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trol problems into control problems with a fixed switching order and purely
continuous decisions. This approach is known either as enhanced time transfor-
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We introduce the open-source software package ampl_mintoc. It is based
on AMPL, designed for the formulation of mixed-integer optimal control prob-
lems, and allows to use almost identical implementations for (STO) and (POC).
We discuss and explain our main numerical result: (STO) is likely to result in
more local minima for each discretization grid than (POC), but the number
of local minima is asymptotically identical for both approaches.
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1 Introduction

In this study, we consider mixed-integer optimal control problems. The inte-
ger aspect results from time-dependent control functions that are restricted
to take values in a finite set. Prominent examples include gear switches, com-
pressors and valves, the applicability of laws and regulations, combinations
of administered drugs, performing measurements yes or no, or general on/off
controls. See [49] for an online benchmark library. There are various mathe-
matically equivalent ways to formulate such control problems. The choice of
formulation usually has a large impact on solution algorithms, though. A con-
venient formulation is based on switched optimal control problems, where at
any given point t of time exactly one of nω different right-hand sides fj(t)(x(t))
is active. In practice, often a common drift term f0(x(t)) is present, such that
the ordinary differential equation reads as

ẋ(t) = f0(x(t)) + fj(t)(x(t))

where j is the active mode at time t ∈ T := [0, tN]. Note, that the interval
starts with 0 without loss of generality. For example, f0 could comprise the
dynamics that are independent of a gear choice, such as the effect of steering
or air friction, whereas the gear-specific dynamics fj(t) could be calculated
using different transmission ratios and degrees of efficiency, e.g., [27].
In this study, we assume Lipschitz-continuity of the right-hand side functions
f0 and fj(t) for guaranteeing the existence of a (unique) ODE solution by
the Picard-Lindelöf theorem [44]. Throughout the paper, we use the notation
[N ] = {1, 2, . . . , N} and [N ]0 = {0, 1, 2, . . . , N}. Also, we use the exclusive-or
operator

⊕
for choosing exactly one active mode for all time points and on

the same time all other modes are inactive. We define the problem class of
interest as follows.

Definition 1 (Mixed-integer optimal control problem) We refer to

inf
x(·),j(·)

φ(x(tN))

subject to⊕
j(t)∈[nω]

ẋ(t) = f0(x(t)) + fj(t)(x(t)) for t ∈ T a.e.,

x(0) = x0,

(MIOCP)

as a mixed-integer optimal control problem (MIOCP) on a fixed time horizon
T = [0, tN] with differential states x : T 7→ Rnx , fixed initial values x0 ∈ Rnx ,
and a continuous objective function φ : Rnx 7→ R of Mayer type. The degrees
of freedom are switching decisions, i.e., the selection of the active mode j
almost everywhere on T .

In the following, we omit the time dependency of fj(t) and write fj instead
for a more compact notation and we assume the existence of a unique optimal
solution for (MIOCP). There are a variety of different approaches to solve
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(MIOCP) to local or global optimality. They comprise indirect methods based
on the global maximum principle, dynamic programming, moment relaxations,
or direct first-discretize then-optimize methods which result in mixed integer
nonlinear programs. A survey is beyond the scope of this paper and we refer
to [6, 16,17,23,27,52] for further references.

Note that the modeling of practical problems may result in more general
formulations than Problem (MIOCP), e.g., using additional continuous con-
trol functions u : [0, tN] 7→ Rnu , additional path constraints 0 ≤ c(x(t), u(t))

(mode-specific or for all modes), a Lagrange term
∫ tN
0

L(x(τ))dτ in the ob-
jective, non-fixed terminal time tN, more general boundary conditions, path-
control, combinatorial, dwell time, or vanishing constraints, multi-stage prob-
lems with changes in dynamics or even in the dimension, differential algebraic
equations, or semi-discretized partial differential equations. In the interest of
a clear presentation of the convergence properties, which are likely to carry
over to the more general cases, and because above formulation covers our
benchmark problems, we work in the following with Problem (MIOCP).

In this paper, we are going to numerically study convergence properties
of two established approaches to solve (MIOCP): switching time optimization
(STO) and partial outer convexification (POC). To our knowledge this is the
first comparison of this type. In the interest of understanding the main differ-
ences between the two approaches, we use comparable implementations within
a new open-source software package, similar notation and discretization grids,
and two benchmark problems from the literature. The paper is organized as
follows. In Section 2, we survey two transformations of (MIOCP). They are
formulated in a way such that the small, but fundamental difference between
them is clearly visible. We also discuss their relation to problem (MIOCP).
We derive approximation properties of the two approaches in Section 3. In
Section 4, two test problems are presented. In Section 5, we describe the novel
open-source software package ampl_mintoc. It is placed on top of AMPL [13] and
allows to formulate finite-dimensional approximations of (mixed-integer) opti-
mal control problems in a compact way. In Section 6, we present simulation-
and optimization-based numerical results for comparing the two approaches.
In Section 7 we discuss these results, focusing on nonconvexity, algorithmic
properties and number of local minima. A summary concludes the paper.

2 Switching Time Optimization and Partial Outer Convexification

In this paper, we focus on two transformations of (MIOCP) that have received
increasing attention in the last years. In the following, let

GN := {t0, t1, t2, . . . , tN}

be an ordered set of equidistant time points ti = i∆t for all i ∈ [N ]0 and grid
size ∆t > 0.
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2.1 Switching Time Optimization

The first one is referred to as enhanced time transformation or as switching time
optimization in the literature. The underlying idea is fundamental in many
sciences, particularly in physics, e.g., [7]. A dynamic process with differential
states x : [0, tN] 7→ Rnx specified via f : Rnx 7→ Rnx and

ẋ(t) = f(x(t)) t ∈ [0, tN] (1)

can be written equivalently as

ẋ(τ) = tN f(x(τ)) τ ∈ [0, 1], (2)

exploiting that t = tNτ implies dt = tNdτ (in a slightly abused Leibniz’s
notation). The advantage is obvious if the terminal time tN is unknown. For-
mulation (2) allows the treatment of tN as an optimization variable, while
the integration horizon is fixed. By gluing several horizons with fixed horizon
lengths together, this idea can also be applied to several interior time points,
e.g.,

ẋ(t) =

{
f1(x(t)) if t ∈ [0, t1),
f2(x(t)) if t ∈ [t1, t2],

(3)

can be written equivalently as

ẋ(τ) =

{
t1 f1(x(τ)) if τ ∈ [0, 1),

(t2 − t1) f2(x(τ)) if τ ∈ [1, 2].
(4)

Applying this idea to transform problem (MIOCP) needs only three more
ingredients. First, we define two time grids in Definition 2. The second step is
to assume an order in which the switches occur. The corresponding switching
sequence is introduced in Definition 3. Finally, in Definition 4 we make sure
that the variables indicating the duration of the active modes, denoted by
wij , are normalized to get an equivalence to the outer grid time points of the
original time horizon.

Definition 2 (Equidistant grids) Let numbers N ∈ N and nσ ∈ N be given
and let ∆t be the equidistant outer grid size. We write

Ti := [ti−1, ti), i ∈ [N ], ti ∈ GN ,

for a coarse grid partition T = ∪i∈[N ]Ti. Furthermore, let

Tij := [ti−1,j−1, ti−1,j), i ∈ [N ], j ∈ [nσ]

for a fine grid partition Ti = ∪j∈[nσ ]Tij with equidistant inner grid points
tij := ti+ j∆t

nσ
and inner grid size ∆int :=

∆t
nσ

. We include tN in the last outer
and inner intervals TN and TN,nσ

, respectively.

We stress that despite fixed inner and outer grids, we still optimize the
duration of mode activations based on the control variables defined in Defini-
tion 4. For this, we specify the sequence of active control modes.
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Definition 3 (Switching sequence) Let nσ ∈ N be the maximum number
of control mode activations per outer grid interval. We define a switching
sequence as a surjective mapping σ : [nσ] 7→ [nω] on Ti and, repeated N times,
also on T .

The above definition implies that at most nσ−1 switches are possible per outer
interval. The choice nσ = nω allows to activate each control mode once on ev-
ery interval, in a specific order. With larger choices of nσ arbitrary switching
sequences can be generated by shrinking the duration of specific mode activa-
tions to zero.

Definition 4 (Feasible control set) For a given number of intervals N and
maximum number of control mode activations nσ, we define the feasible set of
controls W as:

W :=

w ∈ RN×nσ : wij ∈ [0, 1] ∀ i ∈ [N ], j ∈ [nσ],

nσ∑
j=1

wij = 1 ∀ i ∈ [N ]

 .

The variables wij indicate how the time points of the inner grid move and can
thus be interpreted as the fraction of the duration wij∆t of the activated mode
σ(j) on the interval Ti. The condition

∑nσ

j=1 wij = 1, which is often referred
to as one-hot condition, ensures that the outer grid points ti are not moved
by the time-transformation.
We consider the differential equation with a transformed time τ on time inter-
vals of unit length as in (4), with time scaling depending on wij for all i ∈ [N ]
and j ∈ [nσ]:

ẋ(τ) = wij∆t (f0(x(τ))+fσ(j)(x(τ))), τ ∈ [(i−1)nσ+j−1, (i−1)nσ+j]. (5)

For comparability of the problem formulations, we scale the total length of the
intervals for τ to the length of T . This is equivalent to scaling the individual
intervals for τ of length 1 to the length of Tij via multiplication with 1

∆int
.

Exploiting nσ = ∆t
∆int

according to Definition 2 and using t again instead of τ
to denote the time variable, we introduce the problem (P-STO):

Definition 5 (Switching time optimization) With the definitions from above
we refer to

min
x,w∈W

φ(x(tN))

subject to
ẋ(t) = wij nσ(f0(x(t)) + fσ(j)(x(t))), t ∈ Tij ,
x(0) = x0,

(P-STO)

for i ∈ [N ] and j ∈ [nσ] as the switching time optimization (P-STO) (or the
enhanced time or time-scaling) transformation of (MIOCP).
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Please note that the way in which we define the switching time optimiza-
tion transformation differs from the literature, e.g., [57], although we use the
same algorithmic approach. The definition above enables us to highlight the
major difference to the partial outer convexification formulation introduced
below. The switching time optimization is well-posed: assume a solution x̃, w̃
of (P-STO). Noting that nσ = ∆t

∆int
indicates the time transformation factor

from the equidistant inner to the outer grid, we obtain a feasible trajectory x
of (MIOCP) via

x(t(τ)) = x̃(τ) for τ ∈ Tij and

t(τ) = ti−1 +

j−1∑
k=1

wik∆t+ (τ − ti−1,j−1)wijnσ ∈ T ∗
ij

for time transformed intervals

T ∗
ij :=

[
ti−1 +

j−1∑
k=1

wik∆t, ti−1 +

j∑
k=1

wik∆t

]

that also partition T . Note that x̃ may be constant on certain time periods
(i.e., whenever wij = 0), whereas the corresponding intervals T ∗

ij vanish. This
is illustrated in the following short example.

Example 6 (Illustration of the time transformation) Consider an outer
grid with N = 3 intervals. Let nσ = 3 and the switching sequence σ be the
identity. Then the inner grid consists in total of 9 intervals. Consider the
values

w1 := (0, 1, 0) , w2 :=

(
3

5
, 0,

2

5

)
, w3 :=

(
1

5
,
4

5
, 0

)
∈ [0, 1]nσ .

Figure 1 illustrates the corresponding switches and the transformation in time.

For optimal control, time transformations have been used intensively. In
indirect approaches the unknown time points of structural changes have to
be determined, e.g., when a bang-bang arc becomes a singular arc or a path
constraint becomes active. Also, the potential to avoid the discrete decision
of which mode to activate at time t in problem (MIOCP) by continuous de-
cisions when to switch from one mode fj1 to another mode fj2 was already
discovered in the 1960s. Dubovitskii and Milyutin used a time transforma-
tion to transform (MIOCP) into an equivalent optimal control problem with-
out discrete control variables, [9, 10], [18, p. 95], [24, p. 148]. Necessary op-
timality conditions were obtained by applying suitable local maximum prin-
ciples to the transformed problem. Gerdts used the time transformation to
prove a global maximum principle that can be applied to mixed-integer op-
timal control problems [16, 17]. An STO formulation was also used for dis-
cretized dynamical systems [12], the numerical solution of free end-time [28],
bi-objective [38, 39], multiple model stages [62], constrained MIOCPs [47, 59],
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or real-time problems [36, 37], and was studied concerning specific numeri-
cal aspects [33, 34, 35, 55]. The method has been investigated with respect
to second-order sufficient conditions [42] and recently been extended to in-
clude vanishing constraints [43] and time delays [63]. An efficient structure
exploiting way to calculate functions and derivatives was proposed in [57].
The mapping σ, which in our setting is assumed to be identical on all intervals
Ti for notational convenience, also has an impact. As stated in [17], the order
is irrelevant for (P-STO) to be an equivalent reformulation of (MIOCP) if N
is large enough and hence no more than one switching point of the optimal
bang-bang solution occurs per interval Ti. However, σ may have an impact on
computational performance as discussed in [46]. An efficient way to determine
optimal sequences has been proposed in [1, 11].

2.2 Partial Outer Convexification

An alternative approximation of (MIOCP) is the following, using the same
outer time grid Ti as in (P-STO) for control discretization and relaxation of
the integrality constraints.

0

0.2

0.4

0.6

0.8

wij

1

t0 t01 t02 t1 t11 t12 t2 t21 t22 t3 τ

t0

t1

t2

t3

t(τ)

t0 t1 t̃1 t2 t̃2 t3

1st mode

2nd mode

3rd mode

Fig. 1 Illustration of the time transformation with the control values wij for Example 6,
adapted from [17]. Top: The control values indicate the percentage of control mode acti-
vation for the corresponding outer interval and for the three control modes. Center plot:
Corresponding progress of the transformed time variable t ∈ T ∗

ij as a function of τ ∈ Tij .
Bottom: Resulting activated control modes in (MIOCP) over time that correspond to the
values wij . The mode switches occur at t̃1 = t1 + w21(t2 − t1) and t̃2 = t2 + w31(t3 − t2).
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Definition 7 (Partial outer convexification) With the definitions from above
(using nσ = nω in Definition 4 of W) we refer to

min
x,w∈W

φ(x(tN))

subject to
ẋ(t) =

∑nω

j=1 wij (f0(x(t)) + fj(x(t))), t ∈ Ti for i ∈ [N ]

x(0) = x0,

(P-POC)

as the partial outer convexification (P-POC) transformation of (MIOCP).

Note that partial refers to the fact that the dynamics are only convexified with
respect to the switching decision, but the fj may still be nonconvex. Outer is
in contrast to an inner convexification as suggested, e.g., in [15], and compared
in [25]. The formulation itself is well-known in many areas. In integer program-
ming it is usually referred to as a one-row or one-hot relaxation. The usage in
mixed-integer optimal control and the name itself were initiated by [47,50]. In
the control engineering community, the term embedding transformation was
introduced [2] for the same reformulation idea and led to various subsequent
publications [45, 60, 61]. As discussed in the next subsection, (P-POC) only
provides relaxed solutions for a discretized version of (MIOCP). Methods for
the generation of integer solutions have been proposed in [47, 48, 50, 54]. Ex-
tensions comprise the explicit treatment of combinatorial [26, 40, 53, 64] and
vanishing constraints [27, 29], of differential-algebraic equations [17], and of
partial differential equations [19,20,21,22,31,41].

To highlight the similarities and differences to formulation (P-STO), we
have defined (P-POC) in a first-discretize, then-optimize way with finitely
many degrees of freedom. Here, the controls w can be interpreted as piecewise
constant functions ωj(t) = wij for t ∈ Ti almost everywhere.

We recapitulate two methods that round the optimal solution of (P-POC).
We use these methods in the numerical experiments for a fair comparison
with the STO approach, which directly constructs binary-feasible solutions
for (MIOCP).

Definition 8 (Sum-up rounding) Let the optimal w∗ for (P-POC) be given.
Sum-up rounding computes for i ∈ [N ] the binary control values bi,j:

bi,j :=

1, if j = arg max
l=1,...,nω

{
i∑

k=1

w∗
k,l −

i−1∑
k=1

bk,l

}
,

0, else,
for j ∈ [nω].

We break ties arbitrarily in the above argmax.

One option to limit the number of switches in the binary solution is to
impose total variation (TV) constraints as part of a mixed-integer linear pro-
gram.
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Definition 9 ((CIA) with TV constraint) Let the optimal w∗ for (P-POC)
and the number of maximal allowed number of switches ns be given. The com-
binatorial integral approximation (CIA) problem with TV constraints is defined
by

min
b∈W, bi,j∈{0,1}, θ≥0

θ

s. t. θ ≥ ±
∑
l∈[i]

(w∗
l,j − bl,j), for i ∈ [N ], j ∈ [nω].

ns ≥
1

2

∑
i∈[N−1]

∑
j∈[nω]

|bi+1,j − bi,j |.

2.3 Relations to the Original Problem Formulation

Both problem formulations (P-STO) and (P-POC) are approximations of
(MIOCP). Both are discretizing (MIOCP), which is usually modeled with
L∞(T , {0, 1}nω ) control functions, with finitely many decision variables w. In
addition to this finite-dimensional approximation which depends on N , the for-
mulation (P-POC) additionally relaxes the decision variables, as W is defined
with wij ∈ [0, 1] instead of wij ∈ {0, 1}.

The optimal solution of (P-STO) is a feasible solution ω(·) of the original
problem (MIOCP) (compare ω in the proof of Corollary 12). Depending on
the number and location of switches in the optimal solution of (MIOCP), the
numbers N and nσ need to be chosen sufficiently large to ensure that the opti-
mal switching points of (MIOCP) can be realized within (P-STO). In the case
that the optimal solution shows chattering behavior (i.e., an infinite number
of switches as in the famous example of Fuller [14]), the optimal objective
function value can be approximated arbitrarily well with increasing N or nσ.

There is a bijection between feasible solutions of formulations (P-POC) and
(MIOCP) if one replaces wij ∈ [0, 1] by ωj(t) ∈ {0, 1} and one uses the same
discretization on (MIOCP). Formulated for continuous variables wij , (P-POC)
only provides a relaxed solution for the control discretization grid GN , however
with strong theoretical properties and tailored algorithms like Combinatorial
Integral Approximation, Sum Up Rounding (SUR), or Next Forced Rounding
to derive binary solutions with error bounds, see [47, 48, 50, 54]. The need
to derive ωj(t) ∈ {0, 1} from wij ∈ [0, 1] seems like a big disadvantage at
first sight. However, the aforementioned rounding strategies have excellent
asymptotic behavior with respect to the integrality gap and a runtime which
is often negligible compared to the solution of (P-POC). The need to transform
the solution back even offers advantages, e.g., to take a penalization of switches
or dwell time constraints into account [3, 4, 64].
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2.4 A First Comparison

Comparing (P-STO) and (P-POC), one observes a small, but important dif-
ference in the dynamics. For i ∈ [N ] and j ∈ [nω] we have within (P-STO)

ẋ(t) = wij nσ (f0(x(t)) + fσ(j)(x(t))), t ∈ Tij , x(0) = x0 (STO-f)

while due to the one-hot condition in W we have within (P-POC)

ẋ(t) = f0(x(t)) +

nω∑
j=1

wij fj(x(t)), t ∈ Ti, x(0) = x0. (POC-f)

The way the control variables w enter the right-hand sides look very similar
in (STO-f) and (POC-f). Figure 2 gives an example to visualize how they differ
in their impact on the original dynamic system.

Exemplary STO and POC control functions

POC
STO

0 0.2 0.4 0.6 0.8 1

t

0
0.2
0.4
0.6
0.8
1

Fig. 2 Shown is the impact of the controls on the mode selection in (MIOCP) for STO and
POC controls wSTO

i1 = wPOC
i1 = 0.1(i− 1) for i ∈ [11]. The values of wSTO

i1 are reflected by
the duration of the mode selections (width), whereas the values of wPOC

i1 are reflected by
the relative share of mode 1 on the current time interval (height). The other nσ − 1 modes
would fill the diagram vertically P-POC or horizontally P-STO, if they were also plotted.

Problems (P-STO) and (P-POC) optimize the same objective function over
the finite-dimensional set W. For both, the accuracy of the approximation of
(MIOCP) depends on the grid GN .

3 Approximation properties

Behind this asymptotic analysis an approximation theorem from [50] will be
useful. It also can be used for the study of how far optimal objective function
values of (P-STO) and (P-POC) may differ from one another depending on
N . We repeat it here for convenience and use it in the discussion in Section 7.
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Assumption 10 (Properties of the switched system) Let measurable
functions α, ω : [0, tN] → [0, 1]nω be given and let x(·) and y(·) be solutions of
the initial value problems on T = [0, tN]

ẋ(t) = f0(x(t)) +

nω∑
j=1

αj(t) fj(x(t)), x(0) = x0, (6)

ẏ(t) = f0(y(t)) +

nω∑
j=1

ωj(t) fj(y(t)), y(0) = x0. (7)

Let all fj : Rnx 7→ Rnx be differentiable for j ∈ [nω]0 and their sum be
essentially bounded by M ∈ R+ on [0, tN], and positive numbers C,L ∈ R+

exist such that for t ∈ [0, tN] almost everywhere and a vector norm ‖·‖ we have∥∥∥∥ d

dt
(f0, f1, f2, . . . , fnω

)(x(t))

∥∥∥∥ ≤ C,

‖(f1(y(t))− f1(x(t)), . . . , fnω (y(t))− fnω (x(t)))‖ ≤ L ‖y(t)− x(t)‖ .

Theorem 11 If Assumption 10 holds and if there exists ε ∈ R+ such that for
all t ∈ [0, tN] ∥∥∥∥∫ t

0

α(τ)− ω(τ) dτ

∥∥∥∥ ≤ ε, (8)

then, also for all t ∈ [0, tN], we have

‖y(t)− x(t)‖ ≤ (M + Ct)eLt ε.

To understand the asymptotic behavior of the optimal objective function
values of (P-STO) and (P-POC), the following corollaries will be helpful. The-
orem 11 allows to a priori bound the difference of the optimal objective func-
tion values of (P-STO) and (P-POC) by a constant multiple (depending on
properties of fj) of the grid size ∆t.

Corollary 12 (Difference in objective and constraints 1) Let nσ ∈ N,
a map σ : [nσ] 7→ [nω], and wSTO ∈ W be given and differential states xSTO :
[0, tN] 7→ Rnx be the solution of (STO-f) with w = wSTO.

Under Assumption 10, there exist a constant C1 and a vector wPOC ∈ W
such that for the solution xPOC : [0, tN] 7→ Rnx of (POC-f) with w = wPOC

we have ∣∣φ(xSTO(tN))− φ(xPOC(tN))
∣∣ ≤ C1∆t.

Proof As already observed above, we have an xSTO = x equivalence

ẋSTO(τ) = wSTO
ij nσ (f0(x

STO(τ)) + fσ(j)(x
STO(τ))), τ ∈ Tij

⇔ ẋ(t) = f0(x(t)) + fσ(j)(x(t)), t ∈ T ∗
ij
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between (P-STO) and (MIOCP) solutions for transformed time intervals

T ∗
ij :=

[
ti−1 +

j−1∑
k=1

wSTO
ik ∆t, ti−1 +

j∑
k=1

wSTO
ik ∆t

]
.

The functions

ωk(t) :=

{
1 if t ∈ T ∗

ij for j ∈ [nσ] and k = σ(j) ∈ [nω]
0 else

are obviously well-defined and have the one-hot property, such that

ẋ(t) = f0(x(t)) + ωσ(j)(t)fσ(j)(x(t)), t ∈ T ∗
ij

= f0(x(t)) +
∑nω

k=1 ωk(t)fk(x(t)), t ∈ T ∗
ij .

Defining
αj(t) := wPOC

ij for t ∈ Ti
we have two measurable functions α, ω : [0, tN] 7→ [0, 1]nω and differential
equations of the form (6–7) such that Assumption 10 is satisfied. To apply
Theorem 11, we choose wPOC in a particular way. With

wPOC
ij :=

∫ ti

ti−1

ωj(τ) dτ

it follows
∥∥∥∫ ti

0
α(τ)− ω(τ) dτ

∥∥∥ = 0 for all i ∈ [N ]. The maximum over all
t ∈ [0, tN] can hence not exceed the integral of length ∆t over extreme cases
such as α ≡ 1 and ω ≡ 0, thus

max
t∈T

∥∥∥∥∫ t

0

α(τ)− ω(τ) dτ

∥∥∥∥ ≤ ε := ∆t.

Theorem 11 now gives a bound ‖xPOC(t)−xSTO(t)‖ ≤ Ĉ∆t for all t ∈ T which
carries over to the objective function via assumed continuity. This concludes
the proof. ut

Given the symmetry of Theorem 11, the reverse is also true.

Corollary 13 (Difference in objective and constraints 2) Let wPOC ∈
W, xPOC : [0, tN] 7→ Rnx be the solution of (POC-f) with w = wPOC.

Under Assumption 10, there exist a constant C1, a number nσ, a switching
order σ : [nσ] 7→ [nω], and a vector wSTO ∈ W such that for the solution
xSTO : [0, tN] 7→ Rnx of (STO-f) with w = wSTO we have∣∣φ(xSTO(tN))− φ(xPOC(tN))

∣∣ ≤ C1∆t.

Proof The claim can be proved analogously to the proof of Corollary 12. Here
nσ, σ, and wSTO can be constructed with the well-known bound that is linear
in ∆t using SOS1 Sum Up Rounding [47,50]. ut
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Both corollaries together show that the optimal objective function values
of (P-STO) and (P-POC) are close with respect to ∆t. Therefore, one can
expect that for larger N the objective function landscapes look very similar
for the transformations (P-STO) and (P-POC).

Moreover, from Theorem 11 in conjunction with Corollaries 12 and 13, it
can be deduced that the (local) optima of (P-STO) and (P-POC) are ε-optima
with respect to the modified problem (P-POC) in which wij is replaced by the
non-discretized wj(t). Since this modified (P-POC) is a true relaxation of
(MIOCP), this implies the minima of (P-STO) and the rounded minima of
(P-POC) are also ε-optima of (MIOCP).

4 Two Test Problems

We are going to compare numerical properties of (P-STO) and (P-POC) in
Section 6, using the new software package ampl_mintoc introduced in Sec-
tion 5. The numerical results are obtained for two test mixed-integer optimal
control problems that we shortly present in this section. In this study, we
limit ourselves to two benchmark problems, since a more detailed analysis of
other problems is beyond the scope of this paper. We have specifically chosen
two structurally different problems. The optimal solution of the first prob-
lem consists of singular and bang-bang arcs, which renders its solution to be
challenging, while the other involves only bang-bang arcs. Moreover, the prob-
lems have different convexity properties. One problem is convex over a large
part of the domain and, thus, in this sense relatively easy to solve, while the
other problem is very nonconvex and raises numerically more difficulties. The
Lotka-Volterra fishing benchmark problem was first formulated in [51]. The
numerically constructed optimal relaxed solution has bang-bang and singular
arcs, which can be derived using Pontryagin’s maximum principle [47]. The
(P-POC) formulation is convex on large parts of the domain and for many
choices of the discretization grid, initial values, and bounds, as we will show
in the numerical results in Section 6 in Figure 7. The second problem, a cal-
cium signaling pathway inhibition, was formulated in [32]. The numerically
constructed optimal relaxed solution consists of three bang-bang arcs. Both
the (P-POC) and the (P-STO) formulation are nonconvex. Both problems
have oscillatory dynamics and only use one binary control function. Further
references and details can be found in [49]. Here, we only state and use the
mathematical formulations of these problems.
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Definition 14 (Lotka problem) We refer to

min
x,ω

x3(tN)

s.t. ẋ1(t) = x1(t)− x1(t)x2(t)− c1x1(t) ω(t)
ẋ2(t) = −x2(t) + x1(t)x2(t)− c2x2(t) ω(t)

ẋ3(t) =
∑2

i=1(xi(t)− x̃i)
2

x(t0) = (0.5, 0.7, 0.0), x̃ = (1, 1)

ω(t) ∈ {0, 1}

(Lotka)

as the Lotka-Volterra fishing control problem on T = [0, tN = 12] with c1 = 0.4
and c2 = 0.2.

Definition 15 (Calcium problem) We refer to

min
x,ω

x5(tN) (Calcium)

s.t. ẋ1(t) = k1 + k2x1(t)− k3x1(t)x2(t)
x1(t)+K4

− k5x1(t)x3(t)
x1(t)+K6

ẋ2(t) = k7x1(t)− k8x2(t)
x2(t)+K9

ẋ3(t) =
k10x2(t)x3(t)x4(t)

x4(t)+K11
+ k12x2(t) + k13x1(t)− k16x3(t)

x3(t)+K17
+ x4(t)

10

−ω k14x3(t)
ūmax x3(t)+K15

− (1− ω(t)) k14x3(t)
ūmin x3(t)+K15

ẋ4(t) = −k10x2(t)x3(t)x4(t)
x4(t)+K11

+ k16x3(t)
x3(t)+K17

− x4(t)
10

ẋ5(t) =
∑4

i=1

(
xi(t)−x̃i

x̃i

)2

+ 100 ω(t)

x(t0) = (0.03966, 1.09799, 0.00142, 1.65431, 0)

ω(t) ∈ {0, 1}

as the Calcium control problem on T = [0, tN = 22] with data ūmin = 1,
ūmax = 1.3, k1 = 0.09, k2 = 2.30066, k3 = 0.64,K4 = 0.19, k5 = 4.88,K6 =
1.18, k7 = 2.08, k8 = 32.24,K9 = 29.09, k10 = 5.0,K11 = 2.67, k12 = 0.7, k13 =
13.58, k14 = 153.0,K15 = 0.16, k16 = 4.85,K17 = 0.05, and reference unstable
steady state x̃1 = 6.78677, x̃2 = 22.65836, x̃3 = 0.38431, x̃4 = 0.28977.

Both control problems are of the form (MIOCP), where the nω = 2 different
modes correspond to values ω(t) = 0 and ω(t) = 1, respectively. They use
a single binary control, as the second control was eliminated via the one-hot
constraint.

5 The Software Package ampl_mintoc

We have designed the AMPL [13] code ampl_mintoc for the formulation of Mixed
INTeger Optimal Control problems, in particular for problems of type (MIOCP).
The package ampl_mintoc is available as open-source on GitHub1. We explain

1 ampl_mintoc is available under https://github.com/czeile/ampl_mintoc.

https://github.com/czeile/ampl_mintoc
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the concept and idea of the software in Section 5.1. In Section 5.2, we first de-
scribe the most relevant problem-independent files and explain the different
algorithmic options and discretizations. We then dedicate the remaining sec-
tion to the implementation of the transformations (P-STO) and (P-POC). We
also provide an explanation of how optimal control problems can be formulated
and solved with ampl_mintoc in Appendix A.1.

5.1 Conceptual Description

ampl_mintoc consists of a set of code files that allow the user to efficiently
formulate control problems. These are solved by off-the-shelf NLP or MINLP
solvers interfaced by AMPL. In particular, problem-independent code exists to
apply (P-STO) as well as (P-POC) formulations to problem-dependent func-
tions.

The application of ampl_mintoc is illustrated in Figure 3. The goal of this
software is to be able to formulate and solve optimal control problems easily.
For this purpose, there is a set of problem-independent code files that define
generic parameters, variables, problems, and transformations that can be used
by the user depending on the application. For formulation of an MIOCP,
the user needs to specify files problem.mod and problem.dat to define the
objective function and constraints as well as parameter values, respectively.
In the file problem.run algorithmic choices are set, such as the choice of the
solver, the integrator, and the problem transformation. To this end, problem-
independent files, e.g. mintocPre.mod, mintocPost.mod, and solve.run, are
included in this file to reuse generic structures.

After applying the numerical solver interfaced via AMPL, the constructed
optimal solution can be visualized with plot routines from the software package
and gnuplot. The obtained solution can also be used for further optimization
steps as specified in problem.run. For instance, after solving (P-POC), one
could be interested in computing a rounded solution via SUR or Combinatorial
Integral Approximation [53].

The advantage of using AMPL is that the syntax remains close to the math-
ematical formulation. Due to the chosen direct approach for the solution of
the OCPs, the implementation is done directly in a discretized setting. As a
disadvantage, the usage of AMPL implies that function pointers are not straight-
forward to use. However, the discretized problem formulation can also be bene-
ficial, since the program’s preprocessor can eliminate variables and constraints
from discretized functions before the solution process.

We note that there are other AMPL packages for optimal control, such as
TACO [30] that interfaces a multiple shooting code for optimal control. The
novel feature of ampl_mintoc is the possibility for rapid prototyping of trans-
formation and decomposition algorithms and to facilitate the formulation and
solution of MIOCPs, by using the flexibility of solver choice provided with
AMPL.
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(Mixed-Integer) Optimal Control Problem

ampl_mintoc

Problem independent files

– mintocPre.mod: variable definitions
– mintocPost.mod:

– transformations (P-STO) and
(P-POC)

– integration schemes
– subproblem definitions

– solve.run: interfacing solvers
– plot.run: visualizing results
– . . .

User specification

– problem.mod:
– problem objective
– problem constraints

– problem.dat:
– problem dimensions
– parameter values

– problem.run:
– algorithmic choices

AMPL

Solver
– NLP solver, e.g. IPOPT
– MILP and MINLP solver

(Sub-)optimal solution

Visualized solution

formulation

written in

interface

output

re-optimization

visualizationplot script

Fig. 3 Flowchart overview of the application of ampl_mintoc. The user can formulate an
MIOCP in this code by creating problem-specific files, as listed in the lower box. ampl_mintoc
provides a set of problem-independent files that implement generic routines and which sim-
plify the problem formulation, as listed in the upper box. The modeling language is AMPL,
which facilitates to interface a wide range of numerical solvers. The constructed optimal
solution can be visualized or used for further optimization steps by using ampl_mintoc code
routines. The dashed lines mark the software related area without input and output.

5.2 Details on Problem-independent Files

In order to save implementation effort, problem-independent variables and
generic problem structures are outsourced to dedicated AMPL files. The file
mintocPre.mod contains the declaration of general parameters such as the time
discretization and the number of differential states and controls. It also defines
the variables for the ODE model function, the control values, differential states,
and discretized constraint functions. In mintocPost.mod, we define different



A numerical study of transformed MIOCPs 17

objectives, constraints, numerical integration schemes for the ODEs, and the
formulation of NLPs and Combinatorial Integral Approximation [65] problems.

The files mintocPre.mod and mintocPost.mod can be considered as the
core of ampl_mintoc. Both files need to be included in the problem-specific
run file and reduce the effort to formulate the optimal control problems sig-
nificantly.

Currently available numerical integrator schemes are the Radau colloca-
tion and explicit and implicit Euler methods, which can be set via the variable
integrator. Various problem variants can be solved via setting the variable
mode. For instance, in the Simulate mode, all control variables are fixed and
in the Relaxed mode the optimization problem is solved with relaxed inte-
ger variables. The file solve.run contains the commands to interface and run
the NLP solver based on the chosen algorithmic options. Thus, one needs to
use include ../solve.run in the problem-specific run file to let the prob-
lem at hand be solved. The files solveMILP.run and solveRound.run work
similarly as solve.run, but interface MILP solvers for specific combinatorial
integral approximation problems [53] and contain specific rounding algorithms,
respectively, as part of the Combinatorial Integral Approximation decomposi-
tion [65]. The declaration of default settings for solvers, problem classes, and
integrators are outsourced in the file set.run, while checkConsistency.run
verifies if valid options/modes have been chosen for solver, integrator, and
discretization.

Standardized routines are implemented in the ampl_mintoc code to post-
process, store, and restore problem solutions. These can be retrieved via the
file problem.run and the AMPL command include. For instance, by calling
the script printOutput.run, detailed solution results can be output, such as
the objective function value, constraint violation metrics, and the run time.
If the user includes the script plot.run, the determined solution is stored in
a file problem.plot, which in turn can be used by gnuplot to plot result
data such as the state or control trajectories. Furthermore, one can use the
scripts storeTrajectory.run and readTrajectory.run to save or read prob-
lem solutions in order to solve a problem again later in a modified form. The
problem-independent files do not need to be modified by users, but can be
extended by algorithm developers.

We illustrate the implementation of the problem-independent formulations
of the ODE constraints for STO and POC in the Listing 1. The presented
implementation is done in mintocPost.mod and is based on a discretization
with an explicit Euler scheme. We note that the (discretized) ODE equations in
ampl_mintoc closely resemble the corresponding mathematical ODE equations
from (P-STO) and (P-POC).

Listing 1 AMPL model file with problem-independent ODE constraint formulations for
(P-STO) and (P-POC) and explicit Euler integration scheme
### Switching Time Optimization

ode_STO {k in X, o in 1..no, i in IU, ii in 0..nsto-1}:
x[k,i*ntperu+(o-1)*nsto+ii+1] = (

if (integrator=="explicitEuler") then
x[k,i*ntperu+(o-1)*nsto+ii] + wi[o,i] * dt*no *



18 Sebastian Sager et al.

(f[k,0,i*ntperu+(o-1)*nsto+ii] + f[k,o,i*ntperu+(o-1)*nsto+ii])
);

### Partial Outer Convexification
ode_POC {k in X, i in 0..nt-1}:

x[k,i+1] = (
if (integrator=="explicitEuler") then

x[k,i] + dt * (f[k,0,i] + sum {o in Omega} w[o,i] * f[k,o,i])
);

6 Numerical Experiments

We are going to investigate the two test problems from Section 4 numeri-
cally. Special focus is given on nonconvexity of the objective functions over
W. We present first simulation-based analyses. To be able to plot results, we
consider low dimensions, projections, and the concept of mid-point convexity,
respectively. We complement the findings with optimization-based analyses,
comparing the number of optimal solutions that are found for random initial
values. An interesting approach is to initialize (P-STO) with the binary solu-
tion determined from (P-POC), which we test as part of this investigation. We
also use different algorithms to compare integer solutions, that can be derived
using the solution of (P-POC). In the following, we are only inspecting local
optimality up to the precision of the numerical method.

6.1 Discretization and Numerical Integration

All numerical results were produced using a machine with 160 Intel CPU
cores (2 GHz each) and 1 TB of RAM running Ubuntu 18.04.5 LTS. We im-
plemented the Problems (P-STO) and (P-POC) in ampl_mintoc with a direct
collocation approach and used IPOPT 3.12.13 to solve the resulting NLPs. In
the following, we refer to the determined optima of IPOPT as local minima,
neglecting the fact that in theory the determined stationary points can also be
saddle points. In practice we did not observe such behavior. The underlying
motivation was to get as close to objective comparability as possible, ignoring
issues of efficacy. Thus, the absolute computational times are irrelevant and
only a relative comparison between them will play a role. Our main focus will
be the impact of the different dynamics on the objective function values. To
this end, we used direct collocation on the same discretization grids. For both
test problems, an explicit Euler scheme with equidistant step sizes was used.
We tested different numbers of grid points nt for the evaluation of differential
states, with control values arbitrarily fixed to 1, compare Table 1. Then, we
chose nt = 48000 since the objective function values hardly change (less than
0.05%) with finer discretizations.

We also qualitatively compared the simulation results to those of an im-
plicit Euler scheme and of a Gauß Radau collocation of order 3. These ap-
proaches are more efficient in the sense of computational speed, but we expe-
rienced also additional numerical issues such as convergence issues in IPOPT.
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(Lotka) (Calcium)
nt (STO-f) (POC-f) (STO-f) (POC-f)

24 000 9.42072 9.41165 1992.72 1991.31
48 000 9.41165 9.40712 1991.31 1990.62
96 000 9.40712 9.40485 1990.62 1990.27

192 000 9.40485 9.40372 1990.27 1990.10

Table 1 Simulated objective function values for the two test problems and fixed controls
wSTO

i1 = wPOC
i1 = 1 for all i and an equidistant explicit Euler scheme with nt discretization

points. As expected for w ∈ {0, 1}, one obtains the same results for nSTO
t = 2nPOC

t . In the
following, we used nSTO

t = nPOC
t = 48000 for (Lotka) and (Calcium) as a good compromise

between computational costs and acceptable relative numerical errors below 0.05%.

The results for the explicit Euler scheme are hence easier to compare and
might always serve as an initialization of the more involved schemes.

Unfortunately, even for this simplistic numerical scheme, a fair compari-
son with the same number of integration intervals for STO and POC is not
straightforward because the discretization grid depends on the values in wSTO.
If wSTO

ij ∈ {0, 1} for all i, j, then for the overall number of state discretization
time points nSTO

t it holds that nSTO
t = nσn

POC
t since nσ − 1 sub-intervals on

each discretization interval will not be used for integration in the STO ap-
proach. However, if wSTO

ij ∈ (0, 1) for all i, j, then nSTO
t = nPOC

t . As these
values wSTO

ij are going to change during the optimization, there is no perfect
choice. In the interest of getting an idea about the numerical effort, we chose
nt identical for (STO-f) and (POC-f). Also in the interest of simplicity, we fo-
cused on nσ = 2 and a switching order σ(1) = 1, σ(2) = 0 on each sub-interval.
As we consider cases with only two possible modes ω(t) ∈ {0, 1}, we can omit
the second index, such that wi = wi1 and 1− wi = wi2.

6.2 Measuring Convexity

We would like to evaluate the constructed solutions by STO and POC in terms
of (non-)convexity. One quantitative measure of nonconvexity is the nonconvex
ratio [58], a measure of the nonconvexity of black-box functions. It can be easily
applied to our ampl_mintoc implementation via outer simulation loops. The
approach uses the midpoint convexity as a special case of convexity. We repeat
the definitions here for convenience.

Definition 16 (Midpoint convexity) The continuous function
f : Rn ⊃ M → R is called midpoint convex on the convex domain M, if
and only if

f(x1) + f(x2) ≥ 2f

(
x1 + x2

2

)
∀x1, x2 ∈ M. (9)
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The following definition already takes the practical calculation of the noncon-
vex ratio into account. Details of the development of the method can be found
in [58].

Definition 17 (Nonconvex ratio R∗) Let ζ : M2 → {0, 1} denote a func-
tion with ζ(x1, x2) = 1 if and only if x1 and x2 fulfill (9) and let S denote the
number of samples. For uniformly chosen x1i, x2i, i ∈ [S], the nonconvex ratio
R∗ can be computed as

R∗ := 1− 1

S

S∑
i=1

ζ (x1i, x2i)
(
{x1i, x2i} ∼ U(M2)

)
. (10)

Note, that a value of R∗ = 1 corresponds to a concave function. Please also
note that R∗ is only an approximation of the ratio of the number of points
fulfilling the midpoint convexity property to the number of pairs of points in
M. Thus, the parameter S has to be chosen sufficiently large. Due to the fact
that each function evaluation in our setting comes at the cost of solving a
discretized ODE, we restricted the sample size S to 1000 in this study, still
resulting in an overall computation time of approximately one week.

6.3 Simulation-based Analysis

We start with visualizations of the objective function landscapes for two-
dimensional problems. For both problems (Lotka) and (Calcium) we performed
simulations with N = 2 and varied the controls w1, w2 between 0 and 1 with
an increment of 0.01. Figure 4 shows a comparison for (Lotka) and the case
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Fig. 4 Comparison of simulated objective function landscapes for (Lotka) example using
two degrees of freedom w1 and w2. Left: (P-STO), i.e., ẋ = w1(f0 + f1) for t ∈ [0, 6w1],
ẋ = (1− w1)f0 for t ∈ [6w1, 6] and ẋ = w2(f0 + f1) for t ∈ [6, 6 + 6w2], ẋ = (1− w2)f0 for
t ∈ [6 + 6w2, 12]. Right: (P-POC), i.e., ẋ = f0 +wif1 for t ∈ Ti with t0 = 0, t1 = 6, t2 = 12.
The (P-STO) formulation has at least 3 local minima, see Table 2.

N = 2. The switching time optimization transformation on the left appears
to be nonconvex, while the partial outer convexification transformation on the
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right is much more convex. This is also reflected in the nonconvex ratios (see
Definition 17). While R∗

STO = 0.849 is indicating a very nonconvex objective
landscape, R∗

POC = 0.188. Note, that the nonconvexity of the results is mainly
attributed to the very small number of controls (N = 2).
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Fig. 5 Same setting as Figure 4, but for problem (Calcium). Both formulations are non-
convex. The objective function landscapes are dominated by a bifurcation.

Figure 5 shows a comparison for (Calcium) and the case N = 2. Both
transformations result in nonconvex objective function landscapes, which is
also reflected in the high nonconvex ratios R∗

STO = 0.472 and R∗
POC = 0.707.

To get an impression of the nonconvexity in higher dimensions we per-
formed another simulation. Here we used a one-dimensional parameterization

wi = β, i ∈ [N ],

with β running from 0 to 1 in steps of 0.01. The resulting control for (P-POC)
is simply a constant function with the value β and hence independent of N .
However, in the case of (P-STO), each value of N results in different dynamics
(cf. Figure 2). Figure 6 shows a comparison of the resulting one-dimensional
slices through the N -dimensional objective function landscapes for (Lotka)
and for (Calcium).

Comparing the resulting objective function values for (Lotka) on the left of
Figure 6, one gets an idea of the nonconvexity of the different transformations
of the optimization problem depending on N . For each N , the formulation
(P-STO) is less convex than the (P-POC) formulation. For N = 2 one sees
two of the local minima that we observed already in Figure 4 (left). When
looking at the objective functions for increasing N , one sees a convergence
of the (P-STO) objective function values to the (P-POC) objective function
values.

A similar picture emerges from the right plot of Figure 6. Here, however,
the objective function landscape is also visibly nonconvex for formulation
(P-POC). Again, for small values of N more local minima can be seen in
(P-STO), and for large N the objective functions look similar.

We considered the R∗ values also in higher dimensions. Figure 7 illustrates
the values of R∗ as a function of N . For (Lotka), the (P-STO) formulation
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Fig. 6 Simulated objective function values for fixed wi = β. The x-axis reflects the fixed
values wi = β. We show the values based on the transformed problem (P-STO) for (Lotka)
and N ∈ {1, 2, 3, 4, 8, 16} (left) and for (Calcium) and N ∈ {16, 32, 64, 128} (right). Note
that (P-POC) has identical results for all values of N due to the constant choice of wi.
STO-N converges to POC as N increases.

produces higher nonconvexities, which approaches that of (P-POC) for large
N . For (Calcium), we have a similar result in the sense that (P-STO) appears
to be more convex than (P-POC) with the exception of N ∈ {1, 2, 64}. Note,
that because of our relatively small sample size, the results suffer from high
uncertainty and need to be interpreted with care. Also, deviating from the rest
of this section, we used nt = 51200 in this case. Otherwise, the larger values
of N would have resulted in a corresponding non-integer value for nσ.
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Fig. 7 Nonconvex ratios R∗ for different discretizations N for (Lotka) on the left and
(Calcium) on the right-hand side for sample size S = 1000. Here, only the x axes are
logarithmic. One observes higher R∗ values for (P-STO) compared to (P-POC) for small N
and similar values for larger N .

6.4 Optimization-based Analysis

We performed an additional study to understand the convergence behavior
for (P-STO) and (P-POC). We calculated local minima for nt = 48000 and
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different values of N using IPOPT. For both formulations, we used random
initializations for the controls w by means of AMPL’s Uniform01 function. For
(P-STO) and (P-POC) we used the same random seed via option randseed,
such that the starting values wSTO

0 = wPOC
0 were uniformly randomly dis-

tributed in [0, 1]N and identical. Also for the corresponding state variables
x(·), initial values were provided. We used the initializations STOa and POCa
where we initialized x discontinuously, but possibly close to an optimal solution
via

xki =

{
x̃k if k < nx

0 if k = nx

for i ∈ [nt]. Here, we used the special structure of the control problems (Lotka)
and (Calcium) and their (steady-state x̃ seeking) Mayer terms in x3 and x5,
respectively. As a second scenario, we considered initializations STOb and
POCb, respectively, for values x(·) that were obtained from a (single shooting)
forward solution based on the fixed initial values x(0) and wSTO

0 = wPOC
0 .

To obtain an idea about the distribution of local minima for the two refor-
mulations, we performed 100 optimization runs for each of the four transfor-
mations plus initializations STOa, STOb, POCa, and POCb, and for different
values of N . An upper limit of 60 minutes CPU time was imposed via an AMPL
and IPOPT option and additionally via a system timeout command. The latter
was necessary because often IPOPT got stuck in the linear system solves. Hence,
the category “no convergence” in the tables is composed of several different
numerical phenomena, such as too large number of iterations or problems with
dual variables in the range of 1012 in the linear system solves. As stated before,
the implementations are by no means efficient and the CPU times shall only
give a hint on how the different transformations relate to one another. Itera-
tion counts and CPU times (and their standard deviations) are only calculated
from the instances that converged within the time limit.

The numbers of times (out of 100 each) that IPOPT converged to a local
minimum are shown in Tables 2 and 3. Stationary points are clustered with a
tolerance of 10−3 for (Lotka) and 1 for (Calcium), comparing objective function
values (not the values of w).

We observe that for small numbers of N the number of local minima are
larger for (P-STO) than for (P-POC), e.g., 3 : 1 for (Lotka) and N = 2 (com-
pare also Figure 4 left for this special case) or 11 : 6 for (Calcium) and N = 3.
For N = 100 the behavior is almost identical for (P-STO) and (P-POC): con-
verging to only one local minimum for (Lotka) and to a comparable amount
of five to six local minima for (Calcium).

One can also see differences for state initialization a (i.e., setting x0 = x̃)
and b (i.e., calculating x0

i from x0 and w0). While STOa and POCa have a
tendency to converge to better local minima, they also have a tendency to not
converge at all.

Finally, to provide an idea of how local minima differ in the space of the
corresponding controls and differential states, Figure 8 shows exemplary solu-
tions for (Calcium). All four plots correspond to results calculated for N = 100
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N Objective function Convergence to local minima
(P-STO) (P-POC) STOa STOb POCa POCb

2 6.08124 5.40938 74× 100× 100×
7.06487 87×
9.96625 2× 13×
No convergence 24×

Iterations 487± 586 32± 7 94± 115 22± 2
CPU time [s] 453± 591 21± 5 72± 88 17± 2

3 4.07543 4.98114 76× 69× 99× 100×
7.06418 7.44638 5× 31× 1×
No convergence 19×

Iterations 494± 693 40± 8 30± 9 26± 11
CPU time [s] 368± 496 25± 5 26± 7 21± 9

4 1.72221 2.75505 81× 100× 100× 100×
No convergence 19×

Iterations 681± 679 43± 9 51± 36 31± 2
CPU time [s] 861± 881 32± 8 41± 29 24± 2

5 1.35203 1.38501 79× 100× 100× 100×
No convergence 21×

Iterations 500± 581 41± 3 50± 6 35± 2
CPU time [s] 795± 985 29± 3 40± 4 27± 1

8 1.67690 1.46873 77× 100× 100× 100×
No convergence 23×

Iterations 265± 381 47± 6 61± 4 46± 2
CPU time [s] 385± 508 33± 5 47± 3 33± 2

100 1.34568 1.34488 100× 100× 100× 100×
Iterations 208± 26 98± 4 184± 10 133± 7
CPU time [s] 171± 29 74± 3 139± 9 98± 6

Table 2 Convergence results for different numbers N of controls, the transformations and
initializations STOa, STOb, POCa, and POCb introduced in Section 6.4, and for problem
(Lotka). We show the number of times that IPOPT converged to a local minimum with
the objective function value given in the left columns. A trend towards more local minima
for transformation (P-STO) can be observed for small values of N , as well as a higher
dependence on the initialization and in general more issues with convergence. The number
of iterations and the CPU times are using the format mean value ± standard deviation.

as shown in Table 3. Comparing the first two and the last two rows, respec-
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N Objective function Convergence to local minima
(P-STO) (P-POC) STOa STOb POCa POCb

2 1958.14 1959.28 14× 40× 15×
4412.69 4418.30 35× 84×
No convergence 100× 51× 60× 1×

Iterations — 1063± 450 459± 392 246± 237
CPU time [s] — 2191± 921 781± 596 391± 356

3 1721.85 1894.62 9× 8×
1838.70 1908.83 9× 19× 2×
1846.60 2372.22 1× 5×
4429.67 4322.82 16× 15×
4480.46 4399.00 2× 15×
4482.31 4402.87 8× 54×
4514.67 10×
4528.46 6×
4530.22 2×
4608.23 2×
4755.96 1×
No convergence 100× 34× 81× 1×

Iterations — 851± 423 668± 560 284± 382
CPU time [s] — 1832± 936 1538± 1084 586± 665

4 1690.03 4× 5×
1790.12 1950.00 1× 16× 4×
1794.49 1954.58 36× 3× 44×
4337.71 4289.55 23× 14×
4402.78 4291.79 1× 37×
4458.08 2×
No convergence 96× 32× 81× 1×

Iterations 280± 105 1046± 341 274± 152 626± 359
CPU time [s] 885± 360 2312± 763 535± 268 1195± 631

100 1597.36 72×
1597.61 1596.66 10× 100× 13×

4193.96 1×
4211.54 1×
4222.59 4221.75 1× 1×
4223.87 4222.82 9× 2×
4225.18 4223.89 68× 76×
No convergence 28× 11× 7×

Iterations 696± 136 392± 156 227± 64 624± 209
CPU time [s] 2110± 473 1555± 614 446± 128 2156± 723

Table 3 As Table 2, but for problem (Calcium).
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tively, one sees how the activations of mode 1 in the (P-STO) and (P-POC)
formulations are very similar in the state space. The corresponding trajec-
tories are almost identical, which is also reflected in the objective function
values (1597.61 versus 1596.66 and 4225.18 versus 4223.89). In control space,
the solutions are only similar in a weak topology and look different to the
eye. A comparison of rows 1 and 2 on the one hand, and rows 3 and 4 on
the other hand, gives a comparison between two different local minima also
in state space. One state remains in the steady state after time t ≈ 7, while
the other state continues to oscillate. A second control activation at t ≈ 15 is
necessary to bring the system into the unstable steady state.

6.5 Initialization of STO with solution of POC

As a remedy to avoid bad local minima and the also observed convergence
issues, it seems a logical choice to use (P-POC) in a first phase to derive an
initialization for (P-STO), as first suggested and implemented in [47].

We thus investigated the behavior of (P-STO), when being initialized with
the optimal solution of (P-POC). For this purpose, we simply performed a
”hot-start” of the STOa and STOb methods after running POCa and POCb,
respectively. Other than that, the experimental setup remained unchanged. We
also did some computations with an additional run of SUR for the solutions of
POCa and POCb to use integer solution for the initialization. The results with
respect to convergence properties and objective values were much worse than
for the original initializations of STOa and STOb. We omit detailed results
here and instead focus on the experiments without this additional algorithm.

Looking again at the results for (Lotka) in Table 2, in all cases but one
(POCa and N = 3) the methods POCa and POCb converged to the same
objective function value and correspondingly to the same optimal controls.
Thus, it is sufficient to inspect one run of STOa and one run of STOb for each
N for this problem. In Table 4 the objective function values and numbers of
STO-iterations for the four combinations of initializations are presented. As
in the case of STOb without POC-initialization, all instances could be solved
in this scenario. Also, the number of iterations until convergence is close to
the results of STOb. In the cases of N = 2 and N = 3, only the smaller
objective function values were achieved. In comparison with STOa without
POC-initialization, the hot-start gave an advantage in numbers of iterations
and stability, but was not able to capture the best objective in the case of
N = 2.

Very similar results can be observed in the calcium example in Figure 9.
Here, we chose a graphical representation due to the much higher number of
local minima. Again, the initialization of the method with the results of POCa
and POCb can help by means of more successful runs for STOa. As a drawback,
again, the best results for N = 4 could not be achieved. In comparison to STOb
without POC-initialization, the number of solved instances is lower for each
combination, but one.
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Fig. 8 Exemplary stationary points for (Calcium) and N = 100, corresponding to the
objective function values 1597.61, 1596.66, 4225.18, and 4223.89 (top to bottom).

6.6 Comparison of Constructed (MIOCP) Solutions

To fairly compare the two approaches STO and POC, it is useful to also con-
struct and analyze the resulting integer (MIOCP) solutions. For this, we used
the Lotka-Volterra problem with N = 100 intervals and investigated both, the
number of switches and the corresponding (MIOCP) objective function values
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Fig. 9 Results of initialization of STOa and STOb with the optimal solutions from POCa and POCb as described in
Section 6.4 for N ∈ {2, 3, 4, 100}. The upper bar shows the number of local minima, where the number of instances
with no convergence is presented in black. The black lower bar represents the ratio of the median number of iterations
for each category to the maximum median number of iterations over all categories. In the case of no success for all
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Objective function POCa POCb
nt STOa STOb STOa STOb
2 7.06487 36 30 36 30
3 4.07543 53 42 53 42
4 1.72221 47 39 48 39
5 1.35203 40 37 40 37
8 1.67690 56 63 56 63

100 1.34568 117 117 117 115
Table 4 Objective function values and numbers of iterations of STOa and STOb for (Lotka)
after hot-starting the problems with the results of POCa and POCb, respectively.

of the constructed solutions. We note that, in contrast to the optimal solution
of (P-POC), the (P-STO) solution is already feasible for (MIOCP). Based on
the (P-POC) solution w∗, we used the CIA problem from Def. (9) to compute
solutions with a limited number of switches, where we varied the bound on the
number of switches ns between 2 and 20. Focusing on the (MIOCP) objective
function value, we also applied SUR on w∗. The approximation Theorem 11
implies that for a given ε > 0, we can construct a binary control via SUR with
a corresponding (MIOCP) objective value that is ε-close to the optimal solu-
tion by refining the discretization grid. For this purpose, we created refined
(P-POC) solutions w̃ with 2kN, k = 0, 1, 2, 3, discretization intervals, where
the w∗ value on the unrefined interval is used for definition of w̃ values on the
refined intervals:

w̃i,j := w∗
l,j , for i ∈ {2k(l − 1) + 1, . . . , 2kl}.

Then, we applied SUR on these relaxed control solutions w̃ with 2kN dis-
cretization intervals.

We illustrate the numerical result in Figure 10, where the x-axis depicts the
number of switches and the y-axis shows the deviation of the objective value
of the constructed solution from the (P-POC) in percentage. The (P-STO)
solution is in terms of the objective function value very close to the (P-POC)
solution, at the expense of a large number of switches. Since the (P-POC)
solution is fractional and therefore has no meaningful switching value, we
represent it as a line in the plot.

If we permit only a small number of switches in the CIA problem, the
corresponding (MIOCP) solution deviates more than 7% from the (P-POC)
objective value. The more switches we allowed, the better the (MIOCP) objec-
tive function value became. This holds up to ns = 14. For larger ns values, the
determined binary control still involves only 14 switches, since more switches
result in no improvement in the objective (on the unrefined grid).

The determined solution from SUR on the unrefined grid, i.e. k = 0, has
a small number of switches compared to the (P-STO) solution but yields a
larger objective value. By refining the discretization grid, the constructed SUR
solutions converged to the optimal objective value of (P-POC) or even reached
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Fig. 10 Comparison of number of switches and (MIOCP) objective values for the solution of
different approaches and the Lotka-Volterra problem with N = 100. The (P-STO) solution
is depicted with the black star. The (P-POC) solution is not integer-feasible and therefore
shown as green line (without a meaningful switching value). Based on the (P-POC) solution,
we used the CIA-TV approach from Def. (9) and SUR as explained in the text with refined
grid levels k for constructing integer-feasible (MIOCP) solutions.

smaller values for large k, which is possible as (P-POC) was solved on the
unrefined grid. The improved objective values come at the expense of frequent
switching.

7 Discussion

We are going to discuss the most important results of the previous section,
looking for plausibility of the observations. We start with some considerations
concerning the computational costs, before we address the main finding: the
different numbers of local minima in the two formulations.

7.1 Computational Costs

The computational costs of iterative algorithms are determined by the number
of iterations, and the computational costs per iteration. In the previous section,
and in particular in Tables 2 and 3 we observed
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Numerical Result 1 (Number of Iterations) There is an increased num-
ber of iterations and of convergence issues for (P-STO) compared to (P-POC).

A closer look at (STO-f) and (POC-f) reveals one detail: in (STO-f) the
drift term f0 is multiplied with the optimization variables w. In (POC-f), this
is not the case owing to the one-hot property of w ∈ W. It is well known that
higher nonlinearities, e.g., measured via Lipschitz constants, typically lead
to increased regions of fast local convergence and to worse convergence rate
constants, e.g., [5,8,56]. Thus we think that Numerical Result 1 is due to the
augmented nonlinearity of the differential equations that appear in function
and derivative evaluations in (P-STO).

One may possibly construct cases in which this multiplication does not
increase nonlinearity, because f0(x) ≈ 1/w, or the effect might be negligible
compared to the nonlinearities in the other fj . However, for most practically
relevant cases we can assume that the multiplication of f0 with w increases
nonlinearity of the optimization problem. There might be ways to reduce this
nonlinearity again via a lifting procedure and usage of big M or McCormick-
type constraints. Since this would involve case-specific upper bounds on the
right-hand sides and a further level of approximation, we did not pursue this
direction here, but worked with the formulation that is usually used in the
STO literature.

A second observation in Tables 2 and 3 was
Numerical Result 2 (Computational Costs) The computational costs per
iteration are roughly similar for (P-STO) and (P-POC).

For our numerical approach and test problems the computational costs per
iteration were mainly governed by the evaluation of the differential equations
and the sensitivity differential equations. Thus, the computational effort to
evaluate the right-hand sides in (STO-f) and in (POC-f) for the whole time
horizon T are important, as they carry over in a more or less straightforward
way to the effort of derivative calculation. For many practical optimal control
problems the evaluation of function and derivatives dominates the computa-
tional costs. Evaluating (POC-f) for a fixed t ∈ T needs more function evalua-
tions, as all nω+1 functions fj need to be evaluated, whereas for (STO-f) only
two evaluations are necessary. However, if we assume that the computational
effort to evaluate (STO-f) on Tij is approximately constant (this certainly de-
pends on the numerical integration scheme), then the evaluation on all nσ sub
intervals Tij increases the overall effort by a factor of nσ. This would then give
advantage to (POC-f), because the drift term f0 needs to be evaluated only
once for each t ∈ T and multiple times for STO (because it is evaluated at
different times). Another interesting question is the one about situations in
which wSTO

ij = 0. While it is clear that in this case no integration on Tij would
be necessary, an implementation of this is rather tricky to realize, especially
as also derivatives are needed to determine whether the search direction of the
optimization algorithm is positive for wSTO

ij = 0 or not.
For (P-STO) a speedup by two orders of magnitude was achieved for test

problems based on a linearization of the dynamics [57]. The approach benefits



32 Sebastian Sager et al.

from the usage of an exponential integrator and closed-form analytical deriva-
tives. The main idea should also carry over to POC transformations, with the
main difficulty of deriving analytical formulas for the derivatives of the matrix
exponential for non-commutative matrices, though.

As a summary, we see reasons that in many cases the computational costs
for (P-STO) might be higher than for (P-POC) because of more iterations of
a generic iterative optimization algorithm, with similar costs per iteration.

In Table 4 and Figure 9, the experiments of initializing (P-STO) with the
optimal solution of (P-POC) led to ambiguous results. For some problem sizes,
the number of converging instances could be increased; however, for few others,
the opposite was the case. The same holds true with respect to the constructed
best objective values. This non-intuitive behavior can have several reasons. An
interior-point solver like IPOPT is not well suited for restarts, and active-set
based approaches could rather be used. Also, efficient schemes like the one
proposed in [57] could be taken into account, possibly exploiting additional
structures in a hot-start. The transfer of differential states from one time grid
to another has to be carefully implemented unless one uses a single shooting
initialization with the controls resulting from the first phase, as we did in
this study. This initialization led overall to better convergence properties than
using only the optimal control values of (P-POC).

7.2 Nonconvexity of the Objective Function

There were three main observations in the previous section for the two bench-
mark problems, which might carry over to other mixed-integer optimal control
problems. We are somewhat sloppy with our formulations concerning “small”
or “large” values of N , as this is certainly problem-specific. In Figure 7 we got
indications that

Numerical Result 3 (Nonconvexity Evaluation) Quantified measures of
nonconvexity such as R∗ are higher for (P-STO) compared to (P-POC) for
small N , and identical for large N .

Almost as a corollary, but also from Figures 4, 5, and 6 as well as from
Tables 2 and 3 we obtained

Numerical Result 4 (Number of Local Minima) For fixed N , there are
typically at least as many local minima for (P-STO) as for (P-POC).

The case N = 100 in Table 3 indicated that

Numerical Result 5 (Asymptotic Objective Function Values) The num-
ber of ε-optimal local minima is asymptotically, i.e. for N → ∞, identical for
(P-STO) and (P-POC).

The additional nonconvexity in (P-STO) is again due to the additional
multiplication of the drift term f0 by w, as discussed above. Therefore, it is
not surprising that there are instances in which the number of local minima
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of (P-POC) is dominated by the number corresponding to (P-STO), e.g., the
case N = 3 in Table 3.

Numerical Result 5 is less intuitive. The asymptotic behavior of the num-
ber of local minima can be explained by the fact that the optimal objective
function values of (P-STO) and (P-POC) are converging to the same value
for increasing N as derived in Corollaries 12 and 13. Thus, the effect of the
increased nonconvexity on the number of local minima can only be observed
for coarse control discretizations (large ∆t). We summarize that (P-STO) is
likely to have more local minima for each discretization grid than (P-POC);
however, the number of local minima is asymptotically identical.

7.3 Obtaining (MIOCP)-feasibility

While the STO approach constructs integer-feasible solutions for (MIOCP)
and can be viewed as a primal heuristic, the main motivation of the POC
approach is to provide a relaxed solution of (MIOCP). The necessary post-
processing of the (P-POC) solution for determining an integer solution can be
considered as a drawback, in particular since the rounded solution can result
in relatively large objective values compared with the relaxed one. However,
we showed in Section 6.6 that the rounded (P-POC) solution converges to the
optimal solution of (MIOCP) by applying refinement of the discretization grid.
Moreover, rounding methods such as SUR are computationally inexpensive.
Regardless of whether we use STO or POC as solution approach for (MIOCP),
a trade-off between objective quality and the number of used switches can be
observed. The more switches we allow by means of control discretization or as
part of CIA, the better the optimal objective value.

8 Conclusion

In this paper, we compared the (P-STO) and the (P-POC) approximations
of Problem (MIOCP). We have demonstrated with numerical simulation and
optimization results that (P-STO) tends to result in more local minima than
(P-POC) for few degrees of freedom (small N), whereas both problem for-
mulations show similar behavior for large N . We explained theoretically the
underlying reasons. The additional nonconvexities and nonlinearities are due
to a multiplication of the drift term f0(·) with the control w in (P-STO). How-
ever, asymptotically in N → ∞, i.e., for ∆t → 0, every solution of (P-STO)
can be approximated arbitrarily close by a solution of (P-POC), and vice
versa. The initialization of (P-STO) with optimal solutions of (P-POC) led to
ambiguous results with respect to convergence properties but could be inves-
tigated further in the future. Another future research direction could be an
investigation if singular, path-constrained, and bang-bang arcs in optimal so-
lutions of (P-POC) have an impact in this context. Also, a broader numerical
investigation with more control problems, more instances, various switching
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orders σ, more efficient implementations, additional underlying constraints,
and aspects of global and/or robust optimization could shed additional light
on the question of how the two approximations can be combined to solve
Problem (MIOCP).

Data availability The data that support the findings of this study are reproducible from
the ampl_mintoc github library.

Acknowledgements This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 647573) and from the Deutsche Forschungsgemeinschaft (DFG) –
314838170, GRK 2297 MathCoRe and SPPs 1962 and 2331.

References

1. Axelsson, H., Wardi, Y., Egerstedt, M., Verriest, E.: Gradient descent approach to
optimal mode scheduling in hybrid dynamical systems. Journal of Optimization Theory
and Applications 136(2), 167–186 (2008)

2. Bengea, S., DeCarlo, R.: Optimal control of switching systems. Automatica 41(1), 11–27
(2005). DOI 10.1016/j.automatica.2004.08.003

3. Bestehorn, F., Hansknecht, C., Kirches, C., Manns, P.: Mixed-integer optimal control
problems with switching costs: A shortest path approach. submitted to Mathematical
Programming B (2020). URL http://www.optimization-online.org/DB_HTML/2020/
02/7630.html. Submitted

4. Bestehorn, F., Kirches, C.: Matching algorithms and complexity results for con-
strained mixed-integer optimal control with switching costs. SIAM Journal on Opti-
mization (2020). URL http://www.optimization-online.org/DB_HTML/2020/10/8059.
html. (submitted)

5. Bock, H.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nicht-
linearer Differentialgleichungen, Bonner Mathematische Schriften, vol. 183. Universität
Bonn, Bonn (1987). URL http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/
Bock1987.pdf

6. Burger, M., Gerdts, M., Göttlich, S., Herty, M.: Dynamic programming approach for
discrete-valued time discrete optimal control problems with dwell time constraints. In:
IFIP Conference on System Modeling and Optimization, pp. 159–168. Springer (2015)

7. Caputi, W.J.: Stretch: A time-transformation technique. IEEE Transactions on
Aerospace and Electronic Systems (2), 269–278 (1971)

8. Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for newton’s method
and extensions to related methods. SIAM Journal on Numerical Analysis 16(1), 1–10
(1979)

9. Dubovitskii, A., Milyutin, A.: Extremum problems in the presence of restrictions.
U.S.S.R. Comput. Math. Math. Phys. 5(3), 1–80 (1965). DOI 10.1016/0041-5553(65)
90148-5

10. Dubovitskij, A., Milyutin, A.: Extremum problems with constraints. Sov. Math., Dokl.
4, 452–455 (1963)

11. Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-time optimization for switched-mode
dynamical systems. IEEE Transactions on Automatic Control 51, 110–115 (2006)

12. Flaßkamp, K.: On the optimal control of mechanical systems - hybrid control strategies
and hybrid dynamics. Ph.D. thesis, University of Paderborn (2014). URL https:
//nbn-resolving.de/urn:nbn:de:hbz:466:2-12756

13. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical
Programming. Duxbury Press (2002)

14. Fuller, A.: Study of an optimum nonlinear control system. Journal of Electronics and
Control 15, 63–71 (1963)

http://www.optimization-online.org/DB_HTML/2020/02/7630.html
http://www.optimization-online.org/DB_HTML/2020/02/7630.html
http://www.optimization-online.org/DB_HTML/2020/10/8059.html
http://www.optimization-online.org/DB_HTML/2020/10/8059.html
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
https://nbn-resolving.de/urn:nbn:de:hbz:466:2-12756
https://nbn-resolving.de/urn:nbn:de:hbz:466:2-12756


A numerical study of transformed MIOCPs 35

15. Gerdts, M.: Solving mixed-integer optimal control problems by Branch&Bound: A case
study from automobile test-driving with gear shift. Optimal Control Applications and
Methods 26, 1–18 (2005)

16. Gerdts, M.: A variable time transformation method for mixed-integer optimal control
problems. Optimal Control Applications and Methods 27(3), 169–182 (2006)

17. Gerdts, M., Sager, S.: Mixed-integer dae optimal control problems: Necessary conditions
and bounds. In: L. Biegler, S. Campbell, V. Mehrmann (eds.) Control and Optimization
with Differential-Algebraic Constraints, pp. 189–212. SIAM (2012). URL https://
mathopt.de/PUBLICATIONS/Gerdts2012.pdf

18. Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Springer,
Berlin-Heidelberg-New York (1972)

19. Göttlich, S., Potschka, A., Teuber, C.: A partial outer convexification approach to con-
trol transmission lines. Computational Optimization and Applications 72(2), 431–456
(2019)

20. Göttlich, S., Potschka, A., Ziegler, U.: Partial outer convexification for traffic light
optimization in road networks. SIAM Journal on Scientific Computing 39(1), B53–B75
(2017)

21. Hante, F., Sager, S.: Relaxation methods for mixed-integer optimal control of partial
differential equations. Computational Optimization and Applications 55(1), 197–225
(2013)

22. Hante, F.M.: Relaxation methods for hyperbolic PDE mixed-integer optimal control
problems. Optimal Control Applications and Methods 38(6), 1103–1110 (2017). DOI
10.1002/oca.2315. Oca.2315

23. Hellström, E., Ivarsson, M., Aslund, J., Nielsen, L.: Look-ahead control for heavy trucks
to minimize trip time and fuel consumption. Control Engineering Practice 17, 245–254
(2009)

24. Ioffe, A.D., Tihomirov, V.M.: Theory of extremal problems. North-Holland Publishing
Company, Amsterdam, New York, Oxford (1979)

25. Jung, M., Kirches, C., Sager, S.: On perspective functions and vanishing constraints
in mixed-integer nonlinear optimal control. In: M. Jünger, G. Reinelt (eds.) Facets of
Combinatorial Optimization – Festschrift for Martin Grötschel, pp. 387–417. Springer
Berlin Heidelberg (2013). URL https://mathopt.de/PUBLICATIONS/Jung2013.pdf

26. Jung, M., Reinelt, G., Sager, S.: The lagrangian relaxation for the combinatorial integral
approximation problem. Optimization Methods and Software 30(1), 54–80 (2015)

27. Jung, M.N., Kirches, C., Sager, S., Sass, S.: Computational approaches for mixed integer
optimal control problems with indicator constraints. Vietnam Journal of Mathematics
46, 1023–1051 (2018). DOI https://doi.org/10.1007/s10013-018-0313-z

28. Kaya, C., Noakes, J.: Computations and time-optimal controls. Optimal Control Ap-
plications and Methods 17, 171–185 (1996)

29. Kirches, C.: Fast numerical methods for mixed-integer nonlinear model-predictive
control. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2010). URL
http://www.ub.uni-heidelberg.de/archiv/11636/. Available at http://www.ub.uni-
heidelberg.de/archiv/11636/

30. Kirches, C., Leyffer, S.: TACO – A toolkit for AMPL control optimiza-
tion. Mathematical Programming Computation 5(2), 227–265 (2013). DOI 10.
1007/s12532-013-0054-7. URL http://www.springerlink.com/openurl.asp?genre=
article&id=doi:10.1007/s12532-013-0054-7

31. Kirches, C., Manns, P., Ulbrich, S.: Compactness and convergence rates in the combi-
natorial integral approximation decomposition. Mathematical Programming pp. 1–30
(2020)

32. Lebiedz, D., Sager, S., Bock, H., Lebiedz, P.: Annihilation of limit cycle oscillations
by identification of critical phase resetting stimuli via mixed-integer optimal control
methods. Physical Review Letters 95, 108303 (2005)

33. Lee, H.W.J., Teo, K.L., Cai, X.Q.: An optimal control approach to nonlinear mixed
integer programming problems. Computers & Mathematics with Applications 36(3),
87–105 (1998)

34. Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parameterization enhanc-
ing technique for time optimal control problems. Dynamic Systems and Applications
6(2), 243–262 (1997)

https://mathopt.de/PUBLICATIONS/Gerdts2012.pdf
https://mathopt.de/PUBLICATIONS/Gerdts2012.pdf
https://mathopt.de/PUBLICATIONS/Jung2013.pdf
http://www.ub.uni-heidelberg.de/archiv/11636/
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s12532-013-0054-7
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s12532-013-0054-7


36 Sebastian Sager et al.

35. Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parametrization enhancing
technique for optimal discrete-valued control problems. Automatica 35(8), 1401–1407
(1999)

36. Leineweber, D., Bauer, I., Bock, H., Schlöder, J.: An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical
aspects. Computers & Chemical Engineering 27, 157–166 (2003)

37. Leineweber, D., Bock, H., Schlöder, J.: Fast direct methods for real-time optimization of
chemical processes. In: Proc. 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics Berlin. Wissenschaft- und Technik-Verlag, Berlin
(1997)

38. Liu, C., Gong, Z., Lee, H.W.J., Teo, K.L.: Robust bi-objective optimal control of 1, 3-
propanediol microbial batch production process. Journal of Process Control 78, 170–182
(2019)

39. Liu, C., Gong, Z., Teo, K.L., Loxton, R., Feng, E.: Bi-objective dynamic optimization of
a nonlinear time-delay system in microbial batch process. Optimization Letters 12(6),
1249–1264 (2018)

40. Manns, P.: Relaxed multibang regularization for the combinatorial integral approxima-
tion. arXiv preprint arXiv:2011.00205 (2020)

41. Manns, P., Kirches, C.: Improved regularity assumptions for partial outer convexification
of mixed-integer pde-constrained optimization problems. ESAIM: Control, Optimisation
and Calculus of Variations (2019). URL http://www.optimization-online.org/DB_
HTML/2018/04/6585.html

42. Maurer, H., Büskens, C., Kim, J., Kaya, Y.: Optimization methods for the verification
of second-order sufficient conditions for bang-bang controls. Optimal Control Methods
and Applications 26, 129–156 (2005). URL http://arachne.uni-muenster.de:8000/
num/Arbeitsgruppen/ag_maurer/Publikationen/pubmaurer.html

43. Palagachev, K., Gerdts, M.: Mathematical programs with blocks of vanishing constraints
arising in discretized mixed-integer optimal control problems. Set-Valued and Varia-
tional Analysis 23(1), 149–167 (2015)

44. Picard, C.: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des
approximations successives. Journal de Mathématiques Pures et Appliquées 6, 145–210
(1890). URL http://gallica.bnf.fr/ark:/12148/bpt6k107454k

45. Ramanarayan Vasudevan Humberto Gonzalez, R.B., Sastry, S.S.: Consistent approxima-
tions for the optimal control of constrained switched systems—part 2: An implementable
algorithm. SIAM Journal on Control and Optimization 51, 4484–4503 (2013)

46. Ringkamp, M., Ober-Blöbaum, S., Leyendecker, S.: On the time transformation of mixed
integer optimal control problems using a consistent fixed integer control function. Math-
ematical Programming 161(1), 551–581 (2017). DOI 10.1007/s10107-016-1023-5. URL
http://dx.doi.org/10.1007/s10107-016-1023-5

47. Sager, S.: Numerical methods for mixed–integer optimal control problems. Der andere
Verlag, Tönning, Lübeck, Marburg (2005). URL https://mathopt.de/PUBLICATIONS/
Sager2005.pdf. ISBN 3-89959-416-9

48. Sager, S.: On the Integration of Optimization Approaches for Mixed-Integer Nonlin-
ear Optimal Control. University of Heidelberg (2011). URL https://mathopt.de/
PUBLICATIONS/Sager2011d.pdf. Habilitation

49. Sager, S.: A benchmark library of mixed-integer optimal control problems. In: J. Lee,
S. Leyffer (eds.) Mixed Integer Nonlinear Programming, pp. 631–670. Springer (2012).
URL https://mathopt.de/PUBLICATIONS/Sager2012b.pdf

50. Sager, S., Bock, H., Diehl, M.: The integer approximation error in mixed-integer optimal
control. Mathematical Programming A 133(1–2), 1–23 (2012). URL https://mathopt.
de/PUBLICATIONS/Sager2012a.pdf

51. Sager, S., Bock, H., Diehl, M., Reinelt, G., Schlöder, J.: Numerical methods for optimal
control with binary control functions applied to a Lotka-Volterra type fishing problem.
In: A. Seeger (ed.) Recent Advances in Optimization, Lectures Notes in Economics
and Mathematical Systems, vol. 563, pp. 269–289. Springer, Heidelberg (2009). ISBN
978-3-5402-8257-0

52. Sager, S., Claeys, M., Messine, F.: Efficient upper and lower bounds for global mixed-
integer optimal control. Journal of Global Optimization 61(4), 721–743 (2015). DOI
10.1007/s10898-014-0156-4

http://www.optimization-online.org/DB_HTML/2018/04/6585.html
http://www.optimization-online.org/DB_HTML/2018/04/6585.html
http://arachne.uni-muenster.de:8000/num/Arbeitsgruppen/ag_maurer/Publikationen/pubmaurer.html
http://arachne.uni-muenster.de:8000/num/Arbeitsgruppen/ag_maurer/Publikationen/pubmaurer.html
http://gallica.bnf.fr/ark:/12148/bpt6k107454k
http://dx.doi.org/10.1007/s10107-016-1023-5
https://mathopt.de/PUBLICATIONS/Sager2005.pdf
https://mathopt.de/PUBLICATIONS/Sager2005.pdf
https://mathopt.de/PUBLICATIONS/Sager2011d.pdf
https://mathopt.de/PUBLICATIONS/Sager2011d.pdf
https://mathopt.de/PUBLICATIONS/Sager2012b.pdf
https://mathopt.de/PUBLICATIONS/Sager2012a.pdf
https://mathopt.de/PUBLICATIONS/Sager2012a.pdf


A numerical study of transformed MIOCPs 37

53. Sager, S., Jung, M., Kirches, C.: Combinatorial integral approximation. Mathe-
matical Methods of Operations Research 73(3), 363–380 (2011). DOI 10.1007/
s00186-011-0355-4. URL https://mathopt.de/PUBLICATIONS/Sager2011a.pdf

54. Sager, S., Reinelt, G., Bock, H.: Direct methods with maximal lower bound for mixed-
integer optimal control problems. Mathematical Programming 118(1), 109–149 (2009).
URL https://mathopt.de/PUBLICATIONS/Sager2009.pdf

55. Siburian, A.: Numerical Methods for Robust, Singular and Discrete Valued Optimal
Control Problems. Ph.D. thesis, Curtin University of Technology, Perth, Australia
(2004)

56. Smale, S.: Newton’s method estimates from data at one point. Springer-Verlag (1986)
57. Stellato, B., Ober-Blöbaum, S., Goulart, P.J.: Second-order switching time optimiza-

tion for switched dynamical systems. IEEE Transaction on Automatic Control 62(10),
5407–5414 (2017). DOI 10.1109/TAC.2017.2697681. URL http://doi.org/10.1109/
TAC.2017.2697681

58. Tamura, K., Gallagher, M.: Quantitative measure of nonconvexity for black-box con-
tinuous functions. Information Sciences 476, 64 – 82 (2019). DOI https://doi.org/10.
1016/j.ins.2018.10.009. URL http://www.sciencedirect.com/science/article/pii/
S0020025518308053

59. Teo, K.L., Jennings, L.S., Lee H. W. J. Rehbock, V.: The control parameterization
enhancing transform for constrained optimal control problems. Journal of the Australian
Mathematics Society 40(3), 314–335 (1999)

60. Uthaichana, K., Bengea, S., DeCarlo, R., Pekarek, S., Zefran, M.: Hybrid model pre-
dictive control tracking of a sawtooth driving profile for an HEV. In: American Control
Conference, 2008, pp. 967–974 (2008)

61. Vasudevan, R., Gonzalez, H., Bajcsy, R., Sastry, S.S.: Consistent approximations for
the optimal control of constrained switched systems—part 1: A conceptual algorithm.
SIAM Journal on Control and Optimization 51(6), 4463–4483 (2013)

62. Wang, L., Yuan, J., Wu, C., Wang, X.: Practical algorithm for stochastic optimal control
problem about microbial fermentation in batch culture. Optimization Letters 13(3),
527–541 (2019)

63. Wu, D., Bai, Y., Yu, C.: A new computational approach for optimal control prob-
lems with multiple time-delay. Automatica 101, 388 – 395 (2019). DOI https://doi.
org/10.1016/j.automatica.2018.12.036. URL http://www.sciencedirect.com/science/
article/pii/S0005109818306435

64. Zeile, C., Robuschi, N., Sager, S.: Mixed-integer optimal control under minimum dwell
time constraints. Mathematical Programming 188, 653–694 (2021). DOI https:
//doi.org/10.1007/s10107-020-01533-x. URL https://link.springer.com/article/
10.1007/s10107-020-01533-x

65. Zeile, C., Weber, T., Sager, S.: Combinatorial integral approximation decompositions for
mixed-integer optimal control. submitted to Optimization Methods and Software (2018).
URL http://www.optimization-online.org/DB_HTML/2018/02/6472.html. Submitted

https://mathopt.de/PUBLICATIONS/Sager2011a.pdf
https://mathopt.de/PUBLICATIONS/Sager2009.pdf
http://doi.org/10.1109/TAC.2017.2697681
http://doi.org/10.1109/TAC.2017.2697681
http://www.sciencedirect.com/science/article/pii/S0020025518308053
http://www.sciencedirect.com/science/article/pii/S0020025518308053
http://www.sciencedirect.com/science/article/pii/S0005109818306435
http://www.sciencedirect.com/science/article/pii/S0005109818306435
https://link.springer.com/article/10.1007/s10107-020-01533-x
https://link.springer.com/article/10.1007/s10107-020-01533-x
http://www.optimization-online.org/DB_HTML/2018/02/6472.html


38 Sebastian Sager et al.

A Appendix

A.1 How to set up and solve an MIOC with ampl_mintoc

Following AMPL standards, a problem-specification usually involves one data file, one model
file and one run file. An optimal control problem prob can be formulated using ampl_mintoc
via the problem-specific files prob.dat, prob.mod, and prob.run. First, problem dimensions
(e.g. of the differential states and controls), parameters (e.g. the number of discretization
intervals), and initial values are specified in prob.dat. In the prob.mod file, model-specific
functions can be defined (in the discretized sense). This includes the model function f ,
mixed state-control constraints, path constraints c, and vanishing constraints. Listings 2 and
3 show the AMPL implementations for the (Lotka) and (Calcium) problems from Section 4
as examples of how to formulate f and, hence, the problems’ dynamics.

Listing 2 Problem-dependent functions fj as AMPL code for (Lotka). The index k denotes
the entry of xk, the index o ∈ {1, . . . , nω} the switching mode in fo, and i is the time index.

var f {k in X,o in 0..no,i in I} = (
if (k==1 && o==0) then x[1,i] - x[1,i]*x[2,i]
else if (k==2 && o==0) then - x[2,i] + x[1,i]*x[2,i]
else if (k==1 && o==1) then - x[1,i]*p[1]
else if (k==2 && o==1) then - x[2,i]*p[2]
else if (k==3 && o==0) then sum{l in 1..2} (x[l,i] - xtilde[l])^2

);

Listing 3 Problem-dependent functions fj as AMPL code for (Calcium).
var f {k in X,o in 0..no,i in I} = (

if (k==1 && o==0) then k1 + k2*x[1,i]
- k3*x[1,i]*x[2,i]/(x[1,i]+K4) - k5*x[1,i]*x[3,i]/(x[1,i]+K6)

else if (k==2 && o==0) then k7*x[1,i] - k8*x[2,i]/(x[2,i]+K9)
else if (k==3 && o==0) then k10*x[2,i]*x[3,i]*x[4,i]/(x[4,i]+K11)

+ p18*k12*x[2,i] + k13*x[1,i] - k14*x[3,i]/(1.0*x[3,i]+K15)
- k16*x[3,i]/(x[3,i]+K17) + x[4,i]/10

else if (k==4 && o==0) then - k10*x[2,i]*x[3,i]*x[4,i]/(x[4,i]+K11)
+ k16*x[3,i]/(x[3,i]+K17) - x[4,i]/10

else if (k==3 && o==1) then k14*x[3,i]/(1.0*x[3,i]+K15)
- k14*x[3,i]/(1.3*x[3,i]+K15)

else if (k==5 && o==0) then sum{k in 1..4} (x[k,i]-xtilde[k])^2
);

Note that we use the time index i to define the functions. While this might not be a
very elegant way to formulate problems, this discretized definitions allows the user to easily
specify piecewise functions on different sub-domains.

Finally, algorithmic choices can be provided in prob.run, such as the integration scheme,
the problem reformulation, the simulation or optimization algorithm, relaxation of integer
variables, or postprocessing of results.

Listing 4 Exemplary run file lotka.run as AMPL code.
model ../mintocPre.mod;
model lotka.mod;
model ../mintocPost.mod;
data lotka.dat;

let nlpsolver := "ipopt";
let integrator := "explicitEuler";
let mode := "SimulateSTO";

include ../solve.run;
display objective;


