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Abstract

A frequent challenge encountered by manufacturers of mechanical assemblies con-
sists of the definition of quality criteria for the assembly lines of the subcomponents
which are mounted into the final product. The rollout of Industry 4.0 standards
paves the way for the usage of data-driven, intelligent approaches towards this goal.
In this work, we investigate such a scenario originating in the daily operations of
thyssenkrupp Presta AG, where new vibroacoustic quality specifications must be de-
rived for the assembly line producing ball nut assemblies, based on the feedback
offered by the vibroacoustic quality test of the steering gear, the final mechanical
assembly they are mounted into. We first present a Mixed Integer Linear Program-
ming (MILP) formulation for the problem and show that small instances of the
corresponding available dataset can be solved to optimality. Upon ascertainment
of the unsuitability of the MILP approach for industrial daily operations due to its
long computation time, we propose a heuristic solving approach based on genetic
algorithms and measure the performance gap between them in terms of achieved
solution quality and computation time. Finally, we additionally propose a greedy
heuristic designed to outperform the genetic algorithm in terms of computation time
while still featuring a comparable solution quality. The practical relevance of the re-
sults is guaranteed, since the best solution reached by the genetic algorithm reduces
the scrap costs with respect to the method currently employed by the company by
49.91%.
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1. Introduction

Industrial manufacturing has been undergoing a fundamental paradigm shift,
away from the traditional mass production framework of the past towards a reality
consisting of large product variety (ElMaraghy et al., 2013) and a shorter time to
market. A critical phase in the manufacturing cycle associated with each product
occurs during ramp-up, shifting the production from test batches to production at
the maximum required capacity. The necessary reconfiguration of the production
systems to accommodate the new products, paired with the simultaneous increase
in production output, lead to potential instabilities which translate in extra costs
for unplanned maintenance activities, quality and capacity loss (Colledani, Tolio &
Yemanel 2018; |Almgren, (1999, 2000)).

This potential problem is further exacerbated in industries which produce me-
chanical assemblies, where the final product consists of multiple, potentially hundreds
of subcomponents which interact with each other in a non-linear manner. In this
production context, a fault in the final assembly may originate either due to faulty
subcomponents, due to subcomponent interactions or due to a suboptimal assembly
process. Furthermore, the manufacturing of the subcomponents on different ma-
chines spread across multiple countries in a global production chain often complicates
the tracking and management of quality issues. Another aspect worth considering
is that meeting technical specifications does not always guarantee a high perceived
quality from the customers (Stylidis, Madrid, Wickman & Soderberg, 2017)), a prob-
lem aggravated in domains in which quality can be subjective. Psychoacoustics,
the study of sound perception by humans, constitute a relevant example in the au-
tomotive industry, with many studies trying to bridge the gap between subjective
perception and measurable quantities (Huang, Huang, Li, Lim & Ding, 2016; Swart
& Bekker| [2019; [Kwon, Jo & Kang), 2018; (Gaspar, Fontul, Henriques, Ribeiro, Silva
& Valverde, [2016)).

Since most manufacturer-customer relations involving mechanical assemblies are
business-to-business, quality feedback from the end customers is also scarce. In the
manufacturing process, the quality specifications for the production of mechanical
assemblies are thus mostly defined either by, or together with the customer busi-
ness partner and typically ensured by an End-Of-Line (EOL) test, paired with an
analytical decision support framework (Hirsch, Reimann, Kirn & Mitschang, [2018]).
The resulting challenge for the mechanical assembly manufacturer is the definition
of quality specifications for the subcomponent production lines and their own EOL



modules. The sheer complexity of this production scenario, paired with its inher-
ent uncertainties, render the building of an exact mathematical model impossible.
However, the consistent implementation of Industry 4.0 standards is guaranteeing an
increasing volume of manufacturing data which can be used for smart manufactur-
ing (Tao, Qi, Liu & Kusiak|, 2018) and industrial prognosis tasks (Diez-Olivan, Ser,
Galar & Sierra, 2019). The availability of large amounts of quality-relevant data,
paired with large scale monitoring capabilities and intelligent data and sensor fusion
strategies, shifts thus the focus of the practitioners towards a data-driven model-
ing of the complex production chains and an early identification of quality issues.
(Lieber, Stolpe, Konrad, Deuse & Morik| 2013) offer such an example from the steel
industry, where 218 features from 470 manufacturing processes were used as input
for the prediction of a binary label describing the quality of the final product.

In the specific domain of quality control for mechanical assemblies, (Wang, Liu,
Ge, Ling & Liu, 2015) propose the consideration of three research directions: as-
sembly quality optimization, assembly performance prediction and quality control
systems. Our work provides an analysis framework for the quality requirements
propagation problem down the production chain of a mechanical assembly and could
thus be ordered in both the quality optimization and performance prediction cate-
gories. Specifically, we assume two measurement curves from the EOL modules at
the end of the production line of the mechanical assembly and of a specific sub-
component, respectively, together with an additional binary quality label describing
whether the mechanical assembly was tested and found to be faulty due to the specific
subcomponent or not. In our setting, the implication that a mechanical assembly
fault can be traced back to a subcomponent fault can only be asserted with certainty
by domain experts. The objective is to learn features from the subcomponent’s EOL
measurement curve which help predict the corresponding mechanical assembly’s bi-
nary quality, in order to ensure that potential defects which may negatively impact
the final product are recognized early in the production chain. The main challenge
in our work is thus the fact that the final quality decision is achieved after the sub-
component is mounted into the mechanical assembly, while the quality screening of
the subcomponent is desired before it reaches the assembly. For model learning pur-
poses, both EOL measurement curves are available; at test time, the prediction shall
be based on the subcomponent’s EOL measurement curve alone.

The described scenario was previously examined by (Bucur, Hungerlander &
Frick, [2019¢; Bucur, Frick & Hungerlander], 2019al) via machine learning methods in
the context of a specific engineering dataset from the automotive industry consisting
of EOL vibroacoustic measurements encoded as order spectra for steering gears and
ball nut assemblies (BNA). An alternative solving approach, still extensively used for



rotating parts in the aforementioned industry, prescribes the partition of the order
spectra in different so-known quality windows, characterized by their left and right
borders and their upper threshold. If the maximum of the curve in any of the windows
violates the respective upper threshold, the complete curve is assigned a label of 1.
This simple approach uses thus only the subcomponent’s EOL curve and the quality
label of the mechanical assembly as input, disregarding the mechanical assembly’s
EOL curve on which the quality label is assigned. Although ignoring the EOL curve
of the final assembly could lead to a potentially worse quality of the subcomponent
quality classification results, the relative model simplicity ensured its continued use
especially in ramp-up operational phases, in which an explainable model is crucial.
In the present work, we investigate this scenario thoroughly in the aforementioned
ball nut assembly and steering gear context and provide a Mixed Integer Linear
Programming (MILP) formulation for the problem, as well as a genetic algorithm
and a greedy heuristic which achieve a high performance with respect to solution
quality and computation time. To the best of our knowledge, no MILP model exists
in literature for the considered problem. Our results further extend those from the
previous short paper (Bucur et al., 2019b)), in which a genetic algorithm was used to
optimize the so-called quality windows which covered the complete order spectrum
curve, implicitly assuming that each spectral order contributes information relevant
for the classification. The optimization variables after this relaxation consisted of
the change points on the spectral order grid and the upper threshold values be-
tween them, instead of the left and right window borders and corresponding upper
thresholds.

The main contributions of this work thus expand the previously obtained results
(Bucur et al., 2019bjcla) and can be summarized as follows:

1. MILP formulation for the optimization problem seeking so-called quality win-
dows consisting of left, right and upper borders on vibroacoustic order spectra
for the BNA quality classification problem, using the steering gear quality la-
bels as a quality indicator.

2. Redesigned genetic algorithm which overcomes multiple limitations of the de-
sign presented in (Bucur et al., 2019b) by introducing new crossover and muta-
tion mechanisms; furthermore, it is suitable for use by practitioners due to its,
with respect to the MILP approach, shorter computation time and comparable
solution quality.

3. Measurement of the performance gap between the redesigned genetic algorithm
and the MILP approach on subsets of the engineering dataset introduced in
(Bucur et al. 2019¢).



4. Proposal of a greedy heuristic which provides fast results, usable as initial
solutions for the genetic algorithm or the MILP approach.

5. High practical relevance due to the achieved scrap cost reduction of 49.91% in
an industrial environment via methods which provide a less complex and more

interpretable alternative to the machine learning methods proposed in (Bucur
et al., 2019c¢).

The remainder of this paper is organized as follows: in Section [2] we provide
a formal description of the optimization problem seeking so-called optimal quality
windows for the BNA quality classification problem, while in Section [3| we present
a MILP formulation for it, as well as two other solving techniques based on genetic
algorithms and greedy heuristics. In Section 4] we describe the dataset used for
the validation of the different techniques, as well as their implementation details.
The results and their implications are discussed in Section [5} Finally, the work is
concluded in Section [6] with a review of our main achievements and suggestions for
potential further research questions.

2. Problem Formulation

Let X € RYXK denote the matrix containing the spectral amplitudes of N BNA
order spectra sampled at K equidistant orders, with the spectral order grid defined as
S = [s1,...,sk] for ordered integer indexes 1,..., K. For a specific order spectrum
curve z € X, we further denote its excerpt between two orders s, (inclusive) and
sy (exclusive) by w5, s,). The set of binary labels y € {0,1}" offers insights into
the quality of the BNA after being assembled into the steering gear: a label of 0
indicates that the corresponding steering gear passed its own quality test, implying
that the assembled BNA was also qualitatively good. A label of 1 points out that
acoustic domain experts traced the root cause why the steering gear failed its own
quality test back to the BNA, thus suggesting its poor quality. A visualization of
the BNA order spectra for a subset of the data, colored to reflect the quality of the
final mechanical assembly they were mounted into, is offered in Figure 2] Further
representing by Z the number of quality windows which shall be found and applied
as a quality criterion to the BNA order spectra X, we further require each of the
windows to feature a minimum width of ¢.;, units on the spectral order grid. This
can be understood as a regularization mechanism to be used against overfitting, in
order to prevent the algorithms from reaching solutions which focus on single order
spectrum peaks.



We introduce for v € N the notation [u] := [1,...,u] and describe the problem
solution as I' = {(v., 7.)|z € [Z]}. This expression represents the set of pairs
of the Z non-overlapping quality windows consisting of an upper threshold ~, and
corresponding interval 7, = [s,_, $5.) on the grid S. The application of I" as a quality
criterion to X outputs a binary quality prediction vector y': if the spectral amplitudes
in X violate the upper threshold of any quality window on the corresponding window
interval, they receive a predicted label of 1 (0 otherwise). The comparison of the true
labels y and the predicted labels 3 allows the computation of the confusion matrix
and thus of the number of false positives I's,(X) and false negatives I'f,(X). Since
the number of false positives and false negatives have a different business impact, the
fitness of the solution I' is computed by means of a weighted sum which prioritizes
the identification of false positives with a positive integer factor e:

Leost (X) =€ - Tpp(X) + T (X). (1)

3. Methodology

We propose three solving approaches for the problem described in Section [2; a
Mixed Integer Linear Programming model and two heuristic approaches by means
of a genetic algorithm and a greedy heuristic.

3.1. Mized Integer Linear Programming Formulation

In addition to the non-overlapping condition imposed on the intervals on the grid
S of the different quality windows, we introduce a further restriction in form of a
maximum allowed interval width, which is denoted by ... The observed maximum

value of the spectral amplitudes in the dataset is denoted by Xy,ax = maxi<n<n, X k-
1<k<K
The conditions imposed on the left and right boundaries of each quality window lead

thus for a,, 5, € N,Vz € [Z], to the following first set of constraints:

1§az§K_tmin+1a tmin"'lgﬁzSK_'_ly VZG[ZL
ay < Qzy1, Bz < Bz—i-la Bz S Ay, \V/Z S [Z - 1]a
Q, +tmin S ﬁzy ﬁz S Qi +tmax> Vz € [Z]

For further modeling purposes, each spectral order s, € S must be mappable
to one of the quality windows (or to none of them) based on the window intervals
spanned on S. To this effect we introduce the decision variables p, . and A , for all



k € [K] and z € [Z]. Due to the fact that p . and \; . are both binary but cannot

be 0 at the same time, we introduce the binary variables vy . as their sum minus
one, for all k € (K|, z € [Z]:

1, ifk>a.,

mee=14 0 U= ke [K] 2 e (2], (2)
0, otherwise.
1, if k<p,,

I N A T ) (3)
0, otherwise.

U = bz + M, — 1, Vhk € [K], z € [Z].

A spectral order s, € S can thus be mapped uniquely to a window (~,,7,) if
Y. = 1, for all k € [K], z € [Z]. To describe the upper threshold set for each
spectral order, we introduce the variables by, where k € [K]. If the spectral order
is mapped to a quality window, b shall contain the upper threshold of the window,
otherwise a large enough threshold which does not have any influence:

25 if z = 17
b= =1 or ek,
Xmax + 1, otherwise.

In the following, we proceed with a case-by-case analysis to determine the number
of false positives and false negatives arising from the binary classification of the order
spectra in X.

We first direct our focus to the false positives and set:

Vn € [N], k € [K] where y(n) =1,

o 17 if bk - Xn,k Z 07
Ik = 0, otherwise.

1, if YK g..=K,
up =4 Zk:} Ink Vn € [N] where y(n) = 1.
0, otherwise.

The number of false positives to be used in the cost function in Equation [1] is



then obtained by summing over u,: I'pp(X) = D nen Un.
y(n)=1
We then focus on the false negatives and set:

1, if Xy — b > 0,

hng = . Vn € [N], k € [K] where y(n) =0,
’ 0, otherwise.

1, if S5 by >0
Uy =X ' Zk:_l F 7% wn e [N] where y(n) = 0.
0, otherwise.

We obtain the number of false negatives by summing over v,: Iz, (X) = > neng Un.

Finally, we state all constraints and the objective function: v
min Zne[N] €Uy + ZnE[N] Up, (4)
y(n)=1 y(n)=0
st 1<a, <K —tyn+1, Vz € [Z], (5)
tmin +1 < 8. <K+ 1, vz € [Z], (6)
a, < 41, Vze[Z-1], (7)
B: < Bar, VzelZ 1], (8)
B, < auqq, Vz e |Z —1], (9)
a + tmin < B, Vz € [Z], (10)
Bz < @+ tmax, vz € [Z], (11)
a, — M(1— py.) <k, Vk € [K], z € [Z], (12)
k<o, + M- ., Vk € [K], z € [Z], (13)
B:— M- N, <k, Vk € [K], z € [Z], (14)
k< B+ M- M), Vk € [K], z € [Z], (15)
Pz + Ak — 1= g2, Vk € [K], z € [Z], (16)
Vo= M(1 = 9y.) < by, Vk € [K], z € [Z], (17)
b <.+ M(1—tgz), Vk € (K], z € [Z], (18)
Xmax +1 =M -y, < by, Vk € [K], z € [Z], (19)
b < Xmax + 1+ M -y, Vk € [K], z € [Z], (20)
Xogk — M1 — gng) < by, Vn € [N], k € [K], y(n) =1, (21)



b < Xog + M- gng, Vn € [N], k € [K], y(n) =1, (22)
Kty < 3554 Gue Vn € [N], (23)
S Gk < K Fup, — 1, vn € [N], (24)
by — M - (1 —hpg) < Xk, Vn € [N], k € [K], y(n) =0, (25)
Xoge < b+ M- hyg, Vn € [N], k € [K], y(n) =0, (26)
Uy < SO0 B, Vn € [N], (27)
P e < Uny Vn € [N], k € [K], (28)
Un, vy, € {0, 1}, Vn € [N], (29)
Gnkes hn g € {0, 1}, Vn € [N], k € [K], (30)
Pz Akzy Uiz € {0, 1}, Vk € [K], z € [Z], (31)
a, € [K — tmin + 1] Vz € [Z], (32)
By € {tmin +1,..., K+ 1} Vz € [Z]. (33)

The parameter M corresponds to the 'Big M’ notation and is defined in Section
([#.2.2). The objective function () minimizes the weighted sum of false positives and
false negatives arising from the binary classification of the BNA vibroacoustic order
spectra in the matrix X. The constraints and () ensure that the left and right
interval boundaries lie on the order grid S in a suitable manner, while the constraints
and make certain that they also represent ordered sets with increasing values.
The non-overlapping condition imposed on the quality windows is ensured by the
constraints @, while the minimum, respectively maximum interval width conditions
are guaranteed by the constraints and .

The variables py ., A\p. and . are used to provide the mapping from each
spectral order to a quality Wmdow (or to none). Their feasible values are modeled
with the help of constraints - (16) for all k& € [K]. The inequalities and
(13) ensure that the variables ,uk’z are correctly defined for all k£ € [K], given the
if-condition . Furthermore, the constraints and are used to set \; . to
the values defined in the if-condition for all k € [K]. Finally, the equations
ensure that iy . is set to 1 if the spectral order s; lies within the quality window z
and 0 otherwise.

In order to determine the values of the variables b, describing the upper threshold
set for each spectral order we need for all k € [K] the constraints - (20). The
inequalities and set 7, as threshold value if ¢y . is equal to 1. If v, is
equal to 0, then the upper threshold value b; at the spectral order s; has the value
Xmax + 1, which is ensured by the inequalities and (20).

By focusing on the false positives part of the objective function, we consider all

9



order spectra x € X with true label 1. If y(n) = 1, the constraints and
guarantee that the following holds for the binary variables g, ;: if X, ; does not
exceed the upper threshold set for the respective s, then the value of g, is 1 and
0 otherwise. If for a fixed n € [N] and all k£ € [K] the variables g, are equal to 1,
then no violation of the upper thresholds occurs and the predicted label of the order
spectrum is 0. The corresponding feasible values for the variables u,, are modeled
with the constraints and (24).

Switching our focus to the false negatives, we consider all order spectra x € X
with true label 0. If y(n) = 0, the feasible values of the binary variables h,, ;, which
indicate whether a violation of the upper thresholds occurs, are modeled with the
inequalities and for all k € [K], n € [N]. As reflected by the constraints
and (28), a single violation of the threshold of any quality window suffices for
an order spectrum to receive a predicted label of 1.

Finally, in constraints (29), and all binary variables are introduced as
such. The constraints and state the fact that the left window borders a,
and right window borders (3, are positive integers in their defined range.

3.2. Greedy Heuristic

The proposed greedy heuristic consists of two main phases: the computation
phase processes the information in the matrix of spectral amplitudes X to construct a
decision basis, which is used then in the decision phase to compute the cost associated
with each quality window option and iteratively select the next best window choice.
A pseudocode version of the algorithm is offered in Algorithm [2] which we proceed
to describe in detail.

The algorithm input consists of the spectral amplitude matrix X, the associated
quality labels y € {0, 1}, the minimum width ¢, of a quality window on the spec-
tral order grid and the required number Z of quality windows which the algorithm
should find. After its computations, the algorithm returns the solution as the set
of quality windows I' = {(7., 7.)|z € [Z]}. A noteworthy property of the proposed
algorithm is that it returns a lower number than Z of quality windows if additional
ones would not contribute to a further cost reduction, avoiding thus redundancies or
irrelevant windows.

10



Algorithm 2 The greedy heuristic designed to iteratively find quality windows for
the BNA vibroacoustic quality classification problem which was formulated in Section
The two main phases of the algorithm, the computation and decision phases, are
extensively discussed in Section

1: procedure RUN (X, y, tpmin, Z)

2: C' «+— Computation phase (X, 9, tmin)
3: ['* < Decision phase (CT, X, y, Z)

4: end procedure

5: function COMPUTATION PHASE (X, ¥, tmin)
6: Ct 0

7 for i+ 1, K —tmn +1do

8: T < [Si, Si+tmin)

9: C « {max(z,)|xr € X}

10: ny < min{xz, |z, € C Ay(z) =1}

11: Ct«Cctu{a |z, e C Az, >n.}

12: end for

13: return CT

14: end function

15: function DECISION PHASE (CT, X, y, Z)

16: f+0

17: [+ 0

18: repeat

19: v}, 77 < MINIMALCOST (CT,y, T, X)
20: f<f+1

21: extend interval T}‘

22: [ T U{(v},75)}

23: Ct{z . e Ct AT} =0}
24: Ct < {z |2, € Ct AT*(x) = 0}
25: if CT = () then

26: break

27: end if

28: until f =7

29: return '™

30: end function

11



31: function MINIMALCOST (CT, y, I'*, X)

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

v 4= 00
T < [51, SK41)
r=0
if T = () then

L {(7,m)}
else

I'«T"
end if

X'« {2z € X AT(x) =0}
mincost < & - [z, (X')
fOI‘j<— 1>K_tmin+1 do
Tj <= [85) 5 tuin)
D+ {z v, e Ct AT =15}
Dy« {a}]z} € D Ay(x) =1}
for all #, € D, do
v =z,
L {(7.7)}
X"« {z|lr € X' Ax € D}
cost <& - T (X") + T (X7)
if cost < mincost then
mincost < cost
Rl
T = T
end if
end for
end for
return v*, 77

59: end function

In the computation phase, we initially focus on the first viable interval spanning
tmin units on the spectral order grid. Since the deciding factor for the quality out-
come is whether the maximum amplitude value between the left and right window
boundaries violates the upper threshold, we first compute the maximum amplitude
of each order curve on this interval and denote it by .. In order to narrow down the
search space, we only contemplate the maximum amplitudes x; of the curves with
label 1 as potential upper thresholds for this interval: a threshold below the lowest

12



x with label 1 would only potentially generate further false negative predictions and
thus increase costs without any additional benefit. Bearing in mind that only curves
with maxima above the lowest x. with label 1 could potentially lead to false posi-
tives and false negatives, we keep record solely of the maxima of these curves over
the interval. The described process is repeated for multiple consecutive intervals on
the spectral order grid, with the choice of the overlap between intervals influencing
the size of the search space and solution quality; in the following, we denote by 6 the
parameter describing the hop length on the spectral grid between two consecutive
intervals.

In the decision phase, we repeat the search procedure for the next optimized
quality window until either Z windows are found or additional windows would not
help further reduce costs. The search procedure operates in a rather simple manner:
it loops over all intervals recorded in the computation phase and within them over
all maximum values :L‘;_ of the distinct spectra with label 1, considering each one as
a potential upper threshold on its interval. For each upper threshold possibility, the
search procedure then computes the number of false positives and false negatives
arising from the application of the threshold, considering only curves with maxima
on the interval above the lowest 3:; with label 1. By computing the associated cost
from the number of false positives and false negatives, it is possible to identify the
interval and threshold which most lower the costs arising from yet undetected order
spectra with label 1. In further iterations, the search procedure does not consider
anymore intervals overlapping with the previously selected ones. Due to the fact that
a violation of a single window is already sufficient for a negative quality assessment,
each order spectrum already classified as true or false negative by the selected quality
window is then removed from cost computations in further iterations.

Despite its major strength in terms of simplicity, the proposed heuristic has a
drawback: it only searches for windows featuring the minimum allowed length #,,;,.
Although this limits the search space, it also potentially limits the solution quality.
In order to alleviate this problem, we propose a simple procedure which runs after the
next most promising window is selected and aims to extend the interval corresponding
to the quality window, provided that this further reduces costs. To this effect, the
left and right interval boundaries are gradually extended by a single unit on the
spectral order grid: each such extension is only accepted if it contributes to a further
cost reduction and does not lead to overlap, otherwise the extension procedure is
interrupted.

13



3.8. Genetic Algorithm

In a previous contribution (Bucur et al., 2019b)), a genetic algorithm was proposed
as a solving approach for the problem described in Section [2l Despite having been
able to reduce the scrap costs by 24.16% on the corresponding test data (the used
dataset is not identical to the one used in this work), it was subject to multiple
limitations:

1. The mathematical model of the solution as a piecewise constant function with
multiple change points and covering the complete spectral order grid .S implic-
itly assumed that each order contributes information relevant for the classifi-
cation and should thus be subject to a threshold.

2. The Nelder-Mead downhill simplex method, a gradient-free maximization tech-
nique, was employed in the update step to optimize the upper threshold val-
ues while keeping the change points constant. However, the gains in terms
of increased solution quality after this relatively computationally expensive
technique were significantly diminished after a random mutation or after the
averaging crossover mechanism, which acted as a serious perturbation.

3. The crossover mechanism ran an agglomerative clustering algorithm on the
merged change points of the parent functions, with the change points of the
offspring individual then chosen as the centroids of the clusters resulting from
the cut dendrogram. The upper threshold values between the new change
points were obtained by building the average over the upper thresholds of the
parent functions on the respective intervals. If the parent solutions however
focused on different order intervals responsible for different root faults leading
to a label of 1 and thus faulty parts, the crossover technique is unlikely to find
itself a root fault by clustering and averaging.

In the present work, we overcome these shortcomings by imposing upper thresh-
olds only on select areas of the order spectrum and by renouncing to the use of
the computationally heavy Nelder-Mead method. Furthermore, we also introduce a
more efficient crossover mechanism which selects the best windows from both parents
based on their achieved cost reduction. Instead of introducing variation through an
averaging of the upper thresholds in the crossover mechanism, the current approach
uses mutations which are only accepted if they help reduce cost and whose mutation
strength is diminished linearly with each further generation, finally reaching a value
of 0 for the last generation.

In a first step, the population individuals are initialized in a random manner. To
this effect and for all z € [Z], the a, values representing the left window borders
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are first sampled from the uniform distribution over the spectral order grid in such a
manner that after ordering them, the difference between two consecutive «, values is
greater than or equal to the minimum allowed window length ¢,,;,. The right window
borders denoted by [, are chosen randomly for all z € [Z — 1] between consecutive
a, values, again respecting the minimum window length ¢.,;,. Last, the initial upper
threshold 7, of each window z € [Z] is set to the maximum amplitude value of all
order spectra with label 0 plus a random variation of maximum +3%.

In the evolution phase of each generation a certain proportion of the best popula-
tion individuals is selected, while the remaining ones are discarded. Upon addition of
multiple randomly generated new individuals, the population is refilled by choosing
pairs of individuals at random with replacement and crossing them over to generate
new individuals. Subsequently, a random selection of the population is subject to
the mutation mechanism. In the following we explain the crossover and mutation
methodology.

The crossover mechanism follows a simple cost minimization approach: first, it
selects two parents at random with replacement from the population. For each win-
dow of each parent, it computes the confusion matrix resulting from the application
of the window’s upper threshold to the amplitudes of the order spectra and the as-
sociated cost resulting from the number of false positives and false negatives. In an
iterative procedure repeated until Z windows are found, it then selects the next most
promising window which offers the highest further cost reduction. After a window
is selected, other overlapping windows are disregarded. Furthermore, the confusion
matrices of all other window possibilities are updated, removing from the cost cal-
culation the order spectra already violating previous windows. The reason behind
this approach is twofold: first, the best non-overlapping windows from either parent
are selected. Second, the negative cost impact of a window, measured in terms of
generated false positive and false negative curves, is diminished if the false negatives
were already misclassified by another window; as described in Section [2] the cost for
a curve is already maximum if it violates any window.

In the mutation step, the ., 3, and 7, values of a random window z € [Z] of
an individual are randomly shifted with a certain probability. The strength of the
shifts diminishes linearly with each generation from its initial value to a final value
of 0, in order to ensure that significant changes to the individuals are made rather
early in the optimization process. Furthermore, the mutation result is only accepted
if it does not increase the cost associated with the individual and does not lead to
overlapping windows. Since the mutation mechanism cannot worsen the quality of
an individual, the algorithm tries to mutate each window of the best individual in a
generation.
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In order to avoid overfitting during the training process we also employ the tech-
nique known as Early-Stopping (Goodfellow, Bengio, Courville & Bengiol [2016)).
After each generation, the cost of the best individual in the population is evaluated
on validation data, chosen as a fixed, stratified and random subset of the training
data. If the cost on the validation data begins to increase again and continues to
do so after a number of generations marked as the patience parameter, the training
process is stopped.

4. Computational Experiments

The computational infrastructure on which the benchmarking tests were con-
ducted consists of a server running the Windows Server 2016 operating system and
featuring 256 GB RAM and two Intel Xeon E5 — 2643— v4@ 3.40 GHz processors.
The proposed methodology was validated on the same dataset used for the validation
of the machine learning-based methods in (Bucur et al., 2019¢), which is different
than the one employed in (Bucur et al.; [2019b).

4.1. Dataset

4.1.1. Full Instance

The dataset employed for the validation of the genetic algorithm and of the
greedy heuristic was split into a training and a test dataset, consisting of 9291 and
3966 BNA order spectra, respectively. The number of BNA to which the steering
gear faults could be traced back to and which thus, as described in Section [2| receive
a label of 1 are 410 and 160, respectively, indicating a faulty percentage of 4.41% in
the training and of 4.03% in the test dataset. Unlike in our previous contribution
(Bucur et al., 2019¢), we refrain from rebalancing the training dataset. Instead, we
ensure as described in Section (3] that the initial solutions are already in a feasible
area of the search space and compute at each training iteration the induced cost on
the complete training data, instead of batch-wise.

4.1.2. Mixed Integer Linear Programming Data Subsets

First computational experiments showed that solving the MILP model requires
a long time for calculations: in Table [I| we can observe that solving the problem to
optimality for only 3 quality windows and a random subset of the data consisting
of 15 order spectra from class 0 and 15 from class 1 required a total of 48.89 hours.
Due to the prohibitive computation time length, we renounced to obtain an exact
solution for the complete training data and focused instead on gaining insights on
the performance gap in terms of solution quality and computation time between the
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MILP approach and the genetic algorithm on handpicked subsets of the training
data.

To this effect, 12 small datasets were created, with the order spectra belonging to
them handpicked from the training data to ensure that the problem could be solved
to optimality. The different small datasets contain between 5 and 15 order spectra
from each class and are always balanced (they feature the same number of samples
from each class). The exact number of order spectra composing each small dataset,
together with the number of computed quality windows and the resulting cost on
the same dataset are protocoled in Table [I]

4.2. Implementation Details

The implementation of the proposed methods is straightforward, with a manage-
able number of parameter choices. The most important parameter is e: common to
all methods, it denotes the positive integer factor which prioritizes the recognition
of false positives in detriment of false negatives in the cost function. In the present
work, this parameter was offered as input by thyssenkrupp Presta AG and set to
¢ = 10. The greedy heuristic presented in Section only takes three parameters
as input: 6 as the hop length parameter, t.;, as the required minimum window
width and Z as the number of windows which it shall find. In order to provide
a thorough benchmark, we protocol the results of the greedy heuristic in terms of
solution quality and computation time for all feasible parameter combinations with
0 € {1,5,10,20}, tmin € {5,10,20,30,40,50} and Z € [15]. In the following, we
describe the implementation of the genetic algorithm and the MILP formulation.

4.2.1. Genetic Algorithm

In order to provide a direct comparison to the quality of the greedy heuristic solu-
tions, the results of the genetic algorithm in terms of solution quality and computa-
tion time were computed for the same range of values for the t.,;, and Z parameter:
tmin € {5, 10,20, 30,40,50} and Z € [15]. The rest of the parameter required for the
implementation were chosen by means of an offline parameter tuning approach. To
this effect, a subset of the training data was selected, consisting of all the samples
from the minority class and an equal number of samples from the majority class,
obtained by means of fast, random undersampling. The best parameter choices were
then determined via a 5-fold cross-validated grid-search over a specific parameter
grid. The number of generations was optimized to a value of 300, with each gen-
eration featuring a total of 100 individuals. The percentage of fittest individuals
preserved during the evolution phase is 30%, to which a total of 20% of the pop-
ulation size randomly generated new individuals are added. Finally, the mutation
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probability was optimized to an initial value of 0.8 and decreased linearly with each
generation, until reaching a final value of 0.

4.2.2. Mixed Integer Linear Programming Formulation

We solve the dataset instances described in Section with the MILP for-
mulation by making use of the open source software "Google OR-Tools" (Google
OR-Tools v7.0) and the Coin-or Branch and Cut solver (Forrest et al., |2018). The
minimum window width was set to ¢,,;, = 10, while the maximum allowed width was
chosen as t,,x = 30. Furthermore, the parameter M corresponding to the 'Big M’
notation was set to 5+ [ Xax |-

5. Results

In the following, we first present the results of the MILP approach on the small
data subsets described in Section and compare them to the results obtained
by the genetic algorithm on the same data. Despite the limited significance of the
tests, constrained by the very long computation time of the MILP approach and
thereby by the small number of samples in the datasets, we observe that the genetic
algorithm reaches the same solution quality as the MILP approach in terms of cost,
computed as described in Equation

Second, we benchmark the genetic algorithm against the proposed greedy heuris-
tic, establishing the superiority of the former with respect to achievable solution
quality. This benchmarking study is performed for a different number of quality
windows, each with multiple minimum window length possibilities. The missing en-
tries in the result tables are due to the fact that the corresponding combinations of
number of quality windows and minimum window length would lead to overlapping
windows in violation of the feasible solution requirements, as stated in Section [2]

5.1. Mixed Integer Linear Programming Formulation

The benchmarking results for the MILP approach and the genetic algorithm on
the training data subsets described in Section [£.1.2] are presented in Table [1 The
extent of the benchmarking tests is constrained by the long computation time of the
MILP approach and thus limited to 12 data subsets, solvable to optimality for either
3 or 5 quality windows. In all 12 data scenarios, the genetic algorithm was able
to match the solution quality of the MILP approach in terms of incurred cost in a
fraction of the time. The parameters used for the genetic algorithm implementation
in each data scenario were tuned in an offline manner, with their values protocoled
aside the results.
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Time [s GA parameters

Number of spectra NP ”GA 4 ‘ 5 ‘ c ‘ d ‘ c ‘ 7

10 302.43 1453 04010507 100 [ 100

Optimal value: 0 16 3127452 | 1726 [[04[0.1[0.5]0.7] 100 | 100
Number of windows: 3 20 5397.47 16.05 [[02]05]03]0.8] 100 | 100
24 5876.58 17.08 [|04102]04]07] 100 | 100

10 5405.22 46.76 [[0.3]03[04]0.7] 200 [ 100

Optimal value: 1 16 65968.40 | 1431 [[0.4[03[0.3]0.5] 100 | 100
Number of windows: 3 18 66945.91 | 120.86 || 0.3 0.2 0.5 0.4 | 500 | 200
30 175994.50 | 57.62 |[03]03]04 0.7 200 | 200

10 207.54 1658 [[04]01]05]0.7] 100 [ 100

Ny ptimal value: 0 12 56644.21 | 58.83 [[0.3[02[0.5]0.7] 200 | 200
16 37592.43 | 1463.14 | 0.4 [ 0.3 [ 0.3 [ 0.8 | 1000 | 1000

[ optimal value: T~ 20 | 57721.81 [ 90.02 [[0.4]0.3]0.3]0.7] 300 [ 200 |

Table 1: Comparison of the results of the MILP approach and of the genetic algorithm (GA) in
terms of solution quality and computation time on the 12 distinct datasets described in Section
4.1.2| using either 3 or 5 quality windows. It is noteworthy that in all cases, the genetic algorithm
determined the optimal solution in a fraction of the time. The protocoled total number of order
spectra for each data scenario contains the same number of data samples from each class. The
parameters used for the implementation of the genetic algorithm for each small data subset are
protocoled aside the results and have the following meaning: a) proportion of best individuals in
the population kept during the evolution phase b) proportion of the population which is refilled with
random individuals during the evolution phase ¢) proportion of the population which is refilled with
crossed over individuals during the evolution phase d) mutation probability ) number of generations
f) number of individuals in the population.

5.2. Greedy Heuristic

The results of the greedy heuristic with respect to achieved cost on the test data
and time needed for the computations on the training data are protocoled for different
values of the hop parameter ¢ in multiple tables: Table [2[for 8 = 1, Table|3|for 6 = 5,
Table [ for # = 10 and Table [l for § = 20.

It is noteworthy that due to the design of the greedy heuristic and without the
window boundary extension mechanism in Algorithm [2| line 21], each solution with
a specific hop length 6; would be guaranteed to be at least as good as solutions
with hop lengths 6; which are multiples of ;, since the solution point in the high-
dimensional search space of the latter is also guaranteed to have been explored in
the search with the lower 6; value. This would imply that the best results in terms
of solution quality achieved by the greedy heuristic correspond to the value of 6 = 1,
which can be encountered in Table 2] However, the usage of the window boundary
extension mechanism after the iterative selection of the next best quality window can
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‘ ‘ Minimum window length ‘

| | 5 10 20 30 40 50
| | Cost  Time |s] Cost  Time |s] Cost  Time |s] Cost  Time |s] Cost  Time [s| Cost  Time [s|
1| 1466 232,93 | 1369 224.27 | 1298 214.48 | 1315 209.95 | 1383 201.65 | 1280 191.20
2| 1422 269.31 1330 258.48 | 1218 240.60 | 1276 233.06 | 1362 222.83 | 1236 207.30
3| 1387 296.86 | 1336 281.48 | 1200 259.59 | 1250 250.25 | 1380 235.26 | 1265 212.16
4| 1300 315.87 | 1246 300.50 | 1192 273.78 | 1227 260.42 | 1302 238.69 | 1265 212.05
£ 511231 333.09 | 1169 316.61 1201 283.05 | 1180 264.95 | 1303 240.31 | 1265 212.25
'g 6| 1248 349.14 | 1172 329.99 | 1202 290.31 1185 268.47 | 1303 239.86
£ 71238 362.20 | 1176 341.76 | 1221 296.22 | 1185 268.64
f2 8 1241 376.30 | 1193 352.17 | 1221 300.75 | 1185 269.07
z 9| 1242 388.71 1200 362.15 | 1221 301.66
_é 10 | 1242 401.70 1201 370.23 1221 301.97
:j 11 | 1250 412.86 | 1201 378.39 | 1221 301.68
12| 1250 423.58 1205 385.59 1221 301.45
13 | 1247 434.34 | 1206 392.10
14 | 1250 443.19 1206 394.72
15 | 1250 449.69 | 1206 394.69

Table 2: Results of the greedy heuristic described in Section implemented with a hop length
value of @ = 1. The results reflect the attainable solution qualities in terms of incurred cost on the
test data and computation time on the training data for a different number of quality windows and
multiple minimum window lengths.

‘ ‘ Minimum window length ‘

I 5 10 20 30 40 50
| | Cost  Time [s] Cost  Time [s] Cost  Time |s] Cost  Time |s] Cost  Time [s] Cost  Time [s]
1| 1443 48.38 1443 46.50 1406 43.63 1324 43.02 1396 41.21 1280 39.55
2| 1355 57.41 1364 54.33 | 1376 50.38 | 1284 49.21 1369 46.72 | 1236 44.75
3| 1310 65.93 | 1324 60.92 | 1336 55.94 | 1257 54.37 | 1386 52.13 | 1264 46.66
411218 73.67 | 1228 68.20 | 1320 60.94 | 1233 58.52 | 1368 54.79 | 1264 46.63
£ 51190 80.08 | 1200 74.08 | 1320 65.43 | 1186 61.65 | 1368 54.83 | 1264 46.58
'vz 6| 1200 85.98 | 1202 79.12 | 1320 69.46 | 1186 61.75 | 1368 54.80
£ 7| 1186 91.95 | 1207 82.83 | 1320 70.58 | 1186 61.92
f2 8 1187 97.60 | 1219 87.59 | 1320 70.44 | 1186 61.78
z 9| 1195 103.24 | 1225 92.31 1320 70.35
’é 10 | 1195 108.97 | 1225 96.87 | 1320 70.58
:j 11 | 1195 114.37 | 1226 101.53 | 1320 70.54
12| 1195 119.83 1226 102.22 1320 70.45
13 | 1195 121.82 | 1226 102.38
14 | 1195 121.82 1226 102.36
15 | 1195 121.70 | 1226 102.53

Table 3: Results of the greedy heuristic described in Section implemented with a hop length
value of § = 5. The results reflect the attainable solution qualities in terms of incurred cost on the
test data and computation time on the training data for a different number of quality windows and
multiple minimum window lengths.

lead to initially counterintuitive, yet favorable results. Even though it is guaranteed
that the computation phase of the greedy heuristic has also explored for § = 1 all
window possibilities achievable with the other hop lengths and the decision phase has
selected the most promising among them, it is possible that a suboptimal selection
(in the case of higher hop lengths, with respect to a hop length of 1) proves itself to

20



‘ ‘ Minimum window length ‘

I 5 10 20 30 40 50
| | Cost  Time |s] Cost  Time |s] Cost  Time |s] Cost  Time |s] Cost  Time [s] Cost  Time [s]
1| 1443 24.55 | 1443 24.35 | 1406 22.42 | 1420 22.32 | 1392 21.29 | 1280 20.30
2| 1355 30.56 | 1370 30.09 | 1376 26.94 | 1395 26.27 | 1392 25.51 1231 23.34
3| 1290 36.49 | 1387 34.73 | 1350 31.07 | 1364 30.16 | 1411 28.85 | 1259 25.01
411295 41.09 1339 40.97 1334 35.13 1340 33.49 1411 31.48 1260 26.13
£ 51279 45.68 | 1342 45.59 | 1334 39.04 | 1345 36.56 | 1393 33.96 | 1260 26.09
'g 6| 1267 50.46 | 1327 50.17 | 1334 39.75 | 1345 36.68 | 1393 33.92
71268 54.51 1338 54.50 | 1334 39.74 | 1345 36.69
2 81268 58.69 | 1339 58.95 | 1334 39.68 | 1345 36.66
Z 91268 60.39 | 1345 63.64 | 1334 39.77
_é 10 | 1268 60.25 | 1346 65.87 | 1334 39.60
:j 11 | 1268 60.29 | 1346 70.22 | 1334 39.65
12 | 1268 60.17 | 1346 70.70 | 1334 39.64
13 | 1268 60.22 | 1346 70.87
14 | 1268 60.23 | 1346 70.94
15 | 1268 60.27 | 1346 70.74

Table 4: Results of the greedy heuristic described in Section implemented with a hop length
value of § = 10. The results reflect the attainable solution qualities in terms of incurred cost on
the test data and computation time on the training data for a different number of quality windows
and multiple minimum window lengths.

‘ ‘ Minimum window length ‘

] 5 10 20 30 0 50
| | Cost  Time [s] Cost  Time [s] Cost  Time [s] Cost  Time [s] Cost  Time [s| Cost Time [s|
11684 12.18 1408 12.75 1428 11.91 1420 11.46 1276 11.46 1280 10.20
2| 1648 15.74 | 1420 16.88 | 1406 14.92 | 1395 14.34 | 1228 13.96 | 1222 12.71
3 | 1667 19.43 | 1355 20.67 | 1391 17.95 | 1371 17.60 | 1252 15.47 | 1224 14.98
41683 22.91 1357 24.40 | 1357 21.30 | 1372 20.82 | 1252 17.81 1225 15.97
£ 51598 26.37 | 1358 28.17 | 1375 22,94 | 1372 20.75 | 1258 19.66 | 1225 16.06
"E 6 | 1560 29.64 | 1354 31.78 | 1375 25.96 | 1372 20.86 | 1258 19.81
Z 7| 1561 32,97 | 1357 35.36 | 1394 28.72 | 1372 20.71
f2 81 1561 33.70 | 1357 35.99 | 1395 31.61 1372 20.86
g 91561 33.62 | 1357 35.89 | 1395 32.04
—é 10 | 1561 33.58 | 1357 35.98 | 1395 31.94
:j 11 | 1561 33.68 | 1357 35.97 | 1395 31.93
12 | 1561 33.87 | 1357 35.85 | 1395 32.01
13 | 1561 33.67 | 1357 35.82
14 | 1561 33.68 | 1357 35.87
15 | 1561 33.52 | 1357 35.88

Table 5: Results of the greedy heuristic described in Section implemented with a hop length
value of & = 20. The results reflect the attainable solution qualities in terms of incurred cost on
the test data and computation time on the training data for a different number of quality windows
and multiple minimum window lengths.

be better after the window boundary extension mechanism, leading to better results.

5.3. Genetic Algorithm

The results of the genetic algorithm, parametrized as described in Section
with respect to achieved cost on the test data and computation time on the training
data are recorded in Table[6] Note that the results represent the average values over
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‘ ‘ Minimum window length ‘

| ‘ 5 10 20 30 40 50
‘ ‘ Cost  Time [s] Cost  Time [s] Cost  Time [s] Cost  Time [s] Cost  Time [s] Cost  Time [s]
1| 1388.67 138.41 1235.17 81.64 1230.33 104.29 1229.17 95.07 | 1266.50 84.33 | 1222.83 83.06
2 | 1095.83 166.98 1089.67 140.43 1099.50 212.09 1091.83 176.93 | 1091.83 158.96 1102.17 152.93
3| 1058.67 247.61 1074.67 220.12 1075.17 362.42 1088.50 281.47 | 1092.33 258.08 1096.17 260.85
4| 1011.50 295.41 1021.33 287.71 1031.00 511.69 1020.83 325.29 | 1050.83 327.59 | 111317 331.27
£ 5| 997.83 357.72 1037.50 347.34 1030.67 623.63 1057.00 353.56 | 1108.83 397.18 | 1090.33 329.29
"§ 6| 956.17 436.35 988.83 424.36 1011.83 868.24 1056.17 497.46 | 1059.83 451.06
£ 7] 947.00 524.56 948.17 506.52 1034.67 839.72 1007.33 535.40
5 8| 939.33 607.68 946.00 570.59 1019.17 808.69 1057.00 524.85
z 9| 895.50 721.20 928.50 796.97 984.17 936.60
'Jé 10 | 844.17 795.09 886.67 1254.24 1018.00 1106.82
:f 11| 869.17 859.47 887.67 1587.75 1003.50 1030.41
12 | 849.50 924.95 938.17 1454.65 1009.50 1091.94
13 | 857.67 1014.22 900.17 1445.38
14 | 805.17 1092.32 944.33 1993.66
15 | 801.50 1184.60 879.33 1574.93

Table 6: Results of the genetic algorithm described in Section and parametrized as described in
Section [£.2.1] For each combination of required number of quality windows and minimum window
length, the results give insights into the obtained solution quality in terms of incurred cost on the
test data and computation time on the training data. The best solution features a cost of 801.50,
which implies a scrap cost reduction of 49.91% with respect to the currently employed BNA quality
classification method.

10 algorithm runs with different initial random seeds. A comparison of the incurred
costs on the test data by the genetic algorithm and the greedy heuristic using the
smallest hop length of § = 1 is offered in Table[7] while Figure [T offers further insights
by means of a visual comparison of the results.

‘ ‘ Minimum window length ‘

[ ] 5 10 20 30 40 50
‘ ‘ Genetic Greedy Genetic Greedy Genetic Greedy Genetic Greedy Genetic Greedy Genetic Greedy
1] 1388.67 1466 1235.17 1369 1230.33 1298 1229.17 1315 1266.50 1383 1222.83 1280
2 | 1095.83 1422 1089.67 1330 1099.50 1218 1091.83 1276 1091.83 1362 1102.17 1236
3 | 1058.67 1387 1074.67 1336 1075.17 1200 1088.50 1250 1092.33 1380 1096.17 1265
4] 1011.50 1300 1021.33 1246 1031.00 1192 1020.83 1227 1050.83 1302 1113.17 1265
£ 5| 997.83 1231 1037.50 1169 1030.67 1201 1057.00 1180 1108.83 1303 1090.33 1265
"g 6| 956.17 1248 988.83 1172 1011.83 1202 1056.17 1185 1059.83 1303
i 7| 947.00 1238 948.17 1176 1034.67 1221 1007.33 1185
s 8| 939.33 1241 946.00 1193 1019.17 1221 1057.00 1185
g 9| 895.50 1242 928.50 1200 984.17 1221
'TE 10 | 844.17 1242 886.67 1201 1018.00 1221
Z 11| 869.17 1250 887.67 1201 1003.50 1221
12 | 849.50 1250 938.17 1205 1009.50 1221
13| 857.67 1247 900.17 1206
14 | 805.17 1250 944.33 1206
15 | 801.50 1250 879.33 1206

Table 7: Direct comparison of the solution quality in terms of incurred cost on the test data for
the genetic algorithm results from Table [6] and the greedy heuristic results from Table The
results quickly lead to the conclusion that the genetic algorithm clearly outperforms the greedy
heuristic by a significant margin across the different number of windows and minimum window
length possibilities.
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Figure 1: Intuitive overview of the solution quality in terms of incurred cost on the test data, com-
puted for a different number of quality windows and minimum window lengths using the weighted
sum of false positives and false negatives introduced in Equation [1} It is quickly evident from the
obtained results that the genetic algorithm implementation outperforms the greedy heuristic. For
an intuitive visualization of the best solution achieved by the genetic algorithm we refer to Figure

B

Using these results, we conclude that the genetic algorithm clearly outperforms
the proposed greedy heuristic in terms of solution quality by a clear margin. Further-
more, the parametrization of the genetic algorithm which was described in Section
also ensures its competitiveness in terms of computation time on the training
data. As an example, we consider the best solution cost achieved by the greedy
heuristic with a hop length of §# = 1 in Table after 316.61 seconds and using
5 windows each with a minimum width of 10, the cost on the test data was 1169.
Using the same number of windows and the same minimum window length, the ge-
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Figure 2: Overview of the best solution obtained by the genetic algorithm, displayed as a set of
quality windows each consisting of a left and right border and an upper threshold. The visualized
curves represent the vibroacoustic order spectra corresponding to a random subset of the test data:
the red order spectra are representative of faulty BNA which belong to class 1, while the green
order spectra characterize BNA with a good quality which thus belong to class 0.

netic algorithm needed slightly more time, 347.34 seconds, to achieve a better cost
of 1037.5. However, keeping the minimum window width fixed at 10, the genetic
algorithm could also achieve a cost of 1089.67 in 140.43 seconds with only 2 used
windows, demonstrating its superiority.

The best solution achieved in the present work was obtained on the test data by
the genetic algorithm in 1184.60 seconds using 15 windows with a minimum window
length of 5, for which the incurred cost amounted to 801.50. From a practitioner’s
perspective, this result is highly important: for an initial number of 160 false pos-
itives, the currently employed BNA quality classification method features a cost of
1600 on the test data, computed using the same factor of ¢ = 10 in Equation [I]
The usage of the genetic algorithm would thus lead to a reduction of 49.91% of the
scrap costs in the BNA vibroacoustic EOL test. An intuitive visualization of the best
performing solution, together with a random data subset containing samples from
both classes, is offered in Figure
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6. Conclusion

Our work addresses a common operational problem faced by manufacturers of
mechanical assemblies, who must define and set quality criteria for the assembly
lines of the subcomponents of the assembly, in order to ensure the quality of the final
product. We used a real-world situation encountered by thyssenkrupp Presta AG as
a practical example, where quality criteria must be defined for the ball nut assem-
blies’ vibroacoustic behavior in order to guarantee the quality of the final products
they are assembled into, the steering gears. For this specific problem and extending
previous work (Bucur et al., 2019b.cla)), we first proposed a MILP formulation for
the data-driven optimization problem seeking so-called quality windows for the ball
nut assemblies’ vibroacoustic order spectra, with the outcome of the steering gear
quality test as the corresponding quality labels. Upon ascertainment of the unsuit-
ability of the MILP approach for daily operations due to its long computation time,
we further offered two heuristic techniques as potential solving approaches. The first
approach consists of a redesigned genetic algorithm which improves the original de-
sign proposed in (Bucur et al.; 2019b) with new crossover and mutation mechanisms,
while the second approach features a greedy heuristic, suitable for obtaining quick
initial solutions. Solving the ball nut assemblies’ vibroacoustic quality classification
problem via quality windows imposed on the order spectra definitely represents a
restriction in the feature space due to the consideration of solely the order spectra
maxima within the borders of the quality windows as features. This restriction was
disregarded in (Bucur et al.. [2019¢), where multiple machine learning-based meth-
ods were used to learn features from the order spectra. Still, the achieved scrap cost
reduction of 49.91% in the present work, paired with the easy interpretability of the
quality windows approach when compared to machine learning approaches, represent
a simple, yet attractive, alternative to practitioners.

A potential direction for future applied research consists in our opinion of the
usage of the solutions of the greedy heuristic as starting solutions for the genetic al-
gorithm and for the MILP approach. Carefully ensuring that the genetic algorithm
does not converge to local minima, it would be interesting to measure the com-
putation time gain achieved with the usage of greedy heuristic solutions as initial
population individuals.
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