
Integrated Pricing and Routing on a Network

Pornpawee Bumpensanti, Martin Savelsbergh, He Wang
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332

pornpawee@gatech.edu, martin.savelsbergh@isye.gatech.edu, he.wang@isye.gatech.edu

We consider an integrated pricing and routing problem on a network. The problem is motivated by appli-

cations in freight transportation such as package delivery and less-than-truckload shipping services. The

decision maker sets a price for each origin-destination pair of the network, which determines the demand flow

that needs to be served. The flows are then routed through the network given fixed arc capacities and costs.

Demand for the same origin-destination pair can be routed along multiple paths in the network if desirable.

The objective is to maximize the revenues from serving demand minus the transportation costs incurred

given the capacity constraints. We propose two algorithms for the solution of this problem: (1) a Frank-Wolfe

type algorithm, which requires the objective function to be smooth, and (2) a primal-dual algorithm using

an online learning technique, which allows non-smooth objective functions. We prove that the first algorithm

has a convergence rate of O(1/T) and the second algorithm has a convergence rate of O(logT/T), where T

is the number of iterations. Numerical experiments on randomly generated instances show that coordinating

pricing and routing decisions can improve profits significantly compared to independent pricing or routing

strategies.

Key words : transportation, network, pricing, multi-commodity flow

1. Introduction

Most network flow models assume that demands on nodes are exogenous (Ahuja et al.

1993). In this paper, we consider a generalization of the multicommodity network flow

problem where demands are determined endogenously by setting prices on node pairs.

This setup leads to an intricate interplay between pricing and network routing decisions:

on the one hand, pricing decisions determine demand of flows and therefore affect routing

decisions; on the other hand, routing decisions affect the cost of serving demand, which in

turn informs how to optimally set the prices. In order to maximize overall system profit,

the decision maker needs to consider the integration between pricing and routing decisions

and optimize them jointly.

We consider a directed network represented by a set of nodes and arcs. Each arc has

a fixed capacity and a linear cost function. For each pair of nodes, the decision maker

sets a price, which induces a demand that needs to be served. The network may have

multiple paths connecting an origin and a destination, so the decision maker chooses how

1

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 2

to distribute a demand flow over the different paths, while taking into account the capacity

available on the arcs. The goal is to maximize the overall profit for the system, which is

determined by the revenues obtained from serving demand minus the costs incurred by

transporting demand through the network.

The problem described above has several applications in logistics and freight transporta-

tion. For example, consider a package delivery carrier such as FedEx or UPS that operates

an expansive service network. The carrier charges prices for packages based on their ori-

gins, destinations, and service classes (e.g., next morning, next day, two-day, etc.). The

prices will determine the size of demand to be served, since customers are price-sensitive.

Because the carrier operates a dense service network, there are possibly multiple options

for sending packages from their origins to their destinations. Customers do not necessarily

care about which routes their packages take, as long as they are delivered on time. So the

carrier can select routes for packages based on transportation costs and capacities. Pricing

and routing decisions should ideally be coordinated and made in an integrated manner,

since both decisions affect the carrier’s profit.

We propose two algorithms for solving the integrated pricing and routing problem. Both

algorithms iteratively solves a sub-problem that can be formulated as a minimum cost

multicommodity flow (MCMCF) problem. The first algorithm is based on the Frank-Wolfe

algorithm (Frank and Wolfe 1956) (also known as the conditional gradient method (Levitin

and Polyak 1966)). We show that the rate of convergence of this algorithm is O(1/T) where

T is the number of iterations. To obtain this result, the algorithm requires the revenue

function to be smooth and concave. The second algorithm is a primal-dual algorithm

that updates pricing and routing decisions iteratively. In each iteration, the algorithm

executes two steps: the first step is to set prices to maximize profit that adjusted by dual

variables; the second step is to determine how to split such demands among multiple paths

to minimize cost, as well as updating the dual variables. When the objective function is

strongly concave, we show that this primal-dual algorithm has a rate of convergence of

O(logT/T) where T is the number of iterations. An advantage of the primal-dual algorithm

over the Frank-Wolfe algorithm is that it allows a non-smooth revenue function (e.g., a

piece-wise linear demand function).

Our numerical experiments, using randomly generated instances, show that joint pricing

and routing can improve profit by more than 10% compared to making pricing and routing

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 3

decisions separately. A more in-depth analysis of the resulting solutions shows that in

portions of the service network where several demands compete for transport capacity,

prices are adjusted to free up capacity for demand with a high profit margin. That is,

the price of demand with a low profit margin is raised to reduce that demand and reduce

the capacity required to serve it, and the price of demand with a high profit margin

is dropped to increase that demand and use the capacity that has become available to

serve it. The intricate interactions between price adjustments and routing choices that are

revealed demonstrate that optimization techniques are necessary to identify and exploit

these opportunities to the fullest.

The remainder of the paper is organized as follows. In Section 2, we review relevant

literature. In Section 3, we introduce the integrated pricing and routing problem and give

mathematical formulations. In Section 4, we present two algorithms for the solution of

the integrated pricing and routing algorithm. In Section 5, we discuss the result of our

computational experiments. In Section 6, we offer some final thoughts.

2. Literature Review

Despite the fact that there are numerous papers on network routing problems in which

demand is exogenous (e.g., Kennington 1978), there are only a few papers which consider

integrated pricing and routing decisions. Mitra et al. (2001) studied a joint pricing and

routing problem for revenue maximization in a multi-service network, assuming the set of

possible routes is given. Sharkey (2011) studied an integrated pricing and routing problem

for a single product, and showed that the problem can be reformulated as a minimum

convex cost network flow problem. Lin et al. (2009) and Lin and Lee (2015) formulate joint

pricing and routing problems for less-than-truckload transportation as an integer concave

programming problem.

The routing problem, i.e., finding origin-destination paths for commodities in a network,

is a critical component of Service Network Design (SND) problems. SND integrates capacity

and routing decisions, i.e., decisions regarding where and how much capacity to install on

the links in a network and decisions regarding the paths that commodities follow from

their origin to their destination in the network. For a review of SND, we refer the reader

to Crainic (2000) and Wieberneit (2008).

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 4

Our proposed methods use the Frank-Wolfe algorithm (Frank and Wolfe 1956, Levitin

and Polyak 1966) and the online gradient descent algorithm (Zinkevich 2003). the Frank-

Wolfe algorithm under different assumptions on the objective function and feasible set.

Zinkevich (2003) shows that the online gradient descent algorithm achieves O(
√
T) regret

for a general convex function when using step size 1/
√
t at iteration t. Hazan (2016) provide

a stronger regret bound, O(logT), when running with step size 1/µt at iteration t for a

µ-strongly convex objective function.

Another core component of our methods is the solution of a minimum (linear) cost multi-

commodity flow (MCMCF) problem. The MCMCF problems can be found in a wide range

of domains, for example, in transportation and logistics (Krile 2004), in communication

networks (Resende and Pardalos 2008, Chapter 10) and in scheduling (Vaidyanathan et al.

2007). Even though the MCMCF problem can be formulated as a linear programming and

thus solved by a general linear programming solver, the size of instances makes this often

inefficient or impractical. As a result, many custom solution methods have developed for

solving the MCMCF problem. Comprehensive surveys by Assad (1978) and Kennington

(1978) describe many such solution techniques. In addition, a detailed survey of solu-

tion approaches for minimum convex cost multicommodity flow problems can be found in

Ouorou et al. (2000).

3. Problem Description

We study an integrated pricing and routing problem on a fixed network represented by a

directed graph G = (N ,E), where the set of nodes, N , represents a set of cities and the

set of arcs, E , represents connections between pairs of cities. Each arc e∈ E has a per-unit

traversal cost ce and a capacity ke.

The set of origin-destination (OD) cities for which delivery service is offered is denoted

by J ⊆N ×N . We assume that demand is a function of price for each OD pair j ∈J and

that this demand function, dj(p), is known. We also assume that dj(p) is strictly decreasing,

which implies that there is a one-to-one mapping between demands and prices. Let pj(d)

be the inverse demand function of dj(p), which allows us to recover the price for a given

demand. Let rj(d) := dpj(d) denote the revenue function, the revenue collected for OD pair

j ∈J for demand d. We assume that each revenue function rj is concave.

The demand of an OD pair j ∈J must be delivered via one or more paths in the network

connecting the origin and destination (respecting the capacities of the arcs in the network).

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 5

We let Pj denote the set of possible (directed) paths connecting the origin and destination

of OD pair j ∈J .

The decision maker wants to maximize the profit, i.e., the total revenue collected minus

the total delivery cost incurred. The decision maker can set the price (or, equivalently,

demand) and choose the delivery routes for each OD pair, where the arc flows induced by

the delivery routes cannot exceed the capacity of the arcs.

Let zj be the demand of OD pair j. We use xp to represent the demand delivered using

path p and ve to represent the demand carried on arc e. We let arc-path indicator δe(p)

equal to 1 if arc e is in path p and 0 otherwise. We write v, x and z to denote the vectors of

ve, xp and zj, respectively. A path-based formulation for the integrated pricing and routing

problem is

max
v,x, z

∑
j∈J

rj(zj)−
∑
e∈E

ceve (1a)

s.t. zj =
∑
p∈Pj

xp, ∀j ∈J , (1b)

ve =
∑
j∈J

∑
p∈Pj

δe(p)xp, ∀e∈ E , (1c)

ve ≤ ke, ∀e∈ E , (1d)

xp ≥ 0, ∀p∈Pj, j ∈J . (1e)

Constraints (1b) ensure that the demand for an OD pair is delivered using one or more

feasible paths for that demand. Constraints (1c) determine the flow on an arc in the

network. Constraints (1d) ensure that the flow on an arc does not exceed the arc’s capacity.

Constraints (1e) ensure that the demand allocated to a path is non-negative. This path-

based formulation has |J |+
∑

j∈J |Pj |+ | E | decision variables and |J |+2| E | constraints.

Note that the number of paths, |P |=
∑

j∈J |Pj |, is typically large and grows exponentially

in the size of network. As the total number of paths becomes prohibitively large even for

moderate-size networks, customized solution methods are needed for its solution.

The problem has an equivalent arc-based formulation, which can be found in Appendix

A, but our proposed algorithms use the path-based formulation because it is more flexible

and can incorporate additional constraints on paths arising in real-world applications. For

example, suppose we want to impose constraints on feasible prices such that the prices

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 6

in the solution do not deviate too much from the current prices. If the new price of OD

pair j is restricted to the interval [
¯
pj, p̄j], then, because of the one-to-one mapping between

price and demand, the demand zj has to lie in the interval [
¯
dj, d̄j], where

¯
dj and d̄j are

the value of the inverse demand function at p̄j and
¯
pj, respectively. More importantly, the

path-based formulation can be solved efficiently by the column generation technique (Ford

and Fulkerson 1958).

4. Algorithms

In this section, we propose two algorithms to solve the pricing and routing problem. Before

we describe these algorithms, we review some definitions for convex functions. We say

∇f(x) is a subgradient of f at x if for any x1, it holds that

f(x1)≥ f(x) +∇f(x)>(x1−x).

The set of subgradients of f at the point x is called the subdifferential of f at x, and is

denoted ∂f(x). If a function f is convex and differentiable, then a subgradient is unique

at any x and equal to its gradient at x. A subgradient can exist even when f is not

differentiable at x. Note that a subgradient of convex function f always exists. We write

‖x‖ for the euclidean norm of x, i.e., ‖x‖=
√
x>x. We say a function f is µ-strongly convex

if, for any x1 and x2, it holds that

f(x2)≥ f(x1) +∇f(x1)
>(x2−x1) +

µ

2
‖x2−x1‖2.

Recall that ∇f(x) a subgradient of f at x and ∂f(x) the subdifferential (i.e., the set of

subgradients) of f at x. We say a function g is µ-strongly concave if −g is µ-strongly

convex. We say a continuous differentiable function f is β-smooth if

f(x2)≤ f(x1) +∇f(x1)
>(x2−x1) +

β

2
‖x2−x1‖2,

which is equivalent to say that a continuous differentiable function f has a β-Lipschitz

continuous gradient, i.e.,

‖∇f(x1)−∇f(x2)‖ ≤ β‖x1−x2‖.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 7

4.1. Frank-Wolfe Algorithm with Column Generation (FW-CG)

The Frank-Wolfe algorithm (Frank and Wolfe 1956), also known as the conditional gradient

method (Levitin and Polyak 1966), is a popular first-order method for smooth constrained

convex optimization problem of the form max{f(x) | x ∈ X}, where f is a concave and

smooth function and X is a polyhedron.

At each iteration t, the Frank-Wolfe algorithm evaluates the gradient of function f at

current solution xt, i.e., ∇f(xt). Then, it solves a linear programming subproblem given

by wt = arg maxw∈X∇f(xt)
>w before updating the solution suing the solution obtained

from the linear programming subproblem as xt+1 = xt + γt(wt − xt) where γt is step size.

The formal description can be found in Algorithm 1. Notice that the Frank-Wolfe algo-

Algorithm 1 The Frank-Wolfe (FW) Algorithm.

Input: x0 ∈X,γt = 2/(t+ 2) and T

for t= 0,1,2, . . . , T do

Set wt← arg maxw∈X∇f(xt)
>w

Set xt+1← xt + γt(wt−xt)

Output: xT

rithm does not require a projection onto the feasible set but only depends on solving a

linear optimization problem over the constrained set. That is, the Frank-Wolfe algorithm

performs well if it is inexpensive to solve the linear programming subproblem. The rate

of convergence of the Frank-Wolfe algorithm described in Algorithm 1 in the β−smooth

concave objective function is O(1/T) (Lemma 1 in Appendix C, Jaggi 2013, Theorem 1).

When we apply the Frank-Wolfe algorithm to the integrated pricing and routing prob-

lem, we solve a convex optimization problem by solving a sequence of linear optimization

problems. It is easy to verify that the linear programming subproblem becomes minimum-

cost multicommodity flow problem (MCMCF). One way to efficiently solve this linear

programming problem is to apply column generation method to path-flow formulation of

MCMCF (Ahuja et al. 1993).

Column generation can be used to solve LP with a large number of decision variables.

Ford and Fulkerson (1958) outline the idea of using column generation form a maximal

multicommodity flow problem, where MCMCF is one of its variation, as follows. The

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 8

problem is solved by considering two problems: the master problem which includes only a

subset of decision variables and the pricing problem which determines if a new variables

should be included in the master problem to improve objective function.

Recall that the integrated pricing and routing problem in path-based formulation can

be written as
max
x

∑
j∈J

rj(
∑
p∈Pj

xp)−
∑
e∈E

ce
∑
j∈J

∑
p∈Pj

δe(p)xp

s.t.
∑
j∈J

∑
p∈Pj

δe(p)xp ≤ ke, ∀e∈ E ,

xp ≥ 0, ∀p∈Pj, j ∈J .

(2)

The objective function of (2) is defined as f(x), and a feasible set of (2) is defined as X To

apply the Frank-Wolfe algorithm (see Algorithm 1), we first need to compute the gradient

of f(x) . Each element of the gradient ∇f(x) is given by, for path p∈Pj,

∂

∂xp
f(x) = r′j(

∑
p∈Pj

xp)−
∑
e∈E

∑
j∈J

∑
p∈Pj

δp(e)ce.

Each iteration, the Frank-Wolfe algorithm solves the following linear programming sub-

problem.

max
w

∑
j∈J

∑
p∈Pj

r′j(∑
p∈Pj

xp,t)−
∑
e∈E

∑
j∈J

∑
p∈Pj

δp(e)ce

wp
s.t.

∑
j∈J

∑
p∈Pj

δp(e)wp ≤ ke, ∀e∈ E ,

wp ≥ 0, ∀p∈Pj, j ∈J ,

(3)

where xp,t is the demand delivered on path p obtained in the current iteration t from

the Frank-Wolfe algorithm. This linear optimization subproblem can be viewed as the

minimum-cost multicommodity flow problem (MCMCF) in path-flow formulation with

per-unit cost

cp,t =
∑
e∈E

∑
j∈J

∑
p∈Pj

δe(p)ce− r′j(
∑
p∈Pj

xp,t)

on path p∈Pj. It can be observed that the number of decision variables which equals to the

number of paths is exponentially large in the network size. To solve this linear programming

subproblem, we apply column generation method. The master problem is defined similar

to (3) but contains only a subset of paths (decision variables). A new variable is added to

the master problem if it can improve the objective function. For maximization problem,

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 9

the objective function might increase when a new variable with positive reduced cost is

included. Therefore, a new variable is included to the master problem when reduced cost

is positive. Let ye,t be a dual variable associated with a capacity constraint on arc e at

iteration t. Reduced cost of path p∈Pj can be computed by

r′j(
∑
p∈Pj

xp,t)−
∑
e∈E

δe(p)(ce + ye,t).

That is, the pricing problem is to check if there exists a path which has positive reduced

cost, i.e.,

r′j(
∑
p∈Pj

xp,t)−
∑
e∈E

δe(p)(ce + ye,t)> 0 ⇐⇒
∑
e∈E

δe(p)(ce + ye,t)< r
′
j(
∑
p∈Pj

xp,t). (4)

If there exists a path which satisfies the condition in (4), we include it to the master prob-

lem. Otherwise, the solution is optimal. Such path is easy to find by running shortest path

algorithm, e.g. Dijkstra’s algorithm (Dijkstra 1959), with modified cost ce+ye,t on each arc

e for each OD pair j ∈ J at iteration t. Notice that by apply column generation method

all possible paths need not be generated beforehand; instead, path will be generated only

as required. The complete definition of the Frank-Wolfe with column generation algorithm

(FW-CG) for solving the integrated pricing and routing problem can be found in Algorithm

2.

Before we formally state a theorem, let us recall the definition of big O notation. For two

functions f(T) and g(T)> 0, we write f(T) =O(g(T)) if there exists a constant M1 and

a constant T1 such that f(T)≤M1g(T) for all T ≥ T1. The convergence rate of Algorithm

2 follows immediately from Lemma 1 in Appendix C and Theorem 1 in Jaggi (2013) and

can be stated as follows.

Theorem 1. When revenue function is smooth and concave, under Algorithm 2, we

have

f(x∗)− f(xT)≤O
(

1

T

)
.

4.2. Primal-Dual Algorithm

Next, we propose a Primal-Dual (PD) algorithm. This algorithm uses an iterative method

based on applying online learning technique on the Lagrangian relaxation of the original

integrated pricing and routing problem. The capacity constraints, which are the only bundle

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 10

Algorithm 2 The Frank-Wolfe with Column Generation (FW-CG) Algorithm.

Input: x0 = 0, y0 = 0, γt = 2/(t+ 2) and T

Initialize: For each OD pair j ∈ J , consider a path with minimum cost, i.e., Lj =

arg minp∈Pj
∑

e∈E δe(p)ce.

for t= 1,2, . . . , T do

do

Set i← 0

(wt, yt) solves

max
w

∑
j∈J

∑
p∈Lj

r′j(∑
p∈Lj

xp,t)−
∑
e∈E

∑
j∈J

∑
p∈Lj

δe(p)ce

wp
s.t.

∑
j∈J

∑
p∈Lj

δe(p)wp ≤ ke, ∀e∈ E (ye,t),

wp ≥ 0, ∀p∈Lj, j ∈J ,

for OD pairs j ∈J do

if minp∈Pj
∑

e∈E δ
p
e(ce + ye.t)< r

′
j(
∑

p∈Lj x
p
t) then

Set Lj←Lj ∪arg minp∈Pj
∑

e∈E δ
p
e(ce + ye.t)

Set i← i+ 1

while i > 0

Set xt+1← xt + γt(wt−xt)

Output: xT

constraint in (2), are removed from the constrained set and placed into the objective

function. In each iteration, the algorithm has two steps which can easily be solved. In

the first step, it determines total demand, or equivalently price, for each OD pair (pricing

decision). Then, it decides how to deliver such demand through one or more paths (routing

decision).

In online convex optimization framework, a decision maker chooses xt at iteration t

before seeing a convex cost function `t. The cost of `t(xt) is then realized to the decision

maker. Many algorithms is proposed with the aim to minimize the regret, where the regret

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 11

after T iterations is defined as

T∑
t=1

`t(xt)−min
x∈X

T∑
t=1

`t(x). (5)

Online Subgradient Descent (Zinkevich 2003) which will be used in the first step of the

proposed algorithm is a well-known and simple online learning algorithm. The formal

description of the algorithm can be found in Algorithm 3, where ΠX(u) is a projection of

u onto a convex set X. For a general convex loss function, Zinkevich (2003) shows that

Algorithm 3 The Online Subgradient Descent Algorithm.

Input: x0 ∈X,ηt and T

for t= 0,1,2, . . . , T do

Set xt←ΠX [xt−1− ηt∇`t(xt)]

Algorithm 3 with an appropriate step size has O(
√
T) regret. Hazan (2016) shows that

O(logT) regret is attainable for a strongly convex loss function. This result is formally

stated in Lemma 2. Note that the result still holds for a non-smooth convex loss function.

To obtain the Lagrangian dual problem of integrated pricing and routing problem (2),

we relax the capacity constraints. Let ye ≥ 0 be Lagrange multipliers associated with the

capacity constraint of arc e. We let y denote the vector of ye. The Lagrangian function can

be written as

L(x, y) =
∑
j∈J

rj(
∑
p∈Pj

xp)−
∑
e∈E

ce
∑
j∈J

∑
p∈Pj

δe(p)xp +
∑
e∈E

ye(ke−
∑
j∈J

∑
p∈Pj

δe(p)xp). (6)

The Lagrangian dual problem is given by

min
y≥0

max
x≥0

L(x, y) =L(x∗, y∗) = max
x≥0

min
y≥0

L(x, y), (7)

where x∗ and y∗ be the optimal solutions of (7). Because a revenue function is assumed to

be concave in a demand for each OD pair j ∈ J , it follows that the Lagrangian function

(6) is concave in total demand zj of each OD pair j ∈J as well as concave in flow on path

xp for each p ∈ Pj. Moreover, we can observe that the Lagrangian function (6) is convex

(linear) in dual variable ye for all e∈ E .

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 12

In the first step of the algorithm, we want to determine the total demand of each OD

pair so that the Lagrangian function (6) is maximized. Recall that zj =
∑

p∈Pj xp. Let z be

the vector of zj for all j ∈J . Suppose y is constant. We want to find

z = arg max
z≥0

zj=
∑
p∈Pj

xp

L(x, y)

= arg max
z≥0

zj=
∑
p∈Pj

xp

∑
j∈J

rj(zj)−
∑
e∈E

(ce + ye)
∑
j∈J

∑
p∈Pj

δe(p)xp.

It is obvious that the problem is separable for each OD pair j, i.e., for all j ∈J , we have

zj = arg max
zj≥0

zj=
∑
p∈Pj

xp

rj(zj)−
∑
e∈E

(ce + ye)
∑
p∈Pj

δe(p)xp. (8)

That is, zj is the solution of the profit maximization for each OD pair j ∈ J . We observe

that to obtain zj the second term in (8) must be minimized. Since the term is basically the

modified cost of routing demand of j through paths, all demand must be delivered using

only the smallest adjusted cost path. Such path is easily identified by running shortest

path algorithm, e.g. Dijkstra’s algorithm (Dijkstra 1959) with modified cost ce + ye on

each arc. Let p∗j be the shortest cost path of OD pair j with modified cost ce + ye, i.e.,

p∗j = arg minp∈Pj
∑

e∈E(ce + ye)δe(p). Therefore, we can write

zj = arg max
zj≥0

rj(zj)− cp∗j zj, (9)

where cp∗j is the cost of the shortest cost path with modified cost ce + ye of OD pair j, i.e.,

cp∗j =
∑

e∈E δe(p
∗
j)ce. At each iteration the first step applies Online Supergradient Ascent to

the maximization problem in (9). That is, for each j ∈ J , zj moves in the direction of a

supergradient of objective function found in (9).

There are three main underlying reasons why we choose to operate on the total demand

on each OD pair instead of the flow on each possible path. Firstly, we do not require to

enumerate all possible paths. Secondly, the number of OD pairs is much smaller than the

number of all possible paths, which makes the algorithm computationally efficient. Lastly,

the algorithm provides a stronger regret guarantee when rj is assumed to be strongly

concave in zj for all j ∈ J . This result follows from the result of Online Supergradient

Ascent. However, when rj is assumed to be strongly concave in zj, it does not imply that

rj is strongly concave in xp for all p∈Pj (see more discussion in Section 5.1).

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 13

As we mention earlier, the convergence guarantee of Online Supergradient Ascent does

not require the Lagrangian function to be smooth in total demand zj for all j ∈J . That is,

the result still follows when, for example, price function pj is piece-wise linear in zj. This

relationship is often observed when there is a price competition.

In the second step of the algorithm, suppose the total demand of each OD pair is fixed

from the first step, we want to determine the amount of demand to be delivered on different

paths. Based on the Lagrangian dual problem in (7), because z is fixed from the first stage

we want to solve

min
y≥0

max
x≥0

zj=
∑
p∈Pj

xj

L(x, y). (10)

We know that

max
x:
∑
p∈Pj

xp=zj
L(x, y) = max

x

∑
j∈J

rj(
∑
p∈Pj

xp)−
∑
e∈E

ce
∑
j∈J

∑
p∈Pj

δe(p)xp

+
∑
e∈E

ye(ke−
∑
j∈J

∑
p∈Pj

δe(p)xp)

s.t.
∑
p∈Pj

xp = zj, ∀j ∈J ,

xp ≥ 0, ∀p∈Pj, j ∈J ,

and it can be observed that ye ≥ 0 for all e ∈ E can be viewed as Lagrange multipliers

associated with the capacity constraints in the problem in (10). Therefore, x and y can be

obtained by solving

max
x

∑
j∈J

rj(
∑
p∈Pj

xp)−
∑
e∈E

ce
∑
j∈J

∑
p∈Pj

δe(p)xp

s.t.
∑
p∈Pj

xp = zj, ∀j ∈J ,∑
j∈J

∑
p∈Pj

δe(p)xp ≤ ke, ∀e∈ E (ye ≥ 0),

xp ≥ 0, ∀p∈Pj, j ∈J .

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 14

The first term in objective function,
∑

j∈J rj(
∑

p∈Pj xp) =
∑

j∈J rj(zj), is independent of x,

so we can ignore this term. Thus, x and y can be obtained from

min
x

∑
e∈E

ce
∑
j∈J

∑
p∈Pj

δe(p)xp

s.t.
∑
p∈Pj

xp = zj, ∀j ∈J ,

−
∑
j∈J

∑
p∈Pj

δe(p)xp ≥−ke, ∀e∈ E (ye ≥ 0),

xp ≥ 0, ∀p∈Pj, j ∈J ,

(11)

which is the minimum-cost multicommodity flow problem (MCMCF) in path-flow formu-

lation. That is, in the second stage the total demand must be spit in the way that minimize

the total cost while satisfying the capacity constraints. Observe that the problem (11)

might be infeasible because the demand constraints which force the total demand of each

OD pair to be predetermined zj might cause the violation in capacity constraints. There-

fore, we introduce a dummy arc which is uncapacitated for each OD pair to take care

residual demand which cannot satisfy the capacity constraints. A large enough per-unit

cost of such arc must be set so that the arc will not be used if not necessary.

We can apply the same technique, column generation method, as described in Section

4.1 to solve MCMCF. Specifically, a new variable (path) is added to the master problem

when the reduced cost is negative, that is, the pricing problem is to check if for OD pair

j there exists a path which satisfies∑
e∈E

δe(p)(ce + ye)−σj < 0 ⇐⇒
∑
e∈E

δe(p)(ce + ye)<σj, (12)

where σj is a dual variable associated with the demand constraint of OD pair j. Such

path can be found easily by running shortest path algorithm such as Dijkstra’s algorithm

(Dijkstra 1959) with modified cost ce + ye on arc e. Therefore, the MCMCF problem in

(11) can be solved efficiently by applying column generation method without having to

enumerate all possible path. We state the formal description of PD when objective function

is strongly concave in Algorithm 4. Note that we write max(x,0) as [x]+.

Theorem 2. When revenue function is strongly concave in total demand, under Algo-

rithm 4, we have ∣∣∣∣∣ 1T
T∑
t=1

L(xt, yt)−L(x∗, y∗)

∣∣∣∣∣≤O
(

logT

T

)
.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 15

Algorithm 4 The Primal-Dual (PD) Algorithm for Integrated Pricing and Routing.

Input: x0 = 0, y0 = 0, z0 = 0, µ and T

Initialize: For each OD pair j ∈ J , add an uncapacitated dummy arc with cost r′j(0)

and consider a path with minimum cost, i.e., Lj = arg minp∈Pj
∑

e∈E δe(p)ce.

for t= 1,2, . . . , T do

for OD pairs j ∈J do

Set zj,t←
[
zj,t−1− 1

µjt
(∂− rj(zj,t−1) + minp∈Pj

∑
e∈E(ce + ye,t−1)δe(p))

]+
. (13)

do

Set i← 0

(xt, yt) solves

min
x

∑
e∈E

ce
∑
j∈J

∑
p∈Pj

δe(p)xp

s.t.
∑
p∈Pj

xp = zj,t, ∀j ∈J ,

−
∑
j∈J

∑
p∈Pj

δe(p)xp ≥−ke, ∀e∈ E (ye ≥ 0),

xp ≥ 0, ∀p∈Pj, j ∈J ,

for OD pairs j ∈J do

if minp∈Pj
∑

e∈E δe(p)(ce + ye,t)<σj then

Set Lj←Lj ∪arg minp∈Pj
∑

e∈E δe(p)(ce + ye,t)

Set i← i+ 1

while i > 0

Output: x̄=
∑T

t=1 xt/T and ȳ=
∑T

t=1 yt/T

Appendix B.1 provides the detailed proof.

Theorem 3. When revenue function is strongly concave in total demand, under Algo-

rithm 4, we have

‖z̄− z∗‖2 ≤O
(

logT

T

)
.

The proof can be found in Appendix B.2.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 16

We remark that unlike the Frank-Wolfe algorithm, the PD algorithm (Algorithm 4) does

not require the objective function to be smooth. We obtain the same rates of convergence

in Theorem 2 and Theorem 3 for strongly concave and both smooth and non-smooth objec-

tive function. Moreover, the PD algorithm can be applied even if the objective function

is not strongly concave. In that case, Equation (13) in Algorithm 4 needs to be modi-

fied. Specifically, for general concave (not necessarily strongly concave) objective function,

Equation (13) can use a step size of 1/
√
t in place of the step size 1/µjt. However, for

general concave objective, we can only conclude that rate of convergence in term of average

regret of this algorithm is O(1/
√
T).

To summarize this section, we proposed two algorithms, Frank-Wolfe with Column Gen-

eration (FW-CG) and primal-dual algorithm (PD), for solving integrated pricing and rout-

ing problem. When revenue function is smooth and concave, FW-CG achieves the rate of

convergence in term of objective function of O(1/T). However, PD still works without a

smoothness assumption. We show that for strongly concave revenue function the rates of

convergence of PD in term of average regret and total demand are both O(logT/T). We

note that we can alter PD so that the algorithm allows general concave revenue function.

Specifically, step size in the first step when updating total demand of each OD pair needs

to be modified. At iteration t, modified PD uses step size 1/
√
t instead of 1/µjt. This mod-

ified algorithm with new step size has the rate of convergence in term of average regret

of O(1/
√
T) for general concave revenue function. The proof is similar to The proof of

Theorem 2, but we use O(
√
T) bound (Zinkevich 2003) when we apply Online Supergra-

dient Ascent. Note that when revenue function is not strongly concave, we are not able to

conclude the rate of convergence in term of total demand.

5. Numerical Experiments

In the experiments below, we consider a service network with 10 cities and connections

between all cities, i.e., a complete directed graph G = (N ,E) with |N | = 10 and | E | =

90, resulting in |
∑

j∈J Pj| = 9,864,090 paths. Let U{
¯
u, ū} denote the discrete uniform

distribution which can have integer values from
¯
u and ū. The per-unit traversal cost and the

capacity are drawn from U{1,5} as well for all arcs e∈ E , i.e., ce ∼U{1,5} and ke ∼U{1,5}.

5.1. Demand Models

We consider two different types of demand models.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 17

5.1.1. Linear Demand Model. We assume linear demand models for all origin-

destination (OD) pairs j ∈ J with different parameter values:

dj(p) = aj − bjp,

where aj > 0 and bj > 0. Equivalently, we can write the price as a linear function of demand

as

pj(d) =
aj
bj
− 1

bj
d.

Recall that the revenue function rj(d) := pj(d)d requires to be concave. For linear demand

model, we can then write

rj(d) =
aj
bj
d− 1

bj
d2,

which is strongly concave in d, because r′′j (d) = −2/bj < 0. Note that although revenue

function of linear demand model is strongly concave in total demand, it is concave but

not strongly concave in the flow on each path. To see this, we write total demand as a

summation of flows on each possible path. We have ∇2rj(d) =−2J|Pj |, where Jn is an n×n

matrix of ones. Its eigenvalues are −2|Pj | and 0, which are less than or equal to zero.

Therefore, revenue function of linear demand model is concave but not strongly concave

in flow on each path. We assume that the slope parameter of the price function is drawn

from U{1,5} for all OD pairs j ∈J , i.e., 1/bj ∼U{1,5}.

5.1.2. Piece-wise Linear Demand Model. We assume that, for each OD pair j ∈ J ,

the demand function can be written as

dj(p) =

aj,1− bj,1p p≤ p0

aj,2− bj,2p p > p0,

where aj,1 > 0, aj,2 > 0, bj,1 > 0 and bj,2 > 0. Equivalently, we can write the price as a piece-

wise linear function of demand as

pj(d) =


aj,1
bj,1
− 1

bj,1
d d≤ d0

aj,2
bj,2
− 1

bj,2
d d> d0.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 18

Specifically, we are interested in the demand function of the following form.

pj(d) =


aj
bj
− 1

bj
d d≤ aj

4

5aj
4bj
− 2

bj
d d>

aj
4
.

The revenue function can then be written as

rj(d) =


aj
bj
d− 1

bj
d2 d≤ aj

4

5aj
4bj
d− 2

bj
d2 d>

aj
4
.

It can be seen that this revenue function is not differentiable at aj/4. The subdifferential

of revenue function is

∂rj(d) =


aj
bj
− 2

bj
d d<

aj
4[

aj
2bj
,
aj
4bj

]
d=

aj
4

aj
bj
− 4

bj
d d>

aj
4
,

which is decreasing function in d. Therefore, the revenue function is concave. However,

because the revenue function is non-smooth, only PD is applicable to this setting. We

assume that the slope parameter of the price function is drawn from U{1,5} for all OD

pairs j ∈J , i.e., 1/bj ∼U{1,5}.

5.2. Experimental Results

We test four different distributions, U{7,11}, U{9,13}, U{11,15}, and U{13,17} for the

intercept parameter of the price function, aj/bj. Consequently, the same demand can be

induced by setting a higher price, and higher profit is obtained for the same demand. We

generate three instances for each distribution of the intercept parameter of price function

while assuming other parameters have the same distributions.

We investigate the benefit of integrating pricing and routing decisions by considering

three different settings:

1. Pricing only: The decision maker sets optimal prices for each OD pair given that

the demand for the OD pair only uses the path consisting of the direct arc that links the

origin to the destination.

2. Pricing → Routing: The decision maker sets optimal prices for each OD pair

assuming that the demand for the OD pair only uses the path consisting of the direct arc

that links the origin to the destination, but after setting the prices, the decision maker

optimally chooses one or more routes for each OD pair to serve the resulting demand.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 19

3. Pricing + Routing: The decision maker simultaneously and optimally determines

the prices and the routes to serve the resulting demand for each OD pair, i.e., solve the

integrated pricing and routing problem.

5.2.1. Linear Demand Model. Figure 1 shows the average profit for the three settings

when the intercept term of the price function, aj/bj, is drawn from U{7,11}, U{9,13},

U{11,15}, and U{13,17}. We observe a slight increase in profit, 5.23%, 3.17%, 1.87%,

and 1.08%, respectively, for Pricing → Routing over Pricing only, and a signifi-

cant increase in profit, 11.39%, 10.96%, 11.08%, and 11.54%, respectively, for Pricing +

Routing over Pricing only.

Pricing only Pricing → Routing Pricing+Routing0
250
500
750

1000
1250
1500
1750
2000

Profit

+5.23→ +11.39→
+3.17→ +10.96→
+1.87→ +11.08→

+1.08→
+11.54→

U{7, 11}
U{9, 13}

U{11, 15}
U{13, 17}

Figure 1 The average profit of Pricing only, Pricing → Routing and Pricing + Routing when the intercept term

of the price function, aj/bj , is drawn from U{7,11}, U{9,13}, U{11,15} and U{13,17}.

We also see that the improvement in average profit of Pricing → Routing over Pric-

ing only decreases as the intercept term of price function increases. The reason is that the

optimal demand for each OD pair never decreases (and likely increases) when the inter-

cept term of price function increases. As a result, the capacity utilization increases which

restricts the allocation of demand across the different paths when deciding the routes for

the demands.

Figure 2 shows the average arc capacity utilization in the Pricing only, Pricing

→ Routing, and Pricing + Routing solutions when the intercept term of the price

function, aj/bj, is drawn from U{7,11}, U{9,13}, U{11,15}, and U{13,17}. This graph

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 20

shows that effectively using the capacity in the service network is critical to achieving

high profits. Even though the demand is the same in the Pricing only and Pricing →

Routing settings, the arc capacity utilization increases because some of the demand is

allocated to longer, but cheaper, alternative paths.

Pricing only Pricing → Routing Pricing+Routing0→

20→

40→

60→

80→

100→
Arc utilization

U{7, 11}
U{9, 13}

U{11, 15}
U{13, 17}

Figure 2 The average capacity utilization of Pricing only, Pricing → Routing and Pricing + Routing when

demand function is linear, and the intercept term of the price function, aj/bj , is drawn from U{7,11},

U{9,13}, U{11,15} and U{13,17}.

Figure 1 clearly shows that simultaneously optimizing pricing and routing decisions pays

off. In the Pricing + Routing solution, the price for an OD pair often differs from the

price for the same OD pair in the Pricing only solution to induce more demand for more

profitable OD pairs and less demand to less profitable OD pairs. Two factors impact the

profit that can be achieved when simultaneously optimizing pricing and routing decisions:

(1) the number profitable paths, i.e., paths for which the per-unit revenue is greater than

the per-unit cost, and (2) the capacity utilization. As mentioned earlier, an increase in

the intercept term of the price function increases the capacity utilization, which, in turn,

reduces the routing flexibility. The larger the number of profitable paths for an OD pair,

the more options can be exploited by the optimization.

Figure 3 shows the average number of paths for which the per-unit revenue is greater

than the per-unit cost when using the prices set in the Pricing only solution, when

the intercept term of price function aj/bj is drawn from U{7,11}, U{9,13}, U{11,15},

and U{13,17}. We see that the average number of profitable paths increases exponentially

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 21

U{7, 11} U{9, 13} U{11, 15} U{13, 17}0

500

1000

1500

2000

2500

3000
No. profit paths

150.67
442.74

1184.47

2826.81

Figure 3 The average number of profitable paths when using the prices of the Pricing only solution when demand

function is linear, and the intercept term of price function aj/bj is drawn from U{7,11}, U{9,13},

U{11,15} and U{13,17}.

when the intercept term of the price function increases.

The interaction between these two factors has different effects in different instances,

which explains why we do not see a monotonic change in average profit when the intercept

term of the price function is increased.

Next, we investigate the solution to a single instance in more depth (the intercept term

of price function for this instance is drawn from U{11,15}). We focus on portion of the

service network consisting of four nodes and five arcs; the arcs with their cost and capacity

are shown in Figure 4.

5

8

2

71,1

1,3

1,1 3,4

3,5

Figure 4 Cost (first element) and capacity (second element) of a subset of arcs in the network

In Table 1, we show, for each of the five OD pairs corresponding to the five arcs, the size

of the demand, along how many paths the demand is routed, and the profit obtained from

serving the demand in the optimal solution for the Pricing only and for the Pricing +

Routing setting. Furthermore, in Table 2, we show, for each of the arcs, the total demand

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 22

on the arc and the arc’s capacity utilization in the optimal solution for the Pricing only

and for the Pricing + Routing setting as well as the specific demands allocated to the

arc and their contribution to the arc’s capacity utilization.

Table 1 Demands of a subset of OD pairs in Pricing only and Pricing + Routing

OD
Pricing only Pricing + Routing

price demand total profit price demand #routes avg per-unit profit total profit

(5,2) 10.00 1.00 9.00 9.22 1.39 3 7.87 10.93

(5,7) 8.00 1.00 5.00 8.00 1.00 1 5.00 5.00

(5,8) 6.00 1.00 5.00 7.82 0.64 1 6.82 4.33

(7,2) 9.00 1.50 9.00 9.22 1.44 1 6.22 8.99

(8,2) 7.00 1.50 9.00 7.40 1.40 1 6.40 8.96

We see in Table 1 that the demand for an OD pair in the solution for the Pricing +

Routing setting can go up or down when compared to the demand in the solution for

the Pricing only setting. Because in the Pricing + Routing setting, the demand can

be delivered using multiple paths, the OD pairs are competing for the capacity on the

arcs. Therefore, in an optimal solution, the capacity should be used by the more profitable

OD pairs. In fact, for OD pairs with a high per-unit profit, it may be beneficial to induce

more demand, by setting a lower price, while for OD pairs with low per-unit profit, it may

be beneficial to induce less demand, by setting a higher price, in order to create capacity

that can be exploited by more profitable OD pairs. For example, in the solution for the

Pricing + Routing setting, the demand for OD pair (5,2), which has a high per-unit

profit, is increased and delivered using the paths 5→ 8→ 2 and 5→ 7→ 2. The demands

of OD pairs (5,8), (5,7), and (7,2), which have a low per-unit profit, are decreased to free

up capacity for the demand of OD pair (5,2).

In the Pricing + Routing setting, where demand can be satisfied using multiple paths,

the arc capacity has to be shared by OD pairs. Because different OD pairs have different

price functions, it becomes virtually impossible to construct solutions with high profit

solutions without the use of optimization. To illustrate, the demand of OD pair (5,2) is 1.0

in the solution to the Pricing only setting, which uses the entire capacity of arc (5,2).

If the arc (5,2) would have been uncapacitated, the optimal demand for OD pair (5,2) in

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 23

Table 2 Flows and utilization of a subset of arcs in Pricing only and Pricing + Routing

arc
Pricing only Pricing + Routing

OD flow utilization OD flow utilization

5→2 1.00 1.00 1.00 1.00

(5,2) 1.00 1.00 (5,2) 1.00 1.00

5→7 1.00 0.25 1.02 0.26

(5,7) 1.00 0.25 (5,2) 0.02 0.01

(5,7) 1.00 0.25

5→8 1.00 1.00 1.00 1.00

(5,8) 1.00 1.00 (5,2) 0.36 0.36

(5,8) 0.64 0.64

7→2 1.50 0.30 5.00 1.00

(7,2) 1.50 0.30 (5,2) 0.02 0.00

(7,2) 1.44 0.29

(7,0) 0.25 0.05

(0,2) 0.46 0.09

(7,8) 2.82 0.56

8→2 1.50 0.50 3.00 1.00

(8,2) 1.50 0.50 (5,2) 0.36 0.12

(8,2) 1.40 0.47

(0,2) 0.49 0.16

(1,2) 0.52 0.17

(8,1) 0.23 0.08

the Pricing only setting would have been 2.75. In the Pricing + Routing setting, the

optimal demand for OD pair (5,2) is no longer restricted (only) by the capacity of arc (5,2).

Therefore, the price for OD pair (5,2) is reduced from 10.00 to 9.22 to induce a higher

demand of 1.39. This is still much less than 2.75, because (1) the costs of the alternative

paths, and (2) the competition for capacity on the arcs on the alternative paths. In the

solution for the the Pricing + Routing setting, the demand of OD pair (5,2) is split

among paths 5→2 (1 unit), 5→8→2 (0.36 units), and 5→7→2 (0.02 units). The per-unit

cost of path 5→2 is 1.0, while the per-unit costs of the paths 5→8→2 and 5→7→2 are 2

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 24

and 6, respectively; these paths are clearly more expensive. Since 0.36 of the capacity of

arc 5→8 is allocated to the demand of OD pair (5,2), the demand of OD pair (5,8), which

in the solution for Pricing only setting used the entire capacity of arc 5→ 8, is decreased

to 0.64 by increasing its price from 6.00 to 7.82.

5.2.2. Piece-wise Linear Demand Model. Figure 5 shows the average profit for the

three settings when the demand function is piece-wise linear and the intercept term of the

price function, aj/bj, is drawn from U{7,11}, U{9,13}, U{11,15}, and U{13,17}. Similar to

linear demand case, we observe a slight increase in profit, 6.62%, 4.36%, 2.86%, and 2.01%,

respectively, for Pricing → Routing over Pricing only, and a significant increase in

profit, 12.95%, 12.79%, 13.41%, and 14.38%, respectively, for Pricing + Routing over

Pricing only.

Pricing only Pricing → Routing Pricing+Routing0

250
500
750

1000

1250
1500
1750
2000

Profit

+6.62→ +12.95→
+4.36→ +12.79→
+2.86→ +13.41→
+2.01→

+14.38→

U{7, 11}
U{9, 13}

U{11, 15}
U{13, 17}

Figure 5 The average profit of Pricing only, Pricing → Routing and Pricing + Routing when demand function is

piece-wise linear and the intercept term of the price function, aj/bj , is drawn from U{7,11}, U{9,13},

U{11,15} and U{13,17}.

Figure 6 shows the average arc capacity utilization in the Pricing only, Pricing →

Routing, and Pricing + Routing solutions when the demand function is piece-wise

linear and the intercept term of the price function, aj/bj, is drawn from U{7,11}, U{9,13},

U{11,15}, and U{13,17}. Figure 7 shows the average number of paths for which the per-

unit revenue is greater than the per-unit cost when using the prices set in the Pricing

only solution, when the demand function is piece-wise linear and the intercept term of

price function aj/bj is drawn from U{7,11}, U{9,13}, U{11,15}, and U{13,17}.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 25

Pricing only Pricing → Routing Pricing+Routing0→

20→

40→

60→

80→

100→
Arc utilization

U{7, 11}
U{9, 13}

U{11, 15}
U{13, 17}

Figure 6 The average capacity utilization of Pricing only, Pricing → Routing and Pricing + Routing when

demand function is piece-wise linear and the intercept term of the price function, aj/bj , is drawn from

U{7,11}, U{9,13}, U{11,15} and U{13,17}.

U{7, 11} U{9, 13} U{11, 15} U{13, 17}0

500

1000

1500

2000

2500

3000
No. profit paths

54.96 169.35
464.88

1177.98

Figure 7 The average number of profitable paths when using the prices of the Pricing only solution when the

intercept term of price function aj/bj is drawn from U{7,11}, U{9,13}, U{11,15} and U{13,17}.

As discussed in Section 5.2.1, because of limited arc capacity, we observe a monotonic

decrease in average profit improvement of Pricing → Routing over Pricing only when

the intercept term of the price function increases. However, because of the interaction

between the capacity utilization and the number of profitable paths, we cannot observe

such trend in average profit improvement of Pricing + Routing over Pricing only.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 26

5.3. Computation Time and Convergence Rates.

In this section, we will study the convergence rate to the optimal solution of the Frank-

Wolfe algorithm with column generation (FW-CG) and the Primal-Dual algorithm (PD)

when applicable. We test one problem instance with the intercept term of the price function

aj/bj drawn from U{11,15}.

We apply the proposed algorithms, when applicable, to the simulated network for 10000

iterations. We measure performance of the algorithms using the metrics found in Table 3.

The first metric, log loss, measures the gap between objective value obtained from pro-

posed algorithm and optimal objective value. The second metric, log optimal demand gap

measures the total difference between demand solutions obtained from proposed algorithm

and optimal demands. The third metric, log optimal path flow gap measures the total

difference between path flow solutions obtained from proposed algorithm and optimal path

flows, and the last metric, log optimal arc flows gap, measures the total difference between

arc flow solutions obtained from proposed algorithm and optimal arc flows.

Table 3 The performance metrics.

Metric FW-CG PD

log loss log(f(x∗)− f(xt)) log |1
t

∑t
s=1L(xs, ys)−L(x∗, y∗)|

log optimal demand gap log ‖zt− z∗‖2 log ‖z̄t− z∗‖2

log optimal path flow gap log ‖xt−x∗‖2 log ‖x̄t−x∗‖2

log optimal arc flows gap log ‖vt− v∗‖2 log ‖v̄t− v∗‖2

5.3.1. Linear Demand Model. Recall that we assume that each OD pair has a linear

relationship between demand and price. That is, the revenue function is both smooth and

strongly concave. Therefore, both the Frank-Wolfe algorithm with column generation (FW-

CG) and the Primal-Dual algorithm (PD) can be applied in order to solve the integrated

pricing and routing problem.

We compare the convergence results of two algorithms when measured against log iter-

ation across four metrics in Figure 8. Note that we will suppress base 10 of logarithmic

function and write log to represent log10 in this section.

Figure 8 shows that log loss and log iteration has linear relationships with negative slope

for both algorithms. This numerical result coincides with the theoretical results in Lemma

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 27

0 1 2 3 4
log iteration

−4

−2

0

2

lo
g

lo
ss

PD FW-CG

0 1 2 3 4
log iteration

−4

−2

0

2

lo
g

op
tim

al
de

m
an

d
ga

p

PD FW-CG

0 1 2 3 4
log iteration

0

1

2

lo
g

op
tim

al
pa

th
 fl

ow
 g

ap

PD FW-CG

0 1 2 3 4
log iteration

−1

0

1

2

lo
g

op
tim

al
ar

c f
lo

w
ga

p

PD FW-CG

Figure 8 The plots compare log loss (upper left), log optimal demand gap (upper right), log optimal path flow

gap (lower left) and log optimal arc flows gap (lower right) of PD and FW-CG against log iteration

(x-axis) when demand function is linear.

1 and Theorem 2. Moreover, we can observe that FW-CG has a faster convergence rate in

term of objective value than PD. Note that although FW-CG converges faster, it requires

an additional condition, smoothness, on revenue function, while PD only needs revenue

function to be strongly concave. Even though we only show the convergence of demand

when using PD in Theorem 3, Figure 8 show numerically the convergence of demand, path

flow and arc flow from both proposed algorithms. In fact, we can observe that they seem

to converge in the same order. When we examine the run time, PD and FW-CG take 96.93

seconds and 67.65 seconds per 10000 iterations respectively.

Next, we show how sensitive of running time to an increase in the number of nodes of

both algorithms. Figure 9 plots average time per iterations (seconds) used by PD and FW-

CG when demand function is linear and the number of nodes is 10,20, . . . ,50. It can be seen

that the running time of PD increases exponentially as the number of nodes increases, while

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 28

10 20 30 40 50
No. nodes

0

2

4

6

8

Time per iteration (seconds)
PD FW-CG

Figure 9 The plot shows average time per iteration (seconds) used by PD and FW-CG when demand function

is linear and the number of nodes is 10,20, . . . ,50.

the running time of FW-CG seems to increase linearly as the number of nodes increases.

One reason why we observe larger running time in PD is because linear programming

subproblems of PD require more time to solve than those of FW-CG due to the number of

decision variables generated from column generation method (See Figure 10).

10 20 30 40 50
No. nodes

0

10000

20000

30000
No. variables

PD FW-CG

Figure 10 The plot shows the number of decision variables involved in linear programming subproblem of PD

and FW-CG when demand function is linear and the number of nodes is 10,20, . . . ,50.

5.3.2. Piece-wise Linear Demand Model. Recall that when we assume demand func-

tion to be piece-wise linear, we can show that the revenue function is concave but

non-smooth. Since the Frank-Wolfe algorithm with column generation (FW-CG) requires

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 29

smooth objective function, only the Primal-Dual algorithm (PD) can be applied to solve

this problem.

We run the Primal-Dual algorithm (PD) on the simulated network for 10000 iterations.

The convergence results can be found in Figure 11. It can be seen that the slope of log

loss and log optimal demand gap in Figure 11 scale linearly with log(iteration) which are

consistent with Theorem 2 and Theorem 3. When we examine the run time, PD takes 92.95

seconds per 10000 iterations.

0 1 2 3 4
log iteration

0

1

2

3

lo
g

lo
ss

PD

0 1 2 3 4
log iteration

−4

−2

0

2

lo
g

op
tim

al
de

m
an

d
ga

p

PD

0 1 2 3 4
log iteration

0.0

0.5

1.0

1.5

2.0

lo
g

op
tim

al
pa

th
 fl

ow
 g

ap

PD

0 1 2 3 4
log iteration

0.0

0.5

1.0

1.5

2.0

lo
g

op
tim

al
ar

c f
lo

w
ga

p

PD

Figure 11 The plots compare log loss (upper left), log optimal demand gap (upper right), log optimal path flow

gap (lower left) and log optimal arc flows gap (lower right) of PD against log iteration (x-axis) when

demand function is piece-wise linear.

6. Final Remarks

We have studied an integrated pricing and routing problem on a service network. The

problem can be formulated as a convex optimization problem, although the size of this

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 30

optimization problem prohibits us from solving it directly. We have proposed two algo-

rithms to solve the problem. First, we modified the classical Frank-Wolfe algorithm with

column generation (FW-CG). When the objective function is smooth, we show that the

rate of convergence in terms of the objective function is O(1/T). Second, we propose a

primal-dual algorithm (PD), which allows a non-smooth objective function (e.g., a piece-

wise linear pricing function). We show that when the objective is strongly concave, the

rate of convergence of PD in terms of average regret is O(logT/T). Numerical experiments

demonstrate the benefit of joint pricing and routing; it can increase profit by more than

10%.

There are many possible directions for future research. We mention only two here. We

have assumed that the service capacity in the service network is known. A natural extension

is to let the optimization decide whether it is beneficial to acquire additional capacity on

some of the links in the network. This can be done by allowing demand on an arc to exceed

capacity at a cost. Another natural extension is to consider convex arc cost, e.g., per unit

cost is an increasing step function as a result of resource scarcity. In this case, we can

apply PD to solve the problem; however, the sub-problem becomes a nonlinear MCMCF

problem where the objective function is piece-wise linear.

Appendix

A. Arc-based Formulation

Let vj,e be the demand of OD pair j on arc e for all j ∈ J and e ∈ E . Let Sj and Dj denote the origin

and destination associated with OD pair j for all j ∈J . Furthermore, let E−(i) and E+(i) denote the set of

incoming and outgoing arcs of node i, respectively. The integrated pricing and routing problem can also be

formulated as

max
v,x, z

∑
j∈J

rj(zj)−
∑
e∈E

ceve (14a)

s.t.
∑

e∈E+(i)

vj,e−
∑

e∈E−(i)

vj,e =


zj for i= Sj
0 for i∈N , i 6= Sj ,Dj ,

−zj for i=Dj

∀j ∈J , (14b)

ve =
∑
j∈J

vj,e, ∀e∈ E , (14c)

ve ≤ ke, ∀e∈ E , (14d)

ve ≥ 0, ∀e∈ E . (14e)

Constraints (14b) ensure demand is delivered from origin Sj to destination Dj for all OD pairs j ∈ J .

Constraints (14c) determine the total flow on each arc in the network. Constraints (14d) enforce the capacity

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 31

restrictions for the arcs. Constraints (14e) ensure that the demand allocated to an arc is non-negative. The

arc-based formulation has |J |+ | E |+ |J || E | decision variables and |N ||J |+ 2| E | constraints.

B. Proofs of Theorems

B.1. Proof of Theorem 2

Proof of Theorem 2 Define L̃(z, y) = max z≥0

zj=
∑

p∈Pj
xp

L(x, y). It follows that

max
z≥0

T∑
t=1

L̃(z, yt) = max
z≥0

T∑
t=1

max
z≥0

zj=
∑

p∈Pj
xp

L(x, yt)

= max
z≥0

max
z≥0

zj=
∑

p∈Pj
xp

T∑
t=1

L(x, yt)

= max
x≥0

T∑
t=1

L(x, yt).

Because we apply Online Supergradient Ascent on a sequence of L̃(z, yt) which is strongly concave in z, from

Lemma 2, we have

O(logT)≥max
z≥0

T∑
t=1

L̃(z, yt)−
T∑
t=1

L̃(zt, yt)

= max
x≥0

T∑
t=1

L(x, yt)−
T∑
t=1

L̃(zt, yt). (15)

We have shown previously that x and y which solve MCMCF in (11) are identical to x and y which solve

miny≥0 max x≥0∑
p∈Pj

xp=zj

L(x, y). Therefore, from definition of xt and yt in Algorithm 4, we have

L(xt, yt) = min
y≥0

max
x≥0∑

p∈Pj
xp=zj,t

L(x, y) = max
x≥0∑

p∈Pj
xp=zj,t

min
y≥0

L(x, y)

= min
y≥0

L(xt, y) = max
x≥0∑

p∈Pj
xp=zj,t

L(x, yt). (16)

By definition of L̃, we know that

L̃(zt, yt) = max
x≥0∑

p∈Pj
xp=zj,t

L(x, yt) =L(xt, yt). (17)

Hence, from (15), it follows that

O(logT)≥max
x≥0

T∑
t=1

L(x, yt)−
T∑
t=1

L(xt, yt)

≥
T∑
t=1

L(x∗, yt)−
T∑
t=1

L(xt, yt) (18)

≥ TL(x∗,

T∑
t=1

yt/T)−
T∑
t=1

L(xt, yt) (19)

≥ TL(x∗, y∗)−
T∑
t=1

L(xt, yt), (20)

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 32

where (18) follows the feasibility of x∗, (19) follows the convexity in y, and (20) follows the definition of y∗.

Therefore, we have

L(x∗, y∗)− 1

T

T∑
t=1

L(xt, yt)≤O
(

logT

T

)
. (21)

From (16), we know that yt = arg miny≥0L(xt, y). It follow from Lemma 3 that

0≥
T∑
t=1

L(xt, yt)−min
y≥0

T∑
t=1

L(xt, y)

≥
T∑
t=1

L(xt, yt)−L(xt, y
∗) (22)

≥
T∑
t=1

L(xt, yt)−TL(

T∑
t=1

xt/T, y
∗) (23)

≥
T∑
t=1

L(xt, yt)−TL(x∗, y∗), (24)

where (22) follows the feasibility of y∗, (23) follows the concavity of L in x, and (24) follows the definition

of x∗. Therefore, we have

1

T

T∑
t=1

L(xt, yt)−L(x∗, y∗)≤ 0. (25)

Combining (21) and (25), we can conclude that∣∣∣∣∣ 1

T

T∑
t=1

L(xt, yt)−L(x∗, y∗)

∣∣∣∣∣≤O
(

logT

T

)
. �

B.2. Proof of Theorem 3

Proof of Theorem 3 Let xp = ρj(p)zj for all p ∈ Pj , j ∈ J ,
∑

p∈Pj
ρj(p) = 1 for all j ∈ J and ρj(p) ≥ 0

for all p ∈ Pj , j ∈ J . We define H(z, y∗) =
∑

j∈J rj(zj)−
∑

e∈E ce
∑

j∈J

∑
p∈Pj

δe(p)ρj(p)zj +
∑

e∈E y
∗
e(ke −∑

j∈J

∑
p∈Pj

δe(p)ρj(p)zj). That is, we have H(z, y∗) = L(x, y∗). It is easy to verify that H is µ-strongly

concave in z, so we have

H(z, y∗)≤H(z∗, y∗) +∇zH(z∗, y∗)>(z− z∗)− µ

2
‖z− z∗‖2.

Because z∗ is a maximizer, it follows that ∇zH(z∗, y∗)>(z− z∗)≤ 0, and hence

H(z, y∗)≤H(z∗, y∗)− µ

2
‖z− z∗‖2.

Because L(x, y∗) =H(z, y∗), we have

TL(x∗, y∗)−
T∑
t=1

L(xt, y
∗)≥ µ

2

T∑
t=1

‖zt− z∗‖2.

It follows that

TL(x∗, y∗)−
T∑
t=1

L(xt, y
∗) = TL(x∗, y∗)−

T∑
t=1

L(xt, yt) +

T∑
t=1

L(xt, yt)−
T∑
t=1

L(xt, y
∗)

≤O(logT),

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 33

where the inequality follows from (20) and (24). Therefore,

O(logT)≥
T∑
t=1

‖zt− z∗‖2

= T

[∑T

t=1 ‖zt− z∗‖2

T

]

≥ T

∥∥∥∥∥
T∑
t=1

zt/T − z∗
∥∥∥∥∥
2
 ,

where the last equation follows from Jensen’s inequality because ‖ · ‖2 is convex. Therefore, we have

‖z̄− z∗‖2 ≤O
(

logT

T

)
. �

C. Lemmas

Lemma 1. Let x∗ = arg maxx∈X f(x). When f is β-smooth, under Algorithm 1, we have

f(x∗)− f(xT)≤O
(

1

T

)
.

Proof of Lemma 1 Since f is β-smooth, we have

f(xs+1)≥ f(xs) +∇f(xs)
>(xs+1−xs)−

β

2
‖xs+1−xs‖2

= f(xs) +∇f(xs)
>(xs + γs(ws−xs)−xs)−

β

2
‖xs + γs(ws−xs)−xs‖2

≥ f(xs) + γs∇f(xs)
>(ws−xs)−

βγ2
sR

2

2

≥ f(xs) + γs∇f(xs)
>(x∗−xs)−

βγ2
sR

2

2
(26)

≥ f(xs) + γs(f(x∗)− f(xs))−
βγ2

sR
2

2
, (27)

where (26) follows the definition of zs and (27) holds because f is concave.

f(x∗)− f(xs+1)≤ (1− γs)(f(x∗)− f(xs)) +
βγ2

sR
2

2
. (28)

Let ∆s = f(x∗)− f(xs). (28) can be re-written as

∆s+1 ≤ (1− γs)∆s + γ2
s

βR2

2
.

When ∆s = 2
s+2

. We can show by induction that ∆s ≤ 2βR2

s+2
for s= 0,1, For base case (s= 0), we have

γ0 = 1, and hence, ∆1 ≤ βR2

2
≤ βR2. Assume that ∆s ≤ 2βR2

s+2
holds for s≥ 0. We have

∆s+1 ≤
(

1− 2

s+ 2

)
2βR2

s+ 2
+

(
2

s+ 2

)2
βR2

2

=
2sβR2

(s+ 2)2
+

2βR2

(s+ 2)2

=
2βR2

(s+ 2)2
(s+ 1)

≤ 2βR2

(s+ 1)(s+ 3)
(s+ 1) (29)

=
2βR2

s+ 3
,

where the inequality (29) holds because (s+ 2)2 ≥ (s+ 1)(s+ 3). �

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 34

Lemma 2 (Theorem 3.3 in Hazan (2016)). For any sequences of µ-strongly convex functions `t,

Online gradient descent (Algorithm 3) with step sizes ηt = 1
µt

, it follows that

T∑
t=1

`t(xt)−min
x∈X

T∑
t=1

`t(x)≤ G2

2α
(1 + logT),

where ‖∇f(x)‖ ≤G for all x∈X.

Algorithm 5 Best Response

Input: T

for t= 0,1,2, . . . , T do

Set xt← arg minx∈X `t(x)

Lemma 3. For any sequences of convex functions `t, Best Response (Algorithm 5) achieves

T∑
t=1

`t(xt)−min
x∈X

T∑
t=1

`t(x)≤ 0.

Proof of Lemma 3 From the description of Best Response, for t= 1, . . . , T , we have `t(xt)≤ `t(x) for all

x∈X. It follows that
T∑
t=1

`t(xt)≤
T∑
t=1

`t(x), ∀x∈X

≤min
x∈X

T∑
t=1

`t(x). �

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: Theory. Algorithms, and Applications 526.

Assad AA (1978) Multicommodity network flows—a survey. Networks 8(1):37–91.

Crainic TG (2000) Service network design in freight transportation. European journal of operational research

122(2):272–288.

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische mathematik 1(1):269–271.

Ford LR, Fulkerson DR (1958) A suggested computation for maximal multi-commodity network flows. Man-

agement Science 5(1):97–101.

Frank M, Wolfe P (1956) An algorithm for quadratic programming. Naval research logistics quarterly 3(1-

2):95–110.

Hazan E (2016) Introduction to online convex optimization. Foundations and Trends R© in Optimization

2(3-4):157–325.

Jaggi M (2013) Revisiting frank-wolfe: Projection-free sparse convex optimization. Proceedings of the 30th

International Conference on Machine Learning, 427–435.

Bumpensanti, Savelsbergh, and Wang: Integrated Pricing and Routing on a Network 35

Kennington JL (1978) A survey of linear cost multicommodity network flows. Operations Research 26(2):209–

236.

Krile S (2004) Application of the minimum cost flow problem in container shipping. Proceedings. Elmar-2004.

46th International Symposium on Electronics in Marine, 466–471 (IEEE).

Levitin ES, Polyak BT (1966) Constrained minimization methods. USSR Computational mathematics and

mathematical physics 6(5):1–50.

Lin CC, Lee SC (2015) Zone pricing for time-definite LTL freight transportation with elastic demand.

Computers & Operations Research 62:51–60.

Lin CC, Lin DY, Young MM (2009) Price planning for time-definite less-than-truckload freight services.

Transportation Research Part E: Logistics and Transportation Review 45(4):525–537.

Mitra D, Ramakrishnan K, Wang Q (2001) Combined economic modeling and traffic engineering: Joint opti-

mization of pricing and routing in multi-service networks. Proc. 17th International Teletraffic Congress,

73–85.

Ouorou A, Mahey P, Vial JP (2000) A survey of algorithms for convex multicommodity flow problems.

Management science 46(1):126–147.

Resende MG, Pardalos PM (2008) Handbook of optimization in telecommunications (Springer Science &

Business Media).

Sharkey TC (2011) Network flow problems with pricing decisions. Optimization Letters 5(1):71–83.

Vaidyanathan B, Jha KC, Ahuja RK (2007) Multicommodity network flow approach to the railroad crew-

scheduling problem. IBM Journal of Research and Development 51(3.4):325–344.

Wieberneit N (2008) Service network design for freight transportation: a review. OR spectrum 30(1):77–112.

Zinkevich M (2003) Online convex programming and generalized infinitesimal gradient ascent. Proceedings

of the 20th International Conference on Machine Learning, 928–936.

	Introduction
	Literature Review
	Problem Description
	Algorithms
	Frank-Wolfe Algorithm with Column Generation (FW-CG)
	Primal-Dual Algorithm

	Numerical Experiments
	Demand Models
	Linear Demand Model.
	Piece-wise Linear Demand Model.

	Experimental Results
	Linear Demand Model.
	Piece-wise Linear Demand Model.

	Computation Time and Convergence Rates.
	Linear Demand Model.
	Piece-wise Linear Demand Model.

	Final Remarks
	Arc-based Formulation
	Proofs of Theorems
	Proof of Theorem 2
	Proof of Theorem 3

	Lemmas

