns only one of the two objective
functions.

The three-dimensional particle distributions in Fig. 10 show that the par-
ticles mainly follow the streaming motion. When the mixing process is initi-
ated, the particles follow the vortex pair aligned within the xz-plane and get
transported towards the side-walls in x-direction. This is readily true for p(0)

and pS. For pE the high value of β results in a reduced penetration depth of
the oscillating fluid motion and, hence, the mixing process only takes places
within the lower half space of the domain. At the end of the mixing process,
i.e., at t̃ = 1.0, the particles are well mixed in the solution pS of the algorithm.
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rithm, and pE denotes the example point.

6 Conclusion

We presented results from an optimization study of the mixing process in
electrically conducting fluids, where Lorentz forces generate the flow due to
an oscillating permanent magnet. We modified a trust-region based mathe-
matical algorithm for multi-objective optimization such that we are able to
handle two expensive functions. This makes the algorithm suitable for the
presented three-dimensional optimization problem with time-dependent sim-
ulation based objective functions. We also adapted the original algorithm in
such a way that it guarantees an improvement of the objective function values
from a starting guess.

The present series of numerical simulations offer quantitative insight into
the mixing processes. Our study serves as a proof-of-concept and may form
the basis for further investigations on this problem. It also reveals the complex
dependencies on the individual variables. Even for the present problem, which
is still very simple, the objective functions vary over a wide range within
narrow intervals of the variables. The solution of the optimization algorithm
suggests a set of variables that improve the mixing efficiency by 1% and reduce
the work done by the permanent magnet by 40%. Most individual simulations
that are of interest from an engineering point of view are characterized by
interaction parameters N between 0.5 and 1.5.

The present study demonstrates the need for and the viability of advanced
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optimization methods for studying the mixing process in industrially relevant
flows, like the stirring of additives within liquid metal melts during the solid-
ification process. For this, the numerical model requires several refinements,
i.e., finer grids, more particles, and larger flow domains, which should be im-
proved in future works. Additional physical effects such as particle weight
and drag, free surfaces and even solidification may also have to be added.

We acknowledge Dmitry Krasnov for help with the numerical code for the
MHD flow. This work was funded by DFG under no. GRK 1567.
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