
Lossless Compression of Deep Neural Networks

Thiago Serra1, Abhinav Kumar2, and Srikumar Ramalingam2

1 Bucknell University, USA
thiago.serra@bucknell.edu

2 The University of Utah, USA
abhinav.kumar@utah.edu,srikumar@cs.utah.edu

Abstract. Deep neural networks have been successful in many predic-
tive modeling tasks, such as image and language recognition, where large
neural networks are often used to obtain good accuracy. Consequently,
it is challenging to deploy these networks under limited computational
resources, such as in mobile devices. In this work, we introduce an al-
gorithm that removes units and layers of a neural network while not
changing the output that is produced, which thus implies a lossless com-
pression. This algorithm, which we denote as LEO (Lossless Expressive-
ness Optimization), relies on Mixed-Integer Linear Programming (MILP)
to identify Rectifier Linear Units (ReLUs) with linear behavior over the
input domain. By using `1 regularization to induce such behavior, we
can benefit from training over a larger architecture than we would later
use in the environment where the trained neural network is deployed.

Keywords: Deep Learning · Mixed-Integer Linear Programming · Neu-
ral Network Pruning · Neuron Stability · Rectifier Linear Unit.

Table 1. Compression of 2-hidden-layer rectifier networks trained on MNIST. Each line
summarizes tests on 31 networks. Depending on how the network is trained, the higher
incidence of stable units allows for more compression while preserving the trained net-
work accuracy. For example, training with `1 regularization induces such stability and
then inactive units can be removed. Interestingly, the small amount of regularization
that improves accuracy during training also helps compressing the network later.

Units removed Network

Layer width `1 weight Accuracy (%) 1st layer 2nd layer compression (%)

25 0.001 95.76 ± 0.05 5.7 ± 0.3 5.1 ± 0.3 22 ± 1
25 0.0002 97.24 ± 0.02 1.2 ± 0.1 3.0 ± 0.4 8.3 ± 0.7
25 0 96.68 ± 0.03 0 ± 0 0 ± 0 0 ± 0

50 0.001 96.05 ± 0.04 16.9 ± 0.6 12.5 ± 0.6 29.4 ± 0.7
50 0.0002 97.81 ± 0.02 7.6 ± 0.4 7.5 ± 0.5 15.1 ± 0.6
50 0 97.62 ± 0.02 0 ± 0 0 ± 0 0 ± 0

100 0.0005 97.14 ± 0.02 36.7 ± 0.7 24.9 ± 0.6 30.8 ± 0.5
100 0.0001 98.14 ± 0.01 18.6 ± 0.5 11.1 ± 0.7 14.9 ± 0.4
100 0 98.00 ± 0.01 0 ± 0 0 ± 0 0 ± 0

2 T. Serra et al.

1 Introduction

Deep Neural Networks (DNNs) have achieved unprecedented success in many
domains of predictive modeling, such as computer vision [60, 17, 36, 91, 43], nat-
ural language processing [90], and speech [45]. While complex architectures are
usually behind such feats, it is not fully known if these results depend on such
DNNs being as wide or as deep as they currently are for some applications.

In this paper, we are interested in the compression of DNNs, especially to
reduce their size and depth. More generally, that relates to the following question
of wide interest about neural networks: given a neural network N1, can we find
an equivalent neural network N2 with a different architecture? Since a trained
DNN corresponds to a function mapping its inputs to outputs, we can formalize
the equivalence among neural networks as follows [78]:

Definition 1 (Equivalence). Two deep neural networks N1 and N2 with asso-
ciated functions f1 : Rn0 → Rm and f2 : Rn0 → Rm, respectively, are equivalent
if f1(x) = f2(x) ∀ x ∈ Rn0 .

In other words, our goal is to start from a trained neural network and identify
neural networks with fewer layers or smaller layer widths that would produce the
exact same outputs. Since the typical input for certain applications is bounded
along each dimension, such as x ∈ [0, 1]n0 for the MNIST dataset [63], we can
consider a broader family of neural networks that would be regarded as equiva-
lent in practice. We formalize that idea with the concept of local equivalence:

Definition 2 (Local Equivalence). Two deep neural networks N1 and N2 with
associated functions f1 : Rn0 → Rm and f2 : Rn0 → Rm, respectively, are local
equivalent with respect to a domain D ⊆ Rn0 if f1(x) = f2(x) ∀ x ∈ D.

For a given application, local equivalence with respect to the domain of pos-
sible inputs suffices to guarantee that two networks have the same accuracy in
any test. Hence, finding a smaller network that is local equivalent to the original
network implies a compression in which there is no loss. In this paper, we show
that simple operations such as removing or merging units and folding layers of a
DNN can yield such lossless compression under certain conditions. We denote as
folding the removal of a layer by directly connecting the adjacent layers, which
is accompanied by adjusting the weights and biases of those layers accordingly.

2 Background

We study feedforward DNNs with Rectifier Linear Unit (ReLU) activations [38],
which are comparatively simpler than other types of activations. Nevertheless,
ReLUs are currently the type of unit that is most commonly used [64], which is
in part due to landmark results showing their competitive performance [77, 35].

Every network has input x = [x1 x2 . . . xn0
]T from a bounded domain X

and corresponding output y = [y1 y2 . . . ym]T , and each hidden layer l ∈ L =
{1, 2, . . . , L} has output hl = [hl1 h

l
2 . . . h

l
nl

]T from ReLUs indexed by i ∈ Nl =

Lossless Compression of Deep Neural Networks 3

{1, 2, . . . , nl}. Let W l be the nl × nl−1 matrix where each row corresponds to
the weights of a neuron of layer l, and let bl be vector of biases associated with
the units in layer l. With h0 for x and hL+1 for y, the output of each unit i
in layer l consists of an affine function gli = W l

ih
l−1 + bli followed by the ReLU

activation hli = max{0, gli}. The unit i in layer l is denoted active when hl
i > 0

and inactive otherwise. DNNs consisting solely of ReLUs are denoted rectifier
networks, and their associated functions are always piecewise linear [7].

2.1 Mixed-Integer Linear Programming

Our work is primarily based on the fast growing literature on applications of
Mixed-Integer Linear Programming (MILP) to deep learning. MILP can be used
to map inputs to outputs of each ReLU and consequently of rectifier networks.
Such formulations have been used to produce the image [71, 27] and estimate
the number of pieces [87, 86] of the piecewise linear function associated with the
network, generate adversarial perturbations to test the network robustness [16,
31, 96, 89, 106, 6], and implement controllers based on DNN models [85, 109].

For each unit i in layer l, we can map hl−1 to gli and hli with a formulation that
also includes a binary variable zi denoting if the unit is active or not, a variable
h̄li denoting the output of a complementary fictitious unit h̄li = max

{
0,−gli

}
,

and constants H l
i and H̄ l

i that are positive and as large as hli and h̄li can be:

W l
ih

l−1 + bli = gli (1)

gli = hli − h̄li (2)

hli ≤ H l
iz

l
i (3)

h̄li ≤ H̄ l
i(1− zli) (4)

hli ≥ 0 (5)

h̄li ≥ 0 (6)

zli ∈ {0, 1} (7)

This formulation can be strengthened by using the smallest possible values for
H l

i and H̄ l
i [31, 96] and valid inequalities to avoid fractional values of zli [6, 86].

The largest possible value of gli, which we denote Gli, can be obtained as

Gl
′

i = max W l′

i hl′−1 + bl
′

i (8)

s.t. (1)–(7) ∀l ∈ {1, . . . , l′ − 1}, i ∈ Nl (9)

x ∈ X (10)

If Gli > 0, then Gli is also the largest value of hli and it can be used for constant
H l

i . Otherwise, hli = 0 for any input x ∈ X. We can also minimize W l
ih

l−1 + bli
to obtain Gli, the smallest possible value of gli, and use −Gli for constant H̄ l

i if

Gli < 0; whereas Gli > 0 implies that hli > 0 for any input x ∈ X. By solving
these formulations from the first to the last layer, we have the tightest values

4 T. Serra et al.

for H l
i and H̄ l

i for l ∈ {1, . . . l′ − 1} when we reach layer l′. Units with only
zero or positive outputs were first identified using MILP in [96], where they are
denoted as stably inactive and stably active, and their incidence was induced
with `1 regularization. That was later exploited to accelerate the verification of
robustness by making the corresponding MILP formulation easier to solve [106].

In this paper, we use the stability of units to either remove or merge them
while preserving the outputs produced by the DNN. The same idea could be
extended to other architectures with MILP mappings, such as Binarized Neural
Networks (BNNs) [18, 78]. MILP has been used in BNNs for adversarial test-
ing [56] and along with Constraint Programming (CP) for training [52]. BNNs
have characteristics that also make them suitable under limited resources [78].

2.2 Related Work

Our work relates to the literature on neural network compression, and more
specifically to methods that simplify a trained DNN. Such literature includes low-
rank decomposition [22, 53, 112, 101, 81, 26], quantization [83, 18, 105, 97], archi-
tecture design [91, 51, 48, 49, 94], non-structured pruning [66], structured pruning
[40, 65, 74, 39, 72, 1, 110], sparse learning [68, 114, 4, 102], automatic discarding of
layers in ResNets [98, 111, 44], variational methods [113], and the recent Lottery
Ticket Hypothesis [32] by which training only certain subnetworks in the DNN
— the lottery tickets — might be good enough. However, network compression
is often achieved with side effects to the function associated with the DNN.

In contrast to many lossy pruning methods that typically focus on remov-
ing unimportant neurons and connections, our approach focuses on developing
lossless transformations that exactly preserve the expressiveness during the com-
pression. A necessary criterion for equivalent transformation is that the resulting
network is as expressive as the original one. Methods to study neural network
expressiveness include universal approximation theory [19], VC dimension [9],
trajectory length [82], and linear regions [79, 76, 75, 82, 7, 87, 41, 42, 86].

We can also consider our approach as a form of reparameterization, or equiv-
alent transformation, in graphical models [59, 100, 103]. If two parameter vectors
θ and θ′ define the same energy function (i.e., E(x|θ)) = E(x|θ′),∀ x), then θ′ is
called a reparameterization of θ. Reparameterization has played a key role in sev-
eral inference problems such as belief propagation [100], tree-weighted message
passing [99], and graph cuts [57]. The idea is also associated with characterizing
the functions that can be represented by DNNs [46, 19, 95, 67, 7, 73, 62].

Finally, our work complements the vast literature at the intersection of math-
ematical optimization and Machine Learning (ML). General-purpose methods
have been applied to train ML models to optimality [12, 13, 52, 84]. Conversely,
ML models have been extensively applied in optimization [11, 34]. To mention a
few lines of work, ML has been used to find feasible solutions [33, 24] and pre-
dict good solutions [25, 21]; determine how to branch on [55, 3, 69, 8, 47] or add
cuts [93], when to linearize [14], or when to decompose [61] an optimization prob-
lem; how to adapt algorithms for each problem [54, 50, 88, 58, 20, 10, 23]; obtain
better optimization bounds [15]; embed the structure of the problem as a layer

Lossless Compression of Deep Neural Networks 5

of a neural network [5, 108, 2, 29]; and predict the resolution by a time-limit [30],
the feasibility of the problem [107], and the problem itself [28, 70, 92].

3 LEO: Lossless Expressiveness Optimization

Algorithm 1, which we denote LEO (Lossless Expressiveness Optimization), loops
over the layers to remove units with constant outputs regardless of the input,
some of the stable units, and any layers with constant output due to those two
types of units. These modifications of the network architecture are followed by
changes to the weights and biases of the remaining units in the network to
preserve the outputs produced. The term expressiveness is commonly used to
refer to the ability of a network architecture to represent complex functions [86].

First, LEO checks the weights and stability of each unit and decides whether
to immediately remove them. A unit with constant output, which is either stably
inactive or has zero input weights, is removed as long as there are other units left
in the layer. A stably active unit with varying output is removed if the column
of weights of that unit is linearly dependent on the column of weights of stably
active units with varying outputs that have been previously inspected in that
layer. We consider the removal of such stably active units as a merging operation
since the output weights of other stable units need to be adjusted as well.

Second, LEO checks if layers can be removed in case the units left in the layer
are all stable or have constant output. If they are all stably active with varying
output, then the layer is removed by directly joining the layers before and after
it, which we can regard as a folding operation. In the particular case in which
only one unit is left with constant output, be it stably inactive or not, then all
hidden layers are removed because the network has an associated function that is
constant in D. We denote the latter operation as collapsing the neural network.

Figure 1 shows examples of units being removed and merged on the left as well
as of a layer being folded on the right. Although possible, folding or collapsing
a trained neural network is not something that we would expect to achieve in
practice unless we are compressing with respect to a very small domain D ⊂ X.

Theorem 1. For a neural network N1, Algorithm 1 produces a neural network
N2 such that N1 and N2 are local equivalent with respect to an input domain D.

Proof. If Gli < 0, then hli = 0 for any input in D and unit i in layer l can be
regarded as stably inactive. Otherwise, if W l

i = 0, then the output of the unit
is positive but constant. Those two types of units are analyzed by the block
starting at line 5. If there are other units left in the layer, which are either not
stable or stably active but not removed, then removing unit a stably inactive
unit i does not affect the output of subsequent units since the output of the unit
is always 0 in D. Likewise, in the case that W l

i = 0 and bli > 0, then the output
of the network remains the same after removing that unit if such removal of hli
from each unit j in layer l + 1 is followed by adding wl+1

ji bli to bl+1
j .

If Ḡli > 0, then hli = W l
i h

l−1 + bli for any input in D and unit i in layer l
can be regarded as stably active. Those units are analyzed by the block starting

6 T. Serra et al.

Fig. 1. Examples of output-preserving neural network compression obtained with LEO.
On the left, two units in white are stably inactive and three units indexed by set S in
darker blue are stably active, where rank(W 2

S)=2. In such a case, we can remove the
stably inactive units and merge the stably active units to produce the same input to the
next layer using only two units. On the right, an entire layer is stably active. In such a
case, we can fold the layer by directly connecting the layers before and after it. In both
cases, the red arcs correspond to coefficients that need to be adjusted accordingly.

at line 14. If the rank of the submatrix W l
S consisting of the weights of stably

active units in set S is the same as that of W l
S∪{i} and given that W l

i 6= 0 for

every i ∈ S, then S 6= ∅ and hli =
∑
k∈S

αkw
l
kh

l−1 +bli =
∑
k∈S

αk(hlk−blk)+bli. Since

there would be other units left in the layer, the output of the network remains
the same after removing the unit if such removal of hli from each unit j in layer

l + 1 is followed by adding αkw
l+1
ji to wl+1

jk and wl+1
ji

(
bli −

∑
k∈A

αkb
l
k

)
to bl+1

j .

If all units left in layer l are stably active and |S| > 0, then layer l is equivalent
to an affine transformation and it is possible to directly connect layers l− 1 and
l+ 1, as in the block starting at line 30. Since hlk = W l

jh
l−1 + blk for each stably

active unit k in layer l, then hl+1
i = W l+1

i hl+bl+1
i = W l+1

i

(
nl∑
k=1

W l
kh

l−1 + blk

)
+

bl+1
i =

∑
j∈nl−1

(∑
k∈S

wl
kjw

l+1
ik

)
hl−1j + bl+1

i +

(∑
k∈S

wl+1
ik blk

)
.

If the only unit i left in layer l is stably inactive or stably active but has zero
weights, then any input in D results in hli = max{0, bli}, and consequently the
neural network is associated with a constant function f : x→ Υ in D. Therefore,
it is possible to remove all hidden layers and replace the output layer with a
constant function mapping to Υ as in the block starting at line 39. �

Implementation We do not need to solve (8)–(10) to optimality to determine if
Gli < 0: it suffices to find a negative upper bound to guarantee that, or a solution
with positive value to refute that. A similar reasoning applies to Ḡli > 0.

Lossless Compression of Deep Neural Networks 7

Algorithm 1 LEO produces a smaller equivalent neural network with respect to
a domain D by removing units and layers while adjusting weights and biases

1: for l← 1, . . . , L do
2: S ← {} . Set of stable units left in layer l
3: Unstable ← False . If there are unstable units in layer l
4: for i← 1, . . . , nl do
5: if Gli < 0 for x ∈ D or W l

i =0 then . Unit i has constant output
6: if i < nl or |S| > 0 or Unstable then . Layer l still has other units
7: if W l

i = 0 and bli > 0 then
8: for j ← 1, . . . , nl+1 do . Adjust activations in layer l + 1
9: bl+1

j ← bl+1
j + wl+1

ji bli
10: end for
11: end if
12: Remove unit i from layer l . Unit i is not necessary
13: end if
14: else if Ḡli > 0 for x ∈ D then . Unit i is stably active
15: if rank

(
W l

S∪{i}
)
> |S| then . wl

i is linearly independent
16: S ← S ∪ {i} . Keep unit in the network
17: else . Output of unit i is linearly dependent
18: Find {αk}k∈S such that wl

i =
∑

k∈S αkw
l
k

19: for j ← 1, . . . , nl+1 do . Adjust activations in layer l + 1
20: wl+1

jk ← wl+1
jk +

∑
k∈S αkw

l+1
ji

21: bl+1
j ← bl+1

j + wl+1
ji (bli +

∑
k∈S αkb

l
k)

22: end for
23: Remove unit i from layer l . Unit i is no longer necessary
24: end if
25: else
26: Unstable ← True . At least one unit is not stable
27: end if
28: end for
29: if not Unstable then . All units left in layer l are stable
30: if |S| > 0 then . The units left have varying outputs
31: Create matrix W̄ ∈ Rnl−1×nl+1 and vector b̄ ∈ Rnl+1

32: for i← 1, . . . , nl+1 do . Directly connect layers l − 1 and l + 1
33: b̄i ← bl+1

i +
∑

k∈S w
l+1
ik blk

34: for j ← 1, . . . , nl−1 do
35: w̄ij ←

∑
k∈S w

l
kjw

l+1
ik

36: end for
37: end for
38: Remove layer l; replace parameters in next layer with W̄ and b̄
39: else . Only unit left in layer l has constant output
40: Compute output Υ for any input χ ∈ D . Function is constant
41: (WL+1, bL+1)← (0, Υ) . Set constant values in output layer
42: Remove layers 1 to L and break . Remove all hidden layers and leave
43: end if
44: end if
45: end for

8 T. Serra et al.

4 Experiments

We conducted experiments to evaluate the potential for network compression
using LEO. In these experiments, we trained rectifier networks on the MNIST
dataset [63] with input size 784, two hidden layers of same width, and 10 outputs.
The widths of the hidden layers are 25, 50, and 100. For each width, we identified
in preliminary experiments a weight for `1 regularization on layer weights that
improved the network accuracy in comparison with no regularization: 0.0002,
0.0002, and 0.0001, respectively. We trained 31 networks with that regularization
weight, with 5 times the same weight to induce more stability, and with zero
weight as a benchmark. We use the negative log-likelihood as the loss function
after taking a softmax operation on the output layer, a batch size of 64 and SGD
with a learning rate of 0.01, and momentum of 0.9 for training the model to 120
epochs. The learning rate is decayed by a factor of 0.1 after every 50 epochs. The
weights of the network were initialized with the Kaiming initialization [43] and
the biases were initialized to zero. The models were trained using Pytorch [80] on
a machine with 40 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz processors and
132 GB of RAM. The MILPs were solved using Gurobi 8.1.1 [37] on a machine
with Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz and 16 GB of RAM. We
used callbacks to check bounds and solutions and then interrupt the solver after
determining unit stability and bounds for each MILP.

Tables 1 and 2 summarize our experiments with mean and standard error. We
note that the compression grows with the size of the network and the weight of `1
regularization, which induces the weights of each unit to be orders of magnitude
smaller than its bias. The compression identified is all due to removing stably
inactive units. Most of the runtime is due to solving MILPs for the second hidden
layer. Given the incidence of stably active units, we conjecture that inducing rank
deficiency in the weights or negative values in the biases could also be beneficial.

Table 2. Additional details about the experiments for each type of network, including
runtime per test, incidence of stably active units, and overall network stability.

Stably active units Network

Layer width `1 weight Runtime (s) 1st layer 2nd layer stability (%)

25 0.001 27.9 ± 0.3 2.5 ± 0.3 7.4 ± 0.4 41.3 ± 0.6
25 0.0002 29 ± 1 0 ± 0 1.0 ± 0.2 10.4 ± 0.7
25 0 28.4 ± 0.3 0 ± 0 0 ± 0 0 ± 0

50 0.001 103 ± 2 15 ± 0.5 24.9 ± 0.6 69.3 ± 0.4
50 0.0002 106 ± 3 2.7 ± 0.3 8.8 ± 0.5 26.6 ± 0.6
50 0 112 ± 3 0 ± 0 0 ± 0 0 ± 0

100 0.0005 421 ± 4 35.7 ± 0.6 57.7 ± 0.7 77.5 ± 0.2
100 0.0001 456 ± 8 11.1 ± 0.5 18 ± 0.7 29.4 ± 0.5
100 0 385 ± 2 0 ± 0 0 ± 0 0 ± 0

Lossless Compression of Deep Neural Networks 9

5 Conclusion

We introduced a lossless neural network compression algorithm, LEO, which re-
lies on MILP to identify parts of the neural network that can be safely removed
after reparameterization. We found that networks trained with `1 regularization
are particularly amenable to such compression. In a sense, we could interpret
`1 regularization as inducing a subnetwork to represent the function associated
with the DNN. Future work may explore the connection between these subnet-
works identified by LEO and lottery tickets, other forms of inducing posterior
compressibility while training, and bounding techniques such as in [104] to ef-
ficiently identify stable units. Concomitantly, we have shown another form in
which discrete optimization can play a key role in deep learning applications.

References

1. Aghasi, A., Abdi, A., Nguyen, N., Romberg, J.: Net-trim: Convex pruning of deep
neural networks with performance guarantee. In: NeurIPS (2017)

2. Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, Z.: Differen-
tiable convex optimization layers. In: NeurIPS (2019)

3. Alvarez, A., Louveaux, Q., Wehenkel, L.: A machine learning-based approxima-
tion of strong branching. INFORMS Journal on Computing (2017)

4. Alvarez, J., Salzmann, M.: Learning the number of neurons in deep networks. In:
NeurIPS (2016)

5. Amos, B., Kolter, Z.: Optnet: differentiable optimization as a layer in neural
networks. In: ICML (2017)

6. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.: Strong mixed-integer
programming formulations for trained neural networks. In: IPCO (2019)

7. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. In: ICLR (2018)

8. Balcan, M.F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: ICML
(2018)

9. Bartlett, P., Maiorov, V., Meir, R.: Almost linear VC-dimension bounds for piece-
wise polynomial networks. Neural computation (1998)

10. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial op-
timization with reinforcement learning. In: ICLR (2017)

11. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. CoRR abs/1811.06128 (2018)

12. Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning (2017)
13. Bienstock, D., Muñoz, G., Pokutta, S.: Principled deep neural network training

through linear programming. CoRR abs/1810.03218 (2018)
14. Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer

quadratic programming problems. In: CPAIOR (2018)
15. Cappart, Q., Goutierre, E., Bergman, D., Rousseau, L.M.: Improving optimiza-

tion bounds using machine learning: Decision diagrams meet deep reinforcement
learning. In: AAAI (2019)

16. Cheng, C., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: ATVA (2017)

17. Ciresan, D., Meier, U., Masci, J., Schmidhuber, J.: Multi column deep neural
network for traffic sign classification. Neural Networks (2012)

10 T. Serra et al.

18. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized
neural networks: Training deep neural networks with weights and activations con-
strained to+ 1 or-1. NeurIPS (2016)

19. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems (1989)

20. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial
optimization algorithms over graphs. In: NeurIPS (2017)

21. Demirović, E., Stuckey, P., Bailey, J., Chan, J., Leckie, C., Ramamohanarao,
K., Guns, T.: An investigation into prediction + optimisation for the knapsack
problem. In: CPAIOR (2019)

22. Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting lin-
ear structure within convolutional networks for efficient evaluation. In: NeurIPS
(2014)

23. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learning
heuristics for the TSP by policy gradient. In: CPAIOR (2018)

24. Ding, J.Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.: Accelerating
primal solution findings for mixed integer programs based on solution prediction.
CoRR abs/1906.09575 (2019)

25. Donti, P., Amos, B., Kolter, Z.: Task-based end-to-end model learning in stochas-
tic optimization. In: NeurIPS (2017)

26. Dubey, A., Chatterjee, M., Ahuja, N.: Coreset based neural network compression.
In: ECCV (2018)

27. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward networks. In: NFM (2018)

28. Elmachtoub, A., Grigas, P.: Smart predict, then optimize. CoRR
abs/1710.08005 (2017)

29. Ferber, A., Wilder, B., Dilkina, B., Tambe, M.: MIPaaL: Mixed integer program
as a layer. In: AAAI (2020)

30. Fischetti, M., Lodi, A., Zarpellon, G.: Learning MILP resolution outcomes before
reaching time-limit. In: CPAIOR (2019)

31. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints (2018)

32. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: ICLR (2019)

33. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs
via deep learning: A preliminary study. In: CPAIOR (2018)

34. Gambella, C., Ghaddar, B., Naoum-Sawaya, J.: Optimization models for machine
learning: A survey. CoRR abs/1901.05331 (2019)

35. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In:
AISTATS (2011)

36. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. In: ICML (2013)

37. Gurobi Optimization, L.: Gurobi optimizer reference manual (2018),
http://www.gurobi.com

38. Hahnloser, R., Sarpeshkar, R., Mahowald, M., Douglas, R., Seung, S.: Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Nature 405 (2000)

39. Han, S., Pool, J., Narang, S., Mao, H., Tang, S., Elsen, E., Catanzaro, B., Tran,
J., Dally, W.: Dsd: regularizing deep neural networks with dense-sparse-dense
training flow. arXiv preprint arXiv:1607.04381 (2016)

Lossless Compression of Deep Neural Networks 11

40. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: NeurIPS (2015)

41. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: ICML
(2019)

42. Hanin, B., Rolnick, D.: Deep relu networks have surprisingly few activation pat-
terns. In: NeurIPS (2019)

43. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

44. Herrmann, C., Bowen, R., Zabih, R.: Deep networks with probabilistic gates.
CoRR abs/1812.04180 (2018)

45. Hinton, G., Deng, L., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T., Kingsbury, B.: Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal Processing Magazine (2012)

46. Hornik, K., Stinchcombe, M., White, H.: Multilayer feed-forward networks are
universal approximators. Neural Networks (1989)

47. Hottung, A., Tanaka, S., Tierney, K.: Deep learning assisted heuristic tree search
for the container pre-marshalling problem. Computers & Operations Research
(2020)

48. Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

49. Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, K.: Densely connected convolu-
tional networks. In: CVPR (2017)

50. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: LIOn (2011)

51. Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 MB
model size. arXiv preprint arXiv:1602.07360 (2016)

52. Icarte, R., Illanes, L., Castro, M., Cire, A., McIlraith, S., Beck, C.: Training
binarized neural networks using MIP and CP. In: International Conference on
Principles and Practice of Constraint Programming (CP) (2019)

53. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. BMVC (2014)

54. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC — Instance-Specific
Algorithm Configuration. In: ECAI (2010)

55. Khalil, E., Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: AAAI (2016)

56. Khalil, E., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural
networks. In: ICLR (2019)

57. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph
cuts-a review. TPAMI (2007)

58. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. AI
Magazine 35(3) (2014)

59. Koval, V., Schlesinger, M.: Two-dimensional programming in image analysis prob-
lems. USSR Academy of Science, Automatics and Telemechanics (1976)

60. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep con-
volutional neural networks. In: NeurIPS (2012)

61. Kruber, M., Lübbecke, M., Parmentier, A.: Learning when to use a decomposition.
In: CPAIOR (2017)

62. Kumar, A., Serra, T., Ramalingam, S.: Equivalent and approximate transforma-
tions of deep neural networks. arXiv preprint arXiv:1905.11428 (2019)

12 T. Serra et al.

63. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE (1998)

64. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521 (2015)
65. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.: Pruning filters for efficient

convnets. arXiv preprint arXiv:1608.08710 (2016)
66. Lin, C., Zhong, Z., Wei, W., Yan, J.: Synaptic strength for convolutional neural

network. In: NeurIPS (2018)
67. Lin, H., Jegelka, S.: Resnet with one-neuron hidden layers is a universal approxi-

mator. In: NeurIPS (2018)
68. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional

neural networks. In: CVPR (2015)
69. Lodi, A., Zarpellon, G.: On learning and branching: a survey. Top 25(2) (2017)
70. Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with ma-

chine learning. In: IJCAI (2018)
71. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward

ReLU neural networks. CoRR abs/1706.07351 (2017)
72. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural

network compression. In: ICCV (2017)
73. Mhaskar, H., Poggio, T.: Function approximation by deep networks. CoRR

abs/1905.12882 (2019)
74. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolu-

tional neural networks for resource efficient transfer learning. arXiv preprint
arXiv:1611.06440 (2016)

75. Montúfar, G.: Notes on the number of linear regions of deep neural networks. In:
SampTA (2017)

76. Montúfar, G., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions
of deep neural networks. In: NeurIPS (2014)

77. Nair, V., Hinton, G.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML (2010)

78. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAI (2018)

79. Pascanu, R., Montúfar, G., Bengio, Y.: On the number of response regions of deep
feedforward networks with piecewise linear activations. In: ICLR (2014)

80. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. NeurIPS
Workshops (2017)

81. Peng, B., Tan, W., Li, Z., Zhang, S., Xie, D., Pu, S.: Extreme network compression
via filter group approximation. In: ECCV (2018)

82. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Dickstein, J.: On the expressive
power of deep neural networks. In: ICML (2017)

83. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: ECCV (2016)

84. Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., Boutilier, C.: Caql: Con-
tinuous action Q-learning. CoRR abs/1909.12397 (2019)

85. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep
net learned transition models and mixed-integer linear programming. In: IJCAI
(2017)

86. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier
networks. In: AAAI (2020)

87. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear
regions of deep neural networks. In: ICML (2018)

Lossless Compression of Deep Neural Networks 13

88. Serra, T.: On defining design patterns to generalize and leverage automated con-
straint solving (2012)

89. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Robustness certification with re-
finement. In: ICLR (2019)

90. Sutskever, I., Vinyals, O., Le, Q.: Sequence to sequence learning with neural
networks. In: NeurIPS (2014)

91. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

92. Tan, Y., Delong, A., Terekhov, D.: Deep inverse optimization. In: CPAIOR (2019)
93. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer program-

ming: Learning to cut. CoRR abs/1906.04859 (2019)
94. Tang, Z., Peng, X., Li, K., Metaxas, D.: Towards efficient u-nets: A coupled and

quantized approach. TPAMI (2019)
95. Telgarsky, M.: Benefits of depth in neural networks. In: COLT (2016)
96. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming. In: ICLR (2019)
97. Tung, F., Mori, G.: Clip-q: Deep network compression learning by in-parallel

pruning-quantization. In: CVPR (2018)
98. Veit, A., Belongie, S.: Convolutional networks with adaptive computation graphs.

CoRR abs/1711.11503 (2017)
99. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on

(hyper)trees: Message-passing and linear-programming approaches. IEEE Trans.
Information Theory (2005)

100. Wainwright, M., Jaakkola, T., Willsky, A.: Tree consistency and bounds on the
performance of the max-product algorithm and its generalizations. Statistics and
Computing (2004)

101. Wang, W., Sun, Y., Eriksson, B., Wang, W., Aggarwal, V.: Wide compression:
Tensor ring nets. In: CVPR (2018)

102. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: NeurIPS (2016)

103. Werner, T.: A linear programming approach to max-sum problem: A review.
Technical Report CTU-CMP-2005-25, Center for Machine Perception (2005)

104. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examplesvia the
convex outer adversarial polytope. In: ICML (2018)

105. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: CVPR (2016)

106. Xiao, K., Tjeng, V., Shafiullah, N., Madry, A.: Training for faster adversarial
robustness verification via inducing ReLU stability. ICLR (2019)

107. Xu, H., Koenig, S., Kumar, T.S.: Towards effective deep learning for constraint
satisfaction problems. In: CP (2018)

108. Xue, Y., van Hoeve, W.J.: Embedding decision diagrams into generative adver-
sarial networks. In: CPAIOR (2019)

109. Ye, Z., Say, B., Sanner, S.: Symbolic bucket elimination for piecewise continuous
constrained optimization. In: CPAIOR (2018)

110. Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V., Han, X., Gao, M., Lin, C.Y.,
Davis, L.: Nisp: Pruning networks using neuron importance score propagation.
In: CVPR (2018)

111. Yu, X., Yu, Z., Ramalingam, S.: Learning strict identity mappings in deep residual
networks. In: CVPR (2018)

112. Zhang, X., Zou, J., Ming, X., He, K., Sun, J.: Efficient and accurate approxima-
tions of nonlinear convolutional networks. In: CVPR (2015)

14 T. Serra et al.

113. Zhao, C., Ni, B., Zhang, J., Zhao, Q., Zhang, W., Tian, Q.: Variational convolu-
tional neural network pruning. In: CVPR (2019)

114. Zhou, H., Alvarez, J., Porikli, F.: Less is more: Towards compact CNNs. In: ECCV
(2016)

