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Abstract. In this paper, we bring forward a completely perturbed nonconvex Schatten p-minimization to

address a model of completely perturbed low-rank matrix recovery. The paper that based on the restricted

isometry property generalizes the investigation to a complete perturbation model thinking over not only noise

but also perturbation, gives the restricted isometry property condition that guarantees the recovery of low-rank

matrix and the corresponding reconstruction error bound. In particular, the analysis of the result reveals that

in the case that p decreases 0 and a > 1 for the complete perturbation and low-rank matrix, the condition is the

optimal sufficient condition δ2r < 1 [21]. The numerical experiments are conducted to show better performance,

and provides outperformance of the nonconvex Schatten p-minimization method comparing with the convex

nuclear norm minimization approach in the completely perturbed scenario.

Key words. Low rank matrix recovery; Perturbation of linear transformation; Nonconvex Schatten p-

minimization

1 Introduction

Low-rank matrix recovery (LMR) is a rapidly developing topic attracting the interest of numerous researchers

in the field of optimization and compressed sensing. Mathematically, we can describe it as follows:

y = A(X) (1.1)

where A : Rm×n → RM is a known linear transformation (we suppose that m ≤ n), y ∈ RM is a given

observation vector, and X ∈ Rm×n is the matrix to be recovered. The objective of LMR is to find the lowest

rank matrix based on (y, A). If the observation y is corrupted by noise z, model (1.1) is changed into the

following form

ŷ = A(X) + z (1.2)

where ŷ is the noisy measurement, and z is the additive noise independent of the matrix X. However, more

LMR models can be encountered where not only the linear measurement y is contaminated by the noise vector
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z, but also the linear transformation A is perturbed by E for completely perturbed setting, namely, substitute

the linear transformation A with Â = A+ E . The completely perturbed appearance arises in remote sensing[1],

radar[2], source separation[3], etc. When m = n and the matrix X = diag(x) (x ∈ Rm) is diagonal, models

(1.1) and (1.2) degenerates to the compressed sensing models

y = Ax, (1.3)

ŷ = Ax+ z (1.4)

where A ∈ RM×m is a measurement matrix and x ∈ Rm is an unknown sparse signal. We call the problem (1.3)

as the sparse signal recovery. For the completely perturbed model, the convex nuclear norm minimization is

frequently considered [4] as follows:

min
Z̃∈Rm×n

∥Z̃∥∗ s.t. ∥Â(Z̃)− ŷ∥2 ≤ ϵ′A,r,y, (1.5)

where ∥Z̃∥∗ is the nuclear norm of the matrix Z̃, that is, the sum of its singular values, and ϵ′A,r,y is the total

noise level. Problem (1.5) can be reduced to the l1-minimization [5]

min
z̃∈Rn1

∥z̃∥1 s.t. ∥Âz̃ − ŷ∥2 ≤ ϵ′A,r,y, (1.6)

where ∥z̃∥1 is the l1-norm of the vector z̃, that is, the sum of absolute value of its coefficients.

Chartrand [7] showed that fewer measurements are required for exact reconstruction if l1-norm is substituted

with lp-norm. There exist many work regarding reconstructing x via the lp-minimization [8], [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18], [19]. In [7], numerical simulations demonstrated that fewer measurements are

needed for exact reconstruction than when p = 1.

In this paper, we are interested in the completely perturbed model for the nonconvex Schatten p-minimization

(0 < p < 1)

min
Z̃∈Rm×n

∥Z̃∥pp s.t. ∥Â(Z̃)− ŷ∥2 ≤ ϵ′A,r,y, (1.7)

where ∥Z̃∥pp is the Schatten p quasi-norm of the matrix Z̃, that is, ∥Z̃∥pp = (
∑

i σ
p
i (Z̃))1/p with σi(Z̃) being ith

singular value of Z̃. Problem (1.7) can be returned to the lp-minimization [6]

min
z̃∈RM×m

∥z̃∥pp s.t. ∥Âz̃ − ŷ∥2 ≤ ϵ′A,r,y, (1.8)

where ∥z̃∥pp = (
∑

i z̃
p
i )

1/p is the lp-quasi-norm of the vector z̃. To the best of our knowledge, recently researches

are considered only in unperturbed situation (E = 0), that is, the linear transformation A is not perturbed by

E (for related work, see [22], [23], [24], [25], [26], [27], [28], [29]). From the perspective of application, it is more

practical to investigate the recovery of low-rank matrices in the scenario of complete perturbation.

In this paper, based on restricted isometry property (RIP), the performance of low-rank matrices recon-

struction is showed by the nonconvex Schatten p-minimization in completely perturbed setting. The main

contributions of this paper are as follows. First, we present a sufficient condition for reconstruction of low-rank

matrices via the nonconvex Schatten p-minimization. Second, the estimation accurateness between the optimal
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solution and the original matrix is described by a total noise and a best r-rank approximation error. The result

reveals that stable and robust performance concerning reconstruction of low-rank matrices in existence of total

noise. Third, numerical experiments are conducted to sustain the gained results, and demonstrate that the per-

formance of nonconvex Schatten p-minimization can be better than that of convex nuclear norm minimization

in completely perturbed model.

The rest of this paper is constructed as follows.

2 Notation and main results

Before presenting the main results, we first introduce the notion of RIC of a linear transformation A, which

is as follows.

Definition 2.1. The restricted isometry constant (RIC) δr of a linear transformation A is the smallest constant

such that

(1− δ)∥X∥2F ≤ ∥A(X)∥22 ≤ (1 + δ)∥X∥2F (2.9)

holds for all r-rank X ∈ Rm×n (i.e., rank(X) ≤ r), where ∥X∥F :=
√
⟨X,X⟩ =

√
trace(X⊤X) is the Frobenius

norm of the matrix X.

Then we provide some notations similar to [4], which quantifying the perturbations E and z with the bounds:

∥E∥op
∥A∥op

≤ ϵA,
∥E∥(r)op

∥A∥(r)op

≤ ϵ
(r)
A ,
∥z∥2
∥y∥2

≤ ϵy, (2.10)

where ∥A∥op = sup{∥A(X)∥2/∥X∥F : X ∈ Rm×n \ {0}} is the operator norm of linear transformation A, and

∥A∥(r)op = sup{∥A(X)∥2/∥X∥F : X ∈ Rm×n \ {0} and rank(X) ≤ r}, and representing

tr =
∥X[r]c∥F
∥X[r]∥F

, sr =
∥X[r]c∥∗√
r∥X[r]∥F

, κ
(r)
A =

√
1 + δr√
1− δr

, αA =
∥A∥op√
1− δr

. (2.11)

Here X[r] is the best r-rank approximation of the matrix X, its singular values are composed of r-largest singular

values of the matrix X, and X[r]c = X −X[r]. With notations and symbols above, we present our results for

reconstruction of low-rank matrices via the completely perturbed nonconvex Schatten p-minimization.

Theorem 2.2. For given relative perturbations ϵA, ϵ
(r)
A , ϵ

(2r)
A , and ϵy in (2.10), suppose the RIC for the linear

transformation A fulfills

δ2ar <
2 +
√
2a1/2−1/p

(1 +
√
2a1/2−1/p)(1 + ϵ

(2ar)
A )2

− 1 (2.12)

for a > 1 and that the general matrix X meets

tr + sr <
1

κ
(r)
A

. (2.13)
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Then a minimizer X∗ of problem (1.7) approximates the true matrix X with errors

∥X −X∗∥pF ≤ C1(ϵ
′
A,r,y)

p + C2

∥X[r]c∥pp
r1−p/2

, (2.14)

∥X −X∗∥pp ≤ C ′
1r

1−p/2(ϵ′A,r,y)
p + C ′

2∥X[r]c∥pp, (2.15)

where the total noise is

ϵ′A,r,y =

[
ϵ
(r)
A κ

(r)
A + ϵAαAtr

1− κ
(r)
A (tr + sr)

+ ϵy

]
∥y∥2, (2.16)

and

C1 =
2p(1 + ap/2−1)(1 + δ̂(a+1)r)

p/2

(1− δ̂(a+1)r)p − ap/2−1(δ̂2(a+1)r + δ̂22ar)
p/2

, (2.17)

C2 = 2ap/2−1[1 +
(1 + ap/2−1)(δ̂2(a+1)r + δ̂22ar)

p/2

(1− δ̂(a+1)r)p − ap/2−1(δ̂2(a+1)r + δ̂22ar)
p/2

], (2.18)

C ′
1 =

2p+1(1 + a)1−p/2(1 + δ̂(a+1)r)
p/2

(1− δ̂(a+1)r)p − ap/2−1(δ̂2(a+1)r + δ̂22ar)
p/2

, (2.19)

C ′
2 = 2 +

4(1 + a)1−p/2ap/2−1(δ̂2(a+1)r + δ̂22ar)
p/2

(1− δ̂(a+1)r)p − ap/2−1(δ̂2(a+1)r + δ̂22ar)
p/2

, (2.20)

where δ̂(a+1)r = (1 + δ(a+1)r)(1 + ϵ
((a+1)r)
A )2 − 1, δ̂2ar = (1 + δ2ar)(1 + ϵ

(2ar)
A )2 − 1.

Remark 2.3. Theorem 2.2 gives a sufficient conditions for the reconstruction of low-rank matrices via non-

convex Schatten p-minimization in completely perturbed scenario. Condition (2.12) of the Theorem extends

the assumption of lp situation in [6] to the nonconvex Schatten p-minimization. Observe that as the value

of p becomes large, the bound of RIC δ2ar reduces, which reveals that smaller value of p can induce weak-

er reconstruction guarantee. Particularly, when p → 0 (a > 1) ((1.7) degenerates to the rank minimization:

minZ̃∈Rm×n rank(Z̃) s.t. ∥Â(Z̃) − ŷ∥2 ≤ ϵ′A,r,y), it leads to the RIP condition δ2r < 2/(1 + ϵ
(2ar)
A )2 − 1 for

reconstruction of low-rank matrices via the rank minimization, to the best of our knowledge, the current optimal

recovery condition about RIP is δ2r < 1 to ensure exact reconstruction for r-rank matrices via rank minimiza-

tion [21], therefore the Theorem extends that condition to the scenario of presence of noise and r-rank matrices.

Furthermore, when m = n and the matrix X = diag(x) (x ∈ Rm) is diagonal, the Theorem reduces to the case

of compressed sensing given by [6].

Remark 2.4. Under the requirement (2.12), one can easily check that the condition (2.13) is satisfied. Besides,

when rank(X) ≤ r, the condition (2.13) holds. Additionally, the inequalities (2.14) and (2.15) in Theorem 2.2

which exploit two kinds of metrics provide upper bound estimations on the reconstruction of nonconvex Schatten

p-minimization. The estimations evidence that reconstruction accurateness can be controlled by the best r-rank

approximation error and the total noise. In particular, when there aren’t noise (i.e., E = 0 and z = 0), they

clear that the r-rank matrix can be accurately reconstructed via the nonconvex Schatten p-minimization. In

(2.14), both the error bound noise constant C1 and the error bound compressibility constant C2 may rely on the

value of p. Numerical simulations reveal that when we fix the other independent parameters, a smaller value of

p will produce a smaller C1 and a smaller C2/r
1−p/2. For more details, see Fig. 2.1.
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Fig. 2.1: The error bound noise constant C1, and the error bound compressibility constant C2/r1−p/2 versus p for a = 5, δ(a+1)r =

δ2ar = 0.05 in (a) and (b), respectively.

Remark 2.5. When the matrix X is a strictly r-rank matrix (i.e., X = X[r]), a minimizer X∗ of problem (1.7)

approximates the true matrix X with errors

∥X −X∗∥F ≤ C
1/p
1 ϵ′A,r,y,

∥X −X∗∥p ≤ C
′1/p
1 r1/p−1/2ϵ′A,r,y,

where

ϵ′A,r,y = [ϵ
(r)
A κ

(r)
A + ϵy]∥y∥2.

In the case of E = 0, that is, there doesn’t exist perturbation in the linear transformation A, then δ̂(a+1)r =

δ(a+1)r, δ̂2ar = δ2ar. In the case that m = n, the matrix X = diag(x) (x ∈ Rm) is diagonal (i.e., the results of

Theorem reduce to the case of compressed sensing), p = 1 and a = 1, our result contains that of Theorem 2 in

[5].

3 Proofs of the main results

In this part, we will provide the proofs of main results. In order to prove our main results, we need the

following auxiliary lemmas. Firstly, we give Lemma 3.1 which incorporates an important inequality associating

with δr and δ̂r.

Lemma 3.1. (RIP for Â [4]) Given the RIC δr related with linear transformation A and the relative perturbation

ϵ
(r)
A corresponded with linear transformation E, fix the constant δ̂r,max = (1 + δr)(1 + ϵ

(r)
A )2 − 1. Then the RIC

δ̂r ≤ δ̂r,max for Â = A+ E is the smallest nonnegative constant such that

(1− δ̂r)∥X∥2F ≤ ∥Â(X)∥22 ≤ (1 + δ̂r)∥X∥2F (3.21)

holds for all matrices X ∈ Rm×n that are r-rank.
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We will employ the fact that Â maps low-rank orthogonal matrices to nearly sparse orthogonal vectors,

which is given by [20].

Lemma 3.2. ([20]) For all X, Y satisfying ⟨X,Y ⟩ = 0, and rank(X) ≤ r1, rank(Y ) ≤ r2,∣∣∣⟨Â(X), Â(Y )
⟩∣∣∣ ≤ δ̂r1+r2∥X∥F ∥Y ∥F . (3.22)

Moreover, the following lemma will be utilized in the proof of main result, which combines with Lemma 2.3

[21] and Lemma 2.2 [25].

Lemma 3.3. Assume that X, Y ∈ Rm×n obey X⊤Y = 0 and XY ⊤ = 0. Let 0 < p ≤ 1. Then

∥X + Y ∥pp = ∥X∥pp + ∥Y ∥pp, ∥X + Y ∥p ≥ ∥X∥p + ∥Y ∥p, (3.23)

where ∥X∥pp and ∥X∥p stand for the nuclear norm of matrix X in the case of p = 1.

For any matrix X ∈ Rm×n, we represent the singular values decomposition (SVD) of X as

X = Udiag(σ(X))V ⊤,

where σ(X) := (σ1(X), · · · , σm(X)) is the vector of the singular values of X, U and V are respectively the left

and right singular value matrices of X.

Proof of the theorem 2.2. Let X denote the original matrix to be recovered and X∗ denote the optimal solution

of (1.7). Let Z = X −X∗, and based on the SVD of X, its SVD is given by

U⊤ZV = U1diag(σ(U
⊤ZV ))V ⊤

1 ,

where U1, V1 ∈ Rm×m are orthogonal matrices, and σ(U⊤ZV ) stands for the vector comprised of the singular

values of U⊤ZV . Let T0 is the set composed of the locations of the r largest magnitudes of elements of σ(X).

We adopt technology similar to the reference [6] to partition σ(U⊤ZV ) into a sum of vectors σTi(U
⊤ZV ) (i =

0, 1, · · · , J), where T1 is the set composed of the locations of the ar largest magnitudes of entries of σT c
0
(U⊤ZV ),

T2 is the set composed of the locations of the second ar largest magnitudes of entries of σT c
0
(U⊤ZV ), and so

forth (except possibly TJ). Then Z =
∑J

i=0 ZTi where ZTi = UU1diag(σTi(U
⊤ZV ))(V V1)

⊤, i = 0, 1, · · · , J .

One can easily verify that Z⊤
Ti
ZTj = 0 and ZTiZ

⊤
Tj

= 0 for all i ̸= j, and rank(ZT0) ≤ r, rank(ZTj ) ≤ ar,

i = 0, 1, · · · , J . For simplicity, denote T01 = T0

∪
T1. Then, we have (see (22) in [24], Lemma 2.6 [27])

∥ZT c
0
∥pp ≤ ∥ZT0∥pp + 2∥X[r]c∥pp. (3.24)

By the decomposition of Z, for each l ∈ Ti, k ∈ Ti−1, i ≥ 2, σTi(U
⊤ZV )[l] ≤ σTi−1(U

⊤ZV )[k], it implies that

(σTi(U
⊤ZV )[l])p ≤

∑ar
k=1(σTi−1(U

⊤ZV )[l])p

ar
=
∥σTi−1(U

⊤ZV )∥pp
ar

=
∥ZTi−1∥pp

ar
, (3.25)

which deduces

∥ZTi∥2F ≤ (ar)1−
2
p ∥ZTi−1∥2p. (3.26)
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Thereby,

∥ZTi
∥pF ≤ (ar)

p
2−1∥ZTi−1

∥pp. (3.27)

Notice that Z⊤
Ti
ZTj = 0 and ZTiZ

⊤
Tj

= 0 for all i ̸= j, due to Lemma 3.3 and (3.27), then we can get∑
i≥2

∥ZTi∥
p
F ≤ (ar)

p
2−1

∑
i≥2

∥ZTi−1∥pp = (ar)
p
2−1∥ZT c

0
∥pp. (3.28)

By the inequality ∥ZT0∥
p
F ≤ ∥ZT01∥

p
F and Hölder’s inequality, we get

∥ZT0∥pp ≤ r1−
p
2 ∥ZT01∥

p
F . (3.29)

From (3.24), (3.28), (3.29) and the inequality that for every fixed n ∈ N, and any 0 < α ≤ 1, (
∑n

i=1 x)
α ≤∑n

i=1 x
α for every xi ≥ 0, i = 1, · · · , n, it follows

∥ZT c
01
∥pF = (

∑
i≥2

∥ZTi∥2F )
p
2 ≤

∑
i≥2

∥ZTi∥
p
F ≤ (ar)

p
2−1(r1−

p
2 ∥ZT01∥

p
F + 2∥X[r]c∥pp). (3.30)

Since

∥Â(ZT01)∥22 =< Â(ZT01), Â(ZT01) >

=< Â(ZT01
), Â(Z) > − < Â(ZT01

),
∑
i≥2

Â(ZTi
) >

≤ ∥Â(ZT01)∥2∥Â(Z)∥2 +
∑
i≥2

| < Â(ZT01), Â(ZTi) > |, (3.31)

we get

∥Â(ZT01)∥
2p
2

(a)

≤ ∥Â(ZT01)∥
p
2∥Â(Z)∥p2 +

∑
i≥2

| < Â(ZT01), Â(ZTi) > |p, (3.32)

where (a) follows from the fact that (a+ b)p ≤ ap + bp for nonnegative a and b.

Additionally, by the minimality of X∗, we get

∥Â(Z)∥22 ≤ ∥ŷ − Â(X)∥22 + ∥ŷ − Â(X∗)∥22 ≤ 2ϵ′A,r,y. (3.33)

Since ZT01 is (a + 1)r-rank and ZTi is ar-rank, i ≥ 2, by applying the RIP of Â and combination with (3.32)

and (3.33), we get

∥Â(ZT01)∥
2p
2 ≤ (2ϵ′A,r,y)

p(1 + δ̂(a+1)r)
p
2 ∥ZT01∥

p
F +

∑
i≥2

| < Â(ZT01), Â(ZTi) > |p. (3.34)

Because < ZTi , ZTj > for all i ̸= j, and ZT0 is r-rank, by Lemma 3.2 and (3.30), we get

∥Â(ZT01)∥
2p
2 ≤ (2ϵ′A,r,y)

p(1 + δ̂(a+1)r)
p
2 ∥ZT01∥

p
F + (δ̂(a+1)r∥ZT0∥F + δ̂2ar∥ZT1∥F )p

∑
i≥2

∥ZTi∥
p
F

≤ (2ϵ′A,r,y)
p(1 + δ̂(a+1)r)

p
2 ∥ZT01∥

p
F

+ (δ̂(a+1)r∥ZT0∥F + δ̂2ar∥ZT1∥F )p(ar)
p
2−1(r1−

p
2 ∥ZT01∥

p
F + 2∥X[r]c∥pp) (3.35)
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From (2.12), one can easily check that

a
p
2−1(δ̂2(a+1)r + δ̂22ar)

p
2 < (1− δ̂(a+1)r)

p
2 . (3.36)

By (3.35), (3.36) and the inequality ∥Â(ZT01)∥
p
2 ≥ (1− δ̂(a+1)r)

p
2 ∥ZT01∥

p
F , one can get

∥ZT01
∥pF ≤

2p(1 + a
p
2−1)(1 + δ̂(a+1)r)

p
2

(1− δ̂(a+1)r)
p
2 − a

p
2−1(δ̂2(a+1)r + δ̂22ar)

p
2

(ϵ′A,r,y)
p

+
2a

p
2−1(δ̂2(a+1)k + δ̂22ar)

p
2

(1− δ̂(a+1)r)
p
2 − a

p
2−1(δ̂2(a+1)r + δ̂22ar)

p
2

∥X[r]c∥pp
r1−

p
2

= : β(ϵ′A,r,y)
p + γ

∥X[r]c∥pp
r1−

p
2

, (3.37)

consequently,

∥ZT0∥pp ≤ r1−
p
2 ∥ZT0∥

p
F (3.38)

≤ βr1−
p
2 (ϵ′A,r,y)

p + γ∥X[r]c∥pp.

Thus, from (3.30) and (3.37), we get

∥Z∥pF ≤ ∥ZT01∥
p
F + ∥ZT c

01
∥pF

≤ C1(ϵ
′
A,r,y)

p + C2

∥X[r]c∥pp
r1−

p
2

; (3.39)

in addition, a combination of (3.24) and (3.38), one can get

∥Z∥pp ≤ ∥ZT0∥pp + ∥ZT c
0
∥pp

≤ C ′
1r

1− p
2 (ϵ′A,r,y)

p + C ′
2∥X[r]c∥pp, (3.40)

where the constants C1, C2, C
′
1 and C ′

2 are defined in Theorem 2.2. The proof is complete.

4 Numerical experiments

In this section, we carry out some numerical experiments to sustain verification of our theoretical results, we

implement all experiments in MATLAB 2016a running on a PC with an Inter core i7 processor (3.6 GHz) with 8

GB RAM. In order to address the completely perturbed nonconvex Schatten p-minimization model, we employ

the alternating direction method of multipliers (ADMM) method, which is often applied in compressed sensing

and sparse approximation [30], [31], [32], [33]. The constrained optimization problem (1.7) can be transformed

into an equivalent unconstrained form

min
Z̃∈Rm×n

λ∥Z̃∥pp +
1

2
∥Âvec(Z̃)− ŷ∥22, (4.41)

where Â ∈ RM×mn, vec(Z̃) represents the vectorization of Z̃. Hence, Âvec(Z̃) presents the linear map Â(Z̃).

Then, introducing an auxiliary variable W ∈ Rm×n, the problem (4.41) can be equivalently turned into
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min
W, Z̃∈Rm×n

λ∥W∥pp +
1

2
∥Âvec(Z̃)− ŷ∥22 s.t. Z̃ = W. (4.42)

The augmented Lagrangian function is provided by

Lρ(Z̃,W, Y ) = λ∥W∥pp +
1

2
∥Âvec(Z̃)− ŷ∥22+ < Y, Z̃ −W > +

ρ

2
∥Z̃ −W∥2F , (4.43)

where Y ∈ Rm×n is dual variable, and ρ > 0 is a penalty parameter. Then, ADMM used to (4.43) comprises of

the iterations as follows

Z̃k+1 = argmin
Z̃

1

2
∥Âvec(Z̃)− ŷ∥22 +

ρ

2
∥Z̃ − (W k − Y k

ρ
)∥2F , (4.44)

W k+1 = argmin
W

λ∥W∥pp +
ρ

2
∥Z̃k+1 − (W − Y k

ρ
)∥2F , (4.45)

Y k+1 = Y k + ρ(Z̃k+1 −W k+1). (4.46)

All solving processes are concluded in Algorithm 4.1.

Algorithm 4.1 : Solve problem (1.7) by ADMM

1: Input A ∈ RM×mn, y ∈ RM , perturbation E ∈ RM×mn with ∥E∥ = ϵA∥A∥, p ∈ (0, 1].

2: Initialize Ẑ0 = W 0 = Y 0, γ = 1.1, λ0 = 10−6, λmax = 1010, ρ = 10−6, ε = 10−8, k = 0.

3: while not converged do

4: Updated Z̃k+1 by

z̃ = (Â⊤Â+ ρI)−1
(
Â⊤ŷ + ρvec(W k)− vec(Y k)

)
;

Z̃k+1 ← z̃: reshape z̃ to the matrix Z̃k+1 of size m× n.

5: Update W k+1 by

argmin
W

λ∥W∥pp +
ρ

2
∥Z̃k+1 − (W − Y k

ρ
)∥2F ;

6: Update Y k+1 by

Y k+1 = Y k + ρ(Z̃k+1 −W k+1);

7: Update λj+1 by λj+1 = min(γλj , λmax);

8: Check the convergence conditions

∥Z̃k+1 − Z̃k∥∞ ≤ ε, ∥W k+1 −W k∥∞ ≤ ε,

∥Âvec(Z̃k+1)− ŷ∥∞ ≤ ε, ∥Z̃k −W j+1∥∞ ≤ ε.

In our experiments, we generate a measurement matrix A ∈ RM×mn with i.i.d. Gaussian N (0, 1/M) ele-

ments. We generate X ∈ Rm×n of rank r by X = PQ, where P ∈ Rm×r and Q ∈ Rr×n are with its elements

being zero-mean, one-variation Gaussian, i.i.d. random variables. We select M = 660, m = n = 30 and

r = 0.2m. With X and A, the measurements y are produced by y = Avec(X) + z, where z is the Gaussian

9



noise. The perturbation matrix E is with its entries following Gaussian distribution, which fulfills ∥E∥ = ϵA∥A∥,

where ϵA denotes the perturbation level of A and its value is not fixed. The perturbed matrix Â, Â = A+E, is

used in (4.44). To avoid the randomness, we perform 100 times independent trails as well as the average result

in all test.

To look for a proper parameter λ that derives the better recovery effect, we carry out two sets of trails.

Fig. 4.2 (a) and (b) respectively plot the parameter λ and relative error (RelError, ∥X −X∗∥F /∥X∥F ) results

in different p values and perturbation level ϵA. λ ranges from 10−6 to 1. Fig. 4.2 (a) and (b) show that

λ ∈ [10−6, 10−2] is relatively suitable.
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Fig. 4.2: Parameter selection λ for (a) ϵA = 0.05, (b) p = 0.7

By giving λ = 10−6, we consider the convergence of Algorithm 4.1. Fig. 4.3(a) presents the relationship

between relative neighboring iteration error (RNIE, r(k) = ∥Xk+1 −Xk∥F /∥Xk∥F ) and number of iterations

k. One can easily see that with the increasing of iterations, RNIE decreases quickly, and when k ≥ 250,

r(k) < 10−4. The results that relative error versus the values of p in different ϵA are showed in Fig. 4.3(b). Fig.

4.3(b) indicates that the proper choice of the size of p will be helpful to facilitate the performance of nonconvex

Schatten p-minimization.

The theoretical error bound and ∥X − X∗∥pF versus the values of p with a = 2, δ2ar = δ(a+1)r = 0.1 and

r = 6 in different perturbation level ϵA, the results are provided in Figs. 4.4 (a) and (b). The values of p vary

from 0.1 to 0.9. From the observation of Fig. 4.4, ∥X −X∗∥pF is smaller than the theoretical error bound.

In Fig. 4.5, the relative error is plotted versus the number of measurementsM in different ϵA = 0, 0.05, 0.10, 0.15, 0.20

and p = 0.1, 0.3, 0.5, 0.7, 1, respectively. From Fig. 4.5, with the increase of number of measurements or

the decrease of perturbation level, the recovery performance of nonconvex Schatten p-minimization gradually

improves. Moreover, Fig. 4.5(b) reveals that the performance of nonconvex Schatten p-minimization is better

than that of convex nuclear norm minimization. In Fig. 4.6, we plot the the relative error versus the rank r of

the matrix X for different ϵA and p, respectively. The results indicate that the smaller the rank of the matrix,

the better the recovery performance, and choosing a smaller perturbation level or the values of p will improve

10
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Fig. 4.3: Convergence analysis for Algorithm 4.1 and relative error versus p. (a) Convergence analysis, ϵA = 0.05, (b)Reconstruction

performance of completely perturbed nonconvex Schatten p-minimization, varying p
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Fig. 4.4: Theoretical error bound and ∥X −X∗∥pF versus p for (a) a = 2, δ2ar = δ(a+1)r = 0.1, (b) r = 6.

the reconstruction effect of nonconvex Schatten p-minimization.

Furthermore, Fig. 4.7 offers the results concerning the recovery performance of the nonconvex method and

the convex method for the ϵA = 0.05. The curves of relationship between the relative error and the rank r are

described by nonconvex Schatten p-minimization and convex nuclear norm minimization, respectively. Fig. 4.7

displays that the performance of nonconvex method is superior to that of the convex method.

5 Conclusion

In this paper, we investigate the completely perturbed problem employing the nonconvex Schatten p-

minimization for reconstructing low-rank matrices. We derive a sufficient condition and the corresponding

upper bounds of error estimation. The gained results reveal the nonconvex Schatten p-minimization has the
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Fig. 4.5: Reconstruction performance of completely perturbed nonconvex Schatten p-minimization versus number of measurements

M . (a) p = 0.7, (b)ϵA = 0.05

stability and robustness for reconstructing low-rank matrices with the existence of a total noise. The practical

meaning of gained results, not only can conduct the choice of the linear transformations for reconstructing low-

rank matrices, that is, a linear transformation with a smaller RIC instead of a larger one can superior enhance

the reconstruction performance, but also can also present a theoretical sustaining to approximation accurate-

ness. Moreover, the numerical experiments further show the verification of our results, and the performance of

nonconvex Schatten p-minimization is better than that of convex nuclear norm minimization in the complete

perturbation situation.
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