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Abstract

In this paper, we present and analyze a finitely-convergent disjunctive cutting plane algo-

rithm to obtain an ε-optimal solution or detect the infeasibility of a general nonconvex continuous

bilinear program. While the cutting planes are obtained like Saxena, Bonami, and Lee [Math.

Prog. 130: 359–413, 2011] and Fampa and Lee [J. Global Optim. 80: 287–305, 2021], a fea-

ture of the algorithm that guarantees finite convergence is exploring near-optimal extreme point

solutions to a current relaxation at each iteration. In this sense, the presented algorithm and

its analysis extend the work Owen and Mehrotra [Math. Prog. 89: 437–448, 2001] for solving

mixed-integer linear programs to the general bilinear programs.

Key words: Bilinear programming, Nonconvex programming, Disjunctive programming, Global

optimization, Cutting planes

1 Introduction

In this paper, we study a general nonconvex continuous bilinear program (BLP) defined as follows:

min
x,y

f>0 x+ g>0 y + x>A0y

s.t. f>ι x+ g>ι y + x>Aιy + bι ≤ 0, ι ∈ [p] (1)

x ≤ x ≤ x, y ≤ y ≤ y,

where x ∈ Rn, y ∈ Rm, Aι, ι ∈ 0∪ [p], are n×m matrices, f ι ∈ Rn, gι ∈ Rm, ι ∈ 0∪ [p], x,x ∈ Rn,

y,y ∈ Rm, and bι ∈ R, ι ∈ [p]. We do not consider any structure on the matrices Aι, ι ∈ 0∪ [p]. A
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bilinear program of the form (1) finds various applications in production, location-allocation, and

product distribution situations [1], pooling [19], trim-loss and cutting stock [13, 25], packing [16],

network interdiction [7], and economic equilibrium [17].

The problem of generating relaxations of a bilinear program has been investigated in the lit-

erature. A common method to obtain a linear programming relaxation of a bilinear function xy

is introducing a new variable w and then relaxing the constraint w = xy. When variables x and

y are restricted to a box, McCormick [18] constructs a polyhedral relaxation for the bilinear set

defined by w = xy. Al-Khayyal and Falk [2] show that this relaxation describes the convex hull of

the bilinear set.

Discretizing a subset of continuous variables gives a mixed-integer BLP that approximates the

original BLP, see, e.g., [22, 10]. Gupte et al. [12] obtain a mixed-integer linear programming

reformulation of a mixed-integer BLP using the binary expansion of integer variables. By studying

the polyhedral structure of the set arising from McCormick envelopes for an individual bilinear

term, Gupte et al. [12] obtain the convex hull of these reformulated individual bilinear sets and use

them in a branch-and-bound algorithm to solve the reformulated mixed-integer linear program.

Other relaxations based on the reformulation-linearization technique (RLT) [31], second-order

cone programming (SOCP), see, e.g., [8, 28], and semidefinite programming (SDP), see, e.g., [4],

have been applied to continuous BLPs. For the case that there is no interaction between the

continuous variables x and y, except for in the bilinear objective function, Sherali and Alameddine

[32] develop a RLT-based relaxation that theoretically dominates the McCormick relaxation. Using

this RLT-based relaxation, they propose a finitely-convergent branch-and-bound algorithm. Dey

et al. [8] study a bilinear program of the form (1), where the variables can be partitioned into

two sets such that fixing the variables in any of the sets results in a linear program. They show

that the convex hull of the set induced by a single constraint is SOC representable in the extended

space (see also [28] for results on a more general quadratic equation). The intersection of such sets

gives a relaxation that is stronger than the standard SDP relaxation intersected with the boolean

quadratic polytope [8].

In this paper, we focus on using the lift-and-project methodology and disjunctive programming

[3]. Our motivation to use this framework is that it simultaneously takes into account convex

and nonconvex constraints, see, e.g., [7, 29, 30]. An infinitely-convergent disjunctive sequential

convexification procedure for a continuous bilinear set is studied in a companion paper [23].

Treating bilinear terms in the context of global optimization has also been studied in the litera-

ture [14, 36, 33, 9]. Konno [14] proposes an infinitely-convergent cutting plane procedure to obtain

a solution differing in objective value from the global optimal value of the studied BLP by no

more than a predetermined quantity ε > 0. Vaish and Shetty [36] propose an infinitely-convergent

cutting plane procedure to obtain a global optimal solution to the studied BLP. They also propose

a finitely-convergent cutting plane algorithm to obtain a solution differing in objective value from

the global optimal value by no more than ε. Sherali and Shetty [33] propose a finitely-convergent

cutting plane algorithm to obtain a globally optimal solution by generating polar cuts at an extreme
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point solution and generating disjunctive cuts at other points. In the studied BLP in [14, 36, 33]

it is assumed that variables x and y belong to their own polytopes and there is no nonlinearity in

the constraints. Hence, the objective function is nonconvex, while the feasible region is convex.

For mixed-integer quadratically constrained quadratic programs, Saxena et al. [29] propose to

obtain valid disjunctive cuts using the eigenvalue decomposition of the quadratic violation matrix.

For a continuous BLP, with bilinear terms in the objective function and constraints, Fampa and

Lee [9] further extend the approach in [29] using the singular value decomposition of the bilinear

violation matrix (we shall shortly review this approach in Section 2). They conduct extensive

computational experiments to assess the performance of this approach and methods that convert

a bilinear program to a quadratic program with a symmetric matrix. For a general class of opti-

mization problems, [6] study general-purpose cuts that account for global nonconvexity, and they

show the finite convergence of their proposed pure cut-generation procedure, obtained based on

intersection cuts from convex forbidden zones. They further develop this method for polynomial

optimization (also applicable to BLPs), by deriving several families of maximal outer-product-free

sets from 2× 2 submatrices.

Although Fampa and Lee [9] are concerned with the global optimization of the studied BLP,

they do not provide any theoretical result to guarantee that an optimal solution is found in a

finite number of iterations. To close this gap, in this paper, a modification to the approach in

[29, 9] is analyzed to guarantee a finitely-convergent disjunctive programming-based pure cutting

plane approach. This modification is inspired by the cutting plane approach proposed in Owen

and Mehrotra [21] in the context of solving mixed-integer linear programs with general integer

variables. As in [21], a fundamental feature of the analyzed algorithm in this paper is to generate

valid inequalities at all near-optimal extreme point solutions of the current polyhedral relaxation

(near-optimal solutions are defined precisely in Section 4 as γ-optimal solutions with γ > 0). We

theoretically analyze that modifying the idea investigated in Fampa and Lee [9] with this vertex

exploration guarantees finite convergence. As mentioned earlier, another related work to ours is

[6]. However, unlike [6], whose cut-generation procedure should be applied globally to all extreme

points of a current relaxation, we use vertex exploration on only γ-optimal extreme point solutions

to achieve finite convergence, with γ > 0. This results in an additional subtlety in the analysis as

we will establish in Section 4. Additionally, from a computational perspective, for an appropriate

choice of γ, the number of γ-optimal extreme points can be significantly smaller than the number

of extreme points in the entire polytope.

Although, in theory, this vertex exploration guarantees finite convergence, there are some com-

putational limitations. On the one hand, exploring all near-optimal extreme point solutions is

computationally expensive. On the other hand, not all generated cuts through this vertex explo-

ration would necessarily have computational values. Thus, a judicious (problem-dependent) vertex

exploration is necessary for practical implementations. We provide some indications of these limi-

tations in our numerical results in Section 5, where we generate cuts at only a few extreme point

solutions. We conduct numerical experiments to compare an implementation of the idea proposed
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in Fampa and Lee [9] (see Section 2.2 for more details on our implementation), a practical imple-

mentation of the algorithm analyzed in this paper (see Section 5 for more details), and the pure

cutting plane algorithm proposed in [6]. While we conduct a comparative study, our primary aim

in this paper is not to conclude the computational efficiency of one algorithm over another but to

provide a fundamental modification of the algorithm proposed in Fampa and Lee [9] that guarantees

finite convergence.

To the best of our knowledge, the analyzed algorithm in this paper is the first pure cutting plane

approach that solves (1) to ε-optimality (to be defined precisely in Section 4) or detects infeasibility

in a finite number of iterations and only through a local vertex exploration of γ-optimal solutions.

We emphasize that the feasible region in (1) is nonconvex. This is different from the studied BLP

in [14, 36, 33], where an optimal solution is attained at an extreme point (x∗,y∗), with x∗ and y∗

to be the extreme points of their corresponding polytopes, see, e.g., [14, Theorem 2.1].

This paper is organized as follows. In Section 2, we review the lift-and-project methodology of

Saxena et al. [29] in the context of a BLP, and the basic ideas of disjunctive programming. We

also illustrate our motivation to theoretically enhance the procedure studied by [9]. In Section 3,

we present the cut generation component of our analyzed algorithm. In Section 4, we analyze a

disjunctive cutting plane algorithm that finds an ε-optimal solution to (1) or detect infeasibility in

a finite number of iterations. In Section 5, we demonstrate the optimality gap improvement gained

from a practical implementation of the analyzed cutting plane algorithms in this paper. We end

with conclusions in Section 6.

Notation and Definitions: For two matrices A and B, A • B = Tr(A>B) denotes the

Frobenius inner product between matrices. We let [d] denote the index set {1, . . . , d}. Throughout

this paper, vectors are denoted by boldface lowercase letters and matrices are denoted by boldface

uppercase letters. Sets are denoted by calligraphic or normal uppercase letters. All sets in this

paper are subsets of a finite-dimensional Euclidean space Rd, for some d > 0. Consider a set B ⊆ Rd.
Let ext(B), cl(B), and conv (B) denote the set of extreme points, closure, and convex hull of the set

B. Let Projx(B) denote the projection of B onto the x-space. Let ei be the i-th unit vector in Rd.
Consider two sets B1,B2 ⊆ Rd. The Hausdorff distance between B1 and B2 is denoted by dH(B1,B2)

and is defined as dH(B1,B2) := max{supb2∈B2 infb1∈B1 ‖b
1 − b2‖, supb1∈B1 infb2∈B2 ‖b

1 − b2‖}. A

sequence of sets {Bt} is called a decreasing sequence of nested sets if Bt+1 ⊆ Bt, t ≥ 0. We say that

a sequence of closed sets {Bt} of Rd converges to a closed set B̄ ⊆ Rd in Hausdorff distance, and

denote it by h-limt→∞ Bt = B̄, if dH(Bt, B̄) → 0 as t → ∞. According to [27, Lemma 1], it means

that either B̄ and Bt are empty for all t ≥ t̄ or for any δ > 0, there exists t̂ > 0 such that for all

t ≥ t̂, we have infb∈B̄ ‖b − bt‖ ≤ δ for all bt ∈ Bt and infbt∈Bt ‖b − bt‖ ≤ δ for all b ∈ B̄. For a

sequence of sets {Bt} of Rd, b ∈ lim supt→∞ Bt = ∩∞
t̂=1

cl(∪∞
t=t̂
Bt) if for any t̂ > 0, there exists t ≥ t̂

such that b ∈ Bt. We also have b ∈ lim inft→∞ Bt = ∪∞
t̂=1

cl(∩∞
t=t̂
Bt) if there exists t̂ > 0 such that

for all t ≥ t̂, we have b ∈ Bt. We say that a sequence of sets {Bt} of Rd converges to B̄ ⊆ Rd in the

sense of Kuratowski, and denote it by Bt K→ B̄ as t → ∞, if lim supt→∞ Bt = lim inft→∞ Bt = B̄.

The following lemmas establish some relationships between Hausdorff and Kuratowski convergences
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and will be used in the sequel.

Lemma 1. O’Searcoid [20, Theorem 12.1.3] A decreasing sequence of nonempty, nested, closed

sets of a compact metric space has a nonempty compact intersection.

Lemma 2. Salinetti and Wets [27, Proposition 2] Suppose that {Bt} is a decreasing sequence of

nested closed sets of a finite-dimensional Euclidean space. Then, {Bt} converges to ∩∞t=1Bt in the

sense of Kuratowski, as t→∞.

Lemma 3. Salinetti and Wets [27, Corollary 3A] Suppose that {Bt} is a sequence of nonempty

compact connected1 sets of a finite-dimensional Euclidean space. Then, h-limt→∞ Bt = B̄ if and

only if Bt K→ B̄ as t→∞, i.e., the Hausdorff convergence implies the Kuratowski convergence and

vice versa, and the limits are equal.

Throughout the paper, we use the Hausdorff convergence and the Kuratowski convergence inter-

changeably under assumptions of Lemma 3. Moreover, we often work with a decreasing sequence

of nested closed sets. For reference, the definition of the Hausdorff distance between two sets

B2 ⊆ B1 ⊆ Rd simplifies to dH(B1,B2) = supb1∈B1 infb2∈B2 ‖b
1 − b2‖.

2 Lift-and-Project Methodology of Saxena et al. [29], Fampa and

Lee [9]

By introducing additional variables Wij = xiyj , i ∈ [n], j ∈ [m], problem (1) can be equivalently

written as the following nonlinear program in the lifted space:

min
(x,y,W )∈K

f>0 x+ g>0 y +A0 •W

s.t. W = xy>, (BLP)

where

K :=

{
(x,y,W )

∣∣∣∣∣ f>ι x+ g>ι y +Aι •W + bι ≤ 0, ι ∈ [p],

x ≤ x ≤ x, y ≤ y ≤ y

}
. (2)

Set

F := {(x,y,W ) ∈ K |W = xy>} (3)

is the feasible region of (BLP), and set K is the feasible region of a relaxation of (BLP). Note

that all the constraints in K are linear in x, y, and W , and K is a convex set. On the other hand,

W = xy> induces a nonconvex region.

In this paper, we are interested in disjunctive programming procedures in the space of (x,y,W ).

A disjunctive programming procedure to treat the bilinear terms is studied in Fampa and Lee [9]

by applying McCormick convexification of W = xy> and extending the ideas in Saxena et al. [29]

1Set B is not connected if there are two disjoint open sets U and V such that B ⊂ U ∪V, B∩U 6= ∅, and B∩V 6= ∅.
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for symmetric convex quadratic terms to bilinear terms. Because the approach in [29, 9] forms a

basis for our work, let us first recall their procedure.

For any u ∈ Rn and v ∈ Rm, any feasible solution to (BLP) satisfies

u>Wv = (u>x)(v>y). (4)

Because (u>x)(v>y) =
(
u>x+v>y

2

)2
−
(
u>x−v>y

2

)2
, (4) is equivalent to the following two inequal-

ities

u>Wv −
(
u>x+ v>y

2

)2

+

(
u>x− v>y

2

)2

≤ 0, (5)

−u>Wv +

(
u>x+ v>y

2

)2

−
(
u>x− v>y

2

)2

≤ 0. (6)

Observe that the concave terms −
(
u>x+v>y

2

)2
and −

(
u>x−v>y

2

)2
, in (5) and (6), respectively,

result in a nonconvex region. A way to handle this nonconvexity is to approximate the concave terms

with their secant inequalities and to utilize disjuncntive programming to derive valid disjunctive

cuts for conv (F) [29]. More precisely, constraints (5) and (6) give rise to the following disjunction,

which is satisfied by any feasible solution (x,y,W ) to (BLP):

∨2
r=1 ∨2

s=1S̃rs(c, K̃,β), (7)

where K̃ is a (bounded) convex relaxation of F (e.g., K), c = (u,v), and

S̃rs(c, K̃,β) :=
(x,y,W ) ∈ K̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1,r ≤ u>x+v>y
2 ≤ β1,r+1, β2,s ≤ u>x−v>y

2 ≤ β2,s+1,

u>Wv −
(
u>x+v>y

2

)
(β1,r + β1,r+1) + β1,rβ1,r+1

+
(
u>x−v>y

2

)2
≤ 0,

−u>Wv −
(
u>x−v>y

2

)
(β2,s + β2,s+1) + β2,sβ2,s+1

+
(
u>x+v>y

2

)2
≤ 0


,

(8)

for r, s = 1, 2. Disjunction (7) is obtained by simultaneously splitting the range [β1,1, β1,3] of

function u>x+v>y
2 over K̃ into two intervals [β1,1, β1,2] and [β1,2, β1,3], and by splitting the range

[β2,1, β2,3] of function u>x−v>y
2 over K̃ into two intervals [β2,1, β2,2] and [β2,2, β2,3]. Moreover, the

disjunction simultaneously constructs secant inequalities of functions−
(
u>x+v>y

2

)2
and−

(
u>x−v>y

2

)2

in each corresponding interval. The breakpoints {β1,1, β1,2, β1,3} might have overlaps. However, as

long as these breakpoints are in the range of function u>x+v>y
2 , a disjunction of the form (7) is

valid. A similar situation might happen for the breakpoints {β2,1, β2,2, β2,3}.
For the rest of the paper, we refer to the last two constraints in (8) as secant-induced inequalities.

We also let the index k represent the (r, s)-pair, where k ∈ {1, 2, 3, 4}. Hence, hereafter, we denote
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S̃rs(c, K̃,β) as S̃k(c, K̃,β). Let r(k) and s(k) denote the r and s component of the index k.

For the ease of exposition, for k ∈ {1, 2, 3, 4}, β1,k and β2,k should be understood as β1,r(k) and

β2,s(k), respectively. Similarly, β1,k+1 and β2,k+1 should be understood as β1,r(k)+1 and β2,s(k)+1,

respectively. We also denote a (bounded) convex relaxation of F by K̃ throughout the paper.

2.1 Disjunctive Programming

Given a solution (x̂, ŷ, Ŵ ) to the current relaxation K̃, Fampa and Lee [9] analyze the singular

value decomposition (SVD) of Ŵ−x̂ŷ> to find suitable vectors u and v, corresponding to a nonzero

singular value σ, i.e., u>(Ŵ − x̂ŷ>)v = σ 6= 0. The vectors u and v are used in order to form a

disjunction of the form (7), and subsequently, to derive disjunctive cuts for conv (F) through a cut-

generation linear program (CGLP). The CGLP used in [9] contains linearization of the constraints

in (8), where the convex quadratic terms are replaced by their outer approximations. Moreover, K̃
includes the constraints of McCormick convexification of W = xy>, using the box constraints on

x and y, and all the previously added disjunctive cuts. Below, we present an abstract form of this

CGLP to generate a valid inequality to cut off the current solution (x̂, ŷ, Ŵ ).

Lemma 4. Consider a bounded polyhedral relaxation K̃ of F , a fixed vector c = (u,v), and a

choice of breakpoints β for a (2× 2)-way disjunction (7). Let {a>ιkx+ b>ιky +Cιk •W ≥ dιk, ι ∈
[l]} represent the set of constraints in S̃k(c, K̃,β), after linearization of the quadratic terms, for

k = 1, 2, 3, 4. Then, (x̂, ŷ, Ŵ ) ∈ conv
(
∨4
k=1{(x,y,W ) |a>ιkx+ b>ιky +Cιk •W ≥ dιk, ι ∈ [l]}

)
if

the optimal value of the following CGLP is nonnegative

min α>x̂+ θ>ŷ +H • Ŵ − ρ (9a)

s.t. A>k πk = α, ∀k, (9b)

B>k πk = θ, ∀k, (9c)

D>jkπk = hj , j ∈ [m],∀k, (9d)

d>k πk ≥ ρ, ∀k, (9e)

πk ≥ 0, ∀k, (9f)

where row ι of dk, Ak, and Bk is composed of dιk, a>ιk, and b>ιk, respectively. Moreover, row ι of Djk

is column j of Cιk, and column j of H is composed of hj, j ∈ [m]. If the optimal value of CGLP

(9) is negative and (α,θ,H,π1, . . . ,π4) is an optimal solution to (9), then α>x+θ>y+H•W ≥ ρ
is a valid inequality for conv

(
∨4
k=1{(x,y,W ) |a>ιkx+ b>ιky +Cιk •W ≥ dιk, ι ∈ [l]}

)
, which cuts

off (x̂, ŷ, Ŵ ).

Proof. The result follows from an application of Balas [3, Theorem 3.1].

2.2 Motivating Examples

It is illustrated in the numerical experiments of [9] that their proposed procedure is not guaranteed

to reach an optimal solution of (BLP) or have a slow rate of convergence. In two simple examples,
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(a) Depth of disjunctive cut. (b) Percentage of the reduction in the vol-
ume of the current relaxation.

Figure 1: Depth of disjunctive cuts and percentage of the reduction in the volume of the current
relaxation by SVD for Example 1.

we illustrate these issues.

Example 1. Given K =
{

(x, y,W )
∣∣∣ x+ 0.5y − 1 ≤ 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

}
, define problem

min(x,y,W )∈K x − y − 2W , where the optimal value is −2.0625 and the optimal solution is x∗ =

0.125, y∗ = 1.75. Consider an iterative algorithm that given a solution (x̂, ŷ, Ŵ ) to the current

relaxation K̃, a disjunctive cut is generated if Ŵ 6= x̂ŷ. In order to form a (2× 2)-way disjunction

(7), the breakpoints β1,2 and β2,2 are as follows: β1,2 = x̂+ŷ
2 and β2,2 = x̂−ŷ

2 . The other breakpoints

are obtained based on the lower and upper bounds of functions x+y
2 and x−y

2 over K̃. A disjunctive

cut is then obtained using the CGLP (9), stated in Lemma 4, where we approximated the convex

quadratic terms at 2500 equally-spaced points on [0, 1]× [0, 2]. We refer to this particular implemen-

tation of the methodology described in [9], as “SVD” (standing for singular value decomposition).

Note that for this example, left- and right-singular vectors are just the standard basis in R. When

SVD terminates after 20 iterations, we obtain a lower bound of −2.0638, with an optimality gap

of 0.0616%. Figure 1a depicts the depth of each disjunctive cut, measured by the distance of the

current solution to the induced disjunctive cut. Moreover, Figure 1b depicts the percentage of the

reduction in the volume of the current relaxation. Observe from Figure 1a that SVD shows a very

slow rate of convergence, where the disjunctive cuts have a depth of almost zero—and hence, cut-

ting off only a negligible part of the polytope— while the solutions generated by the algorithm are

converging to (0.145, 1.711). We note that to calculate the volume of the current relaxation, we

used a Python wrapper for Qhull library [5].

In Section 5, we show that the proposed algorithm in this paper will attain a lower bound of

2.0629, with an optimality gap of 0.0234%. Moreover, the solutions generated by the algorithm are

converging to (0.128, 1.744).
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Figure 2: Depth of disjunctive cuts by SVD for Example 2.

Example 2. Consider a problem of the form (BLP), where x ∈ R2, y ∈ R2, and there is only one

linear constraint connecting x, y, and W as follows:

x = [0, 0]>, x = [2, 4]>, f0 = [1, 2]>, f1 = [2, 0.5]>,

y = [0, 0]>, y = [1, 2]>, g0 = [1, 1]>, g1 = [2, 1]>,

A0 = [−1,−2.5;−1,−3], A1 = [1, 1; 1, 1], b = −3.

At each iteration, given a solution (x̂, ŷ, Ŵ ) to the current relaxation K̃, we obtain the left- and

right-singular vectors u and v, respectively, corresponding to the largest singular value of Ŵ −x̂ŷ>.

Then, using c = (u,v), we form a (2 × 2)-way disjunction (7) and obtain a disjunctive cut using

the CGLP (9), stated in Lemma 4, where the convex quadratic terms are replaced by their outer

approximations at the current solution. To form the disjunction, we choose the breakpoints β1,2

and β2,2 using the current solution as follows: β1,2 = u>x̂+v>ŷ
2 and β2,2 = u>x̂−v>ŷ

2 . The other

breakpoints are due to the lower and upper bounds of functions u>x+v>y
2 and u>x−v>y

2 over K̃.

When SVD terminates after 76 iterations, we obtain a lower bound −0.5960, while the optimal value

to this problem is −0.5. SVD leaves an optimality gap of 19.20%. Figure 2 shows the depth of each

disjunctive cut, indicating that SVD has a slow rate of convergence while trying to converge to the

optimal solution x∗ = [0, 1]>, y∗ = [0, 1.25]>.

Alternatively, consider a procedure that generates disjunctive cuts based on standard bases of

R2, and for all i ∈ {1, 2}, j ∈ {1, 2} such that Ŵij 6= x̂iŷj. Using (ei, ej), we form a (2 × 2)-way

disjunction, where the breakpoints β1,2 and β2,2 are as follows: β1,2 =
x̂i+ŷj

2 and β2,2 =
x̂i−ŷj

2 . The

other breakpoints are due to the lower and upper bounds of functions
xi+yj

2 and
xi−yj

2 over K̃. We

refer to this algorithm as “STD” (standing for the standard basis), and compare the results with SVD.

STD yields a lower bound −0.7068 after 58 iterations and adding 211 cuts, leaving an optimality

gap of 41.36%. As expected, algorithm STD yielded a worse lower bound than SVD, because STD is

focused on only one bilinear term at a time, while SVD has a holistic view of all the bilinear terms.
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We emphasize that the SVD algorithm implemented to obtain the results in Examples 1 and 2 is

not an exact reproduction of [9] for at least one reason. The authors in [9] choose uniformly-spaced

breakpoints, e.g., β1,2 =
β1,1+β1,3

2 . On the contrary, for Examples 1 and 2, and all subsequent exper-

iments in Section 5, we use a specific “solution-dependent” construction to choose the breakpoints

(see more details in Section 3.2), inspired by the construction in [29] for quadratically-constrained

quadratic programs.

Nevertheless, inspired by Examples 1 and 2, in Section 4, we analyze a finitely-convergent

algorithm to reach an ε-optimal solution or detect infeasibility of (BLP) using any finite collection

of bases (u,v) for Rn and Rm, including the standard bases. We then extend the analyzed algorithm

to the case that the bases are found through the SVD of the residual matrix W − xy>, where a

finite collection of bases is generated sequentially. We emphasize that our goal in this paper is not

to propose an algorithm that is necessarily superior to the algorithm investigated in [9] in terms of

the computational time—partially due to the reasons laid out above—but to analyze a fundamental

modification to that algorithm that guarantees finite convergence.

3 Separating Inequalities and Minimum Distance Problem

A key observation around which this paper is developed is a reformulation of (BLP), discussed

in Section 3.1. Then, we discuss the cut-generation component of the analyzed finitely-convergent

algorithms. In Section 3.2, we present valid disjunctions. In Section 3.3, we describe valid separating

inequalities and the corresponding projection problem.

3.1 Problem Reformulation

As explained in (4), we have

F :=

{
(x,y,W ) ∈ K

∣∣∣∣∣ u>Wv = (u>x)(v>y),

∀u ∈ Rn,v ∈ Rm, with ‖u‖ = 1, ‖v‖ = 1

}
. (10)

A set closely related set is

F̄ ε :=

{
(x,y,W ) ∈ K

∣∣∣∣∣ |u>Wv − (u>x)(v>y)| ≤ mnε,
∀u ∈ Rn,v ∈ Rm, with ‖u‖ = 1, ‖v‖ = 1

}
, (11)

for ε > 0. A key observation to analyze the algorithms in this paper is that F can be equivalently

reformulated with a finite number of nonlinear constraints, corresponding to the bases of Rn and

Rm. We will also show that a conservative approximation to F̄ ε can be reformulated with a finite

number of nonlinear constraints. Observe that if F̄ ε is an empty set, then F is an empty set as

well. Also, note that for both sets F and F̄ ε, we restrict u and v to be unit vectors, without loss

of generality. In the remainder of the paper, we may implicitly drop these restrictions from the set

definition to simplify the exposition.
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Proposition 1. Let {u1, . . . ,un} denote a set of mutually orthonormal vectors in Rn, and {v1, . . . ,vm}
denote a set of mutually orthonormal vectors in Rm. Then, (BLP) can be equivalently written as

min
(x,y,W )∈K

f>0 x+ g>0 y +A0 •W

s.t. u>i Wvj = (u>i x)(v>j y), i ∈ [n], j ∈ [m]. (BLP)

Proof. Observe that W = xy> ⇒ u>Wv = (u>x)(v>y) ∀u ∈ Rn,v ∈ Rm, including ui, vj ,

i ∈ [n], j ∈ [m]. We show that if u>i Wvj = (u>i x)(v>j y), ∀i ∈ [n], j ∈ [m]⇒W = xy>. Because

{u1, . . . ,un} is orthonormal, any u ∈ Rn can be written as u =
∑n

i=1 λiui for some λ ∈ Rn.

Similarly, any v ∈ Rm can be written as v =
∑m

j=1 µjvj for some µ ∈ Rm. Thus, we have

u>i Wvj = (u>i x)(v>j y), ∀i ∈ [n], j ∈ [m]

⇒

(
n∑
i=1

λiu
>
i

)
Wvj =

(
n∑
i=1

λiu
>
i x

)(
v>j y

)
, ∀λ ∈ Rn, j ∈ [m],

⇒

(
n∑
i=1

λiu
>
i

)
W

(
n∑
i=1

µjvj

)
=

(
n∑
i=1

λiu
>
i x

) m∑
j=1

µjv
>
j y

 , ∀λ ∈ Rn, µ ∈ Rm

⇒u>Wv = (u>x)(v>y), ∀u ∈ Rn,v ∈ Rm

⇒W = xy>,

by taking u and v be the bases vectors. Consequently, the result follows.

Proposition 2. Let {u1, . . . ,un} denote a set of mutually orthonormal vectors in Rn, and {v1, . . . ,vm}
denote a set of mutually orthonormal vectors in Rm. Then, if (x,y,W ) ∈ F ε, then (x,y,W ) ∈ F̄ ε,
where

F ε := {(x,y,W ) ∈ K | |u>i Wvj − (u>i x)(v>j y)| ≤ ε, i ∈ [n], j ∈ [m]}. (12)

Proof. Consider unit vectors u ∈ Rn and v ∈ Rm. Let us write u =
∑n

i=1 λiui for some λ ∈ Rn,

and v =
∑m

j=1 µjvj for some µ ∈ Rm. First, note that we have u>u = λ>U>Uλ, where U is a

matrix whose columns are ui, i = 1, . . . , n. Because U>U = I, where I is the identity matrix, and

u>u = 1, we have λ>λ = 1. Thus, |λi| ≤ 1 for i ∈ [n]. Similarly, we have |µj | ≤ 1 for j ∈ [m].

Observe that

u>Wv − (u>x)(v>y) =u>(W − xy>)v

=

(
n∑
i=1

λiui

)>
(W − xy>)

 m∑
j=1

µjvj


=

n∑
i=1

m∑
j=1

λiµju
>
i (W − xy>)vj .
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Thus, for (x,y,W ) ∈ F ε, we have

∣∣∣u>Wv − (u>x)(v>y)
∣∣∣ ≤
∣∣∣∣∣∣
n∑
i=1

m∑
j=1

λiµju
>
i (W − xy>)vj

∣∣∣∣∣∣
≤

n∑
i=1

m∑
j=1

∣∣∣λiµju>i (W − xy>)vj

∣∣∣
≤ n

max
i=1

m
max
j=1
|λiµj | ×

n∑
i=1

m∑
j=1

∣∣∣u>i (W − xy>)vj

∣∣∣
≤

n∑
i=1

m∑
j=1

∣∣∣u>i (W − xy>)vj

∣∣∣
≤mnε.

This completes the proof.

Throughout this section, we assume that {u1, . . . ,un} is a set of mutually orthonormal vectors

in Rn, and {v1, . . . ,vm} is a set of mutually orthonormal vectors in Rm. For ease of exposition, let

the index a represent the (i, j)-pair, where a ∈ [nm]. For the index a, we denote (ua,va) by ca.

3.2 Valid Single-Vector Disjunction

Consider a (bounded) convex relaxation K̃ of F and ca, a ∈ [nm]. Let us define the following set:

Pa(K̃,β) := conv
(
∨4
k=1S̃k(ca, K̃,β)

)
. (13)

A cutting plane is generated based on a single-vector disjunction. Given a relaxation K̃ of F , let

(x̂, ŷ, Ŵ ) be an optimal extreme point solution to the minimization problem over K̃ that needs

to be cut off by a valid linear inequality. In particular, suppose that the solution (x̂, ŷ, Ŵ ) is not

satisfying the constraint u>aWva = (u>a x)(v>a y) for some a ∈ [nm]. Generating a valid inequality

accounts for finding a separating hyperplane that separates (x̂, ŷ, Ŵ ) from Pa(K̃,β), where β is a

proper choice of breakpoints. For the rest of the paper, we choose the breakpoints β for a (2×2)-way

disjunction in a specific manner, detailed in Construction 1.

Construction 1. Consider a bounded convex relaxation K̃ of F . Let (x̂, ŷ, Ŵ ) ∈ K̃ be an optimal

extreme point solution to the minimization problem over K̃ such that u>a Ŵva 6= (u>a x̂)(v>a ŷ) for

some a ∈ [nm]. We form a (2 × 2)-way disjunction of the form (7) on K̃, based on ca = (ua,va)

and (x̂, ŷ, Ŵ ), using the following choice of the breakpoints, which are obtained by solving LPs:

β1,1 = min{u
>
a x+v>a y

2 | (x,y,W ) ∈ K̃}, β2,1 = min{u
>
a x−v>a y

2 | (x,y,W ) ∈ K̃},
β1,2 = u>

a x̂+v>a ŷ
2 , β2,2 = u>

a x̂−v>a ŷ
2 ,

β1,3 = max{u
>
a x+v>a y

2 | (x,y,W ) ∈ K̃}, β2,3 = max{u
>
a x−v>a y

2 | (x,y,W ) ∈ K̃}.
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Lemma 5 shows that the choice of breakpoints β based on Construction 1 leads to a single-

vector disjunction that can be used to generate a valid disjunctive cut to cut off an extreme point

(x̂, ŷ, Ŵ ) ∈ K̃, where u>a Ŵva 6= (u>a x̂)(v>a ŷ) for some a ∈ [mn].

Lemma 5. Consider a bounded convex relaxation K̃ of F . Let (x̂, ŷ, Ŵ ) ∈ K̃ be an extreme

point solution such that |u>a Ŵva − (u>a x̂)(v>a ŷ)| > ε for some ε > 0 and some a ∈ [nm]. Let

∨4
k=1S̃k(ca, K̃,β) be a (2× 2)-way disjunction, where the breakpoints are chosen as in Construction

1 and using (x̂, ŷ, Ŵ ). Then, (x̂, ŷ, Ŵ ) /∈ S̃k(ca, K̃,β) for all k ∈ {1, 2, 3, 4}. Moreover, for all

k ∈ {1, 2, 3, 4}, one of the secant-induced inequalities in S̃k(ca, K̃,β), defined in (8), is violated with

an amount greater than ε by (x̂, ŷ, Ŵ ).

Proof. We first show that (x̂, ŷ, Ŵ ) /∈ S̃k(ca, K̃,β) for all k ∈ {1, 2, 3, 4}, consequently, (x̂, ŷ, Ŵ ) /∈
∨4
k=1S̃k(ca, K̃,β). Suppose by contradiction that (x̂, ŷ, Ŵ ) ∈ S̃k(ca, K̃,β) for some k̂ ∈ {1, 2, 3, 4}.

Without loss of generality, suppose that in S̃k̂(ca, K̃,β), β1,1 and β1,3 denote the lower and upper

bounds of u
>
a x+v>a y

2 , respectively. Moreover, β2,1 and β2,3 denote the lower and upper bounds of
u>
a x−v>a y

2 . Because (x̂, ŷ, Ŵ ) ∈ S̃k̂(c, K̃,β), we have

u>a Ŵva −
(
u>a x̂+ v>a ŷ

2

)(
β1,1 +

u>a x̂+ v>a ŷ

2

)
+ β1,1

u>a x̂+ v>a ŷ

2
+(

u>a x̂− v>a ŷ
2

)2

= u>a Ŵva −
(
u>a x̂+ v>a ŷ

2

)2

+

(
u>a x̂− v>a ŷ

2

)2

≤ 0.

(14)

Note that if S̃k̂(c, K̃,β) is such that β1,2 ≤ u>x+v>y
2 ≤ β1,3, we would still get a similar conclusion

as in (14). So, the definition of S̃k̂(c, K̃,β) as above is without loss of generality. With a similar

argument, we conclude −u>a Ŵva +
(
u>
a x̂+v>a ŷ

2

)2
−
(
u>
a x̂−v>a ŷ

2

)2
≤ 0. The above two inequalities

imply that u>a Ŵva = (u>a x̂)(v>a ŷ), yielding a contradiction.

Now, we show that for all k ∈ {1, 2, 3, 4}, one of the secant inequalities in S̃k(ca, K̃,β) is vio-

lated by (x̂, ŷ, Ŵ ) and the amount of violation is greater than ε. First, suppose that u>a Ŵva −
(u>a x̂)(v>a ŷ) > ε. Using the equality (u>a x̂)(v>a ŷ) =

(
u>
a x̂+v>a ŷ

2

)2
−
(
u>
a x̂−v>a ŷ

2

)2
, we have u>a Ŵva−(

u>
a x̂+v>a ŷ

2

)2
+
(
u>
a x̂−v>a ŷ

2

)2
> ε. The left-hand side of this inequality is the left-hand side of

(14), implying that (x̂, ŷ, Ŵ ) violates the first secant-induced inequality of S̃k(ca, K̃,β) for all

k ∈ {1, 2, 3, 4}, and the amount of violation is greater than ε.

Now, suppose that −u>a Ŵva+(u>a x̂)(v>a ŷ) > ε. Similarly, we conclude that (x̂, ŷ, Ŵ ) violates

the second secant-induced inequality of S̃k(ca, K̃,β) for all k ∈ {1, 2, 3, 4}, and the amount of

violation is greater than ε.

3.3 Valid Disjunctive Cut and Projection Problem

So far, we have established our construction to choose the breakpoints β. We now show that the

choice of breakpoints β based on Construction 1 leads to a valid disjunctive cut. To obtain a valid

cut for conv (F) using a (2×2)-way disjunction, one may solve the corresponding CGLP, introduced

13



Algorithm 1 SepCuts(x̂, ŷ, Ŵ ; K̃,ua,va)
1: Input: (x̂, ŷ, Ŵ ), K̃, and (ua,va).
2: Output: (viol,α,θ,H, ρ). If a valid inequality α>x+ θ>y +H •W ≥ ρ is found that is violated by

(x̂, ŷ, Ŵ ), then return viol=TRUE, α, θ, H, and ρ. Otherwise, return viol=FALSE, α = 0, θ = 0,
H = 0, and ρ = 0.

3: Let α = 0, θ = 0, H = 0, and ρ = 0.
4: Let c = (u,v) and β is chosen as in Construction 1.
5: if S̃k(c, K̃,β) = ∅ for all k ∈ {1, 2, 3, 4} then
6: viol ← FALSE.
7: else
8: Let (x∗,y∗,W ∗) be an optimal solution to min

(x,y,W )∈Pa(K̃,β)
‖(x,y,W )− (x̂, ŷ, Ŵ )‖.

9: Let α, θ, and H be partial subgradients of ‖(x,y,W )− (x̂, ŷ, Ŵ )‖ at (x∗,y∗,W ∗) with respect to
x, y, and W , respectively. Let ρ = α>x∗ + θ>y∗ +H •W ∗.

10: viol ← TRUE.
11: end if

in Lemma 4. As mentioned, this CGLP contains the outer approximation to the convex quadratic

terms. Alternatively, one can solve a projection problem that minimizes the distance, measured by

some norm, from (x̂, ŷ, Ŵ ) to a point in Pa(K̃,β).

Proposition 3. Consider a bounded convex relaxation K̃ of F . Let (x̂, ŷ, Ŵ ) be an optimal extreme

point solution of min(x,y,W )∈K̃ f>0 x + g>0 y +A0 •W . Suppose that u>a Ŵva 6= (u>a x̂)(v>a ŷ) for

some a ∈ [nm]. Moreover, let ∨4
k=1S̃k(ca, K̃,β) be a (2× 2)-way disjunction, where the breakpoints

are chosen as in Construction 1 and using (x̂, ŷ, Ŵ ). Furthermore, suppose that Pa(K̃,β), defined

in (13), is nonempty. Then, the following projection problem

min
(x,y,W )∈Pa(K̃,β)

‖(x,y,W )− (x̂, ŷ, Ŵ )‖ (15)

has a strictly positive and finite optimal value.

Proof. By Lemma 5, (x̂, ŷ, Ŵ ) /∈S̃k(ca, K̃,β), k ∈ {1, 2, 3, 4}. Thus, (x̂, ŷ, Ŵ ) /∈∨4
k=1S̃k(ca, K̃,β).

Because (x̂, ŷ, Ŵ ) is an extreme point of K̃, it cannot be written as a convex combination of points

in K̃, including the points in ∨4
k=1S̃k(ca, K̃,β). Thus, (x̂, ŷ, Ŵ ) /∈ Pa(K̃,β). Because, Pa(K̃,β) 6= ∅,

then, the optimal value to (15) is finite. Moreover, by Ruszczyński [26, Theorem 2.14], (x̂, ŷ, Ŵ )

can be strongly separated from Pa(K̃,β). By Rockafellar [24, Theorem 11.4], the strong separation

holds if and only if the optimal value to (15) is strictly positive.

An implication of Proposition 3 is that by choosing the breakpoints β according to Construction

1, one can separate (x̂, ŷ, Ŵ ) from Pa(K̃,β), and consequently, from conv (F). We summarize the

cut generation procedure in Algorithm 1. In Section 4, we describe how these cutting planes can

be utilized algorithmically to obtain an ε-optimal solution to (BLP) or to detect infeasibility in a

finite number of iterations.

Remark 1. The projection problem (15) is a minimum distance problem over set Pa(K̃,β). To
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obtain this set, one can first form a mixed-binary convex set whose projection onto the (x,y,W )-

space gives ∨4
k=1S̃k(ca, K̃,β). Now, using a sequential convexification procedure, one can obtain

the convex hull of this mixed-binary convex set (see Stubbs and Mehrotra [34, Proposition 1 and

Theorem 1] for an illustration on general mixed-binary convex sets). By projecting the convex

hull onto the (x,y,W ), one can describe Pa(K̃,β), given the fact that Proj(x,y,W )(conv (·)) =

conv
(

Proj(x,y,W )(·)
)

. We skip the details for brevity and refer the readers to [34].

4 A Finitely-Convergent Cutting Plane Algorithm

Motivated by Example 2 and numerical experiments in [9], in this section, a finitely-convergent

cutting plane algorithm to obtain an ε-optimal solution to (BLP) or detect infeasibility is ana-

lyzed. The analyzed algorithm utilizes cuts obtained from the single-vector disjunction, described

in Section 3.

A usual approach for such a cutting plane algorithm is to generate cuts by using one or more

disjunctions obtained from one optimal solution to the current relaxation. For example, in the

numerical experiments in [9], at most four cuts are generated, based on the largest four singular

values of Ŵ − x̂ŷ>, where (x̂, ŷ, Ŵ ) is an optimal solution to the current relaxation. In Section

2.2, we illustrated that such an approach is not sufficient to get arbitrarily close to the convex hull

of solutions and obtain a globally optimal solution.

Unlike the usual cutting plane approaches that generate a valid inequality only at the current

optimal solution, in this section, generating inequalities at multiple extreme point solutions of the

current relaxation is analyzed algorithmically. These extreme points are generated by exploring

near-optimal solutions to the current relaxation. The analyzed algorithm requires two input param-

eters γ > 0 and ε > 0. The parameter γ determines the neighboring set of the current solution that

the algorithm explores at each iteration. The parameter ε determines the optimality and feasibility

tolerance.

In this section, we describe a modification to the cutting plane algorithm proposed in [9] to

generate cuts at multiple vertices of the current relaxation. In Section 4.2, a finitely-convergent

algorithm is analyzed when two sets of bases for Rn and Rm are available a priori. In Section 4.3,

we suppose such bases are unavailable a priori and obtained through SVD.

4.1 Definitions and Technical Results

In this section, we give definitions of an ε-feasible solution and ε-optimal solution to (BLP), and

present some technical results.

Definition 1. (ε-Feasible Solution) For the optimization problem (BLP) with z∗ = min(x,y,W )∈F

f>0 x+ g>0 y+A0 •W , we say that a point (x̂, ŷ, Ŵ ) ∈ K is ε-feasible if (x̂, ŷ, Ŵ ) ∈ F ε, as defined

in (12). In other words, |u>a Ŵva − (u>a x̂)(v>a ŷ)| ≤ ε for all a ∈ [mn].
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Note that by Proposition 2, an ε-feasible solution (x̂, ŷ, Ŵ ) also belongs to F̄ ε, as defined in

(11). Consequently, |u>a Ŵva − (u>a x̂)(v>a ŷ)| ≤ mnε.

Definition 2. (ε-Optimal Solution) For the optimization problem (BLP) with z∗ = min(x,y,W )∈F

f>0 x+ g>0 y +A0 •W , we say that a point (x̂, ŷ, Ŵ ) ∈ K is an ε-optimal solution if (x̂, ŷ, Ŵ ) is

ε-feasible and f>0 x̂+ g>0 ŷ +A0 • Ŵ ≤ z∗ + ε.

We now state some technical results about a convergent sequence of sets that we will use in

the sequel. Lemma 6 states that the order of convex hull and limit operators can be exchanged.

Lemma 7 states every extreme point of the limiting set is an accumulation point of a sequence of

extreme points.

Lemma 6. Let {Bt1}, {Bt2}, . . . , {Btκ} be convergent sequences of nonempty compact connected sets

of a finite-dimensional Euclidean space. If h-limt→∞ Btι = B̄ι, where B̄ι is nonempty, for ι ∈ [κ],

then,

h-lim
t→∞

conv
(
∪κι=1Btι

)
= conv

(
∪κι=1 h-lim

t→∞
Btι
)

= conv
(
∪κι=1B̄ι

)
.

Proof. We show that for any δ > 0, there exists t̂ > 0 such that for all t ≥ t̂, we have dH

(
conv

(
∪κι=1Btι

)
,

conv
(
∪κι=1B̄ι

) )
≤ δ. In other words, for all t ≥ t̂, we have minb∈conv(∪κι=1B̄ι)

‖b − bt‖ ≤ δ for all

bt ∈ conv
(
∪κι=1Btι

)
and minbt∈conv(∪κι=1Btι)

‖b− bt‖ ≤ δ for all b ∈ conv
(
∪κι=1B̄ι

)
.

First, note that because h-limt→∞ Btι = B̄ι, then, for any δ > 0, there exists t̂ι > 0 such that for

all t ≥ t̂ι, we have minbι∈B̄ι ‖bι − b
t
ι‖ ≤ δ for all btι ∈ Btι and minbtι∈Btι ‖bι − b

t
ι‖ ≤ δ for all bι ∈ B̄ι.

Moreover, for any t > 0, bt ∈ conv
(
∪κι=1Btι

)
can be written as bt =

∑κ
ι=1 λ

t
ιb
t
ι for some btι ∈ Btι and

λtι ∈ [0, 1], ι ∈ [κ], such that
∑κ

ι=1 λ
t
ι = 1. Therefore,

min
b∈conv(∪κι=1B̄ι)

‖b− bt‖ = min
b∈conv(∪κι=1B̄ι)

∥∥∥ κ∑
ι=1

λtι(b− btι)
∥∥∥

≤ min
bι∈B̄ι, ι∈[κ]

∥∥∥ κ∑
ι=1

λtι(bι − btι)
∥∥∥ ≤ min

bι∈B̄ι, ι∈[κ]

κ∑
ι=1

λtι‖bι − btι‖ =
κ∑
ι=1

λtι min
bι∈B̄ι

‖bι − btι‖,

where the first inequality follows because {b =
∑κ

ι=1 λ
t
ιbι | bι ∈ B̄ι, ι ∈ [κ]} ⊆ conv

(
∪κι=1B̄ι

)
. By

choosing t̂ := maxκι=1 t̂ι, it follows that minb∈conv(∪κι=1B̄ι)
‖b− bt‖ ≤ δ for all bt ∈ conv

(
∪κι=1Btι

)
.

Similarly, any b ∈ conv
(
∪κι=1B̄ι

)
can be written as b =

∑κ
ι=1 λιbι for some bι ∈ B̄ι and λι ∈ [0, 1],

ι = 1, . . . , κ, such that
∑κ

ι=1 λι = 1. Therefore,

min
bt∈conv(∪κι=1Btι)

‖b− bt‖ = min
bt∈conv(∪κι=1Btι)

∥∥∥ κ∑
ι=1

λι(bι − bt)
∥∥∥

≤ min
btι∈Btι , ι∈[κ]

∥∥∥ κ∑
ι=1

λι(bι − btι)
∥∥∥ ≤ min

btι∈B
t
ι, ι∈[κ]

κ∑
ι=1

λι‖bι − btι‖ =
κ∑
ι=1

λtι min
btι∈Btι

‖bι − btι‖,

where the first inequality follows due {bt =
∑κ

ι=1 λιb
t
ι | btι ∈ Btι, ι = 1, . . . , κ} ⊆ conv

(
∪κι=1Btι

)
. By

choosing t̂ := maxκι=1 t̂ι, it follows that minbt∈conv(∪κι=1Btι)
‖b − bt‖ ≤ δ for all b ∈ conv

(
∪κι=1B̄ι

)
.
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This completes the proof.

Lemma 7. Owen and Mehrotra [21, Lemma 2] Let {Bt} be a convergent sequence of bounded

convex sets such that Bt+1 ⊆ Bt for all t ≥ 0 and h-limt→∞ Bt = B̃. For each b̃ ∈ ext(B̃), there

exists some sequence {bt} of points in ext(Bt) with a subsequence converging to b̃.

4.2 General Basis

In Algorithm 2, a finitely-convergent algorithm is analyzed when two sets of bases for Rn and Rm

are available. By relying on the cut-generation procedure, described in Algorithm 1, this algorithm

either generates an ε-optimal solution to (BLP) or detects its infeasibility (i.e., F = ∅) in a finite

number of iterations (see Theorem 1).

Before we proceed, let us introduce the notation we use in Algorithm 2. At each iteration t, we

denote the current relaxation by St. Let zt = min(x,y,W )∈St f
>
0 x+g>0 y+A0 •W . Recall that the

input parameter γ > 0 controls the vertex exploration in the neighborhood of the current solution.

We impose the vertex exploration by defining the set of extreme point solutions whose objective

values are γ-away from zt as

Ωt := {(x,y,W ) ∈ ext(St)
∣∣f>0 x+ g>0 y +A0 •W − zt ≤ γ}. (16)

Given ε > 0, we define a subset of ε-feasible solutions in Ωt as

Ωε := {(x,y,W ) ∈ Ωt
∣∣|u>aWva − (u>a x)(v>a y)| ≤ ε, a ∈ [nm]}. (17)

As it can be seen from Algorithm 2, the algorithm proposed in [9] is modified to generate

disjunctive cuts at all points (x̄, ȳ, W̄ ) ∈ Ωt and a ∈ [nm] such that |u>a W̄va − (u>a x̄)(v>a ȳ)| > ε
4 .

We show that the analyzed vertex exploration, imposed by γ > 0, enables the algorithm to generate

cuts that are deep enough to cut off points that are not in conv (F), and eventually lead to an

ε-optimal solution to (BLP) or detects infeasibility. Before we state and prove the main result of

this section, we address the building blocks of Algorithm 2 and state some intermediate results. In

particular, Lemma 8 shows that Algorithm 2 explores extreme point solutions in Ωt. Lemma 10

shows that cuts generated at these extreme point solutions have a sufficiently large depth to cut

off points that violate constraints in F .

Lemma 8. Let {St} be a sequence of nonempty sets generated by Algorithm 2. Suppose that

{St} converges to a nonempty set S̃, and let (x̃, ỹ, W̃ ) be an optimal extreme point solution of

min(x,y,W )∈S̃ f>0 x+ g>0 y +A0 •W . Let {(xt,yt,W t)}t∈T be a convergent subsequence of points

in ext(St) such that {(xt,yt,W t)}t∈T → (x̃, ỹ, W̃ ). Then, for any γ > 0, there exists a sufficiently

large t ∈ T such that (xt,yt,W t) ∈ Ωt, where Ωt is defined in (16).

Before we prove Lemma 8, several remarks are in order. The extreme point solutions

{(xt,yt,W t)}t∈T ∈ ext(St) are not necessarily an optimal solution to min(x,y,W )∈St f
>
0 x+g>0 y+
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A0 •W . Hence, one should not expect the lemma statement to hold necessarily when γ = 0. The

key piece in Lemma 8 is choosing γ to be strictly positive (see the subsequent limiting arguments

in the proof of Theorem 1). In fact, when γ = 0, there would be no neighboring set, and hence,

no vertex exploration takes place. On the other hand, any γ > 0 implies the vertex exploration.

Nevertheless, this does not imply that Ωt is nonsingleton for any t. Indeed, it is theoretically

possible to have |Ωt| = 1 (with the optimal solution at the t-th iteration to be the only element

in this set), but this can only happen in a finite number of iterations. As stated in Lemma 8, for

any γ > 0, there exists a sufficiently large t such that Ωt is eventually nonsingleton. The choice of

γ > 0, and hence the vertex exploration, is a conceptual modification to the algorithm investigated

in [9]. We shall shortly see in the proof of Theorem 1 that the vertex exploration plays a role in

the finite-convergence analysis of Algorithm 2.

Proof of Lemma 8. First, because S0(= K) is bounded and St+1 ⊆ St for all t > 0, then the

sequence of nonempty compact sets {St} converges to a set S̃ by Lemma 2. Furthermore, by

Lemma 7, there exists a convergent subsequence {(xt,yt,W t)}t∈T of points in ext(St) such that

{(xt,yt,W t)}t∈T → (x̃, ỹ, W̃ ). Now, note that f>0 x
t+g>0 y

t+A0 •W t−zt = f>0 x
t+g>0 y

t+A0 •
W t− (f>0 x̃+g>0 ỹ+A0 •W̃ ) + (f>0 x̃+g>0 ỹ+A0 •W̃ )− zt. By the fact that {(xt,yt,W t)}t∈T →
(x̃, ỹ, W̃ ) and the continuity of f>0 x+g>0 y+A0 •W , there exists t1 such that for t ≥ t1, t ∈ T , we

have f>0 x
t + g>0 y

t +A0 •W t− (f>0 x̃+ g>0 ỹ+A0 • W̃ ) ≤ γ
2 . Moreover, because h-limt→∞ S

t = S̃,

we have {zt} → f>0 x̃ + g>0 ỹ + A0 • W̃ . This implies that there exists t2 such that for t ≥ t2,

t ∈ T , we have f>0 x̃+ g>0 ỹ +A0 • W̃ − zt ≤ γ
2 . Consequently, for t ≥ max{t1, t2}, t ∈ T , we have

f>0 x
t + g>0 y

t +A0 •W t − zt ≤ γ, which implies that (xt,yt,W t) ∈ Ωt.

Lemma 9. Consider the assumptions and notation in Lemma 8.

(i) If |u>a W̃va− (u>a x̃)(v>a ỹ)| > ε for some a ∈ [nm], then, there exists a sufficiently large t ∈ T
such that |u>aW tva − (u>a x

t)(v>a y
t)| > ε

2 .

(ii) If |u>a W̃va − (u>a x̃)(v>a ỹ)| ≤ ε for all a ∈ [nm], then, there exists a sufficiently large t ∈ T
such that |u>aW tva − (u>a x

t)(v>a y
t)| ≤ 2ε for all a ∈ [nm].

Proof. The proof is immediate from the continuity of f>0 x + g>0 y + A0 •W , and we skip it for

brevity.

Lemma 10 shows that there exists a sufficiently large t such that the valid inequality generated

at (xt,yt,W t) ∈ Ωt have a sufficiently large depth and subsequently, can cut off point (x̃, ỹ, W̃ ),

with |u>a W̃va − (u>a x̃)(v>a ỹ)| > ε for some a ∈ [nm], from St.

Lemma 10. Consider the assumptions in Lemma 9(i). Let the breakpoints β̃ be chosen as in

Construction 1, for S̃ and point (x̃, ỹ, W̃ ). Then, we have

δ := min
(x,y,W )∈Pa(S̃,β̃)

‖(x̃, ỹ, W̃ )− (x,y,W )‖ > 0.
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Furthermore, there exists a sufficiently large t ∈ T such that

min
(x,y,W )∈Pa(St,βt)

‖(xt,yt,W t)− (x,y,W )‖ > δ

2
,

where the breakpoints βt are chosen as in Construction 1, for St and (xt,yt,W t).

To prove Lemma 10, we first show in Lemma 11 that there exists a sufficiently large t such that

point (x̃, ỹ, W̃ ), introduced in Lemma 8, with |u>a W̃va − (u>a x̃)(v>a ỹ)| > ε for some a ∈ [nm],

violates the disjunction formed over St and using the breakpoints βt, chosen as in Construction 1

for point (xt,yt,W t).

Lemma 11. Consider the assumptions in Lemma 9(i). Let the breakpoints βt be chosen as in

Construction 1, for St and point (xt,yt,W t). Then, there exists a sufficiently large t ∈ T such

that for all k ∈ {1, 2, 3, 4}, one of the secant-induced inequalities in S̃k(ca, S
t,βt), defined in (8),

is violated by (x̃, ỹ, W̃ ), and the amount of violation is greater than ε
2 .

Proof. Suppose that u>a W̃va− (u>a x̃)(v>a ỹ) > ε. We first analyze the violation of the first secant-

induced inequality in S̃k(ca, S
t,βt) by (x̃, ỹ, W̃ ) for all k, k ∈ {1, 2, 3, 4}. Let us begin with those

S̃k(ca, S
t,βt) for which βt1,1 is the lower bound on u>

a x+v>a y
2 . With some algebra, we have

u>a W̃va −
(
u>a x̃+ v>a ỹ

2

)(
βt1,1 +

u>a x
t + v>a y

t

2

)
+ βt1,1

u>a x
t + v>a y

t

2

+

(
u>a x̃− v>a ỹ

2

)2

= u>a W̃va − (u>a x̃)(v>a ỹ)

+

(
βt1,1 −

u>a x̃+ v>a ỹ

2

)(
u>a (xt − x̃) + v>a (yt − ỹ)

2

)
>ε+

(
βt1,1 −

u>a x̃+ v>a ỹ

2

)(
u>a (xt − x̃) + v>a (yt − ỹ)

2

)
. (18)

Observe that for t > 0, we have βt1,1 −
u>
a x̃+v>a ỹ

2 ≤ 0 because (x̃, ỹ, W̃ ) is suboptimal to βt1,1 =

min{u
>
a x+v>a y

2 | (x,y,W ) ∈ St}. On the other hand, by the equivalence of the norms on a finite-

dimensional vector space, we have u>
a (xt−x̃)+v>a (yt−ỹ)

2 < C‖(xt,yt,W t) − (x̃, ỹ, W̃ )‖ for some

positive constant C. Hence, there exists t1 such that for t ≥ t1, t ∈ T , we have C
(
βt1,1 −

u>
a x̃+v>a ỹ

2

)
‖(xt,yt,W t)− (x̃, ỹ, W̃ )‖ > − ε

2 . Thus, the violation of the inequality (18) is greater than ε
2 . With

a similar argument, we can conclude that for those S̃k(ca, S
t,βt) for which βt1,3 is the upper bound

on u>
a x+v>a y

2 , the violation of the first secant-induced inequality is greater than ε
2 .

For the case that −u>a W̃va + (u>a x̃)(v>a ỹ) > ε, we can similarly conclude that the violation of

the second secant-induced inequality is greater than ε
2 . Consequently, the result follows.

Proof of Lemma 10. The first part follows from a direct application of Proposition 3. To prove the

second part, let t̂1 be the sufficiently large t for which the result in Lemma 11 holds. Note that with

a similar argument as in the proof of Lemma 11, we can find a sequence of sufficiently large t, t ∈ T ,
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Algorithm 2 Disjunctive cutting plane for (BLP) using general bases

1: Input: K, {ui}ni=1, {vj}mj=1, γ, and ε.
2: Output: An ε-optimal solution.
3: Set t← 0 and S0 = K.
4: while St 6= ∅ do
5: Let zt be the optimal value of min(x,y,W )∈St f>0 x+ g>0 y +A0 •W .

6: Let Ωt := {(x,y,W ) ∈ ext(St) |f>0 x+ g>0 y +A0 •W − zt ≤ γ}.
7: Let Ωε := {(x,y,W ) ∈ Ωt | |u>aWva − (u>a x)(v>a y)| ≤ ε, a ∈ [nm]}.
8: if Ωε 6= ∅ then
9: for each (x̂, ŷ, Ŵ ) ∈ Ωε do

10: if f>0 x̂+ g>0 ŷ +A0 • Ŵ − zt ≤ ε then
11: STOP and output (x̂, ŷ, Ŵ ) as an ε-optimal solution.
12: end if
13: end for
14: end if
15: St+1 = St.
16: for each (x̄, ȳ, W̄ ) ∈ Ωt and a ∈ [nm] such that |u>a W̄va − (u>a x̄)(v>a ȳ)| > ε

4 do
17: Call the procedure SepCuts(x̄, ȳ, W̄ ;St,ua,va) to obtain (viol,α,θ,H, ρ).
18: if viol=FALSE then
19: STOP.
20: else
21: Let St+1 := {(x,y,W ) ∈ St+1 |α>x+ θ>y +H •W ≥ ρ}.
22: end if
23: end for
24: Set t← t+ 1.
25: end while
26: STOP.

namely T ′ = {t̂1, t̂2, t̂3, . . .}, where for all k ∈ {1, 2, 3, 4}, one of the secant-induced inequalities in

S̃k(ca, S
t,βt) is violated by (x̃, ỹ, W̃ ) and the amount of violation is greater than {ε− ε

2 , ε−
ε
4 , ε−

ε
8 , . . .}. Hence, this subsequence T ′ yields a subsequence {St}t∈T ′ , for which ∨4

k=1S̃k(ca, S
t,βt) is a

decreasing sequence. This is because {St} is a decreasing sequence of nested sets and the amount

of violation of one of the secant-induced inequalities in S̃k(ca, S
t,βt), t ∈ T ′, increases for all

k ∈ {1, 2, 3, 4}. Consequently, for the subsequence T ′, Pa(St,βt) is a decreasing sequence. On the

other hand, {(xt,yt,W t)}t∈T → (x̃, ỹ, W̃ ) and h-limt→∞ S
t = S̃. These imply that {βt}t∈T → β̃.

Putting these all together, we conclude that {Pa(St,βt)}t∈T ′ → Pa(S̃, β̃) by Lemma 6. Thus,

we have min(x,y,W )∈Pa(St,βt) ‖(xt,yt,W t)− (x,y,W )‖ > − δ
2 + min(x,y,W )∈Pa(S̃,β̃) ‖(x

t,yt,W t)−
(x,y,W )‖ = δ

2 for a sufficiently large t ∈ T ′. This completes the proof.

We are now ready to state the main result of this section for any general bases for Rn and Rm,

including the standard bases {e1, . . . , en} and {e1, . . . , em}.

Theorem 1. Consider two parameters γ > 0 and ε > 0. Let {u1, . . . ,un} denote a set of mutually

orthonormal vectors in Rn, and {v1, . . . ,vm} denote a set of mutually orthonormal vectors in Rm.

Then, Algorithm 2 either generates an ε-optimal solution to (BLP) or detects infeasibility in a finite

number of iterations.

Proof. Consider the notation defined in the description of Algorithm 2. Note that the algorithm
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generates cutting planes for conv (F). Suppose by contradiction that the algorithm does not con-

verge in a finite number of iterations. Because S0(= K) is bounded and St+1 ⊆ St for all t > 0,

then the sequence of closed sets {St} converges to a set S̃ by Lemma 2. We examine the cases that

S̃ = ∅ and S̃ 6= ∅.
Case 1. S̃ = ∅. We conclude that F is empty because F ⊆ conv (F) ⊆ S̃. On the other hand,

because {St} converges to the empty set S̃, then, there exists a finite t > 0 such that St = ∅.
Otherwise, S̃ = ∩∞t=1S

t 6= ∅ by the Cantor’s intersection theorem, stated in Lemma 1. Hence, the

algorithm terminates at line 26 of Algorithm 2 after detecting the infeasibility of (BLP).

Case 2. S̃ 6= ∅. Let (x̃, ỹ, W̃ ) be an optimal extreme point solution of min(x,y,W )∈S̃ f>0 x +

g>0 y+A0 •W . By Lemma 7, there exists a convergent subsequence {(xt,yt,W t)}t∈T of points in

ext(St) such that {(xt,yt,W t)}t∈T → (x̃, ỹ, W̃ ). We examine the cases that (x̃, ỹ, W̃ ) /∈ F
ε
2 and

(x̃, ỹ, W̃ ) ∈ F
ε
2 separately, where F

ε
2 is defined in (12).

Case 2.1. (x̃, ỹ, W̃ ) /∈ F
ε
2 . In this case, there exists some a, a ∈ [nm], such that |u>a W̃va −

(u>a x̃)(v>a ỹ)| > ε
2 . Let us choose β̃ as in Construction 1 for S̃ and (x̃, ỹ, W̃ ). Let us similarly

define βt for St and (xt,yt,W t). By the first part of Lemma 10, there exists δ > 0, where δ is

defined as follows:

δ = min
(x,y,W )∈Pa(S̃,β̃)

‖(x̃, ỹ, W̃ )− (x,y,W )‖.

Claim 1. There exists a finite t ∈ T such that

1. ‖(xt,yt,W t)− (x̃, ỹ, W̃ )‖ < δ
2 (Lemma 7),

2. (xt,yt,W t) ∈ Ωt (Lemma 8),

3. |u>aW tva − (u>a x
t)(v>a y

t)| > ε
4 (Lemma 9(i)),

4. min(x,y,W )∈Pa(St,βt) ‖(xt,yt,W t)− (x,y,W )‖ > δ
2 (Lemma 10).

Hence, in iteration t, the algorithm generates a valid inequality (line 21 of Algorithm 2) that is

violated by (x̃, ỹ, W̃ ) (this can be seen from parts 1 and 4 of Claim 1). Thus, (x̃, ỹ, W̃ ) /∈ St+1,

contradicting (x̃, ỹ, W̃ ) ∈ S̃ ⊆ St+1. So, the case that (x̃, ỹ, W̃ ) /∈ F
ε
2 will not happen. If F 6= ∅,

then, this contradiction implies that we must have (x̃, ỹ, W̃ ) ∈ F
ε
2 .

Case 2.2. (x̃, ỹ, W̃ ) ∈ F
ε
2 . Now, consider the case that (x̃, ỹ, W̃ ) ∈ F

ε
2 .

Claim 2. There exists a finite t ∈ T such that

1. (xt,yt,W t) ∈ Ωt (Lemma 8),

2. |u>aW tva − (u>a x
t)(v>a y

t)| ≤ ε for a ∈ [nm], implying (xt,yt,W t) ∈ Ωε (Lemma 9(ii)),

3. f>0 x̃ + g>0 ỹ + A0 • W̃ − zt ≤ γ (using the fact that h-limt→∞ S
t = S̃ and similar to the

argument in the proof of Lemma 8).
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For a sufficiently large t, t ∈ T , that satisfies Claim 2, we conclude that zt ≤ min(x,y,W )∈Ωε f
>
0 x+

g>0 y + A0 •W ≤ f>0 x̃ + g>0 ỹ + A0 • W̃ . Note that Ωε 6= ∅ because (xt,yt,W t) ∈ Ωε. Also,

note that the optimal solution (x̂, ŷ, Ŵ ) ∈ Ωε to the above optimization problem is such that

f>0 x̂ + g>0 ŷ + A0 • Ŵ − zt ≤ f>0 x̃ + g>0 ỹ + A0 • W̃ − zt ≤ γ. If 0 < γ ≤ ε, then, the

algorithm terminates in the t-th iteration and yields an ε-optimal solution (x̂, ŷ, Ŵ ). Other-

wise, if γ > ε, with a similar argument, we can find a sufficiently large t, t ∈ T , such that

f>0 x̃ + g>0 ỹ +A0 • W̃ − zt ≤ ε, in addition to the first two parts of the above claim. Note that

(x̃, ỹ, W̃ ) provides an upper bound to the optimization problem min(x,y,W )∈Ωε f
>
0 x+g>0 y+A0•W .

Thus, f>0 x̂+ g>0 ŷ +A0 • Ŵ − zt ≤ f>0 x̃+ g>0 ỹ +A0 • W̃ − zt ≤ ε. Consequently, the algorithm

terminates in the t-th iteration and yields an ε-optimal solution (x̂, ŷ, Ŵ ). In any case, we have

an ε-optimal solution (x̂, ŷ, Ŵ ) to the feasible (BLP).

Remark 2. It is worth noting that the fact that γ > 0, and hence the vertex exploration is imposed,

is used in part 1 of Claim 1 and in parts 1 and 3 of Claim 2. These parts fail to hold when γ = 0

as they are proved using a limiting argument.

4.3 SVD Basis

In Algorithm 2, it is assumed that two sets of bases are available a priori. In this section, we assume

that bases are obtained through the course of the algorithm.

Given an optimal solution (x̆, y̆, W̆ ) to the minimization over the relaxation St, the left- and

right-singular vector ut and vt, respectively, corresponding to the largest singular value of W̆−x̆y̆>

are obtained. If (ut,vt) is not in the span of previously generated vectors Vt, (ut,vt) is added to the

set of bases. While the bases are generated, relaxation St is also refined by adding disjunctive cuts

through procedure SepCuts(x̆, y̆, W̆ ;St,ut,vt). This procedure of generating bases is continued

until two sets of bases for Rn and Rm are available, i.e., |Vt| ≥ max{n,m}. Because these spaces

are finite-dimensional, the procedure of generating bases stops after a finite number of iterations.

Once the bases are available, the algorithm continues as in Algorithm 2.

4.4 Discussion

The algorithms in Sections 4.2 and 4.3 need the set of γ-optimal extreme point solutions. Thus, the

practical performance of the analyzed algorithms depends on the choice of γ > 0. A larger choice of

γ results in fewer iterations to converge while the computational time per iteration might increase.

This is due to exploring a larger set of γ-optimal solutions, solving a relaxation problem with more

constraints, and a potentially more demanding cut separation problem. On the other hand, a

smaller choice of γ might result in a slower convergence. The choice of γ is problem-dependent and

should be tuned to trade off the computational time and improvements obtained from the cuts.

In other words, although vertex exploration guarantees finite convergence in theory, not all cuts

generated through vertex exploration may have computational benefits.
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On a related note, in theory, the set of γ-optimal extreme point solutions can be generated

using Simplex pivots of the current extreme point solution. Alternatively, one may first encode

basic feasible solutions of the current relaxation using binary variables and obtain a mixed-binary

linear program (see the idea in [15]). Now, one can use the solution pool feature of a commercial

optimization solver (e.g., CPLEX) to enumerate all near-optimal solutions. Recognizing that this

limitation to perform a thorough vertex exploration might incur additional computational burdens,

in our numerical experiments in Section 5, we explored a few “promising” near-optimal extreme

point solutions using random objective function coefficients.

5 Numerical Experiments

This section presents experiments using a pure cutting plane algorithm analyzed in Section 4.3.

The experiments are conducted to investigate the performance of our cuts, particularly relaxation

quality. In Section 5.1, we provide general details on the implementation of our algorithm. We

report the computational results in Section 5.2.

5.1 Implementation Details

In Section 4, a finitely-convergent algorithm that is based on generating cuts at all γ-optimal

extreme point solutions of the current relaxation was analyzed. For the computational experiments

in Section 5.2, we implemented a more practical version of the algorithm analyzed in Section 4.3,

which generates cuts at the current relaxation solution and only a few additional near-optimal

extreme point solutions. We implemented our analyzed algorithm in C++, using the Eigen 3.3.7

library [11], for the SVD of the residual matrix. With this practical consideration, our algorithm

was repeated until a time limit was reached or the algorithm could not find a violated cut.

To obtain valid cuts, we use a procedure referred to as SepCutsCGLP(x̆, y̆, W̆ ;St,ut,vt). This

procedure proceeds similarly to SepCuts(x̆, y̆, W̆ ;St,ut,vt), outlined in Algorithm 1, except for

it obtains valid cuts through the CGLP, introduced in Lemma 4. This CGLP is based on a

(2 × 2)-way disjunction, where the disjunction is formed according to (ut,vt), corresponding

to the largest singular value of W̆ − x̆y̆>. SepCutsCGLP(x̆, y̆, W̆ ;St,ut,vt) is different from

SepCuts(x̆, y̆, W̆ ;St,ut,vt), in the sense that the former utilizes an outer approximation on the

convex quadratic terms to form the disjunction. So, it is possible that the minimum distance of

a point (x̆, y̆, W̆ ) from the convex hull Pc(St,β), where c = (ut,vt), is positive, while the corre-

sponding CGLP cannot find a violated disjunctive cut; hence, our modified algorithm stops. At

each iteration of the algorithm, the inequalities fed to the CGLP are given by the McCormick con-

straints, an outer approximation of the convex quadratic terms, and all the disjunctive cuts added

to the relaxation in all the previous iterations. We note for Example 1, a disjunctive cut is obtained

by approximating the convex quadratic terms at 2500 equally-spaced points on [0, 1]× [0, 2], where

for all other instances such a cut is obtained by approximating the convex quadratic terms at the

current solution.
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To obtain a near-optimal solution, we added the constraint f>0 x+ g>0 y +A0 •W − zt ≤ γ to

the current relaxation St and replaced the objective function with a randomly generated objective

function. To find this additional point at each iteration, we generated three candidate near-optimal

extreme point solutions and chose the point with the highest `1-norm from the optimal solution

to the current relaxation problem. The only exception to the above vertex exploration is our

experiments for Example 1, where we used the CGAL 5.5.2 library [35] to enumerate all extreme

points. Furthermore, we chose parameter γ to be a percentage of the gap between lb(MC) and

GUROBI. We provide more details on the vertex exploration and the choice of γ in Section 5.2.

5.2 Computational Results

Our experiments are performed over four sets of instances. First, we consider Examples 1 and 2.

Then, we consider a set of randomly generated problems for n = 10 and m ∈ {2, 3, 4, 5, 10}. For each

pair (n,m), we generated five instances with only one bilinear constraint, i.e., p = 1 in (1). Finally,

we consider the problem instances used in [9], but with some modifications. The instances in [9] are

generated for a bilinear optimization problem with an objective function x>Q0x+y>R0y+x>A0y,

with no bilinear constraint but with box constraints on x and y. The dimension of n were set to

20 and 100, with m ∈ {4, 8, 16, 20} and m ∈ {4, 20, 40, 80}, respectively. For each pair (n,m), eight

instances were generated, where matrix A0 has a density of 50% in half of them and a density of

100% in the other half. Moreover, in each group of four instances where A0 has the same density,

the ranks of matrices Q0 and R0 were set to 25, 50, 75, and 100 percent of n and m. For each

instance, we changed to the objective function to x>Q01 + y>R01 + x>A0y, where 1 is a vector

of ones with an appropriate dimension. In other words, we generated an instance in the form of the

objective function in (1), where the i-th entry in vectors f0 and g0 were obtained by the summation

of entries in the i-th row of matrix Q0 and R0, respectively.

We solved each problem instance with three pure cutting plane algorithms: (i) the algorithm

analyzed in Section 4.3 (denoted as “Modified SVD(x)”), where the presence of x≥ 1 indicates

the number of additional near-optimal extreme point solutions explored for the cut generation and

its absence indicates exploring all near-optimal extreme points, (ii) the algorithm studied in [9]

as introduced in Section 2.2 (denoted as “SVD”), and (iii) the algorithm studied in [6] (denoted as

“BCM”). Using algorithms Modified SVD(x), SVD, and BCM, instances were solved with the LP solver

CPLEX 12.7. For Modified SVD(x) and SVD, we set the maximum number of cuts per iteration

per extreme point to at most one cut unless otherwise stated. We note that the only difference

between algorithms Modified SVD(x) and SVD is the vertex exploration in the former, and all

the other implementation details remained the same. The code for algorithm BCM with the LP

solver GUROBI is available at https://github.com/g-munoz/poly_cuts_cpp. We implemented

this algorithm in C++ with the LP solver CPLEX 12.7. For BCM, we set the maximum number of

cuts added per iteration to 1000 unless otherwise stated. In addition, for comparisons, we solved

all instances with the nonconvex option of GUROBI 9.1.2 to obtain a bound, listed under column

“GUROBI”.
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Table 1: Comparison of BCM [6], SVD [9], and Modified SVD on Example 1.

BCM [6] SVD [9] Modified SVD

I-GC (%) G (%) # Cuts I-GC (%) G (%) # Cuts I-GC (%) G (%) # Cuts O-GC BCM (%) O-GC SVD (%)

96.4723 0.7483 327 99.7095 0.0616 20 99.8896 0.0234 56 96.8701 61.9861

The main goal of our experiments was to compare the relaxation quality of the abovementioned

algorithms/solver with a prespecified time limit. For each algorithm alg ∈ {Modified SVD(x), SVD, BCM},
we evaluated the quality of the lower bound, denoted as lb(alg), by calculating the gap as

G alg :=
GUROBI− lb(alg)

|GUROBI|
× 100%,

where GUROBI refers to the bound obtained by GUROBI within the prespecified time limit. More-

over, we calculated the gap closed compared to the initial lower bound obtained from McCormick

relaxation, denoted as lb(MC), as

I-GC alg :=
lb(alg)− lb(MC)

GUROBI− lb(MC)
× 100%.

When GUROBI = lb(MC) (and hence, lb(alg) = lb(MC) by design), we assume the initial gap closed

is 100%. Finally, we computed the gap closed by Modified SVDx relative to a benchmark algorithm

alg ∈ {Modified SVD(x-1), SVD, BCM} as

O-GC alg :=
lb(Modified SVDx)− lb(alg)

GUROBI− lb(alg)
× 100%.

In addition, in this section, we report the total time (in seconds) spent to achieve the lower bound

(“Time”) and the total number of added cuts (“# Cuts”). For Modified SVDx, the total time

includes the time spent to explore the near-optimal extreme point solutions. For all experiments

with Modified SVD(x), we chose parameter γ to be a percentage of the gap between lb(MC) and

GUROBI, i.e., γ = α(GUROBI− lb(MC)) for some α ∈ (0, 100].

All experiments were performed on a Linux Ubuntu 20.04 environment using one single core of

a PC with an Intel Core i7-9700 3.00 GHz processor and 32.00 GB of RAM.

5.2.1 Example 1

Recall from Section 2.2 that SVD shows a slow rate of convergence for Example 1. We implemented

Modified SVD by exploring all γ-optimal extreme point solutions, where γ was chosen as 0.5% of

the gap between lb(MC) and GUROBI. Table 1 shows that Modified SVD improved the lower bound

over BCM and SVD. Figure 3 depicts the evolution of the lower bound over the iteration number using

SVD and Modified SVD. SVD terminated after 20 iterations and adding 20 cuts, whereas Modified

SVD terminated after 15 iterations and adding 56 cuts.
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Figure 3: Lower bounds for Example 1 using SVD [9] and Modified SVD.

Figure 4: Lower bounds for Example 2 using STD, SVD [9], Modified SVD(1), and Modified

SVD(2).

5.2.2 Example 2

Again, recall from Section 2.2 that SVD shows a slow rate of convergence for Example 2. We

implemented Modified SVD(1) and Modified SVD(2) with different values of γ. In particular,

γ = α(ub − lb(MC)), with α ∈ [0.1, 1] in an increment of 0.1% in addition to 5% and 10%. Table

2 shows the result for Example 2. Observe that for all choices of γ, Modified SVD(2) improved

the lower bound over those of BCM and SVD. In addition, Modified SVD(2) improved the lower

bound over those of Modified SVD(1) for all choices of γ, except for when α = 0.8% and α = 10%.

On average (over all choices of γ), exploring two near-optimal solutions using Modified SVD(2)

resulted in a 89.75%, 36.6228%, and 15.6102% reduction in the remaining optimality gap, compared

to BCM, SVD, and Modified SVD(1), respectively. We also note that Modified SVD(1) achieved its

best lower bound (i.e., lowest optimality gap) when α = 0.4%, whereas Modified SVD(2) achieved

its best lower bound when α = 0.7%. Table 3 shows a summary of results for all algorithms when

Modified SVD(1) and Modified SVD(2) were implemented with their respective best choice of

γ. Figure 4 also depicts the evolution of the lower bound using STD, SVD, Modified SVD(1), and

Modified SVD(2) for Example 2. While SVD terminated after 76 iterations, Modified SVD(1) and

Modified SVD(2) continued for 113 and 119 iterations, respectively.
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Table 2: Comparison of Modified SVD(1) and Modified SVD(2) on Example 2 with varying γ
parameters.

Modified SVD(1) Modified SVD(2)

α lb I-GC (%) G (%) # Cuts lb I-GC (%) G (%) # Cuts O-GC BCM (%) O-GC SVD (%) O-GC SVD(1) (%)

0.1 -0.6029 96.5686 20.5885 200 -0.5825 97.2485 16.5088 325 86.0901 13.9932 19.8155
0.2 -0.5821 97.2618 16.4294 236 -0.5574 98.0850 11.4900 261 90.3188 40.1400 30.0647
0.3 -0.5691 97.6971 13.8174 160 -0.5563 98.1222 11.2667 209 90.5070 41.3034 18.4601
0.4 -0.5524 98.2527 10.4841 211 -0.5484 98.3857 9.6861 242 91.8387 49.5378 7.6115
0.5 -0.5572 98.0933 11.4402 212 -0.5453 98.4903 9.0583 240 92.3677 52.8084 20.8205
0.6 -0.5749 97.5028 14.9833 181 -0.5633 97.8896 12.6625 274 89.3309 34.0316 15.4893
0.7 -0.5675 97.7495 13.5032 119 -0.5446 98.5140 8.9159 295 92.4877 53.5504 33.9719
0.8 -0.5614 97.9523 12.2860 182 -0.5692 97.6921 13.8476 176 88.3323 27.8571 -12.7104
0.9 -0.5676 97.7482 13.5107 141 -0.5472 98.4264 9.4416 207 92.0447 50.8115 30.1175

1 -0.5742 97.5258 14.8454 139 -0.5468 98.4395 9.3632 263 92.1108 51.2199 36.9287
5 -0.5865 97.1178 17.2930 138 -0.5849 97.1700 16.9801 203 85.6929 11.5376 1.8091

10 -0.5728 97.5721 14.5672 286 -0.5838 97.2066 16.7604 219 85.8781 12.6826 -15.0555

Average 97.5868 14.4790 97.9725 12.1651 89.7500 36.6228 15.6102

Notes: γ = α(GUROBI− lb(MC)).

Table 3: Comparison of BCM [6], SVD [9], Modified SVD(1), and Modified SVD(2) on Example 2.

BCM [6] SVD [9] Modified SVD(1) Modified SVD(2)

I-GC (%) G (%) # Cuts I-GC (%) G (%) # Cuts I-GC (%) G (%) # Cuts I-GC (%) G (%) # Cuts O-GC BCM (%) O-GC SVD (%) O-GC SVD(1) (%)

80.22 118.68 5663 96.8 19.19 76 98.25 10.48 211 98.51 8.92 295 92.49 53.55 14.96

5.2.3 Third Set of Instances

For a set of randomly generated instances, we tested algorithms BCM, SVD, Modified SVD(1), and

Modified SVD(2). We summarize the results in Table 4, averaged over five instances. We note

that in the implementation Modified SVD(1) and Modified SVD(2), we chose parameter γ to be

either 1% or 5% of the gap between lb(MC) and GUROBI. The time limit for all instances and

algorithm with m = 2, 3, 4, 5, or 10, is set to 300, 600, 900, 1200, or 2400 seconds, respectively.

Observe from Table 4 that SVD improved the initial gap closed compared to that of BCM for

all pairs (n,m), on average 83.60% vs. 55.16%. However, the performance of SVD is improved

by exploring additional near-optimal extreme point solutions. In particular, Modified SVD(1)

and Modified SVD(2) closed 85.98% and 86.20% of the initial gap, respectively. We note that

on average, using Modified SVD(2) resulted in a 71.29%, 15.20%, and 1.67% reduction in the

remaining optimality gap, compared to BCM, SVD, and Modified SVD(1), respectively. Nevertheless,

for instances (10, 3) and (10, 4), we observed that on average, Modified SVD(1) yielded a higher-

quality solution compared to Modified SVD(2). The improvement over SVD was generally achieved

at the expense of a higher computational time for Modified SVD(1) and Modified SVD(2). As

expected, adding more cuts at each iteration increases the size of the relaxation problem, which,

in turn, leads to a larger CGLP. So, the overall computational time might increase. On the other

hand, while Modified SVD(1) and Modified SVD(2) yielded a higher-quality solution compared

to BCM, this improvement was achieved with a comparable computational time. We note that for

BCM, we also set the maximum number of cuts added per iteration to 20 (similar to the setting in

[6]). However, we observed that this new setting resulted in a worse lower bound compared to the

results in Table 4; in particular, the initial gap closed reduced from 55.16% to 52.94%, on average.
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Table 4: Comparison of BCM [6], SVD [9], Modified SVD(1), and Modified SVD(2) on the second
set of instances.

BCM [6] SVD [9] Modified SVD(1) Modified SVD(2)

(n,m) GUROBI I-GC (%) G (%) Time (s) I-GC (%) G (%) Time (s) I-GC (%) G (%) Time (s) I-GC (%) G (%) Time (s) O-GC BCM (%) O-GC SVD (%) O-GC SVD(1) (%)

(10, 2) -0.99 66.01 77.11 202.20 90.94 21.27 10.27 92.15 18.97 129.24 92.59 18.10 155.40 80.60 7.95 14.06
(10, 3) -1.15 59.32 101.93 392.74 89.24 26.94 67.37 91.73 22.17 196.24 91.75 22.30 304.07 79.03 15.76 -2.78
(10, 4) -0.78 50.44 254.54 454.79 86.64 70.40 36.12 90.28 54.00 293.07 88.61 60.64 548.78 76.28 17.22 -15.81
(10, 5) -1.36 55.78 119.48 794.66 79.84 54.29 432.56 81.60 49.88 795.77 83.52 47.11 959.46 65.93 23.77 9.77

(10, 10) -1.54 44.23 111.47 2257.40 71.38 58.92 1259.86 74.14 53.18 1858.40 74.55 53.36 2369.85 54.63 11.33 3.12

Average 55.16 132.91 83.61 46.36 85.98 39.64 86.20 40.30 71.29 15.21 1.67

5.2.4 Fourth Set of Instances

For this set of instances, we tested algorithms BCM, SVD, and Modified SVD(1). We summarize the

results in Table 5, where for each pair (n,m), the average is taken over all instances with the same

density of matrix A0. We note that in the implementation of SVD and Modified SVD(1) for this

set of instances, we chose parameter γ to be either 1%, 5%, or 10% of the gap between lb(MC) and

GUROBI. The time limit for all instances and algorithm with n = 20 or 100 is set to 3600 or 7200

seconds, respectively.

Observe from Table 5 that, unlike the second set of instances, where for all instances Modified

SVD(1) resulted in a higher-quality solution compared to SVD, we observe a mixed performance for

the third set of instances. However, as shown under column “O-GC SVD”, Modified SVD(1) is

only dominated by a small margin, while there are instances where SVD is dominated by a larger

margin. In addition, when the density is 50%, n = 100, and m ∈ {20, 40, 80}, Modified SVD and

Modified SVD(1) could not improve beyond the initial McCormick lower bound; hence, column

“O-GC SVD” shows zero for these instances.

When Modified SVD(1) is compared with BCM, we also observe a mixed performance for the

third set of instances, unlike the second set of instances where Modified SVD(1) always resulted in

a higher-quality solution compared to BCM. In particular, when the density is 100%, BCM generally

yielded a higher lower bound compared to Modified SVD(1) when n = 20, while Modified SVD(1)

always yielded a higher lower bound compared to BCM when n = 100. There are two points in order

about BCM. We observe an anomaly in the lower bound obtained via BCM for instances (20, 4) and

(20, 8) when the density is 50%. For instances (20, 4) with a rank factor 25 and 100 for matrices

Q0 and R0, and the instance (20, 8) with a rank factor 50, algorithm BCM resulted in a higher lower

bound than the upper bound. In fact, for these instances, the lower bound obtained via the initial

McCormick relaxation is equal to the upper bound, and we have a certificate of optimality. We

suspect there might be some errors in the implementation of BCM in their accompanying code [6].

For these instances, we assumed the lower bound equals the upper bound and considered the initial

gap closed by BCM as 100% in our calculations. Another noteworthy observation is that BCM could

not improve the lower bound beyond the initial relaxation for all instances with n = 100.
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Table 5: Comparison of BCM [6], SVD [9], Modified SVD(1) on the third set of instances, with at
most one cut per extreme point for SVD and Modified SVD(1).

BCM [6] SVD [9] Modified SVD(1)

Density (%) (n,m) UB I-GC (%) G (%) Time (s) I-GC (%) G (%) Time (s) I-GC (%) G (%) Time (s) O-GC BCM (%) O-GC SVD (%)

50 (20, 4)† -33697.13 100 0.00 685.41 98.50 0.14 900.11 98.94 0.10 901.51 -1313651.51 7.33
(20, 8)† -46463.67 93.14 1.87 3632.11 82.55 4.32 1800.34 82.73 4.24 2701.81 -103.55 0.45

(20, 16) -88196.47 62.45 14.80 3823.81 46.10 21.36 3602.56 45.97 21.49 3604.42 -44.23 -0.21
(20, 20) -107278.90 54.99 25.10 3879.06 23.32 42.75 3607.74 18.59 45.32 3612.15 -80.94 -6.28
(100, 4) -160265.27 0.00 4.04 -* 30.45 1.94 5406.99 32.38 1.83 5405.62 32.38 3.29

(100, 20) -393434.60 0.00 90.22 -* 0.00 90.22 7219.98 0.00 90.22 7243.43 0.00 0.00
(100, 40) -795719.00 0.00 82.67 -* 0.00 82.67 7282.11 0.00 82.67 7314.02 0.00 0.00
(100, 80) -313463.84 0.00 28.24 -* 0.00 28.24 7757.63 0.00 28.24 7728.23 0.00 0.00

100 (20, 4) -38932.61 88.31 5.61 3648.54 89.26 5.12 3602.50 90.40 4.69 3604.77 1.80 47.57
(20, 8) -87015.21 90.87 5.83 3668.95 76.94 14.09 3602.84 78.31 13.25 3603.67 -391.25 5.95

(20, 16) -133177.69 80.10 17.17 3844.75 61.04 32.90 3605.06 60.57 33.41 3610.52 -104.68 -1.23
(20, 20) -147769.05 74.99 26.94 3751.24 53.67 50.48 3606.87 52.19 52.05 3615.02 -92.13 -3.30
(100, 4) -212377.83 0.00 52.92 -* 50.76 26 7210.10 51.77 25.49 7219.63 51.77 1.98

(100, 20) -655678.70 0.00 124.99 -* 10.92 111.31 7223.76 9.00 113.72 7278.09 9.00 -2.15
(100, 40) -1350877.87 0.00 128.41 -* 8.27 117.86 7320.42 7.04 119.41 7348.71 7.04 -1.34
(100, 80) -593254.64 0.00 31.35 -* 6.96 29.17 7469.35 4.73 29.87 7614.35 4.73 -2.40

Notes: We set the time limit for all algorithms and instances with n = 20 and n = 100 to 3600 and 7200 seconds, respectively.
† Includes instances that BCM resulted in a higher lower bound than the upper bound.
∗ For these instances, a lower bound could not be found within the time limit.

6 Conclusion

We studied a general nonconvex bilinear program with continuous variables. We analyzed a

finitely-convergent disjunctive programming-based pure cutting plane algorithm to obtain a global

ε-optimal solution of the bilinear program. While the analyzed algorithm partially relies on the

ideas investigated [9, 29], we proposed exploring all near-optimal extreme point solutions to a cur-

rent relaxation. We provided a theoretical foundation to demonstrate that generating cuts at all

near-optimal solutions guarantees global ε-optimality for a bilinear program.

Since exploring all near-optimal extreme point solutions is computationally expensive, we imple-

mented a “practical” version of the analyzed algorithm for our numerical experiments. In fact, we

generated valid cuts at the current relaxation solution and only a few near-optimal extreme point

solutions. The results suggested that this practical implementation improved the optimality gap

relative to the optimality gap resulted from the procedure that generates cuts only at the optimal

extreme point solution using singular value decomposition [9]. Moreover, we also demonstrated the

potential of our analyzed algorithm to reduce the optimality gap over to the pure cutting plane

approach proposed in [6]. We note that although we conducted a comparative study between our

analyzed algorithm and those in [6, 9], our aim in this paper is not to conclude the computational

efficiency of one algorithm over another. Instead, our findings should be interpreted as complemen-

tary to existing algorithms and inspire incorporating vertex exploration within a branch-and-cut

solver. Moreover, we acknowledge that the computational benefits of the analyzed algorithm lie

in a judicious vertex exploration to generate disjunctive cuts. Such considerations are problem-

dependent and deserve further computational studies and more sophisticated implementations.
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