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Abstract
We present a trust-region steepest descent method for dynamic optimal control prob-
lemswith binary-valued integrable control functions.Ourmethod interprets the control
function as an indicator function of ameasurable set andmakes set-valued adjustments
derived from the sublevel sets of a topological gradient function. By combining this
type of update with a trust-region framework, we are able to show by theoretical argu-
ment that our method achieves asymptotic stationarity despite possible discretization
errors and truncation errors during step determination. To demonstrate the practical
applicability of our method, we solve two optimal control problems constrained by
ordinary and partial differential equations, respectively, and one topological optimiza-
tion problem.
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1 Introduction

We consider optimization problems of the form

min
U

J (U ) s.t. U ∈ Σ, (1)
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where the variableU is a measurable set selected from a finite atomless measure space
(Ω,Σ,μ) and J : Σ → R is differentiable with respect to its set-valued argument
U . Specifically, we focus on cases where there exist a Banach space Y , a continuously
Fréchet differentiable map J : Y → R, and a vector measure ν : Σ → Y of bounded
variation, such that

J = J ◦ ν.

Suchoptimization problemsoccur implicitly in the context of binary optimal control
whenever Lebesgue measurable control functions are considered. For instance, the
Lotka–Volterra fishing problem, a test problem fromODE-constrained optimal control
that we address in Sect. 4.2, takes the form

min
y,w

∫ t f

0
‖y(t) − (1, 1)T ‖2 dt

s.t. ẏ1(t) = y1(t) − y1(t)y2(t) − c1y1(t)w(t) for a.a. t ∈ [0, t f ],
ẏ2(t) = −y2(t) + y1(t)y2(t) − c2y2(t)w(t) for a.a. t ∈ [0, t f ],
y(0) = y0,

w(t) ∈ {0, 1} for a.a. t ∈ [0, t f ],
w ∈ L1([0, t f ]).

Here, ν maps a Lebesgue-measurable control set U ⊆ [0, t f ] to its characteristic
function χU which serves as w. Each w corresponds to an ODE solution yw. J (w) is
then given by

J (w) =
∫ t f

0
‖yw(t) − (1, 1)T ‖2 dt

and the final objective function J of Problem (1) is J (U ) := J (χU ). We develop our
theory for the abstract problem (1). However, this more concrete example may aid the
reader’s understanding.

Binary optimal control problems are solved both locally and globally by using var-
ious approaches, including indirect methods based on the global maximum principle
[14,15], dynamic programming [8,18], moment relaxations [33], combinatorial inte-
gral approximation decompositions [16,34], or direct first-discretize-then-optimize
methods that result in mixed-integer nonlinear programs [3]. We refer to [33,37] for
broader surveys.

Like decomposition methods, we use the fact that, under mild assumptions, con-
trol sets form a continuum and can therefore be improved incrementally. To achieve
improvement, we use local linearizations based on a gradient concept similar to the
topological gradient function as defined in [28].

In topology optimization, the topological gradient is often dependent on perturba-
tion shape. This is the case, for instance, if new boundary conditions are added by
perturbations (see, e.g., [28,36]) and can limit the ways in which perturbations can
be made. There are solution heuristics (see, e.g., [12]) that are applicable in these
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situations. However, more rigorous approaches based on, for instance, fixed-point
iterations [9,27], gradient descent on level set functions [2], and gradient descent on
binary-valued indicator functions [10] do also exist. For a broader overview over shape
and topology optimization, we refer to [11,13].

Themethod presented here is not designed to solve topology optimization problems.
It differs from [2] in the sense that it does not operate on level set functions. Instead,
it operates directly on sets, like in [9,27]. It differs from these fixed-point iteration
schemes in that it works cumulatively by deriving steps that are “added” to the current
control set U rather than completely replacing it.

It most closely resembles the method of [10]. The main difference here is that it
is stated as a generic trust-region method within a metric space. Much of its theoret-
ical framework mirrors that of existing trust-region methods. It therefore offers great
potential for future extensions into constrained optimization and optimization with
higher-order derivatives, both of which are difficult with the specific framework given
in [10].

Finally, we note that there are optimal control methods that use measure-valued
controls, e.g., [22]. We note that our method does not use measure-valued controls,
but rather set-valued controls. While hybrid measure and set optimization methods
may be an interesting avenue of research for the future, we will not discuss measure-
valued optimization here.

ContributionWe derive the topological gradient as a derivative with respect to changes
in the control set U . We provide a framework for transforming optimal control prob-
lems into this form and deriving topological gradients. We demonstrate this for both
ODE- and PDE-constrained problems.

Our main theoretical contribution lies in the use of the metric structure of measure
spaces. We show that asymptotic stationarity can be guaranteed using the trust-region
framework which automatically discovers appropriate step sizes by solving a suc-
cession of subproblems. We describe a solution method for these subproblems in
Procedure 1. We show that our steps are of adequate quality despite discretization
and truncation errors in Lemma 9 and Theorem 3. We follow the reasoning of other
trust-region convergence proofs to show that, given a small amount of groundwork,
many of the steps are transferrable from conventional nonlinear optimization.

Wepresent ourworkwith the caveat thatwedonot proveultimate convergenceof the
control sequence and thatwe do not even guarantee that it is aCauchy sequence.We do,
however, guarantee an actual improvement in objective and approximate stationarity
in the limit. Under certain assumptions, the latter can be used to derive bounds on the
optimality gap.

Outline In Sect. 2 we introduce basic notation, definitions, and prior results. In Sect. 3,
we state our trust-region algorithm and show its asymptotic behavior. In Sect. 4 we
apply the algorithm to three test problems as a proof of concept. In Sect. 5 we discuss
our results and address some possible criticisms of the methodology.We provide some
concluding remarks and speculate on avenues of future research.
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2 Preliminaries and notation

We denote the set of natural numbers with zero by N0 and the set of non-negative real
numbers by R+. We define the shorthands

[i] := { j ∈ N | j ≤ i} ∀i ∈ N,

[i]0 := { j ∈ N0 | j ≤ i} ∀i ∈ N0

for index sets.
For basic definitions and results ofmeasure theory,we refer to [7]. By 2Ω , we denote

the power set of the universal set Ω . In addition to positive and signed measures, we
use vector measures, which are σ -additive maps ν : Σ → Y , where Σ is a σ -algebra,
Y is a Banach space, and ν(∅) = 0. Every vectormeasure ν : Σ → Y has an associated
measure |ν| : Σ → R+ ∪ {∞} given by

|ν|(A) := sup
{ n∑
i=1

∥∥ν(Ai )
∥∥
Y

∣∣∣ n ∈ N, (Ai )i∈[n] ⊆ Σ partition of A
}

∀A ∈ Σ.

This measure is referred to as the total variation of ν. If ‖ν‖ := |ν|(Ω) < ∞, then ν

is said to be of bounded variation.
The concept of atomlessness is particularly important to our argument. A measure

space (Ω,Σ,μ) is atomless if it contains no atoms, that is, no sets A ∈ Σ with
μ(A) > 0 such that for every measurable subset B ⊆ A, we have eitherμ(B) = μ(A)

or μ(B) = 0. Given an atomless measure space, a measurable set A ∈ Σ , and any
number θ ∈ [0, μ(A)], there exists a measurable set B ⊆ A with μ(B) = θ .

If μ is a measure and ν is a signed or vector measure over (Ω,Σ) with |ν|(A) = 0
for all A ∈ Σ with |μ|(A) = 0, then ν is called absolutely continuous with respect
to μ and is written as ν � μ. For finite signed measures, absolute continuity implies
the existence of a density function.

Lemma 1 (Radon–Nikodym) Let ϕ be a finite signed measure over a finite measure
space (Ω,Σ,μ) such that ϕ � μ. Then there exists aμ-integrable function f : Ω →
R such that

ϕ(A) =
∫
A
f dμ ∀A ∈ Σ.

Proof See [7, Thm. 3.2.2]. �

The function f in Lemma 1 can be seen as the density function of ϕ with respect
to μ. We will subsequently refer to it as such. The average of a density function
over a given μ-measurable set D is given by 1

μ(D)

∫
D f (x) dμ = ϕ(D)

μ(D)
. If μ is the

Lebesgue measure in R
n , then Lebesgue’s differentiation theorem shows that f (x)

can be calculated almost everywhere by taking the limit for infinitesimally small balls
around x . We refer to [7, Thm. 5.6.2] for proof.
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The symmetric difference between two sets A, B is given by

A � B := (A\B) ∪ (B\A) = A\(B ∩ A) ∪ (B\A).

Given a finite measure space (Ω,Σ,μ), the map d : Σ × Σ → R+ with

d(A, B) := μ(A � B)

is a pseudometric, meaning that it is symmetric and subadditive. By considering the
quotient space with respect to the equivalence relation of being equal up to a μ-
nullset, d can be made into a metric. We note that U � (U � D) = D and therefore
d(U ,U � D) = μ(D).

Given a measure space (Ω,Σ,μ) and a μ-measurable function g : Ω → R, we
denote the various types of level sets of g by

Lg∼η := {
x ∈ Ω

∣∣ g(x) ∼ η
} ∈ Σ,

where “ ∼” ∈ { “ <”, “ ≤”, “ =”, “ ≥”, “ >” } and η ∈ R. These level sets are
μ-measurable which implies that their symmetric difference U � Lg∼η with a μ-
measurable control set U ∈ Σ is μ-measurable. The same is true for unions,
intersections, and differences with other μ-measurable sets.

3 Algorithm

In this section, we state the algorithm and prove its correctness. We split this discus-
sion into four subsections. Section 3.1 defines the topological gradient as we use it and
shows how to derive it from Fréchet derivatives. Section 3.2 states a gradient-based
necessary optimality criterion. Section 3.3 derives the gradient density function for
two types of optimal control problems. Section 3.4 states the algorithm and its sub-
routines and proves that the algorithm achieves stationarity in the limit. We formulate
the algorithm in a form that allows for inexactness in some steps to ensure that the
procedure remains practically implementable.

Throughout this section, we use the following assumptions.

Assumption 1 Let Ω , Y , Σ ⊆ 2Ω , μ : Σ → R+ ∪ {∞}, ν : Σ → Y , J : Y → R, and
J : Σ → R satisfy the following assumptions:

1. (Ω,Σ) is a measurable space, and Y is a Banach space;
2. ν is a vector measure of bounded variation;
3. J is Fréchet differentiable;
4. J = J ◦ ν;
5. μ is a finite measure;
6. there exists C > 0 such that ‖ν(D)‖Y ≤ C · μ(D) for all D ∈ Σ ; and
7. (Ω,Σ,μ) is atomless.
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3.1 Taylor expansion

In traditional nonlinear optimization, we make use of the fact that sufficiently smooth
functions are locally approximated by truncations of their Taylor series. We transfer
this property from the Fréchet differentiable objective J to J using Assumption 1.4.
This requires the chain rule.

Lemma 2 LetΩ ,Σ , Y ,μ, and ν satisfy Assumptions 1.1, 1.2, 1.5 and 1.6; let U ∈ Σ;
and let TU : Y → R be a bounded linear form. Then ϕU : Σ → R with

ϕU (D) := TU
(
ν(D\U ) − ν(D ∩U )

) ∀D ∈ Σ

is a finite signed measure that is absolutely continuous; i.e., ϕU � μ.

Proof Because TU is bounded, there exists M > 0 such that |TU y| ≤ M‖y‖Y for all
y ∈ Y . Along with Assumption 1.6, this implies that for all D ∈ Σ ,

|ϕU (D)| ≤ M · ∥∥ν(D\U ) − ν(D ∩U )
∥∥
Y

≤ M · (‖ν(D\U )‖Y + ‖ν(D ∩U )‖Y
)

≤ MC · μ(
(D\U ) ∪ (D ∩U )

)
,

which shows that ϕU (D) < ∞ and ϕU � μ, assuming ϕU can be shown to be a
signed measure.

Because TU is linear and ν is a vector measure, ϕU is finitely additive, and we
have ϕU (∅) = 0. To show σ -additivity, let (Di )i∈N ⊆ Σ consist of pairwise disjoint
measurable sets. For N ∈ N, the finite additivity of ϕ implies

∣∣∣
∞∑
i=1

ϕU (Di ) − ϕU

( ∞⋃
i=1

Di

)∣∣∣ =
∣∣∣

∞∑
i=N+1

ϕU (Di ) − ϕU

( ∞⋃
i=N+1

Di

)∣∣∣

≤
∣∣∣

∞∑
i=N+1

ϕU (Di )

∣∣∣ +
∣∣∣ϕU

( ∞⋃
i=N+1

Di

)∣∣∣.

For every i ∈ N, we have |ϕU (Di )| ≤ MC · μ(Di ). This implies

∣∣∣
∞∑

i=N+1

ϕU (Di )

∣∣∣ ≤
∞∑

i=N+1

∣∣ϕU (Di )
∣∣ ≤ MC ·

∞∑
i=N+1

μ(Di )

= MC · μ
( ∞⋃
i=N+1

Di

)
N→∞−−−−→ 0.

Similarly, we have

∣∣∣ϕU
( ∞⋃
i=N+1

Di

)∣∣∣ ≤ MC · μ
( ∞⋃
i=N+1

Di

)
N→∞−−−−→ 0.
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In both cases, convergence to zero is guaranteed by the fact that (Di )i∈N is a sequence
of pairwise disjoint subsets of Ω , which has finite measure. In total, this means that

∣∣∣
∞∑
i=1

ϕU (Di ) − ϕU

( ∞⋃
i=1

Di

)∣∣∣ = 0,

which proves that ϕ is σ -additive. Absolute convergence is proven by the fact that the
limit is identical for all rearrangements of the sequence. �

By using the Fréchet derivative J ′(ν(U )
)
as TU in Lemma 2, we can prove the

existence of a finite signed measure J ′(U ) that acts as a first-order derivative of J .
With this measure, we can formulate a local first-order Taylor expansion of J around
U .

Theorem 1 (Local First-Order Taylor Expansion) Let Ω , Σ , Y , J , μ, ν, and J satisfy
Assumptions 1.1 to 1.6. For every U ∈ Σ , let J ′(U ) : Σ → R be given by

J ′(U )(D) := J ′(ν(U ))
(
ν(D\U ) − ν(D ∩U )

) ∀D ∈ Σ. (2)

Then J ′(U ) is a finite signed measure with J ′(U ) � μ, and

J (U � D) = J (U ) + J ′(U )(D) + o
(
μ(D)

) ∀D ∈ Σ. (3)

Proof LetU ∈ Σ . Because J is Fréchet differentiable in ν(U ), J ′(ν(U )) is a bounded
linear operator. Lemma 2 shows thatJ ′(U ) as defined in (2) is a finite signed measure
and that J ′(U ) � μ. Let RU : Σ → R be given by

RU (D) :=
{

1
μ(D)

(J (U � D) − J (U ) − J ′(U )(D)
)
, μ(D) �= 0

0, μ(D) = 0
∀D ∈ Σ.

To establish (3), we need to show thatRU (D) → 0 for μ(D) → 0. Let (Di )i∈N be a
sequence in Σ such that μ(Di ) → 0, and let

di := ν(U � Di ) − ν(U ) = ν(Di\U ) − ν(Di ∩U ) ∀i ∈ N. (4)

Then we have ‖di‖Y ≤ C · μ(Di ) for all i ∈ N with C > 0 from Assumption
1.6. Therefore, di → 0 for i → ∞. If di = 0, then J (U � Di ) = J (U ) and
J ′(U )(Di ) = 0, which impliesRU (Di ) = 0. Without loss of generality, we consider
only sequences where μ(Di ) > 0 and ‖di‖Y > 0 for all i ∈ N. By combining (2),
(4), and the Fréchet differentiability of J , we can conclude that

RU (Di )
(2)= 1

μ(Di )

(
J
(
ν(U � Di )

) − J
(
ν(U )

) − J ′(ν(U )
)
di

)

(4)= ‖di‖Y
μ(Di )︸ ︷︷ ︸
∈(0,C]

1

‖di‖Y
(
J
(
ν(U ) + di

) − J
(
ν(U )

) − J ′(ν(U )
)
di︸ ︷︷ ︸

=o(‖di‖Y )

)
i→∞−−−→ 0,
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Fig. 1 Illustration of support
points that would allow
piecewise first-order
approximation

which proves (3). �
Theorem 1 can be extended to include higher-order derivatives. This requires a

technical measure extension argument and does not contribute to the method under
discussion.

Becauseμ andJ ′(U ) are finite andJ ′(U ) � μ,J ′(U ) has aμ-integrable density
function that we use to construct steepest descent steps.

Corollary 1 Let Ω , Σ , μ, Y , J , J , and ν satisfy Assumptions 1.1 to 1.6. For every
U ∈ Σ , there exists gU ∈ L1(Ω,μ) such that

J ′(U )(D) =
∫
D
gU dμ ∀D ∈ Σ.

Proof LetU ∈ Σ be given. According to Theorem 1,J ′(U ) is a finite signed measure
with J ′(U ) � μ. Because μ is also finite, Lemma 1 proves the existence of a gU ∈
L1(Ω) with the stated properties. �

There are different ways to calculate gU . Section 3.3 derives gU for two exemplary
ODE- and PDE-constrained problems. The approximation (3) is only accurate in a
small neighborhood of U . To obtain estimates for the error accumulated over larger
distances, we need to cover a connecting line with such neighborhoods and use a com-
pactness argument to extract a finite subcover. We can then choose a finite number of
support points such that first-order Taylor approximations are accurate when traveling
from one support point to the next, as illustrated in Fig. 1.

Sets do not have an exact equivalent of convex combinations or “connecting lines”.
We could construct a similar argument by using geodesics. In the interest of brevity,
however, we assume instead that the derivative of J : Y → R satisfies a Lipschitz
condition. We can then make the argument in the underlying vector space Y .

Lemma 3 Let Ω , Σ , Y , J , μ, ν, and J satisfy Assumptions 1.1 to 1.6. Furthermore,
let C > 0 be as specified in Assumption 1.6, and let the Fréchet derivative J ′ of J be
such that there exists a constant L > 0 with

∥∥J ′(x) − J ′(y)
∥∥
Y ∗ ≤ L · ‖x − y‖Y ∀x, y ∈ conv

(
ν(Σ)

) ⊆ Y . (5)
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Then we have

∣∣J (U � D) − J (U ) − J ′(U )(D)
∣∣ ≤ LC2

2
μ(D)2 ∀U , D ∈ Σ. (6)

Proof Let U , D ∈ Σ be given and let x := ν(U ) and d := ν(D\U ) − ν(D ∩U ). We
have

x + d = ν(U ) + ν(D\U ) − ν(D ∩U ) = ν
(
(U ∪ D)\(U ∩ D)

) = ν(U � D).

According to (2) in Theorem 1, J ′(U )(D) is given by

J ′(U )(D) = J ′(x)
(
ν(D\U ) − ν(D ∩U )

) = J ′(x)d.

We further find that ‖d‖Y ≤ ∥∥ν(D\U )
∥∥
Y + ∥∥ν(D ∩U )

∥∥
Y ≤ C · μ(D) according to

Assumption 1.6. Therefore, we have

∣∣J (U � D) − J (U ) − J ′(U )(D)
∣∣ =

∣∣∣
∫ 1

0

(
J ′(x + λd) − J ′(x)

)
d dλ

∣∣∣

≤
∫ 1

0

∥∥J ′(x + λd) − J ′(x)
∥∥
Y ∗‖d‖Y dλ

≤ ‖d‖Y ·
∫ 1

0
L · ‖x + λd − x‖Y dλ

= L

2
‖d‖2Y︸ ︷︷ ︸

≤C2μ(D)2

,

which proves (6). �
We note that a geodesic-based argument would not require a Lipschitz condition

over conv
(
ν(Σ)

)
, but only over ν(Σ), because support points can be chosen exclu-

sively from ν(Σ).

3.2 Optimality criterion

Our method works towards achieving a necessary optimality criterion based on sta-
tionarity. We have shown in Corollary 1 that the derivative measure has an integrable
density function gU . The integral of gU over a step set D approximates the change in
objective for small steps. Therefore, if

gU (x) ≥ 0 a.e. in Ω, (7)

then all sufficiently small steps are predicted to either maintain or increase the
objective. The following elementary lemma shows that negative density values on
non-nullsets always translate into descent steps.
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Lemma 4 Let (Ω,Σ,μ) be a finite atomless measure space, g ∈ L1(Ω,μ), and
λ ∈ [0, 1]. Then there exists D ∈ Σ such that μ(D) = λ · μ(Ω) and

∫
D
g dμ ≤ λ ·

∫
Ω

g dμ.

Proof For λ = 0, we can choose D := ∅. Similarly, for λ = 1, we can choose
D := Ω . Therefore, we consider only λ ∈ (0, 1) here. Because g is μ-integrable, we

have μ(Lg≤η)
η→−∞−−−−→ 0 and μ(Lg≤η)

η→∞−−−→ μ(Ω). Therefore,

η∗ := inf
{
η ∈ R

∣∣ μ(Lg≤η) > λμ(Ω)
}

is a finite real number.
Let (η̌i )i∈N ⊂ R be an ascending sequence with η̌i < η∗ ∀i ∈ N and η̌i → η∗ for

i → ∞. The corresponding sequence of sublevel sets Lg≤η̌i is increasing with

D1 := Lg<η∗ =
∞⋃
i=1

Lg≤η̌i .

Since μ(Lg≤η̌i ) ≤ λ · μ(Ω) for all i ∈ N, we have μ(D1) ≤ λ · μ(Ω).
Conversely, let (η̂i )i∈N ⊂ R be a descending sequence with η̂i > η∗ ∀i ∈ N and

η̂i → η∗ for i → ∞. The corresponding sequence of sublevel setsLg≤η̂i is decreasing
with

D̄2 := Lg≤η∗ =
∞⋂
i=1

Lg≤η̂i .

Here, we find that μ(D̄2) ≥ λ · μ(Ω).
Because (Ω,Σ,μ) is atomless, we can choose ameasurable set D2 ⊂ D̄2\D1 such

thatμ(D2) = λ·μ(Ω)−μ(D1).We define D := D1∪D2 and obtainμ(D) = λ·μ(Ω)

and D ⊆ Lg≤η∗ . We therefore have

∫
D
g dμ ≤ η∗ · λ · μ(Ω).

If we were to assume that
∫
D g dμ > λ · ∫

Ω
g dμ, it would imply that

η∗ >
1

μ(Ω)

∫
Ω

g dμ.

We could then conclude that
∫

Ω

g dμ =
∫
D
g dμ +

∫
Ω\D

g︸︷︷︸
≥η∗

dμ
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> λ︸︷︷︸
= μ(D)

μ(Ω)

·
∫

Ω

g dμ + η∗ · (μ(Ω) − μ(D)
)

>
μ(D)

μ(Ω)
·
∫

Ω

g dμ + μ(Ω) − μ(D)

μ(Ω)
·
∫

Ω

g dμ

=
∫

Ω

g dμ,

which proves by contradiction that

∫
D
g dμ ≤ λ ·

∫
Ω

g dμ

and therefore that g realizes or exceeds its overall average value on D. �
It is useful to think of λ = μ(D)

μ(Ω)
and g = gU for some U ∈ Σ . We then find a step

D ∈ Σ such that

1

μ(D)

∫
D
gU dμ ≤ 1

μ(Ω)

∫
Ω

gU dμ.

For any measure less than or equal to μ(Ω), we can therefore choose a μ-measurable
subset D ⊆ Ω with that exact measure such that the predicted decrease in objective
for the step D is no worse than the average over all of Ω . This does not imply that
the predicted change is negative. We can ensure a decrease by applying Lemma 4 to
the finite atomless measure space

(
D0, Σ ∩ D0, μ|Σ∩D0

)
for D0 := LgU<0 ∈ Σ .

There then exists a step D of given size that captures at least a corresponding fraction
of the maximal achievable predicted decrease. We can use this to prove that (7) is a
necessary criterion for local optimality.

Lemma 5 Let Ω , Σ , Y , J , μ, ν, and J satisfy Assumptions 1.1 to 1.7. Let U ∈ Σ be
a locally optimal solution such that there exists R > 0 with

J (U � D) ≥ J (U ) ∀D ∈ Σ : μ(D) ≤ R,

and let gU ∈ L1(Ω,μ) denote the μ-integrable density function of J ′(U ). Then

gU (x) ≥ 0 μ-a.e. in Ω.

Proof We assume the contrary, i.e., that there exists D0 ∈ Σ with μ(D0) > 0 and
gU (x) < 0 for all x ∈ D0. We have

δ := 1

μ(D0)

∫
D0

gU dμ < 0.

From Theorem 1, there exists R̄ > 0 such that

∣∣J (U � D) − J (D) − J ′(U )(D)
∣∣ ≤ − δ

2
μ(D) ∀D ∈ Σ : μ(D) ≤ R̄.
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Let R′ := min{R, R̄, μ(D0)} > 0. This implies that λ := R′
μ(D0)

∈ (0, 1]. Accord-
ing to Lemma 4, there exists D ∈ Σ with D ⊆ D0, μ(D) = R′ ≤ R, and

∫
D
gU dμ ≤ μ(D)

μ(D0)
·
∫
D0

gU dμ = δ · μ(D),

which implies that

J (U � D) ≤ J (U ) +
∫
D
gU dμ − δ

2
μ(D) ≤ J (U ) + δ

2
μ(D)

︸ ︷︷ ︸
<0

.

This would contradict J (U � D) ≥ J (U ) for all D ∈ Σ with μ(D) ≤ R. Therefore,
no such D0 can exist. �

Because gU is the density function of the gradient measure, (7) is essentially a
stationarity condition. We subsequently refer to points that satisfy (7) as stationary
points. Similarly, we refer to U ∈ Σ as ε-stationary for given ε > 0 if and only if

∫
Ω

∣∣∣min
{
0, gU (x)

}∣∣∣ dμ ≤ ε.

We refer to the integral on the left hand side as the instationarity of U . One cannot
always find solutions that satisfy the necessary optimality criterion (7). For instance,
if the vector measure ν maps a set U ∈ Σ to its characteristic function ν(U ) = χU ∈
L1(Ω), then the image ν(Σ) is not closed, and accumulation points of sequences may
not themselves be characteristic functions of measurable sets.

A weak guarantee can be given for the degree of suboptimality of an ε-stationary
point. If we make an assumption of limited curvature in the sense of Lemma 3, then
the following estimate holds for every D ∈ Σ .

J (U � D) ≥ J (U ) + J ′(U )(D) − LC2

2
μ(D)2

= J (U ) +
∫
D
gUdμ − LC2

2
μ(D)2

≥ J (U ) − ε − LC2

2
μ(D)2

Here, L > 0 is the Lipschitz constant associated with changes in the Fréchet derivative
of J , and C > 0 is the constant from Assumption 1.6. This implies that within a given
radius of R > 0, U is suboptimal by at most ε + LC2

2 R2.
It is further possible to infer that the sequence of control functions ν(Ui ) forms

a Cauchy sequence, if J (Ui ) approach the infimum of J over conv(ν(Σ)) and the
underlying functional J is strictly convex.
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3.3 Approximating gradient densities

In previous sections, we have shown that, under Assumption 1, there exists a gradient
density function gU : Ω → R for all control sets U ∈ Σ such that

J (U � D) − J (U ) ≈
∫
D
gU dμ.

It may not be immediately clear how we would calculate a useful representation of
gU . We will now briefly discuss two cases in which gU can be determined relatively
easily.

3.3.1 ODE-constrained optimal control

Wefirst consider a casewhereProblem (1) is derived fromanODE-constrainedoptimal
control problem of the form

min
w,y

∫ t f

0
l(y(t), w(t)) dt

s.t. ẏ(t) = f (y(t), w(t)) for a.a. t ∈ (0, t f )

w(t) ∈ {0, 1} for a.a. t ∈ (0, t f )

y(0) = y0

w ∈ L1([0, t f ])

with constant t f > 0 and y0 ∈ R
n . This includes the Lotka–Volterra problem from

Sect. 1. We only discuss autonomous ODEs here, which serves primarily to unclutter
notation. To guarantee that unique solutions and derivatives exist, we make some
assumptions on l and f .

Assumption 2 Let t f > 0, D ⊆ R
n , l : D × R → R, and f : D × R → R

n satisfy
the following assumptions:

1. D is a convex open set with y0 ∈ D,
2. f and l are twice continuously differentiable w.r.t. (y, w) on D × R,
3. f and l are affine linear in w, i.e., f (y, w) = f (y, 0) + w · ( f (y, 1) − f (y, 0))

and l(y, w) = l(y, 0) + w · (l(y, 1) − l(y, 0)),
4. there exists a constant L such that ‖ f (x, v)− f (y, w)‖ ≤ L · ‖x− y‖+ L · |v−w|

for all x, y ∈ D and v,w ∈ R,
5. there exists ε > 0 such that for all α ∈ L1([0, t f ]) with α(t) ∈ [0, 1]

almost everywhere and every τ ∈ (0, t f ], every absolutely continuous function
y : [0, τ ] → D with y(0) = y0 and ẏ(t) = f (y(t), α(t)) almost everywhere
satisfies dist(y(t), ∂D) ≥ ε for all t ∈ [0, τ ].
It may be possible to further relax these assumptions. However, this formulation is

sufficiently general to apply to the Lotka–Volterra test problem which we discuss in
greater depth in Sect. 4.2. While demanding affine linearity inw may seem restrictive,
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it is always achievable for binary-valued controls by partial outer convexification
[30,31].

We begin with a stability result that allows us to extend the subsequent existence
result to control functions whose values lie outside of [0, 1].
Lemma 6 Let t f > 0, D, f satisfy Assumption 2, let L > 0 denote the constant from
Assumption 2.4, and let τ ∈ (0, t f ]. Let v,w ∈ L1([0, t f ]), and let yv : [0, τ ) → D
and yw : [0, τ ) → D be absolutely continuous such that

yv(0) = y0,
ẏv(t) = f (yv(t), v(t)) for a.a. t ∈ [0, τ ),

yw(0) = y0,
ẏw(t) = f (yw(t), w(t)) for a.a. t ∈ [0, τ ).

Then we have

‖yv(t) − yw(t)‖ ≤ L · eLt · ‖v − w‖L1 ∀t ∈ [0, τ ).

Proof By using the Lipschitz condition in Assumption 2.4, we find that

‖yv(t) − yw(t)‖ ≤
∫ t

0
‖ f (yv, v) − f (yw,w)‖ ds

≤ L ·
∫ t

0
|v − w| ds +

∫ t

0
L · ‖yv − yw‖ ds.

for all t ∈ [0, τ ). According to Gronwall’s inequality, it follows that

‖yv(t) − yw(t)‖ ≤ L ·
∫ t

0
|v − w| ds +

∫ t

0
L2eL(t−s) ·

∫ s

0
|v − w| dτ ds

≤ L · ‖v − w‖L1 +
∫ t

0
L2eL(t−s) · ‖v − w‖L1 ds

= L ·
(
1 +

∫ t

0
LeL(t−s) ds

︸ ︷︷ ︸
=eLt−1

)
· ‖v − w‖L1

= L · eLt · ‖v − w‖L1

for all t ∈ [0, τ ). �
Lemma 6 shows that the solution to the initial value problem exists not only for

control functions with values in [0, 1], but also in a small L1 environment around
them.

Lemma 7 Let t f > 0, D ⊆ R
n, and f satisfy Assumption 2, and let ε > 0 denote

the constant from Assumption 2.5. Then there exists δ > 0 such that for every w ∈
L1([0, t f ]) with w(t) ∈ [0, 1] and every v ∈ Bδ(w), there exists a unique absolutely
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continuous function yv : [0, t f ] → D such that yv(0) = y0, dist(yv(t), ∂D) ≥ ε
2 for

all t ∈ [0, t f ], and

ẏv(t) = f (yv(t), v(t)) for a.a. t ∈ [0, t f ].

Proof We use the generalized existence theory based on the Carathéodory condition as
described in [17, Sec. I.5]. Assumptions 2.1 to 2.4 imply the Carathéodory condition
for all v ∈ L1([0, t f ]). This implies the existence of unique absolutely continuous
local solutions yv : [0, τ ) → D with yv(0) = y0. We can extend these local solutions
to their maximal existence interval.

We first consider the case v = w, where w(t) ∈ [0, 1] almost everywhere is
guaranteed. If themaximal existence intervalwere to end at τ ≤ t f , then the continuous
extension of yw would satisfy yw(t) → ∂D for t → τ , which would contradict
Assumption 2.5. We can therefore extend yw to [0, t f ] and guarantee that yw(t) ∈ D
for all t ∈ [0, t f ].

Let ε > 0 denote the constant given in Assumption 2.5. We can then use Lemma 6
to extend this argument to all v ∈ L1([0, t f ]) with

‖v − w‖L1 ≤ ε

2L · eLt f︸ ︷︷ ︸
=:δ

.

as this yields dist(yv, ∂D) ≥ ε
2 . �

Lemma 7 ensures that there exists a small neighborhood around each admissible
control function in which the ODE solution is well-defined. This is important for the
definition of derivatives, which are defined using changes over infinitesimally small
neighborhoods.

As our measure space (Ω,Σ), we choose [0, t f ]with the Lebesgue σ -algebra. The
Banach space Y is the space L1(Ω) and ν maps U �→ χU where χU denotes the
characteristic function of U . The objective J : Y → R is given by

J (w) :=
∫ t f

0
l(yw(t), w(t)) dt .

The function J is then given by

J (U ) = J (ν(U )) =
∫ t f

0
l(yχU (t), χU (t)) dt ∀U ∈ Σ.

For the measure μ, we can choose either the Lebesgue measure or an equivalent
measure. In either case, there is a density functionm ∈ L1([0, t f ])∩ L∞([0, t f ])with
m > 0 almost everywhere such that

μ(A) =
∫
A
m(t) dt ∀A ∈ Σ.
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To show that these choices satisfy Assumption 1, we have to prove that
J : L1([0, t f ]) → R is Fréchet differentiable around every w ∈ L1([0, t f ]) with
w(t) ∈ [0, 1] almost everywhere. We first show that the ODE solutions correspond-
ing to control functions in the δ-environment established in Lemma 7 are uniformly
bounded. This allows us to consider f only on a compact convex subset U ⊆ R

n

where the norms of the second derivatives of f and l can be bounded. The conjunction
of Lemma 6 with the norm bounds on the second derivatives and Assumption 2.3
allows us to control residual terms that appear when deriving the Fréchet derivative of
J from the Lagrangian function of the original problem.

Lemma 8 Let t f > 0, D, f satisfy Assumption 2, and let L > 0 denote the constant
from Assumption 2.4. Letw ∈ L1([0, t f ]) be such that there exists a unique absolutely
continuous function yw : [0, t f ] → D with yw(0) = y0 and ẏw(t) = f (yw(t), w(t))
almost everywhere. Then we have

‖yw(t) − y0‖ ≤ (‖ f (y0, 0)‖ · t f + L · ‖w‖L1
) · eLt f ∀t ∈ [0, t f ].

Let δ > 0 be the constant derived in Lemma 7. There exists a convex compact set
U ⊂ D such that yv(t) ∈ U almost everywhere for all v ∈ L1([0, t f ]) such that there
existsw ∈ L1([0, t f ])withw(t) ∈ [0, 1] for almost all t ∈ [0, t f ] and ‖v−w‖L1 ≤ δ.

Proof Assumption 2.4 guarantees for all t ∈ [0, t f ] that

‖yw(t) − y0‖ ≤
∥∥∥
∫ t

0
f (yw,w) ds

∥∥∥ ≤
∫ t

0
‖ f (y0, w)‖︸ ︷︷ ︸

≤‖ f (y0,0)‖+L·|w|
ds +

∫ t

0
L‖yw − y0‖ ds.

Let

α(t) := t · ‖ f (y0, 0)‖ + L ·
∫ t

0
|w(s)| ds.

We note that α is increasing in t . By applying Gronwall’s inequality, we obtain the
estimate

‖yw(t) − y0‖ ≤ α(t) +
∫ t

0
α(s) · L · eL·(t−s) ds

≤ α(t) ·
(
1 +

∫ t

0
L · eL·(t−s) ds

)

= α(t) · eLt
≤ α(t f ) · eLt f
= (‖ f (y0, 0)‖ · t f + L · ‖w‖L1

) · eLt f

for all t ∈ [0, t f ]. Let ε > 0 denote the constant from Assumption 2.5. For all
w ∈ L1([0, t f ]) with w(t) ∈ [0, 1] almost everywhere, we have ‖w‖L1 ≤ t f . For all
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v ∈ Bδ(w), we have ‖v‖L1 ≤ t f + δ. For such v, we have a unique ODE solution yv
that satisfies

‖yv(t) − y0‖ ≤ (‖ f (y0, 0)‖ · t f + L · (t f + δ)
) · eLt f =: R ∀t ∈ [0, t f ].

We then have

yv(t) ∈ U :=
{
y ∈ D

∣∣ dist(y, ∂D) ≥ ε

2

}
∩ BR(y0) ∀t ∈ [0, t f ].

We note that U is the intersection of two convex closed sets and is therefore convex
and closed. Since U is also bounded, it is compact. �

Since f and l are twice continuously differentiable with respect to (y, w), this
implies that their first and second derivatives are also bounded on U .

We briefly note that the uniform bound of all first and second derivatives of f and l
also implies that J satisfies the curvature condition required by Lemma 3. This implies
the suboptimality bound described at the end of Sect. 3.2.

LetC := L ·(1+eLt f ). Let λv : [0, t f ] → R
n be the unique, absolutely continuous

solution of the costate equations

λ̇v = −ly(yv, v) − λT
v fy(yv, v) for a.a. t ∈ [0, t f ],

λv(t f ) = 0.

With the costate function λ, we can define the Lagrangian function

Λ(y, w, λ) =
∫ t f

0
l(y, w) + λT ( f (y, w) − ẏ) dt

= λ(0)T y(0) − λ(t f )
T y(t f ) +

∫ t f

0
l(y, w) + λT f (y, w) + λ̇T y dt .

We use integration by parts for the second reformulation. We note that we have
Λ(yw,w, λ) = J (w) for all λ and all w. Therefore, the change in objective can
be written as J (w) − J (v) = Λ(yw,w, λw) − Λ(yv, v, λv).

Theorem 2 Let t f > 0, D ∈ R
n, l, f satisfy Assumption 2, and let L > 0 denote the

constant in Assumption 2.4. Let v ∈ L1([0, t f ]) with v(t) ∈ [0, 1] almost everywhere.
Then the objective function J : L1([0, t f ]) → R with

J (w) :=
∫ t f

0
l(yw(t), w(t)) dt

is Fréchet differentiable in v and its derivative is given by

DJ (v)d :=
∫ t f

0

(
lw(yv, v) + λT

v fw(yv, v)
)

· d dt ∀d ∈ L1([0, t f ])
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where λv denotes the costate function associated with the control function v and its
initial value problem solution yv .

Proof We make use of the derivative expression of the costate equation. We then per-
form a truncated Taylor expansion with integral residual expressions to the objective,
which yields

J (w) − J (v)

= Λ(yw,w, λv) − Λ(yv, v, λv)

=
∫ t f

0
l(yw,w) − l(yv, v) + λT

v ( f (yw,w) − f (yv, v))

+ λ̇T
v (yw − yv) dt

=
∫ t f

0

(
lw(yv, v) + λT

v fw(yv, v)
)

(w − v)

+
(
ly(yv, v) + λT

v fy(yv, v) + λ̇T
v

)
︸ ︷︷ ︸

=0

(yw − yv) dt

+
∫ t f

0

∫ 1

0
(1 − s)ΔyT∇2

xx l(yv + sΔy, v + sΔw)Δy ds dt

+ 2
∫ t f

0

∫ 1

0
(1 − s)ΔyT∇2

xwl(yv + sΔy, v + sΔw)Δw ds dt

+
∫ t f

0

∫ 1

0
(1 − s)ΔwT ∇2

wwl(yv + sΔy, v + sΔw)︸ ︷︷ ︸
=0

Δw ds dt

+
n∑

i=1

∫ t f

0

∫ 1

0
(1 − s)ΔyT∇2

xx fi (yv + sΔy, v + sΔw)Δy ds dt

+ 2
n∑

i=1

∫ t f

0

∫ 1

0
(1 − s)λiΔyT∇2

xw fi (yv + sΔy, v + sΔw)Δw ds dt

+
n∑

i=1

∫ t f

0

∫ 1

0
(1 − s)λiΔwT ∇2

ww fi (yv + sΔy, v + sΔw)︸ ︷︷ ︸
=0

Δw ds dt .

For the sake of brevity, we write Δw := (w − v) and Δy := (yw − yv). We note that
the first integral in the last step is equal to DJ (v)Δw. According to Lemma 8, there
exists a compact convex set U ⊆ D such that yw(t) ∈ U and yv(t) ∈ U for all v,w

that are either [0, 1]-valued or in a δ-neighborhood of such a control function. Given
that all convex combinations between yv and yw lie in the compact setU , there exists
a constant L ′ > 0 such that

‖∇2
xx l‖ ≤ L ′,

‖∇2
xwl‖ ≤ L ′,
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‖∇2
xx f ‖ ≤ L ′,

‖∇2
xw f ‖ ≤ L ′.

Because ‖Δy‖ ≤ C · ‖Δw‖L1 for all t ∈ [0, t f ], we have

|J (w) − J (v) − DJ (v)(w − v)|

≤
∣∣∣
∫ t f

0

∫ 1

0
(1 − s)ΔyT∇2

xx l(yv + sΔy, v + sΔw)Δy ds dt
∣∣∣

+ 2
∣∣∣
∫ t f

0

∫ 1

0
(1 − s)ΔyT∇2

xwl(yv + sΔy, v + sΔw)Δw ds dt
∣∣∣

+
n∑

i=1

∣∣∣
∫ t f

0

∫ 1

0
(1 − s)ΔyT∇2

xx fi (yv + sΔy, v + sΔw)Δy ds dt
∣∣∣

+ 2
n∑

i=1

∣∣∣
∫ t f

0

∫ 1

0
(1 − s)λiΔyT∇2

xw fi (yv + sΔy, v + sΔw)Δw ds dt
∣∣∣

≤ (n + 1)L ′C2t f · ‖w − v‖2L1 + 2(n + 1)L ′C · ‖w − v‖L1 ·
∫ t f

0

1

2
Δw dt

≤ (n + 1)L ′t f · (C2 + C) · ‖w − v‖2L1 .

From this, it follows that

1

‖w − v‖L1
|J (w) − J (v) − DJ (v)(w − v)| ≤ L ′t f (n + 1)(C2 + C) · ‖w − v‖L1

‖w−v‖L1→0−−−−−−−→ 0.

This shows that J is Fréchet differentiable with respect to L1 changes in the control
function. �

Let U ∈ Σ denote the current control set. The gradient measure ϕU in U can be
derived from the bounded linear operator DJ (ν(U )) = DJ (χU ) using Lemma 2. For
a given step D ∈ Σ , we have

ϕU (D) = DJ (χU )
(
χD\U − χD∩U

)

=
∫ t f

0

(
lw(yχU , χU ) + λT

v fw(yχU , χU )
)

· (χD\U − χD∩U
)
dt

=
∫
D

(
lw(yχU , χU ) + λT

v fw(yχU , χU )
)

· (1 − 2χU ) dt

=
∫
D

1 − 2χU

m
·
(
lw(yχU , χU ) + λT

v fw(yχU , χU )
)
dμ
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wherem is the density function of themeasureμwith respect to the Lebesguemeasure.
The density function of ϕU is then given by

gU (t) := 1 − 2χU (t)

m(t)
·
(
lw(yχU (t), χU (t)) + λT

v fw(yχU (t), χU (t))
)

.

We note the close connection of this expression to the Hamiltonian

H(y, w, λ) = l(y, w) + λT f (y, w)

and to the maximum principle for hybrid systems, e.g., [35]. The basic idea of the
Competing Hamiltonian approach to mixed-integer optimal control, which was first
described in [5,6], can therefore be seen as a special case of our approach.

Since the process by which this density function is derived is very close to the
adjoint differentiation scheme commonly used to extract derivatives from numerical
integrators, it is possible to extract the density function from off-the-shelf integrators.
We use this approach in Sect. 4.2 to extract the density function from the CVODES
solver of the SUNDIALS suite.

3.3.2 PDE-constrained optimization

Next, we consider the case where Problem (1) is derived from a PDE constrained
optimization problem of the form

min
w,y

j(y, w)

s.t. f (y, w) = 0Z
w(x) ∈ {0, 1} for a.a. x ∈ Ω

w ∈ L1(Ω)

y ∈ X

where Ω ⊆ R
n denotes a bounded domain, X and Z are suitably chosen Banach

spaces, j : X × L1(Ω) → R, and f : X × L1(Ω) → Z . We make additional assump-
tions to ensure the existence and uniqueness of solutions.

Assumption 3 Let λ : Σ → R denote the Lebesgue measure. We assume that

1. j : X × L1(Ω) → R is continuously Fréchet differentiable,
2. f : X × L1(Ω) → Z is continuously Fréchet differentiable,
3. fy(y, w) has a bounded inverse for all (y, w) ∈ X × L1(Ω),
4. for every w ∈ L1(Ω), there exists yw ∈ X such that f (yw,w) = 0.

We further assume that there is a sequence of partitions ({T (i)
1 , . . . , T (i)

Ni
})i∈N such that

5. for i > 1, j ∈ [Ni ], there exists j ′ ∈ [Ni−1] with T (i)
j ⊆ T (i−1)

j ′ ,

6. λ(T (i)
j ) > 0 for all i ∈ N, j ∈ [Ni ],
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7. max{λ(T (i)
j ) | j ∈ [Ni ]} i→∞−−−→ 0,

8. for a.a. x ∈ Ω , there exist ji (x) ∈ [Ni ] for all i ∈ N such that x ∈ T (i)
ji (x)

,

9. there exists C > 0 such that for every i ∈ N, j ∈ [Ni ], there is a ball B(i)
j with

T (i)
j ⊆ B(i)

j and λ(T (i)
j ) ≥ Cλ(B(i)

j ).

While Assumptions 3.5 to 3.9 are somewhat similar to the assumptions on “order-
conserving domain dissections” stated in [26], we note that they differ in that they do
not require the partition sequence to be order-conserving. Furthermore, [26] has no
counterpart to Assumption 3.6, which we require because we divide by the measure
of the cells. Therefore, these sets of assumptions should not be confused.

Under Assumptions 3.1 to 3.4, the implicit function theorem [20, Thm. 1.41] shows
that the mapping w �→ yw is continuously Fréchet differentiable with

Dw yw = − f −1
y (yw,w) fw(yw,w).

Our objective functional in this case is the reduced objective

J (w) := j(yw,w) ∀w ∈ L1(Ω)

which is continuously Fréchet differentiable according to the chain rule and satisfies

DJ (w) = − jy(yw,w) f −1
y (yw,w) fw(yw,w) + jw(yw,w).

We note that DJ (w) is a bounded linear form in L1(Ω). Since L∞(Ω) is the dual
space of L1(Ω), there exists a function gw ∈ L∞(Ω) such that

DJ (w)d =
∫

Ω

gwd dx .

The vector measure ν is once more given by ν(U ) := χU and the underlying
measure space is the Lebesgue σ -algebra on Ω with the Lebesgue measure or an
equivalent measure with weight function m ∈ L∞(Ω). As was the case for the ODE-
constrained case in Sect. 3.3.1, the gradient density measure is then given by

ϕU (D) = DJ (χU )(χD\U − χD∩U )

=
∫

Ω

gw(χD\U − χD∩U ) dx

=
∫
D
gw(1 − 2χU ) dx

=
∫
D

1 − 2χU

m
gw dμ
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Accordingly, the gradient density function gU for a given control set U ∈ Σ is given
by

gU (x) = 1 − 2χU (x)

m(x)
gw(x) ∀x ∈ Ω.

To approximate the value of gw, we use the fact that Ω is bounded and therefore
L∞(Ω) ⊂ L1(Ω). We consider the sequence of mesh partitions described in Assump-
tion 3. The family of all mesh cells T (i)

j contracts to nullsets according to Assumption
3.7, can be used to approximate almost all points in Ω according to Assumption 3.8,
and is of bounded eccentricity according to Assumption 3.9. We can therefore apply
the Lebesgue differentiation theorem to obtain

gw(x) = lim
i→∞

1

λ(T (i)
ji (x)

)

∫
T (i)
ji (x)

gw(x) dx

almost everywhere. If we assume that for a given mesh index i , control functions on
the i-th mesh are given by

w(x) =
Ni∑
j=1

w
(i)
j χ

T (i)
j

(x),

then the derivative of the objective function with respect to the degree of freedomw
(i)
j

is equal to

d

dw(i)
j

J (w) =
∫
T (i)
j

gw(x) dx .

Therefore, if we start with a sufficiently fine mesh to express the desired control
function w and maintain the same w for all higher mesh indices, which we can do
because of Assumption 3.5, then we find that

gw(x) = lim
i→∞

d
dw(i)

ji (x)

J (w)

λ(T (i)
ji (x)

)

which implies that

gU (x) = 1 − 2χU (x)

m(x)
· lim
i→∞

d
dw(i)

ji (x)

J (w)

λ(T (i)
ji (x)

)
for a.a. x ∈ Ω.

Thus, the density function gU can be approximated using the gradients of the objective
function J with respect to the degrees of freedom (DOFs) of a piecewise constant
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control function on successively refined meshes. We note that this does not take into
account discretization errors in function evaluation. Controlling such errors usually
requires considerationsmuchmore specific to the discretizationor problem inquestion.

We also note that the application of the bounded inverse f −1
y (yw,w) usually

requires the solution of a PDE that involves the adjoint of a linearization of the origi-
nal differential operator. This method of deriving the gradient is therefore sometimes
known as the adjoint method.

We note that the curvature condition of Lemma 3 can be translated into a Lipschitz
condition on the derivatives of f and j in this setting.

3.4 Algorithm

In trust-region terminology, we determine our step using the “affine linear” model
function

φU : D �→ J (U ) + J ′(U )(D).

Accordingly, the trust-region subproblem in a given point U ∈ Σ is

min
D∈Σ

φU (D) s.t. μ(D) ≤ Δ,

where Δ > 0 is the trust-region radius. Given that U ∈ Σ is fixed for each instance
of the trust-region subproblem, the term J (U ) can be omitted and we can rewrite the
subproblem as

min
D∈Σ

∫
D
gU dμ s.t. μ(D) ≤ Δ. (8)

The proof of Lemma 4 suggests a method by which the subproblem can be solved.
Because gU is a μ-measurable function, its sublevel and level sets are measurable,
and we can select D ∈ Σ to encompass exactly those x ∈ Ω where gU (x) assumes
its smallest values. In the proof, we used the reference level

η∗ := inf
{
η ∈ R

∣∣ μ(LgU≤η) > Δ
}
.

In practice, we need to approximate η∗ and gU . We state the solution procedure for
(8) in a way that allows the use of an approximation of gU . On discrete meshes, it may
also not be possible to choose D with the exact desired measure. Therefore, we allow
for some deviation. The resulting algorithm is Procedure 1.

Line 15 in Procedure 1 selects a subset D2 ⊆ Lg≤η2\Lg≤η1 with a given size
range. The existence of D2 is guaranteed due to the atomlessness of the underlying
measure space. The set D2 is used to ensure that the resulting step is close enough to
the trust-region radius Δ to guarantee sufficient descent.

The way in which D2 is chosen is arbitrary and can be designed in a way that
is suitable and convenient for the given problem implementation. Methods can range

123



M. Hahn et al.

Procedure 1: FindStep(g, Δ, δ): Find nearly optimal step

Input: (Ω, Σ,μ) atomless, g ∈ L1(Ω, μ), Δ ∈ (0, μ(Ω)], δ > 0.
Output: D ∈ Σ with μ(D) ≤ Δ and

∫
D g dμ ≤ ∫

D′ g dμ + δΔ for all D′ ∈ Σ with μ(D′) ≤ Δ.

1 if μ
(Lg<0

) ≤ Δ then
2 return Lg<0 ; // Accept full step if possible

3 else
4 (η1, η2) ← (−δ, 0);
5 while μ

(Lg≤η1

)
> Δ do

6 (η1, η2) ← (2η1, η1) ; // Establish bisection range

7 while η2 − η1 > δ
2 do

// Narrow infimum range through bisection

8 η ← 1
2 (η1 + η2);

9 if μ
(Lg≤η

) ≤ Δ then
10 η1 ← η;
11 else
12 η2 ← η;

13 D1 ← Lg≤η1 ;
14 if η2 < 0 then

15 Find Σ � D2 ⊆ Lg≤η2 \ D1 with μ(D2) + μ(D1) ∈
[
Δ ·

(
1 + δ

2η2

)
,Δ

]
;

16 else
17 D2 ← ∅;
18 return D1 ∪ D2

from selecting mesh cells in a pre-defined or random order to approximating knapsack
solutions to achieve as large a step as possible. Given that the gradient function value
is guaranteed to be between η1 and η2 at almost all points in D2, the approximate
optimality of the step is guaranteed for all selections of D2.

A range of sizes is given to accommodate problem implementations where the
boundaries of the step D need to run along mesh boundaries that cannot be moved
arbitrarily. In such cases, mesh refinement may become necessary if it is impossible
to find a set D2 of suitable size at the current mesh resolution. If the gradient den-
sity function is sufficiently well-approximated and is assumed to remain stable with
respect to local mesh refinement, then the main goal of mesh refinement is to achieve
sufficient mesh granularity in the candidate set Lg≤η2\Lg≤η1 from which D2 is cho-
sen. Therefore, it is sufficient to refine all cells in this set until sufficient granularity is
achieved to select D2 within the given measure margins.

If the gradient function does change noticeably due to the refinement, then the can-
didate set may change on subsequent iterations. This is highly undesirable. However,
the refinement loop will necessarily terminate as soon as every cell in the candidate
set has a measure of less than δΔ

−2η2
where −η2 is bounded from above due to the fact

that

η2 · Δ ≥
∫

Ω

min{0, g}dμ.
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Therefore, this simplistic mesh refinement scheme will, in the worst case, terminate
as soon as the entire mesh is refined to sufficient granularity.

The resulting step cannot be assumed to be optimal. As stated in Procedure 1,
however, one can automatically determine the required levels of accuracy in order
to obtain a solution that has arbitrarily small optimality gap. This claim is proven in
Lemma 9.

Lemma 9 Let (Ω,Σ,μ) be an atomless measure space, let g ∈ L1(Σ,μ), let 0 <

Δ ≤ μ(Ω), let δ > 0, and let D be the set returned by Procedure 1. Then D is
μ-measurable, satisfies μ(D) ≤ Δ, and is nearly a solution of Eq. (8) in the sense
that

∫
D
g dμ ≤

∫
D′

g dμ + δΔ ∀D′ ∈ Σ : μ(D′) ≤ Δ. (9)

Proof First, we consider the case that μ
(Lg<0

) ≤ Δ. In this case, Procedure 1 returns
in Line 2 with D = Lg<0. Certainly, D ∈ Σ and μ(D) ≤ Δ. For every D′ ∈ Σ , we
have

∫
D′

g dμ =
∫
D
g dμ −

∫
D\D′

g︸︷︷︸
<0

dμ +
∫
D′\D

g︸︷︷︸
≥0

dμ ≥
∫
D
g dμ.

Next, we consider the case μ
(Lg<0

)
> Δ. In Lines 5 and 6, we find bounds

η1 < η2 ≤ 0 such that μ
(Lg≤η1

) ≤ Δ and μ
(Lg≤η2

)
> Δ. Such η1, η2 exist

because μ
(Lg<0

)
> Δ and μ

(Lg≤η

) → 0 for η → −∞, which follows from the
μ-integrability of g. The bisection loop in Lines 7 to 12 maintains these properties
while ensuring that η2 − η1 < δ

2 .
We know that μ(D1) = μ(Lg≤η1) ≤ Δ. For η2 = 0, we have μ(D2) = 0.

Otherwise, the existence of a measurable subset D2 ⊆ Lg≤η2\D1 with

μ(D2) ∈
[
Δ − μ(D1) + δΔ

2η2
,Δ − μ(D1)

]

is guaranteed by the atomlessness of (Ω,Σ,μ). In either case, D2 is guaranteed to
be disjoint from D1. Let D = D1 ∪ D2 ∈ Σ for the selected set D2. We have

μ(D) = μ(D1) + μ(D2)

{= μ(D1) if η2 = 0

∈
[
Δ ·

(
1 + δ

2η2

)
,Δ

]
if η2 < 0,

and therefore μ(D) ≤ Δ. For every D′ ∈ Σ with μ(D′) ≤ Δ, we have

∫
D
g dμ −

∫
D′

g dμ =
∫
D\D′

g︸︷︷︸
≤η2

dμ −
∫
D′\D

g︸︷︷︸
>η1

dμ

≤ η2 · μ(D\D′) − η1 · μ(D′\D)
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Algorithm 2: Steepest descent in finite atomless measure spaces
Input: (Ω, Σ,μ) finite and atomless, U0 ∈ Σ , Δmax ∈ (0, μ(Ω)), Δ0 ∈ (0, Δmax), ε > 0,

0 < σ1 < σ2 ≤ 1, ω ∈
(
0,min

{
1, 3−3σ1

3−2σ1

})
Output: Ui ∈ Σ with

∫
Ω min{0, gUi } dμ > −ε

1 i ← 0;
2 loop
3 Find g̃i ∈ L1(Ω, μ) with

∫
Ω |g̃i − gUi | dμ <

ωεΔi
3μ(Ω)

;

4 if
∫
Ω min{0, g̃i } dμ > − (

1 − ω
3
)
ε then // Test for stationarity

5 stop due to stationarity;
6 else
7 Di ← FindStep(g̃i , Δi ,

ωε
3μ(Ω)

) ; // Invoke Procedure 1

8 ρi ← J (Ui�Di )−J (Ui )∫
Di

g̃i dμ
; // Assess prediction quality

9 if ρi ≥ σ1 then
10 Ui+1 ← Ui � Di ;
11 if ρi > σ2 then
12 Δi+1 ← min{Δmax, 2Δi } ; // Increase trust region
13 else
14 Δi+1 ← Δi ;

15 else

16 (Ui+1, Δi+1) ←
(
Ui ,

Δi
2

)
; // Decrease trust region

17 i ← i + 1;

= η2 · (μ(D) − μ(D ∩ D′)
) − η1 · (μ(D′) − μ(D ∩ D′)

)
= η2 · μ(D)︸ ︷︷ ︸

≤η2·Δ+ δ
2 ·Δ

− η1 · μ(D′)︸ ︷︷ ︸
≥η1·Δ

+ (η1 − η2) · μ(D ∩ D′)︸ ︷︷ ︸
≤0

≤ (η2 − η1)︸ ︷︷ ︸
≤δ/2

·Δ + δ

2
· Δ

≤ δΔ,

which proves (9). �

Using Procedure 1, we can state themain trust region loop in Algorithm 2.We allow
for the use of an approximation g̃ ∈ L1(Ω,μ) of the gradient density gU ∈ L1(Ω,μ),
assuming that it can be made arbitrarily accurate according to the L1 norm.

Theorem 3 Let Ω , Σ , Y , J , μ, ν, J , and C > 0 satisfy Assumptions 1.1 to 1.7.
Furthermore let U0 ∈ Σ , Δmax ∈ (0, μ(Ω)), Δ0 ∈ (0,Δmax), ε > 0, 0 < σ1 < σ2 ≤
1, and ω ∈ (0, 1) with ω < 3−3σ1

3−2σ1
. Let J (Σ) be bounded from below, and let L > 0

be a constant such that

∥∥J ′(x) + J ′(y)
∥∥
Y ∗ ≤ L · ‖x − y‖Y ∀x, y ∈ conv

(
ν(Σ)

)
. (10)
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Then Algorithm 2 terminates in finite time and yields i ∈ N0 and Ui ∈ Σ such that
J (Ui ) ≤ J (U0) and

∫
Ω

min{0, gUi } dμ > −ε.

Proof For given i ∈ N0, let Si := LgUi <0 ⊆ Ω and S̃i := Lg̃i<0 ⊆ Ω . If the
stationarity test in Line 4 succeeds, then

∫
Ω

min{gUi , 0} dμ

=
∫

Ω

min{g̃i , 0} dμ +
∫
S̃i∪Si

(
min{gUi , 0} − min{g̃i , 0}

)
︸ ︷︷ ︸

≥−|gUi −g̃i |

dμ

> −
(
1 − ω

3

)
ε − ω

3

Δi

μ(Ω)
ε

≥ −ε + ω

3
ε − ω

3
ε.

We note that the initial choice of Δ0 ≤ Δmax ≤ μ(Ω) and the fact that Δi is never
increased above Δmax guarantee that

Δi
μ(Ω)

≤ 1 for all i . If the test fails, then

∫
Ω

min{gUi , 0} dμ ≤ −
(
1 − ω

3

)
ε + ω

3

Δi

μ(Ω)
ε

≤ −ε + 2ω

3
ε.

Therefore, the stationarity test will succeed at some point as the solution becomes
stationary, but it will succeed only for solutions that satisfy the tolerance ε. According
to Lemma 9, Di is such that for every D′ ∈ Σ with μ(D′) ≤ Δi ,

∫
Di

g̃i dμ ≤
∫
D′

g̃i dμ + ωε

3

Δi

μ(Ω)
.

According to Lemma 4, there exists a D∗ ∈ Σ with μ(D∗) ≤ Δi and

∫
D∗

min{g̃i , 0} dμ ≤ Δi

μ(Ω)

∫
Ω

min{g̃i , 0} dμ.

With D′ := D∗ ∩ S̃i , we have

∫
Di

g̃i dμ ≤
∫
D′

g̃i dμ + ωε

3

Δi

μ(Ω)

≤ Δi

μ(Ω)

∫
Ω

min{g̃i , 0} dμ + ωε

3

Δi

μ(Ω)
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≤ − Δi

μ(Ω)

3 − 2ω

3
ε < 0. (11)

For every accepted step, we therefore have

J (Ui+1) − J (Ui ) ≤ σ1

∫
Di

g̃i dμ ≤ − Δi

μ(Ω)

3 − 2ω

3
εσ1 < 0.

Next, we prove that there exists Δ̄ > 0 such that step Di is accepted for all i ∈ Nwith
Δi ≤ Δ̄. From (10), we can invoke Lemma 3 to show that

∣∣∣J (Ui+1) − J (Ui ) −
∫
Di

gUi dμ
∣∣∣≤ LC2

2
μ(Di )

2 ≤ LC2Δ2
i

2
(12)

for all i in which the stationarity test does not detect stationarity. For these iterations,
we can then conclude that

ρi = J (Ui+1) − J (Ui )∫
Di

g̃i dμ

︸ ︷︷ ︸
<0

(12)≥
∫
Di

g̃i dμ + ωεΔi
3μ(Ω)

+ LC2

2 · Δ2
i∫

Di
g̃i dμ

(11)≥ 1 −
ωεΔi
3μ(Ω)

+ LC2

2 · Δ2
i

Δi (3−2ω)ε
3μ(Ω)

≥ 1 − ω

3 − 2ω
− 3LC2μ(Ω)

2ε(3 − 2ω)
· Δi .

Note that 1− ω
3−2ω > σ1 if and only if ω < 3−3σ1

3−2σ1
. Thus, we find that ρi ≥ σ1 for all

i with

Δi ≤ Δ̄ := 1 − ω
3−2ω − σ1

3LC2μ(Ω)
2ε(3−2ω)

= 2ε · (3 − 3ω − (3 − 2ω)σ1
)

3LC2μ(Ω)
> 0.

This implies that there is never an endless loop of rejected steps. In addition, because

Δi is only halved upon rejection, it follows that Δi ≥ min{Δ̄,Δ0}
2 for all i . When

substituted into our prior estimate of the decrease per accepted step, this yields

J (Ui+1) − J (Ui ) ≤ −min{Δ̄,Δ0} · (3 − 2ω)εσ1

6ωμ(Ω)
< 0.

The fact that J is bounded from below therefore implies that the number of accepted
steps is finite. Because there is not an endless loop of rejected steps, the algorithmmust
terminate. The only manner in which it can do so is if the stationarity test succeeds
after a finite number of steps. �
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4 Experiments

In this section, we present three test problems. The first two problems are optimal con-
trol problems and are intended to show the viability of our method for optimal control.
The first problem, presented in Sect. 4.1, is a mesh-dependent PDE-constrained source
inversion problem for the Poisson equations in two dimensions. In contrast, the second
test problem, presented in Sect. 4.2, is constrained by the Lotka–Volterra ODE system.

The third test problem, presented in Sect. 4.3, is a topology optimization problem
based on the linearized elasticity equations and is inspired by [4].

4.1 Source inversion for the Poisson equation

Our first test problem is a source inversion problem using a weak form of the Poisson
equation with Dirichlet boundary conditions. It has the form

min
y,w

‖y − ȳ‖2L2(Ω)
+ α · ‖w‖L1(Ω)

s.t. a(y, v) = L(w ∗ k, v) ∀v ∈ H1
0 (Ω)

y ∈ H1
0 (Ω)

w ∈ L1(Ω, {0, 1}) (13)

where Ω := [0, 1]2, H1
0 (Ω) denotes the Banach space of functions in L2(Ω) that

have one weak derivative in L2(Ω) and whose trace disappears, ȳ ∈ H1
0 (Ω) denotes

a constant reference function,

a(y, v) :=
∫

Ω

〈∇ y,∇v〉 dx,

L( f , v) :=
∫

Ω

f v dx,

and w ∗ k denotes the convolution

(w ∗ k)(x) :=
∫

Ω

w(y)k(x − y) dy ∀x ∈ Ω

of w with a fixed smoothing kernel k ∈ L2(R2) ∩ L∞(R2) given by

k(x) :=
{

1
πσ 2(1−τ)

· exp
(
−‖x‖2

σ 2

)
if exp

(
−‖x‖2

σ 2

)
≥ τ,

0 otherwise.

where σ controls the severity of the blurring effect, τ > 0 is a threshold value. We
note that

∫
R2 k(x) dx = 1. For this test, we choose

σ := 0.1, τ := 0.01, α := 10−5
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as problem parameters. The cutoff threshold τ ensures a degree of sparsity in the
mollification operator w �→ w ∗ k.

In order to make the problem accessible to our method, we follow the approach
laid out in Sect. 3.3.2 with X = H1

0 (Ω), Z = H1
0 (Ω)∗ and

j(y, w) := ‖y − ȳ‖2L2 dx + α · ‖ w︸︷︷︸
≥0

‖L1 = ‖y − ȳ‖2L2 + α ·
∫

Ω

w dx,

f (y, w) := (v �→ a(y, v) − L(w ∗ k, v)) .

It is easy to verify that j is continuously Fréchet differentiable in y andw. Furthermore,
it is well-known that the bilinear form a satisfies the conditions of the Lax-Milgram
lemma and is strongly coercitive. Therefore, f is continuously Fréchet differentiable
in y and the derivative fy has a bounded inverse. Therefore, we only have to show
that the linear operator w �→ L(w ∗ k, v) = 〈w ∗ k, v〉L2 is bounded. This is true
according to Young’s convolution inequality which states that

‖w ∗ k‖L2 ≤ ‖w‖L1‖k‖L2 .

In conjunction with the Cauchy–Schwartz inequality, this shows the boundedness
of w �→ L(w ∗ k, v). We note that the Lax-Milgram lemma also states that there
always exists a solution of the weak equation, meaning that the problem itself satisfies
Assumption 3. As stated in Sect. 3.3.2, we then choose the Lebesgue measure as μ,
ν(U ) := χU , Y = L1(Ω), and J (w) := j(yw,w).

We discretize the problem using a finite element method on a triangle mesh. To
generate the initial mesh we subdivide the domain into 32 equally large slices along
both axes, which yields 1024 equally sized squares. Each square is then subdivided
into four triangles along both of its diagonals, yielding a triangle mesh with 4096 cells,
each of which has an area of 1

4096 and is contained within a ball of radius 1
64 , centered

on the middle of its longest side. If we denote each cell of this initial mesh by T (1)
j

and the ball by B(1)
j , then we have

1

π
μ(B(1)

j ) = π

π · 642 = 1

4096
= μ(T (1)

j ).

For local mesh refinement, we use the two-dimensional skeleton-based refinement
algorithm described by Plaza and Carey in [29]. Because our initial triangles are
isosceles with a height that is exactly half of the length of its base, the triangles
resulting from this refinement will always have the same eccentricity bound, meaning
that this form of refinement satisfies Assumption 3.9 irrespective of the order in which
triangles are refined.

To numerically solve the PDE in (13), we use a finite element method with con-
tinuous first-order Lagrange elements. The cellwise averages of the gradient density
function are determined from the gradient of the objective with respect to the cell
values of a piecewise constant function as described in Sect. 3.3.2.
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To determine the set D2 in Procedure 1, we approximately solve a subset sum
problem using a standard fully polynomial approximation scheme using dynamic
programming that is described, e.g., in [21]. If we cannot reach a solution within
the size margins, we refine all triangles that are contained within the candidate set
Lg̃i≤η2\Lg̃i≤η1 and resolve the PDE on the refined mesh. We had briefly addressed
the validity of this approach in Sect. 3.

To determine the reference state ȳ ∈ H1
0 (Ω), we approximately solve the problem

a(y, v) = L( f , v) ∀v ∈ H1
0 (Ω)

with

f (x) := 2

π
· arctan

(
N∑
i=1

βi · exp
(‖x − x̄i‖2

c2

))

where N = 12 and

β1 := 1
3 , x̄1 := ( 1

8 ,
1
8

)
, β2 := 1

3 , x̄2 := ( 1
8 ,

7
8

)
,

β3 := 2
3 , x̄3 := ( 2

8 ,
4
8

)
, β4 := 2

3 , x̄4 := ( 3
8 ,

3
8

)
,

β5 := 3
4 , x̄5 :=

(
3
8 ,

5
8

)
, β6 := 3

4 , x̄6 := ( 4
8 ,

2
8

)
,

β7 := 3
4 , x̄7 := ( 4

8 ,
6
8

)
, β8 := 3

4 , x̄8 :=
(
5
8 ,

3
8

)
,

β9 := 5
8 , x̄9 :=

(
5
8 ,

5
8

)
, β10 := 7

8 , x̄10 := ( 6
8 ,

4
8

)
,

β11 := 5
8 , x̄11 := ( 7

8 ,
1
8

)
, β12 := 7

8 , x̄12 := ( 7
8 ,

7
8

)
.

This referenceproblem is resolved every time themesh is refined.Weuse the arctangent
to ensure that the pointwise value of the resulting right-hand side function remains
within the interval [0, 1] and is therefore similar in magnitude to the convolutions used
in the inversion problem.

For the remaining algorithmic parameters of Algorithm 2, we choose

σ1 := 0.3, σ2 := 0.7, ω := 0.01, ε := 10−8,

U0 := ∅, Δ0 := μ(Ω), Δmax := μ(Ω).

The finite element discretization of the PDE is performed by using FEniCS 2019.1.01

[1,23–25]. Local refinement is performed by using FEniCS’s built-in refine func-
tion, which uses the method described in [29].

Although the algorithm is technically parallelizable if the convolution operator is
sufficiently sparse, we execute it in a single thread and record the CPU times needed
for five components of the solver: initial setup (init), PDE solves (solve), step
determination (step), mesh refinement (refine), and state recording (record).

We note that the single-threading implementation of the trust region loop does not
preclude the possibility of multithreading being used by libraries such as FEniCS.

1 Available from https://www.fenicsproject.org under GNU LGPL v3
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Table 1 CPU times for different solver components

total init solve step refine record

user 167.24 2.01 12.81 4.64 142.70 5.01

system 0.52 0.01 0.03 0.00 0.27 0.21

absolute 167.79 2.01 12.86 4.69 142.94 5.20

relative 1.000 0.012 0.077 0.028 0.851 0.031

Fig. 2 Objective function value J (Ui ) and wall time per iteration in seconds as well as semi-logarithmic
plots of step length μ(Di ) and instationarity

∫
Ω

∣∣min{0, gUi }
∣∣ dμ for the source inversion problem

The overall trust-region loop terminates after 187 iterations with an objective function
value of 1.309 · 10−6 after having reached the optimality threshold. On a test machine
with an Intel i5-10210U Quad-Core CPU, this takes 167.79 CPU seconds.

The precise breakdown of the CPU times used by components of the solver is
displayed in Table 1. Due to measurement and rounding errors, these number do not
always add up to the correct totals. Figure 2 shows the progression of the objective
function value, runtime per iteration, instationarity, and step size over the iterations of
the trust-region loop. A selection of iterates is shown in Fig. 3.

Aswe expect with a first-ordermethod, we see a clear pattern of diminishing returns
in the tail end of the iteration. Step lengths and instationarity level out after a certain
point. Meanwhile, the time per iteration increases over time, especially during those
iterations requiring mesh refinement. Mesh refinement, which includes recalculation
of the reference solution and reassembly of the convolution operator, accounts for 87%
of the total runtime of the algorithm. By contrast, the step-finding procedure accounts
for approximately 2.8% of the total runtime.
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Fig. 3 Plots of Ui and |min{0, g̃i }| for i ∈ {0, 1, 3, 187} for the source inversion problem

While mesh refinement is a necessary component of our method, we can interpret
this as an indication that our method would perform even better on a problem where
mesh refinement can be implemented more efficiently.
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4.2 Lotka–Volterra fishing problem

The Lotka–Volterra fishing problem is a test problem from ODE-constrained binary
optimal control. It is described in [30,32] and is based on the classical Lotka–Volterra
predator–prey system with one predator and one prey species. The goal is to minimize
the deviation of predator and prey population from an equilibrium state according to
the L2 norm. The optimization problem has the form

min
y,w

∫ t f

0
l
(
y(t)

)
dt (14a)

s.t. ẏ(t) = f
(
y(t), w(t)

) ∀t ∈ (0, t f ), (14b)

y(0) = (y0,1, y0,2)
T , (14c)

w ∈ L1([0, t f ], {0, 1}), (14d)

where the right hand side of the ODE system (14b) is given by

f (y, w) :=
(

y1 − y1 · y2 − c1 · w · y1
−y2 + y1 · y2 − c2 · w · y2

)

and the integrand of the Lagrange term is given by

l(y) := ∥∥y − (1, 1)T
∥∥2.

For the purposes of this test, we use the parameter values set in [32]:

t f := 12, c1 := 0.4, c2 := 0.2, y0,1 := 0.5, y0,2 := 0.7.

The optimal solution of (14) with controlsw(t) ∈ [0, 1] is known to have a singular arc
whose behavior cannot be replicated exactly by binary controls. The binary solution
therefore always exhibits chattering behavior.

In order to apply our method to this problem, we follow the approach laid out in
Sect. 3.3.1wherewe had used compatible notation.Given that f and l are polynomials,
both are twice differentiable. As functions of w, they are also affine linear. In order to
identify a suitable set D such that f is uniformly Lipschitz continuous with respect
to y, we must first establish an a priori bound on the component values of f for
[0, 1]-valued controls. We first consider that

f1(y, w) = y1 · (1 − y2 − c1w) ≤ y1.

Given that y0,1 > 0, we have 0 < y1(t) ≤ y0,1 · et . We also have

f2(y, w) = y2 · (−1 + y1 − c2w) ≤ y2 · y1 ≤ y2 · y0,1 · et f
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which implies 0 < y2(t) ≤ y0,2et f ·y0,1·e
t f
. Thus, we can restrict the function f to the

bounded set

D := (−1, y0,1 · et f + 1) × (−1, y0,2 · et f ·y0,1·et f + 1).

Since the closure of D is compact, f is uniformly Lipschitz continuous in y. We note
that this choice also satisfies Assumption 2.5 with ε = 1.

We observe that the objective function is an integral over time. Therefore, control
changes will likely have greater impact if they occur early in the domain [0, t f ]. This
is not always the case. If the system is asymptotically stable, then controls can have
the same impact regardless of when they are made. The Lotka–Volterra system, absent
any control input, exhibits periodic behavior. It is therefore reasonable to assume that
the impact of a a control change is proportional to the amount of time remaining to
the end of the time horizon.

To counteract this effect, wemake use of the weight functionm that we had allowed
for in Sect. 3.3.2. Bearing in mind that m may not assume the value 0, we choose

m(t) := 1 + (t f − t) ∀t ∈ [0, t f ].

Accordingly, the measure μ is given by

μ(A) :=
∫
A
m(t) dt ∀A ∈ Σ

where Σ is still the Lebesgue σ -algebra on [0, t f ]. The vector measure ν is once
more given by ν(U ) := χU , and Y = L1([0, t f ]). In these circumstances, Sect. 3.3.1
states that the gradient density function gU in U ∈ Σ can be derived from the costate
function λχU via

gU (t) = 1 − 2χU (t)

m(t)

(
lw(yχU (t), χU (t)) + λT

χU
(t) fw(yχU (t), χU (t))

)
.

WeuseCVODES from theSUNDIALSsuite2 [19] to solve the initial value problem.
CVODES supports adjoint sensitivity analysis and allows us to record the value of
gU (t) using callbacks. This means that we are not bound by a fixed control grid and
can always use the grid chosen by the integrator. We note that some care must be taken
to accurately record the sign flips of gU that occur at the boundary of U .

To determine the set D2 in Procedure 1, we select time points from the candidate
set in decreasing order. Because there is no fixed time grid, the trust region radius is
always matched exactly.

The algorithmic parameters chosen for this test are

σ1 := 0.2, σ2 := 0.7, ω := 10−8, ε := 5 · 10−4,

U0 := ∅, Δ0 := 3.0, Δmax := μ(Ω).

2 Available from https://computing.llnl.gov/projects/sundials under a BSD license
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Fig. 4 Plots of objective function value J (Ui ) and wall time per iteration, as well as semilogarithmic plots
of instationarity

∫
Ω

∣∣min{0, gUi }
∣∣ dμ and step size μ(Di ) for the Lotka–Volterra problem

CVODES is configured to use the Adams–Moulton method with relative and abso-
lute tolerances fixed to 10−10 for both the forward and adjoint runs. In total, our
algorithm requires 90 iterations of the outer trust-region loop, which are performed in
16.72 s (wall time). The final objective function value is 1.34424. In Sect. 4.1, mesh
refinement contributes significantly to the algorithm’s runtime. In this section, mesh
refinement is implicitly performed by the adaptive integrator and does not require
reassembly of large matrices. Therefore, we omit a detailed breakdown of the CPU
times for this test.

Figure 4 depicts the development of the objective function value, instationarity,
step size, and wall time per iteration over the course of the trust-region iteration. Plots
of the ODE solution and gradient density function for several iterations are given in
Fig. 5.

Once more, we observe that the initial improvements are substantial and level
out toward the end of the iteration. However, the fast overall execution time may
be on par with relaxation solvers used in first-discretize-then-optimize methods and
demonstrates that Algorithm 2 is useful in an ODE setting, where it can benefit from
adaptive solvers. As we note in our conclusions, this is one of the advantages our
algorithm has over conventional enumerative MINLP methods.

4.3 Topology optimization

In this section, we discuss a topology optimization problem inspired by the problem
discussed in Chapter 1 of [4]. We preface this by emphasizing that our method is not
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Fig. 5 ODE solutions and gradient density functions for initial guess, first iterate, and final iterate of the
Lotka–Volterra fishing problem; dashed lines show cutoff level for step determination

designed to deal with many of the pitfalls of such problems and only yields good
results with carefully calibrated parameters.

In this test, we consider the domain Ω := [0, 1] × [0, 0.5]. Let

ΓD := {0} × [0, 0.5] ⊆ ∂Ω,

ΓN := {1} × [0.2, 0.3] ⊆ ∂Ω.

The goal is to distribute an isotropic material inΩ in a way that minimizes compliance
if the material is fixed via a Dirichlet boundary condition on ΓD and carries both its
own weight and an external weight attached via a Neumann boundary condition on
ΓN . The structure of the domain is illustrated in Fig. 6.

Letw : Ω → {0, 1} denote the control function which specifies whether material is
placed at a given point, and let y : Ω → R

2 denote the displacement function which
assigns to each point in Ω its displacement in equilibrium. The equations relating w

with y are not uniquely solvable ifw = 0 implies that absolutely nomaterial is placed.
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Fig. 6 Illustration of the domain
of the topology optimization
problem. ΓD and ΓN denote the
fixed and traction boundaries,
respectively. The grey set serves
as an example of the control set
U

Ω

ΓD

ΓN

Therefore, we select a small constant ε > 0 and define

p(w) := ε + (1 − ε) · w,

e(y) := 1

2

(
∇ y + ∇ yT

)
,

σ (y) := �1 · (∇ · y) · I + 2�2 · e(y) ∈ R
2×2.

The constants �1, �2 are Lamé’s elasticity parameters and aremore commonly referred
to as λ and μ. We choose these symbols to avoid confusion. Lamé’s parameters are
properties of the material. We further introduce constant parameters ρ > 0 and c > 0
that denote the density and weight-specific cost of the material. Let T > 0 be a
parameter describing the mass pulling on ΓN , and let g > 0 define the strength of
gravity. For our test, these parameters have the values

�1 := 1.25, �2 := 1.0, ρ := 1.0, ε := 10−2

c := 0.4, T := 100.0 · g, g := 0.1.

The gravitational pull on the material force is given by the force per unit volume

f (w) = (0,−gρw)T .

The function y is then the solution of the boundary value problem

−∇ · (p(w) · σ(y)) = f (w) in Ω,

y = 0 on ΓD,

(p(w) · σ(y)) · n = (0,−T )T on ΓN ,

where n denotes the outer unit normal of Ω .
The weak formulation of this boundary value problem draws y from the solution

space

V := {y ∈ H1(Ω) | y|ΓD = 0}
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where ·|ΓD denotes the trace on ΓD . The weak formulation of the boundary value
problem then takes the form

a(y, v;w) = L(v,w) ∀v ∈ V ∗ (15)

where

a(y, v;w) :=
∫

Ω

〈p(w) · σ(y), e(v)〉 dx,

L(v;w) :=
∫

Ω

〈 f (w), v〉 dx +
∫

ΓN

〈
(0,−T )T , v

〉
ds.

Since p(w) ≥ ε > 0 for all w ∈ [0, 1], the bilinear form (y, v) �→ a(y, v;w) is both
bounded and strongly elliptic for all w ∈ L1(Ω) ∩ L∞(Ω) which guarantees that
for every w ∈ L1(Ω) with w(x) ∈ [0, 1] almost everywhere, there exists a unique
function yw ∈ V that satisfies (15).

The objective function is a weighted sum ofmaterial cost and compliance. As stated
in [4], it is more common to make either cost or compliance the objective and limit
the other using a constraint. However, our method cannot accommodate constraints
yet. Therefore, we choose a weighted sum. The objective functional is

j(y, w) :=
∫

Ω

cρw dx + α ·
(∫

Ω

〈 f (w), y〉 dx +
∫

ΓN

〈
(0,−T )T , yw

〉
ds

)

where the penalty parameter α is fixed to 106.
Following the approach laid out in Sect. 3.3.2, our problem has the form

min
y,w

j(y, w)

s.t. f (y, w) = 0V ∗

w(x) ∈ {0, 1} for a.a. x ∈ Ω

w ∈ L1(Ω)

y ∈ V .

with

f (y, w) := (v �→ a(y, v;w) − L(v;w)) .

Once more, the Lax-Milgram lemma shows that the Fréchet derivative fy(y, w) has a
bounded inverse. Given that both w �→ (v �→ a(y, v;w)) and w �→ (v �→ L(v;w))

are bounded linear operators with respect to the L1 norm of w, the map w �→ yw is
continuously Fréchet differentiable as a map from L1(Ω) to V . In conjunction with
the easily verifiable continuous Fréchet differentiability of j : V × L1(Ω) → R, this
means that the problem satisfies Assumption 3.
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Fig. 7 Objective function value, time per iteration, instationarity, and prediction quality ρi for the topology
optimization problem

Once more, we choose J (w) := j(yw,w), ν(U ) := χU , and the unweighted
Lebesgue measure as μ. Our algorithmic parameters are given by

σ1 := 0.1, σ2 := 0.9, ω := 10−3, ε := 0.05,

U0 := Ω, Δ0 := 0.015625, Δmax := 0.015625.

The strict limits on Δ avoid large steps that disconnect chunks of material from the
fixed boundary ΓD . Whenever this occurs, gradients escalate and require aggressive
error control that is beyond the scope of this discussion.

For numerical approximation, we use the same discretization and refinement
method described in Sect. 4.1. For the initialmesh generation,we subdivide the domain
into 100 equally sized slices along the x axis and 50 equally sized slices along the
y axis. We use FEniCS 2019.1.0 to implement the finite-element discretization and
approximate the density function using the objective gradient with respect to control
DOFs as described in Sect. 3.3.2.

As opposed to Sect. 4.1, we do not solve a subset sum problem to determine D2
but simply select triangles from the candidate set Lg̃i≤η2\Lg̃i≤η1 in descending order
of their area, skipping those that are too large to fit into the remaining size margin.
Refinement is triggered if the result is smaller than the lower size bound for D2.

Figure 7 shows how objective function value, time per iteration, instationarity, and
the step quality measure ρ develop over the iterations of the outer trust-region loop.
Because of numerical issues, the step length can be allowed to becomeneither too small
nor too large. We therefore tune the parameters such that the step is adjusted as little as
possible. In the given test run, the step length was never adjusted. Therefore, we show
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Fig. 8 Plots of the control set Ui for selected iterations of the topology optimization problem. The mesh
has been warped by 100 · yχUi to illustrate how the design affects compliance

the prediction quality ρi instead of the step length. This illustrates the significance of
error control because prediction quality decays drastically when numerical errors start
exceeding actual improvements in objective. The algorithm terminates due to meeting
the instationarity threshold after 26 iterations and takes a total of 484.94 s (wall time)
on a test machine with an Intel i5-10210U Quad-Core CPU. We depict control sets
from various iterations in Fig. 8.

When examining Fig. 8 carefully, we can see that the algorithm starts to “thin
out” the structure towards the end of the iteration. This is likely an artifact of the
penalty approach we have chosen. Once a good balance between compliance and cost
is found, the algorithm is incentivized to thin out the structure to save costs as long as
the greater compliance adds less to the objective. This “thinning out” of the structure
leads to escalating gradients and numerical issues and forces us to stop the iteration
at a relatively high instationarity.

Another problem are checkerboard patterns. Given that our method requires high
degrees of local mesh refinement, non-physical microstructures are nearly unavoid-
able.While such structures are intermittently observable around joints in the structure,
they do not seem to appear on a large scale. This may be due to the fact that our solu-
tions are not optimal for the given mesh, but are rather based on approximations of
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the density function gU which is derived from the underlying infinite-dimensional
problem.

Checkerboard patterns are, to a certain extent, a side effect of the selected discretiza-
tionmethod and can bemitigated by careful choice of suchmethods. For instance, there
exist approaches in the field of topology optimization, e.g., in [27], that allow level set
boundaries to pass through the interior of a cell. In conjunction with the use of higher
order finite elements, this can mitigate or avoid the issue of checkerboard patterns.
While such methods exceed the scope of this paper, we have attempted to describe our
method without making overly restrictive assumptions on numerical methodology so
that it can be integrated into a variety of different problems and solution approaches.

As it stands, our method should not be seen as a competitive topology optimization
method. Rather, we present these results as a proof of concept to show that future
extensions of this method may also be applicable to the field of topology optimization.

5 Conclusions and outlook

In this paper, we present a trust-region algorithm that solves binary optimal con-
trol problems by iteratively improving on existing solutions. We exploit the fact that
although the controls in these problems are binary valued, they represent points in a
continuum of measurable sets. Within the metric space formed by these measurable
sets, some objective functions can be shown to be differentiable in amanner that allows
for relatively straightforward construction of steepest-descent steps. As a result, we
are able to design an algorithm that is almost completely analogous to a conventional
steepest-descent trust-region method and whose asymptotic behavior can be proven
in a similar way.

We have not extensively compared the performance of our method with that of
other methods. Outside of the field of topology optimization, where similar methods
already exist, it is generally difficult to design fair comparisons to othermethods.Many
optimal control methods assume fixed or uniformly refined control meshes, which
makes it difficult to find “fair” parameters for comparisons. Enumerative techniques
such as branch-and-bound on a fixed controlmesh, for instance, suffer from an extreme
disadvantage if the control mesh is too fine, whereas our method would be expected
to become more accurate with refinement.

We therefore present this work as proof of concept in the hope that, as one method
amongmany, itmay expand the scope of practically solvable optimal control problems.
We have kept very closely to the theoretical framework used to validate conventional
NLP methods in hopes that, in the future, it may become possible to transfer more of
conventional NLP theory to this setting, which may enable constrained optimization
or higher-order methods to be transfered to measure spaces. If this could be merged
with continuous optimal control methods, it could then give rise to a category of fast
methods for mixed-integer optimal control with both ODE and PDE constraints.
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