
Noname manuscript No.
(will be inserted by the editor)

Computing mixed strategies equilibria in presence of switching
costs by the solution of nonconvex QP problems

G. Liuzzi · M. Locatelli · V. Piccialli · S. Rass

Received: date / Accepted: date

Abstract In this paper we address a game theory problem arising in the context of network
security. In traditional game theory problems, given a defender and an attacker, one searches
for mixed strategies which minimize a linear payoff functional. In the problem addressed in this
paper an additional quadratic term is added to the minimization problem. Such term represents
switching costs, i.e., the costs for the defender of switching from a given strategy to another one
at successive rounds of the game. The resulting problem is a nonconvex QP problem with linear
constraints. We prove that, though simple when one of the two terms in the objective function
is missing, the problem is, in general, a NP-hard one. The proof is based on a reduction from
the decision version of the clique problem. Next, we discuss different reformulations and bounds
for such problem. Finally, we show, through an extensive set of computational experiments, that
the most promising approach to tackle this problem appears to be a branch-and-bound approach
where a predominant role is played by an optimality-based domain reduction, based on the multiple
solutions of LP problems at each node of the branch-and-bound tree. The computational cost per
node is, thus, high but this is largely compensated by the rather small size of the corresponding
tree.
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1 Introduction

Consider a finite two-person zero-sum game Γ , composed from a player set N = {1, 2}, each
member thereof having a finite strategy space S1, S2 associated with it, and a utility function
ui : S1 × S2 → R for all i ∈ N . We assume a zero-sum competition, making u2 := −u1 hereafter.
The game is then the triple Γ = (N,S = {S1, S2}, H = {u1,−u1}), and is most compactly
represented by giving only the payoff function u1 in matrix form (since the strategy spaces are
finite) as

A ∈ R|S1|×|S2| = (u1(x, y))(x,y)∈S1×S2
.

An equilibrium in Γ is a simultaneous optimum for both players w.r.t. u1. Assuming a maxi-
mizing first player, an equilibrium is a pair (x∗, y∗) satisfying the saddle-point condition

u1(x, y∗) ≤ u1(x∗, y∗) ≤ u1(x∗, y) ∀(x, y) ∈ S1 × S2.

It is well known that many practical games do not have such an equilibrium point; as one of
the simplest instances, consider the classical rock-scissors-paper game, represented by the payoff
matrix

rock scissors paper( )rock 0 1 −1
scissors −1 0 1

paper 1 −1 0

.

This game has no equilibria in pure strategies: any fixed choice of rock, scissors or paper would
imply a constant loss for the first player (and likewise for the second player). This means that
player 1 is forced to randomize its actions in every round of the game, and this concept leads to
the idea of mixed extensions of a game, which basically changes the above optimization problem
into one over the convex hulls ∆(S1), ∆(S2) of the action spaces, rather than the finite sets S1, S2.
An element of ∆(Si) is then a probability distribution over the elements of the support Si, and
prescribes to pick a move at random whenever the game is played.

The game rewards its players after each round, and upon every new round, both players are
free to choose another element from their action space at random. Implicitly, this choice is with-
out costs, but what if not? Many real life instances of games do incur a cost for changing one’s
action from a1 ∈ S1 in the first to some distinct a2 ∈ S1 in the next round. The area of system
security [1,19] offers rich examples of such instances, such as (among many):

– Changing passwords [14]: if the currently chosen password is p1 and we are obliged to pick
a fresh password (say, different from the last couple of passwords that we had in the past),
the use of the new password p2 6= p1 induces quite some efforts, as we have to memorize the
password, while choosing it as hard as possible to guess.

– Patrolling and surveillance [2,13]: consider a security guard on duty to repeatedly check a few
locations, say A, B, . . . , E, which are connected at distances as depicted in Fig. 1. This is a
chasing-evading game with the guard acting as player 1 against an intruder being player 2,
and with the payoff function u being an indicator of whether the guard caught the intruder at
location i ∈ {A,. . . ,E}, or whether the two missed each other. This is yet another instance of a
game with all equilibria in mixed strategies, but with the unpleasant side-effect for the guard
that gets the prescription to randomly spot check distant locations to “play” the equilibrium
x∗, the guard would have to move perhaps long distances between the locations. For example,
if it is at A in round 1 and the next sample from the random distribution x∗ ∈ ∆({A,. . . ,E})
tells to check point E next, the shortest path would be of length 1 + 3 + 2 = 6 over C. Starting
from A, however, it would be shorter and hence more convenient for the guard to check location
B first along the way, but this would mean deviating from the equilibrium! A normal game
theoretic equilibrium calculation does not consider this kind of investment to change the current
strategy. This may not even count as bounded rationality, but simply as acting “economic”
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Fig. 1: Example of spot checking game on a graph

from the guard’s perspective. But acting economically here is then not governed by a utility
maximizing principle, but rather by a cost minimization effort.

– Generalizing the patrolling game example, the issue applies to all sorts of moving target defense:
for example, changing the configuration of a computer system so as to make it difficult for an
attacker to break in, often comes with high efforts and even risks for the defending player 1
(the system administrator), since it typically means taking off machines from the network,
reconfiguring them to close certain vulnerabilities, and then putting them back to work hoping
that everything restarts and runs smoothly again. A normal game theoretic model accounts
only for the benefits of that action, but not for the cost of taking the action.

Including the cost to switch from one action to the next is more complicated than just as-
signing a cost function c : S1 → R and subtracting this from the utilities to redefine them as
u′1(i, j) = u1(i, j)− c(i), since the cost to play ai will generally depend on the previous action aj
played in the previous round.

We can model this sort of payoff by another function s : S1 × S1 → R that we call the switching
cost. The value of s(i, j) is then precisely the cost incurred to change the current action i ∈ S1 into
the action j ∈ S1 in the next round of the game. Intuitively, this adds another payoff dimension
to the game, where a player, w.l.o.g. being player 1 in the following, plays “against itself”, since
the losses are implied by its own behavior. While the expected payoffs in a matrix game A under
mixed strategies x ∈ ∆(S1),y ∈ ∆(S2) are expressible by the bilinear functional xTAy, the same
logic leads to the hypothesis that the switching cost should on average be given by the quadratic
functional xTSx, where the switching cost matrix is given, like the payoff matrix above, as

S ∈ R|S1|×|S1| = (s(x, y))(x,y)∈S1×S1
.

This intuition is indeed right [15], but for a rigorous problem statement, let us briefly recap the
derivation given independently later by [24] to formally state the problem.

2 The problem

Let the game come as a matrix A ∈ Rn×m with equilibrium (x∗,y∗), and let it be repeated over
the time t ∈ N. At each time t, let Xt ∼ x∗ be the random action sampled from the equilibrium
distribution over the action space (with x∗ being the optimal distribution). By the implicit yet
standard assumption of stochastic independence between two repetitions of the game, we have
Pr(Xt−1 = i,Xt = j) = Pr(Xt−1 = i) · Pr(Xt = j), so that any future system state remains
equally predictable whether or not the current state of the system is known. Hence, the switching
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cost can be written as

s(Xt−1, Xt) =

n∑
i=1

n∑
j=1

sij · Pr(Xt−1 = i,Xt = j)

=

n∑
i=1

n∑
j=1

sij · Pr(Xt−1 = i) · Pr(Xt = j) = xTSx.

With this, player 1’s payoff functional becomes vector-valued now as

u1 : ∆(S1)×∆(S2)→ R2, (x,y) 7→
(
u1(x,y) = xTAy
s(x,y) = xTSx

)
, (1)

and the game is multi-objective for the first player. As we are interested mostly in the best behavior
for player 1 and the analysis would be symmetric from player 2’s perspective, we shall not explore
the view of the second player hereafter.

Remark 1 The game could be equally well multi-objective for the second player too, and in fact a
practical instance of such a situation may also come from security: it could be in an adversary’s
interest to “keep the defender busy”, thus causing much friction by making the defender move
fast from one place to the other. This is yet just another instance of a denial-of-service attack, to
which such a game model would apply.

For the sake of computing a multi-objective equilibrium, more precisely a Pareto-Nash equilib-
rium, the algorithm in [16] based on the method laid out in [11] proceeds by scalarizing (1) by
choice of some α ∈ (0, 1), to arrive at the real-valued goal function

α · xTAy + (1− α) · xTSx,

for the first player to optimize. Now, the usual way from here to an optimization problem for
player 1 involving a rational opponent applies as for standard matrix games [15]: let ei ∈ Rm
be i-th unit vector, then arg maxy∈∆(S2)(x

TAy) = arg maxi(x
TAei). Substituting v := maxi(α ·

xTAei + (1− α) · xTSx), the resulting problem becomes

v → min
subject to v ≥ (1− α) · xTSx + αxTAei for i = 1, . . . ,m;∑n

j=1 xj = 1;

xi ≥ 0, for i = 1, . . . , n.

 (2)

which is almost the familiar optimization program to be solved for a Nash equilibrium in a finite
matrix game. It differs from the well known linear program only in the quadratic term, and in
fact, the equilibrium problem for matrix games is recovered by substituting α = 1 in (2). The
problem would again become trivial for α = 0, since in that case, only the switching cost matters
and hence every degenerate distribution corresponding to a strategy i ∈ S1 that never changes is
directly an equilibrium. Excluding the standard equilibria obtained at α = 1 and the meaningless
results expected for α = 0, problem (2) is interesting only for values of α strictly between 0 and 1.

Note that the matrix S in the quadratic term will (in most cases) have a zero diagonal, be
indefinite and not symmetric in general (patrolling game example given above already exhibits a
variety of counterexamples leading to nonsymmetric distance matrices S if the graph is directed).
Of course, symmetry of S can be easily recovered, so in what follows we will assume that S is
symmetric.
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Remark 2 (On Alternatives to Solve the Switching Cost Problem) Game models that reward play-
ers based on their past actions are stochastic games. Extending equilibria to this class of games is
possible [18], yet can render such models practically infeasible to set up (the model then contains
the specification of a stochastic chain whose states equal different payoff structures, and the mod-
eler is required to specify transition probabilities between different such games; an information
that people in practice may lack or find difficult to reliably give).

The dependence of next actions on past ones extends to other scenarios too: for example, if the
game is about coordination in wireless settings (e.g., collaborative drones), the players, e.g., drones,
share a common communication channel. Every exchange of information occupies that channel for
a limited period of time, thus constraining what the other players can do at the moment. Such
effects can be described by stochastic games, but depending on how far the effect reaches in the
future, backward inductive solution methods may become computationally infeasible [8]; likewise,
extending the strategy space to plan ahead a fixed number of k steps (to account for one strategy
determining the next k repetitions of the game) may exponentially enlarge the strategy space (by
a factor of 2O(k), making the game infeasible to analyze if k is large). Games with switching cost
offer a neat bypass to that trouble: if an action is such that it occupies lots of resources for a
player, thus preventing it from taking further moves in the next round of the game, we can express
this as a switching cost. Assume, for instance, that an action in a game Γ is such that the player is
blocked for the next k rounds, then the switching cost is k-times the expected utility u (with the
expectation taken over the equilibrium distribution played by the participants) that these next
k rounds would give. Virtually, the situation is thus like if the player would have paid the total
average gain over the next rounds where it is forced to remain idle (thus gaining nothing):

u −k · u︸ ︷︷ ︸
switching cost

+ u+ · · ·+ u︸ ︷︷ ︸
virtual payoffs

over k rounds

= u+ 0 + 0 + . . .+ 0︸ ︷︷ ︸
practical payoffs

by being idle

for k rounds

(3)

Expression (3) will in practice be only an approximate identity, since we assumed that the game,
viewed as a stochastic process, has already converged to stationarity (so that the equilibrium
outcome u is actually rewarded). The speed of convergence, indeed, can itself be of interest to be
controlled in security applications using moving target defenses [24]. The crucial point of modeling
a longer lasting effect of the current action like described above, however, lies in the avoidance of
complexity: expression (3) has no issues with large k, while more direct methods of modeling a
game over k rounds, or including a dependency on the last k moves, is relatively more involved
(indeed, normal stochastic games consider a first-order Markov chain, where the next state of the
game depends on the last state; the setting just described would correspond to an order k chain,
whose conversion into a first order chain is also possible, but complicates matters significantly).

2.1 Paper Outline

The paper is structured as follows. In Section 3 we show that the problem to be solved is a NP-hard
one through a reduction from the decision version of the clique problem. In Section 4 we discuss
different reformulations (bilinear, MILP) of the problem and possible bounds for it. In Section 5 we
present a (spatial) branch-and-bound approach for the problem, putting a particular emphasis on
the bound-tightening procedure, which turns out to be the most effective to attack it. In Section 6
we present some computational experiments. We first describe the set of test instances. Next, we
discuss the performance of existing solvers over these instances. Finally, we present and comment
the computational results attained by the proposed approach.
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3 Complexity Result

In this section we consider the complexity of the problem to be solved and we show that its
corresponding decision problem is NP-complete. Let

f(x) =
1

2
xTSx + max

k=1,...,m
AT
k x, (4)

where Sii = 0 for each i = 1, . . . , n and Sij ≥ 0 for each i 6= j, while Ak ≥ 0, k = 1, . . . ,m.
Moreover, let

∆n = {x ∈ Rn+ : eTx = 1}

be the n-dimensional unit simplex. After incorporating α and (1−α) respectively into S and Ak,
k = 1, . . . ,m, problem 2 introduced in Section 2 is equivalent to minx∈∆n f(x). Then, we would
like to establish the complexity of the following decision problem:

Given a constant ξ ≥ 0 ∃ x ∈ ∆n : f(x) ≤ ξ? (5)

As already remarked in Section 2, the problem would be trivial for the quadratic part of f alone
(the minimum of the quadratic form in f over ∆n is equal to 0 and is attained at each vertex
of the unit simplex). It would also be polynomially solvable for the piece-wise linear part of f
alone (one only needs to solve a linear problem). However, it turns out that the overall problem
is difficult, as proved in the following theorem.

Theorem 31 The decision problem (5) is NP-complete.

Proof. We prove the result by providing a polynomial transformation of the max clique decision
problem, i.e., given a graph G = (V,E) and a positive integer k ≤ |V |, does there exist a clique C
in G with cardinality at least k? We define the following instance of the decision problem (5). Let

Sij =

{
0 if i = j or (i, j) ∈ E

n4 otherwise.

Moreover, let m = n and for each k = 1, . . . , n let Ak = ek, where ek is the vector with all
components equal to 0, except the k-th one, which is equal to 1. Stated in another way, the piece-
wise linear part is maxk=1,...,n xk. Finally, let ξ = 1

k . We claim that the minimum value of f over
∆n is not larger than ξ = 1

k if and only if G contains a clique with cardinality k. The if part is
very simple. Indeed, let us consider the feasible solution xi = 1

k if i ∈ C, where C is a clique of
cardinality k, and let xi = 0 otherwise. Then, the value of f at this point is equal to 1

k . Indeed ,
the value of the quadratic part is 0, while the value of the piece-wise linear part is 1

k . The proof
of the only if part is a bit more complicated. We would like to prove that, in case no clique with
cardinality at least k exists, then the minimum value of f over the unit simplex is larger than 1

k .
Let us denote by x∗ the minimum of f over the unit simplex. Let

K = supp(x∗) = {i : x∗i > 0},

and let C be the maximum clique over the sub-graph induced by K, whose cardinality is at most
k − 1. We first remark that if, for some i ∈ K \ C, it holds that

x∗i ≥
1

n2
and

∑
j∈C : (i,j) 6∈E

x∗j ≥
1

n2
,

then the quadratic part contains the term

n4x∗i

 ∑
j∈C : (i,j)6∈E

x∗j

 ≥ 1,
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which concludes the proof. Therefore, we assume that either x∗i <
1
n2 or∑

j∈C : (i,j) 6∈E

x∗j <
1

n2
. (6)

Now, let

K1 =

{
i : i ∈ K \ C and x∗i ≥

1

n2

}
.

If ∃ k1, k2 ∈ K1 and (k1, k2) 6∈ E, then n4x∗k1x
∗
k2
≥ 1, which concludes the proof. Then, we assume

that for each k1, k2 ∈ K1, (k1, k2) ∈ E, i.e., K1 itself is a clique. Now let us consider the following
subset of C

C1 = {i ∈ C : (i, k) 6∈ E for at least one k ∈ K1} .
It must hold that |C1| ≥ |K1|. Indeed, if |C1| < |K1|, then (C \ C1) ∪ K1 is also a clique with
cardinality larger than C, which is not possible in view of the fact that C has maximum cardinality.
Then, in view of (6) we have that

x∗i <
1

n2
∀ i ∈ C1,

and, moreover, by definition of K1, we also have

x∗i <
1

n2
∀ i ∈ K \ (K1 ∪ C).

Since |C1| ≥ |K1|, we have that

T =

{
i ∈ K : x∗i ≥

1

n2

}
is such that |T | ≤ |(K \ (K1 ∪ C)) ∪ C1| ≤ |C| ≤ k − 1. Thus, taking into account that∑

i∈K\T

x∗i <
1

n
,

we must have that ∑
i∈T

x∗i > 1− 1

n
,

and, consequently, taking into account that |T | ≤ k − 1, for at least one index j ∈ T it must hold
that

x∗j >
1− 1

n

k − 1
≥ 1

k
,

so that the piece-wise linear part of f is larger than 1
k , which concludes the proof. �

4 A review of different reformulations and bounds

In the next subsections we will briefly present and discuss different reformulations and bounds that
we tested to attack the problem of minimizing the objective function (4) over the unit simplex.
Later on, in Section 5 we will discuss in more detail the reformulation and the related bounding
procedure which turned out to be the best one in practice. Before proceeding, we remark that, by
a standard procedure, the convex piece-wise linear term of the objective function can be replaced
by a single variable with the addition of linear constraints, i.e.,

min 1
2xTSx + v

v ≥ AT
j x j = 1, . . . ,m

x ∈ ∆n,

(7)

where we recall that ∆n denotes the n-dimensional unit simplex.
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4.1 Bilinear reformulation

A simple reformulation of problem (7), with bilinear objective function and linear constraints, is
the following:

min 1
2

∑n
i=1 xiyi + v

v ≥ AT
j x j = 1, . . . ,m

yi = Six i = 1, . . . , n

x ∈ ∆n,

(8)

where Si denotes the i-th row of matrix S. If lower bounds `xi
, `yi and upper bounds uxi

, uyi are
available for xi and yi, respectively, then the well known McCormick underestimating function
(see [12])

max {`xi
yi + `yixi − `xi

`yi , uxi
yi + uyixi − uxi

uyi} ,

can be employed to limit from below the bilinear term xiyi over the rectangle [`xi
, uxi

]×[`yi , uyi ]. In
fact, it turns out that McCormick underestimating function is the convex envelope of the bilinear
term over the given rectangle. Then, after introducing the additional variables fi, we have that
the optimal value of the following LP problem is a lower bound for problem (7) when variables xi
and yi, i = 1, . . . , n, are bounded to belong to the intervals [`xi

, uxi
] and [`yi , uyi ], respectively:

min
1

2

n∑
i=1

fi + v (9a)

x ∈ ∆n (9b)

`xi
≤ xi ≤ uxi

i = 1, . . . , n (9c)

v ≥ AT
j x j = 1, . . . ,m (9d)

yi = Six i = 1, . . . , n (9e)

`yi ≤ yi ≤ uyi i = 1, . . . , n (9f)

fi ≥ `yixi + `xi
yi − `xi

`yi i = 1, . . . , n (9g)

fi ≥ uxi
yi + uyixi − uyiuxi

i = 1, . . . , n. (9h)

In spite of the fact that reformulation (8) and lower bound (9) are rather simple ones, a branch-and-
bound approach based on them turned out to be, by far, the best performing of all the approaches
we tested to attack problem (7). However, as we will see through some computational experiments,
efficiency of such an approach strongly depends on the use of suitable bound-tightening techniques,
which will be discussed in Section 5.1.

4.2 Reformulation based on KKT conditions

Similarly to what already done in [9,23] for box-constrained quadratic programming problems and,
very recently, in [7,25], for Standard Quadratic Programming (StQP) problems, one can exploit
KKT conditions to reformulate problem (7) as a Mixed Integer Linear Programming (MILP)
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problem. The KKT conditions for problem (7) are the following

Six +
∑m
j=1 γjAji − λ− µi = 0 i = 1, . . . , n

x ∈ ∆n, γ ∈ ∆m

v ≥ AT
j x j = 1, . . . ,m

µ ≥ 0

µixi = 0 i = 1, . . . , n

γj(v −AT
j x) = 0 j = 1, . . . ,m.

Let us denote by Xlin the region defined by the linear constraints of the KKT conditions (in
fact, all of them except the complementarity conditions), and by Xcomp the region defined by
the complementarity conditions. Now let us consider a point (x, v,µ,γ, λ) fulfilling the KKT
conditions, i.e., belonging to Xlin∩Xcomp. For each i ∈ {1, . . . , n}, let us multiply the first equation
by xi and then sum the result over all i. We end up with

xTSx +

m∑
j=1

γjA
T
j x− λ

n∑
i=1

xi −
n∑
i=1

µixi = 0.

In view of the complementarity conditions we also have

xTSx + v − λ = 0, (10)

so that at KKT points the objective function of the problem turns out to be equal to 1
2 (λ + v).

Then, since the global minimizer is a KKT point, problem (7) can be rewritten as follows

min
(x,v,γ,µ,λ)∈Xlin∩Xcomp

1

2
(λ+ v).

In this reformulation the objective function is a linear one and the difficulty of the problem now
lies in the complementarity conditions. In order to deal with them, we can introduce the binary
variables δi, i = 1, . . . , n, and ρj , j = 1, . . . ,m, and we will introduce suitable constraints such
that

δi =

{
1 if µi = 0

0 if xi = 0
ρj =

{
1 if AT

j x = v

0 if γj = 0.

In order to introduce suitable constraints we need suitable upper bound values uxi
, uµi

, uγj ,
uv−AT

j x respectively for xi, µi, γj , and v−AT
j x. Now, we can reformulate problem (7) as a MILP:

min 1
2 (λ+ v)

(x, v,γ,µ, λ) ∈ Xlin

µi ≤ uµi
(1− δi) i = 1, . . . , n

xi ≤ uxi
δi i = 1, . . . , n

γj ≤ uγjρj j = 1, . . . ,m

v −AT
j x ≤ uv−AT

j x(1− ρj) j = 1, . . . ,m

δi, ρj ∈ {0, 1} i = 1, . . . , n, j = 1, . . . ,m.

(11)

An obvious upper bound for xi is uxi = 1. In order to compute an upper bound for µi and γi we
first remark, from (10) and recalling that S has nonnegative entries, that for x ∈ ∆n

λ = v + xTSx ≥ v ≥ AT
j x, j = 1, . . . ,m,
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so that we can compute upper bounds for µi and γi by solving the following linear problems

uµi/uγi = max µi/γi

(x, v,γ,µ, λ) ∈ Xlin

λ ≥ AT
j x j = 1, . . . ,m.

For what concerns an upper bound for v −AT
j x, if an upper bound GUB for the optimal value

of problem (7) and, thus, also for v, is available, then we can compute it by solving the following
linear problem

uv−AT
j x = max

x∈∆n

GUB −AT
j x.

In fact, all these upper bounds can be strengthened through the bound-tightening techniques
described in Section 5.1. The reformulation of problem (7) as a MILP is quite appealing and allows
to employ powerful solvers like CPLEX or GUROBI to solve it. However, while this reformulation
turned out to be effective when solving StQP problems (see [7,25]), the computational experiments
in Section 6.2 will show that it does not appear to be an effective approach for the solution of
problem (7).

4.3 Semidefinite relaxation and convex envelope

Following a standard approach for quadratic problems, problem (7) can be reformulated as follows

min 1
2S •X + v

v ≥ AT
j x j = 1, . . . ,m

x ∈ ∆n,

X = xxT .

This immediately leads to the classical semidefinite relaxation for quadratic problems by simply
replacing the equality constraint X = xxT with the semidefinite constraint X � xxT . Unfor-
tunately, the bound obtained by solving the semidefinite relaxation is a trivial one, namely the
solution of the linear problem

min v

v ≥ AT
j x j = 1, . . . ,m

x ∈ ∆n.

(12)

To see this, it is enough to observe that for each x ∈ ∆n, we can always find a diagonal matrix X
such that X � xxT holds and, thus, X is feasible for the semidefinite relaxation. In view of the
structure of matrix S, with all diagonal elements equal to 0, it turns out that S •X = 0 for such
diagonal matrix, so that we are left with the simple bound (12).

We end up with the trivial bound (12) even when we replace the quadratic part of the objective
function of problem (7) with its convex envelope over ∆n. Indeed, function xTSx is edge-concave
(see [20,21]), i.e., it is concave over any segment parallel to an edge of the unit simplex. To see
this it is enough to show that for all i, j ∈ {1, . . . , n}, i 6= j, we have that

(ei − ej)
TS(ei − ej) = Sii + Sjj − 2Sij = −2Sij ≤ 0,

where ei and ej are the i-th and j-th vertex of the unit simplex (recall that all diagonal elements of
S are null and all off-diagonal elements are nonnegative). Then, it is well known (see [20,21]) that
edge-concave functions have a vertex polyhedral convex envelope, namely, their convex envelope
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is the affine function interpolating xTSx at the vertices of the unit simplex ∆n. Since S has a
null diagonal, this means that the convex envelope is the null function, so that by replacing the
quadratic term with its convex envelope over the unit simplex we are back to (12).

5 A branch and bound approach

As already discussed in Section 4.1, given the lower bounds `xi
, `yi and the upper bounds uxi

, uyi
for variables xi and yi respectively, i ∈ {1, . . . , n}, a lower bound for problem (7) over the box∏n
i=1[`xi , uxi ] ×

∏n
i=1[`yi , uyi ] can be computed by solving the LP problem (9). In the proposed

branch-and-bound approach the size of the boxes is progressively reduced through the branching
strategy discussed in Section 5.2. However, a reduction merely based on the branching strategy
would lead to a quite inefficient algorithm. It turns out that performance can be strongly enhanced
by a bound-tightening technique. Such technique, described in the following Section 5.1, is expen-
sive but, as we will see through the computational experiments, extremely rewarding. Next, in
Section 5.2 we will briefly discuss the simple branching strategy. Finally, in Section 5.3 we will
discuss a technique to strengthen the lower bound, based on the solution of a (small-dimensional)
MILP. Note that we do not discuss convergence of the proposed branch-and-bound approach, since
it easily follows by rather standard and general arguments which can be found in [10].

5.1 Bound-tightening technique

At each node, associated to a box
∏n
i=1[`xi

, uxi
]×
∏n
i=1[`yi , uyi ], we refine the bounds by recom-

puting `xi
, `yi , uyi , uxi

. All bounds are computed by solving LP problems having the feasible set
defined by constraints (9b)-(9h) and the additional constraint

1

2

n∑
i=1

fi + v ≤ GUB, (13)

stating that we are only interested at feasible solutions where the underestimating function, i.e.,
the left-hand side of the constraint, corresponding to the objective function (9a), is not larger
than the current upper bound GUB. In other words, we are applying an optimality-based domain
reduction (see, e.g., [5,22]), removing feasible points which do not allow to improve the current
best feasible solution. The 4n LP problems to be solved have the following objective functions:

1. min yi for computing `yi ;
2. max yi for computing uyi ;
3. minxi for computing `xi ;
4. maxxi for computing uxi

.

Once we have strengthened the bounds, we recompute the lower bound by solving (9) with the
new lower and upper limits for the variables. Note that the underestimating function and, thus,
the lower bound depends on such limits. But also the converse is true: the limits depend on the
underestimating function. Thus, once we have computed the lower bound, we can solve again
the LP problems in order to further reduce the limits. These can be iteratively reduced until the
difference between the (non-decreasing) lower bounds at two consecutive iterations fall below a
given threshold ε (we set ε = 1.e−3 in our experiments). Note that rather than solving all 4n LP
problems with the same feasible set, we could solve each of them with a different feasible region
by incorporating all previously computed new limits in the definition of the feasible region for the
next limit to be computed. That leads to sharper bounds, however we excluded this opportunity
since we observed that LP solvers strongly benefit from the opportunity of solving problems over
the same feasible region.
The described bound-tightening technique is quite expensive. In fact, what we observed through
our computational experiments is that it is not necessary to solve all 4n LPs but it is enough
to concentrate the effort on the most ’critical’ variables. More precisely, in order to reduce the
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number of LPs without compromising the performance, we employed the following strategies.
First, we computed the quantities:

gi = x∗iSix
∗ − f∗i , (14)

where x∗ and f∗ are computed at the solution of problem (9). In other words, gi measures the
distance between the real and underestimated value of the bilinear term xiyi. The larger the
distance, the higher is the need for a more accurate underestimation of the bilinear term. Then,
we solved the following LP problems.

– d0.2ne LP problems with objective function min yi, for all i corresponding to the d0.2ne largest
gi values;

– a fixed number T (T = 10 in our experiments) of LP problems with objective function max yi,
for all i corresponding to the T largest gi values;

– again T LPs problems with objective function max xi, for all i corresponding to the T largest
gi values;

– no LP problem with objective function min xi.

These choices have been driven by some experimental observations. In particular, we noticed that
the lower limit for yi is the most critical for the bound computation or, stated in another way,
constraint

fi ≥ `yixi + `xi
yi − `xi

`yi ,

is often the active one. For this reason a larger budget of LP problems is allowed to improve this
lower limit with respect to the upper limits. Instead, we never try to improve the lower limit `xi

because it is experimentally observed that this limit can seldom be improved.
This way, the overall number of LPs to be solved at each iteration is reduced to 0.2n+ 2T (note
that the overall number of LPs to be solved at each node can be computed by multiplying this
value by the number of iterations, which, however, is not known in advance).
In spite of the reduction of the number of LPs solved, the computational cost per node is still
remarkable. But, as we will see in the section about computational experiments, this recursive
bound-tightening procedure allows to considerably reduce the number of branch-and-bound nodes.

5.2 Branching Strategy

The branching strategy we employed is a rather standard one. Given a node associated to a
box Bx × By =

∏n
i=1[`xi

, uxi
] ×

∏n
i=1[`yi , uyi ], and the optimal solution (x∗,y∗, f∗, v∗) of the

corresponding relaxation (9), we first select an index r ∈ {1, . . . , n} such that r ∈ arg maxi=1,...,n gi,
where gi is defined in (14). In other words, we select the index corresponding to the bilinear term
where we have the largest error at the optimal solution of the relaxation. Next, we might define
the following branching operations:

Branching on x and y: Define four children nodes by adding constraints {xr ≤ x∗r , yr ≤ y∗r},
{xr ≤ x∗r , yr ≥ y∗r}, {xr ≥ x∗r , yr ≤ y∗r}, {xr ≥ x∗r , yr ≥ y∗r}, respectively (quaternary
branching);

Branching on x: Define two children nodes by adding constraints xr ≤ x∗r and xr ≥ x∗r , respec-
tively (binary branching);

Branching on y: Define two children nodes by adding constraints yr ≤ y∗r and yr ≥ y∗r , respec-
tively (binary branching).

Note that all choices above, with the new McCormick relaxation given by the new limits on the
variables, reduce to zero the error for bilinear term xryr at the optimal solution (x∗,y∗, f∗, v∗).
It is worthwhile to remark that the computed lower bound tends to become exact even when
branching is always performed with respect to variables of the same type (say, always variables
xi, i = 1, . . . , n). Indeed, only one of the two boxes Bx or By needs to converge to a single point
in order to let the underestimating function values converge to the original objective function
values. This is a consequence of the fact that the McCormick underestimation function tends to
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the value of the corresponding bilinear term even when only one of the two intervals on which it is
defined shrinks to a single point. In the computational experiments we tried all three possibilities
discussed above and it turns out that the best choice is the binary branching obtained by always
branching on y variables.

5.3 A more expensive bounding strategy

In order to further strengthen the bound, we define a Mixed Integer Linear Programming problem
where we select a subset B of promising variables, again according to the quantity (14), and
define a piece-wise McCormick relaxation. In particular, in our experiments we selected the five
most promising variables according to (14). Now, let (x∗,y∗, f∗, v∗) be the optimal solution of the
final relaxation (9) after bound-tightening. For each r ∈ B, we define a piece-wise McCormick
relaxation (see, e.g., [3]). Namely, we split the current interval [`xr

, uxr
] into two sub-intervals

[`xr , x
∗
r ] and [x∗r , uxr ], and we introduce a binary variable δr controlling in which sub-interval we

are (the former when δr = 1, the latter when δr = 0). In a completely analogous way we split the
current interval [`yr , uyr ] into two sub-intervals [`yr , y

∗
r ] and [y∗r , uyr ], and we introduce a binary

variable ηr controlling in which sub-interval we are. Then, we compute the new bound by solving
the following MILP problem:

min
1

2

n∑
i=1

fi + v

(x,y, f , v) fulfills (9b)-(9h)

`xi
δi + x∗i (1− δi) ≤ xi ≤ x∗i δi + uxi

(1− δi), i ∈ B (15a)

`yiηi + y∗i (1− ηi) ≤ yi ≤ y∗i ηi + uyi(1− ηi), i ∈ B (15b)

fi ≥ y∗i xi + x∗i yi − y∗i x∗i − uxi
uyi(2− δi − ηi), i ∈ B (15c)

fi ≥ uyixi + x∗i yi − uyix∗i − uxi
uyi(1 + ηi − δi), i ∈ B (15d)

fi ≥ y∗i xi + uxi
yi − y∗i uxi

− uxi
uyi(1 + δi − ηi), i ∈ B (15e)

fi ≥ uyixi + uxi
yi − uyiuxi

− uxi
uyi(ηi + δi), i ∈ B (15f)

fi ≥ y∗i xi + x∗i yi − y∗i x∗i − uxi
uyi(δi + ηi), i ∈ B (15g)

fi ≥ `yixi + x∗i yi − `yix∗i − uxi
uyi(1 + δi − ηi), i ∈ B (15h)

fi ≥ y∗i xi + `xi
yi − y∗i `xi

− uxi
uyi(1 + ηi − δi), i ∈ B (15i)

fi ≥ `yixi + `xi
yi − `yi`xi

− uxi
uyi(2− ηi − δi), i ∈ B (15j)

δi, ηi ∈ {0, 1}, i ∈ B.

Constraints (15a)-(15b) determine the range value of xi and yi, respectively, depending on the
binary variables δi and ηi, whereas constraints (15c)-(15j) establish the McCormick inequalities
which need to be taken into account as a function of the binary variables δi, ηi or, equivalently, as
a function of the sub-interval into which we are. For instance, if δi = ηi = 1, we have xi ∈ [`xi

, x∗i ]
and yi ∈ [`yi , y

∗
i ], so that the McCormick inequalities which need to be considered are (15c) and

(15j), while all the others become redundant constraints (note that uxiuyi is an upper bound for
the bilinear term xiyi over the current intervals for xi and yi). We remark that the optimal value
of the MILP is the lowest possible lower bound among all nodes obtained through a sequence of
quaternary branching operations performed over the variables in B with branching points (x∗i , y

∗
i ),

i ∈ B, if no bound-tightening is performed at these nodes.

If the cardinality of B is small (five in our experiments) the time needed to compute this bound at
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a given node of the branch-and-bound tree is small compared to the time needed for the bound-
tightening operation, so that we can improve the quality of the bound without significatively
increasing the computational cost per node. Note that the intervals [`xi , uxi ] and [`yi , uyi ] could
be split into more than two sub-intervals with the addition of suitable binary variables. However,
our computational experiments suggest that this does not lead to significative improvements.

6 Numerical Results

6.1 Test instances description

The game is about spot checking a set of n places to guard them against an adversary. The places
are spatially scattered, with a directed weighted graph describing the connections (direct reacha-
bility) of place v from place u by an edge v → u with a random length.

The payoffs in the game are given by an n × n-Matrix A (so m = n in the above description),
and are interpreted as the loss that the defending player 1 suffers when checking place i while the
attacker is at place j. Thus, the defender can:

– either miss the attacker (i 6= j) in which case there will be a Weibull-distributed random loss
with shape parameter 5 and scale parameter 10.63 (so that the variance is 5);

– or hit the attacker at i = j, in which case there is zero loss.

The defender is thus minimizing, and the attacker is maximizing. The problem above is that of
the defender. The Nash equilibrium then gives the optimal random choice of spot checks to mini-
mize the average loss. To avoid trivialities, the payoff matrices are constructed not to admit pure
strategy equilibria, so that the optimum (without switching cost) is necessarily a mixed strategy.

As for the switching cost, if the defender is currently at position i and next – according to the
optimal random choice – needs to check the (non-adjacent) place j, then the cost for the switch
from i to j is the shortest path in the aforementioned graph (note that, since the graph is directed,
the matrix S is generally nonsymmetric).

For the random instances, the matrix S is thus obtained from a (conventional) all-shortest path
algorithm applied to the graph. Note that the graph is an Erdös-Renyi type graph with n nodes
and p = 0.3 chance of any two nodes having a connection.

The weights in the graph were chosen exponentially distributed with rate parameter λ = 0.2,
and the Weibull distribution for the losses has a shape parameter 5 and scale parameter ∼ 10.63,
so that both distributions have the same variance of 5.

The graph sizes considered are n = 50, 75, 100 and for each graph size we consider ten random
instances.

We shift the matrix S to make less relevant the quadratic part that is more difficult to bound.
More in detail, given the vector c ∈ Rn with

ci = min
j 6=i
{Sij},

we have on the feasible set (i.e., exploiting eTx = 1) that

xTSx = xT S̄x + cTx,

where

S̄ = S−

c1e
T

...
cneT
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Then our objective function in the practical implementation becomes

1

2
(1− α)xT S̄x +

1

2
(1− α)cTx + α max

i=1,...,m
AT
i x,

and we tested α values in {0.3, 0.4, . . . , 0.9}.

Note that all the data of the test instances are available at the web site http://www.iasi.

cnr.it/~liuzzi/StQP.

6.2 A comparison with the existing QP literature

The problem discussed in this paper belongs to the class of nonconvex QP problems with linear
constraints, which is a quite active research area. Even well-known commercial solvers, like CPLEX

and GUROBI, have recently included the opportunity of solving these problems. In [25] different
solution approaches have been compared over different nonconvex QP problems, namely: Standard
Quadratic Programming problems (StQP), where the feasible region is the unit simplex; BoxQP,
where the feasible region is a box; and general QPs, where the feasible region is a general poly-
tope. The tested approaches have been the nonconvex QP solver of CPLEX, quadprogBB (see [6]),
BARON (see [17]), and quadprogIP, introduced in [25] itself. According to the computational results
reported in that work, depending on the class of QP problems considered, the best performing
approaches are the nonconvex QP solver of CPLEX and quadprogIP. For this reason we ran these
solvers over our test instances, with the addition of the nonconvex QP solver of GUROBI.

For these experiments we employed an Intel R© Core i7-8550U CPU at 1.8GHz with 4 cores and
16GB main memory. Since even at dimension n = 50 and for different α values most instances
were not solved within a time limit of 3 hours, we do not report extensive results. Rather, we only
discuss the behavior over a single instance with n = 50 and α = 0.5, which, however, is repre-
sentative of the behavior over the other instances. We first ran the nonconvex QP solvers both of
CPLEX and of GUROBI. Both were unable to terminate within 3 hours. The relative percentage gap
still to be closed after that time was 3.61% and 5.63% for CPLEX and GUROBI, respectively.

Next, we ran quadprogIP. This is based on a MILP reformulation of nonconvex QP problems
with linear constraints, which in some cases appears to be a rather promising way to tackle them.
Since this solver requires lower and upper bounds for all variables, we needed to introduce a lower
and upper bound for variable v. Due to nonnegativity of vectors Aj , j = 1, . . . ,m, a simple lower
bound for v is 0, while a valid upper bound, fulfilled by optimal solutions of the problem, is

max
j=1,...,m, i=1,...,n

Aji.

After 3 hours the percentage gap still to be closed was 17.88%. However, we made a further ex-
periment. After observing that a critical aspect of quadprogIP is the computation of valid upper
bounds for primal and dual variables, we introduced a pre-processing phase, where all the upper
bounds uxi , uµi , uγj , uv−AT

j x, respectively for xi, µi, γj , and v −AT
j x, appearing in the MILP

reformulation (11) have been strengthened via the optimality-based bound-tightening technique
discussed in Section 5.1 (an estimate GUB for the globally optimal value was obtained by running
some local searches from randomly generated points). After that we ran GUROBI and CPLEX to
solve the MILP reformulation (11). The pre-processing phase definitely helped, but still none of
the two solvers was able to terminate within the 3 hours time limit. In this case GUROBI performed
better and terminated after 3 hours with a percentage gap of 0.25 % still to be closed, while CPLEX

terminated after the same time with a percentage gap of 1.66 % still to be closed.

Finally, we ran the approach proposed in this paper and it terminated after 114 seconds return-
ing an optimal solution with a relative tolerance value ε = 10−6. The main reason for the much

http://www.iasi.cnr.it/~liuzzi/StQP
http://www.iasi.cnr.it/~liuzzi/StQP
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better performance of our approach lies in the optimality-based bound-tightening technique. To
confirm this fact, we made a further experiment by running the same approach but without acti-
vating the bound-tightening procedure. After 3 hours the gap still to be closed was equal to 4.73%.

In the following subsection we report the results attained by our approach for different n and
α values and we comment the results.

6.3 Computational results over the proposed test instances

In this section we show through some computational experiments that our approach successfully
solves the problem for the sizes (50 ≤ n ≤ 100) of the real instances arising from the game theory
application discussed in Section 2. Moreover, we show it scales well with the dimension, outper-
forming all the available software for solving non convex QPs, as already observed in the previous
subsection.

The algorithm has been coded using the Julia [4] language (version 1.3.1). Doing the implemen-
tation we parallelized as much as possible the bound-tightening procedure discussed in Section
5.1, where many LPs with the same feasible region need to be solved. The code is available for
download at the URL http://www.iasi.cnr.it/~liuzzi/StQP. All the experiments have been
carried out on an Intel R© Xeon R© gold 6136 CPU at 3GHz with 48 cores and 256GB main memory.
This machine is more powerful with respect to the one employed in the experiments discussed in
the previous subsection. Just to give an idea of the relative performance, we remark that with
the machine used for the previous experiments, the largest time to solve instances with n = 50 is
approximately 600 seconds, while with the machine employed for the experiments in this section
the largest time is approximately 120 seconds.

We have solved ten instances for three different sizes n = 50, 75, 100 and for the following
values of α = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Note that lower and larger values of α with respect to
those we tested give rise to much simpler instances (recall that the problem becomes polynomially
solvable for the extreme values α = 0 and α = 1). We set a time limit of 10800s for all instances.
Differently from the previous subsection, where we stopped when a relative tolerance ε = 10−6

was used to comply with the one of the existing solvers, in this section we fixed a relative tolerance
ε = 10−3, which is considered adequate for practical applications. For n = 50 and n = 75 we solve
all the instances to optimality (in fact, the largest time to solve an instance with n = 50 is about 2
minutes, whereas for n = 75 the largest time is below 1 hour, but most of the problems are solved
within 10 minutes). In Figures 2a-2c we report the box plot of number of nodes, number of LPs
and CPU time needed for the different values of α when n = 50. The figure shows that the hardest
instances are the ones corresponding to the central values of α and this will turn out to hold true
also at larger dimensions. We also observe that the overall number of nodes is extremely limited,
thus confirming that, while computationally expensive, the bound-tightening procedure allows to
considerably reduce the size of the branch-and-bound tree (again, this fact is observed also at larger
dimensions). We also stress that n = 50 is a typical size for real instances of this problem arising
from the game theory application discussed in Section 2. In Figures 3, we report the different box
plots for all the instances at n = 75. It is worthwhile to remark that we solve most of them within
ten minutes and exploring less than 300 nodes. Finally, in Figure 4 we report the performance
of our method on problems of dimension n = 100. In this case there are seven instances we are
not able to solve within the time limit. These occur for values α ∈ {0.6, 0.7, 0.8}, thus confirming
that the central values of this parameter give rise to the most challenging instances. With respect
to n = 50 and n = 75, we have the additional box plot displayed in Figure 4d reporting the
final percentage gap when the time limit is reached. Note that it is never larger than 1.2% and
most of the times it is lower than 0.5%, thus showing that, even when the algorithm does not
terminate, the quality of the returned solution is guaranteed to be high. We also tried to apply
the bound strategy described in Section 5.3 on the seven instances that we did not manage to
solve to optimality. The result are shown in Table 1, and it can be observed that the MILP-based

http://www.iasi.cnr.it/~liuzzi/StQP
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(a) Total number of nodes for n = 50 (b) Number of LPs solved for n = 50

(c) CPU times in seconds

Fig. 2: Box plots for different performance measures for n = 50

approach manages to reduce the gap within the three hours, but does not improve the solution
enough to close the gap. In general, when the bound tightening approach is used, the gap decreases
faster, but the price to pay at each node is clearly higher, and the gain is not significant enough
to close the gap a lot faster. It may be worth to use this strategy when one has a limited time
budget since it allows to produce a better quality solution. But, on the other hand, it appears
that only a limited number of nodes which are not closed by the bound-tightening procedure can
instead be closed by the MILP-based bound. This is remarkable since, as previously commented
in Section 5.3, the MILP-based bound, in fact, corresponds to the lowest bound obtained after five
consecutive quaternary branching operations (without bound-tightening), i.e., after the generation
of 1024 nodes.

Problem LP based MILP based
α # # nodes # numLP % gap # nodes # numLP # numMILP % gap
0.6 10 13003 3977151 5.11E-03 9921 2896305 9785 4.27E-03
0.6 35 7321 3668797 3.41E-03 6445 3310264 3860 2.84E-03
0.6 45 8381 3569883 3.92E-03 7405 3083398 6074 3.10E-03
0.7 10 11417 4054621 4.70E-03 9119 3292767 6637 3.47E-03
0.7 20 13001 4354802 1.17E-02 9487 3056131 9403 1.02E-02
0.7 45 13409 4529598 1.05E-02 9071 3050473 8972 8.92E-03
0.8 20 12433 4544056 1.16E-02 9197 3273988 7529 9.19E-03

Table 1: Bound tightening results on the instances not solved to optimality
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(a) Total number of nodes for n = 75 (b) Number of LPs solved for n = 75

(c) CPU times in seconds

Fig. 3: Box plots for different performance measures for n = 75
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inul Academiei de Ştiinţe a Republicii Moldova. Matematica 3, 115–122 (2005)

12. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part iconvex underes-
timating problems. Mathematical programming 10(1), 147–175 (1976)

13. Rass, S., Alshawish, A., Abid, M.A., Schauer, S., Zhu, Q., De Meer, H.: Physical intrusion gamesoptimizing
surveillance by simulation and game theory. IEEE Access 5, 8394–8407 (2017)

14. Rass, S., König, S.: Password security as a game of entropies. Entropy 20(5), 312 (2018)

https://doi.org/10.1137/141000671


Title Suppressed Due to Excessive Length 19

(a) Total number of nodes for n = 100 (b) Number of LPs solved for n = 100

(c) CPU times in seconds (d) % Gap at the time limit

Fig. 4: Box plots for different performance measures for n = 100

15. Rass, S., König, S., Schauer, S.: On the cost of game playing: How to control the expenses in mixed strategies.
In: International Conference on Decision and Game Theory for Security, pp. 494–505. Springer (2017)

16. Rass, S., Rainer, B.: Numerical computation of multi-goal security strategies. In: International Conference on
Decision and Game Theory for Security, pp. 118–133. Springer (2014)

17. Sahinidis, N.V.: Baron: A general purpose global optimization software package. Journal of global optimization
8(2), 201–205 (1996)

18. Shapley, L.S.: Stochastic games. Proceedings of the national academy of sciences 39(10), 1095–1100 (1953)
19. Tambe, M.: Security and game theory: algorithms, deployed systems, lessons learned. Cambridge university

press (2011)
20. Tardella, F.: On the existence of polyhedral convex envelopes. In: Frontiers in global optimization, pp. 563–573.

Springer (2004)
21. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optimization Letters

2(3), 363–375 (2008)
22. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and

computational study. Mathematical programming 99(3), 563–591 (2004)
23. Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic programs with box con-

straints. Mathematical Programming 102(3), 531–557 (2005)
24. Wachter, J., Rass, S., König, S.: Security from the adversarys inertia–controlling convergence speed when

playing mixed strategy equilibria. Games 9(3), 59 (2018)
25. Xia, W., Vera, J.C., Zuluaga, L.F.: Globally solving nonconvex quadratic programs via linear integer program-

ming techniques. INFORMS Journal on Computing (2019)


	1 Introduction
	2 The problem
	3 Complexity Result
	4 A review of different reformulations and bounds
	5 A branch and bound approach
	6 Numerical Results

