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Abstract We design, analyze and test a golden ratio primal-dual algorithm (GRPDA) for solving
structured convex optimization problem, where the objective function is the sum of two closed
proper convex functions, one of which involves a composition with a linear transform. GRPDA
preserves all the favorable features of the classical primal-dual algorithm (PDA), i.e., the primal and
the dual variables are updated in a Gauss-Seidel manner, and the per iteration cost is dominated
by the evaluation of the proximal point mappings of the two component functions and two matrix-
vector multiplications. Compared with the classical PDA, which takes an extrapolation step, the
novelty of GRPDA is that it is constructed based on a convex combination of essentially the whole
iteration trajectory. We show that GRPDA converges within a broader range of parameters than the
classical PDA, provided that the reciprocal of the convex combination parameter is bounded above
by the golden ratio, which explains the name of the algorithm. An O(1/N) ergodic convergence rate
result is also established based on the primal-dual gap function, where N denotes the number of
iterations. When either the primal or the dual problem is strongly convex, an accelerated GRPDA
is constructed to improve the ergodic convergence rate from O(1/N) to O(1/N2). Moreover, we
show for regularized least-squares and linear equality constrained problems that the reciprocal of
the convex combination parameter can be extended from the golden ratio to 2 and meanwhile
a relaxation step can be taken. Our preliminary numerical results on LASSO, nonnegative least-
squares and minimax matrix game problems, with comparisons to some state-of-the-art relative
algorithms, demonstrate the efficiency of the proposed algorithms.
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golden ratio · acceleration · convergence rate · fixed point iteration
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1 Introduction

Let Rp and Rq be finite-dimensional Euclidean spaces, each endowed with an inner product and
the induced norm denoted by ⟨·, ·⟩ and ∥ · ∥ =

√
⟨·, ·⟩, respectively. In this paper, we consider

structured convex optimization problem of the form

min
x∈Rq

f(Kx) + g(x), (1)
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where f : Rp → (−∞,+∞] and g : Rq → (−∞,+∞] are extended real-valued closed proper convex
functions [30], and K ∈ Rp×q is a linear operator from Rq to Rp. Problem (1) arises from numerous
applications, including signal and image processing, machine learning, statistics, mechanics and
economics, to name a few, see, e.g., [4, 5, 8, 17, 34] and the references therein. The saddle point or
primal-dual form of (1) reads

min
x∈Rq

max
y∈Rp

L(x, y) := g(x) + ⟨Kx, y⟩ − f∗(y), (2)

where f∗(y) = supu∈Rp⟨y, u⟩ − f(u), y ∈ Rp, is the Legendre-Fenchel conjugate of f . Saddle point
problems are ubiquitous in optimization as they provide a very convenient way to represent many
nonsmooth problems. In particular, (2) is intrinsically related to the Fenchel dual problem of (1),
which is given by

max
y∈Rp

−f∗(y)− g∗(−K⊤y), (3)

where K⊤ denotes the matrix transpose or adjoint operator of K.
We note that in this paper we restrict the decision variable x in Rq, yet all the analysis can be

extended to any finite dimensional real Euclidean spaces, e.g., the matrix space Rm×n with trace
inner product and the induced Frobenius norm. In the rest of this section, we define some notation,
make our assumptions, review some algorithms for solving (1)-(3) that are closely related to this
work, and summarize our contributions and the organization of this paper.

1.1 Notation and assumptions

The matrix and vector transpose operation is denoted by superscript “⊤”. The operator norm of
K is denoted by L, i.e., L := ∥K∥ = ∥K⊤∥ = sup{⟨Kx, y⟩ : ∥x∥ = ∥y∥ = 1, x ∈ Rq, y ∈ Rp}.
Throughout this paper, we denote the golden ratio by ϕ, i.e., ϕ =

√
5+1
2 . Let h be any extended

real-valued closed proper convex function defined on a finite dimensional Euclidean space Rm. The
effective domain of h is denoted by dom(h) := {x ∈ Rm : h(x) < +∞}, and the subdifferential of h
at x ∈ Rm is denoted by ∂h(x) := {ξ ∈ Rm : h(y) ≥ h(x)+⟨ξ, y−x⟩ for all y ∈ Rm}. Furthermore,
for λ > 0, the proximal point mapping of λh is given by

Proxλh(x) := arg min
y∈Rm

{
h(y) +

1

2λ
∥y − x∥2

}
, x ∈ Rm.

Since h is closed proper and convex, for any λ > 0, Proxλh is uniquely well defined everywhere.
The indicator function of a set C is denoted by ιC(x), i.e., ιC(x) = 0 if x ∈ C and +∞ if otherwise.
The relative interior of C is denoted by ri(C). The identity operator or identity matrix is denoted
by I, whose domain or order is clear from the context. The zero vector or matrix is simply denoted
by 0. The composition of two operators is denoted by “◦”. The stagnation of two column vectors u
and v is also denoted by (u; v), i.e., (u; v) = (u⊤, v⊤)⊤. The sequence of positive natural numbers
is denoted by N = {1, 2, 3, . . .}. Other notation will be specified later.

Throughout the paper, we make the following blanket assumptions.

Assumption 1.1 Assume that the set of solutions of (1) is nonempty and, in addition, there
exists x̃ ∈ ri(dom(g)) such that Kx̃ ∈ ri(dom(f)).

Under Assumption 1.1, it follows from [30, Corollaries 28.2.2 and 28.3.1] that x̄ ∈ Rq is a
solution of (1) if and only if there exists ȳ ∈ Rp such that (x̄, ȳ) is a saddle point of L(x, y), i.e.,
L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) for all (x, y) ∈ Rq ×Rp, and furthermore, such ȳ is an optimal solution
of the dual problem (3). Throughout this paper, we denote the set of solutions of (2) by S, which
is nonempty under Assumption 1.1 and characterized by

S := {(x̄, ȳ) ∈ Rq × Rp : 0 ∈ ∂g(x̄) +K⊤ȳ and 0 ∈ ∂f∗(ȳ)−Kx̄}. (4)
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In many applications including signal and image processing and machine learning, the two
component functions in (1) enforce, respectively, data fitting and regularization. In such cases, f
and g usually preserve simple structures so that their proximal point mappings can be evaluated
efficiently. Examples of such functions are abundant, see, e.g., [2, Chapter 6]. We therefore make
the following assumption.

Assumption 1.2 Assume that the proximal point mappings of the component functions f and g
either have closed form formulas or can be evaluated efficiently.

1.2 Related algorithms

To solve (1)-(3) simultaneously, one may resort to the well known alternating direction method
of multipliers (ADMM) [15, 16, 19, 20], the primal-dual algorithm (PDA) [8, 13, 18, 29] and their
accelerated and generalized variants [21,23]. Since the literature on numerical algorithms for solving
(1)-(3) has become so vast, a thorough overview is far beyond the focus of this paper. Instead, we
next review only some primal-dual type algorithms that are most closely related to our work.

A main feature of primal-dual type algorithms is that both the primal and the dual variables are
updated at each iteration, and thus the primal and the dual problems are solved simultaneously.
Among others, ADMM [15,16] has been well studied in the literature [14,19,20] and widely used in
practice [6]. The main difficulty encountered by ADMM when applied to (a reformulation of) (1)
is that a subproblem of the form minx∈Rq

1
2∥Kx− bn∥

2 + g(x) needs to be solved at each iteration
for some bn ∈ Rp varying with the iteration counter n. We note that even though Proxg is easy to
evaluate, this problem, which involves a linear operator K, has to be solved iteratively in general.
On the other hand, when f(Kx) has a least-squares structure, i.e., f(Kx) = 1

2∥Kx− b∥
2 for some

b ∈ Rp, ADMM can be applied to the equivalent problem minx,y{f(Kx) + g(y) : x = y}. In this
case, the x-subproblem appears as a least-squares problem and is equivalent to solving a linear
system of equations with coefficient matrix of the form I + ρK⊤K for some ρ > 0, which could be
expensive or even prohibitive for large scale problems.

The simplest primal-dual type algorithm for solving (1)-(3), which does not require to solve any
subproblem iteratively or any linear system of equations, is probably the classical Arrow-Hurwicz
method [33], which, started at (x0, y0) ∈ Rq × Rp, iterates as{

xn = Proxτg(xn−1 − τK⊤yn−1),

yn = Proxσf∗(yn−1 + σKxn),
(5)

for n ≥ 1. Here τ > 0 and σ > 0 are step size parameters. As a conjugate function, f∗ is
always closed and convex. Furthermore, f∗ is also proper since f is proper and convex. Thus,
Proxσf∗ is uniquely well defined everywhere. The iterative scheme (5) is also known as primal-dual
hybrid gradient method in image processing community, see [8, 13, 35]. The main computational
cost per iteration of (5) is the evaluation of two proximal point mappings and two matrix-vector
multiplications. The convergence of the Arrow-Hurwicz method was studied in [13] with very small
step sizes, and O(1/

√
N) rate of convergence, measured by primal-dual gap, was obtained in [8,25]

when the domain of f∗ is assumed to be bounded. However, the Arrow-Hurwicz method does not
converge in general, see [18] for a divergent example.

Chambolle and Pock [8, 29] adopted an extrapolation step after obtaining xn in (5) to obtain
x̄n = xn + δ(xn − xn−1) for some δ ∈ [0, 1], which is then used to replace xn in (5) in the update
of yn. The resulting scheme is nowadays widely accepted as PDA and appears as

xn = Proxτg(xn−1 − τK⊤yn−1),

x̄n = xn + δ(xn − xn−1),

yn = Proxσf∗(yn−1 + σKx̄n).

(6)
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In the case δ = 1, the convergence of (6) was established in [8] under the condition τσL2 < 1,
where L = ∥K∥. Note that, for δ = 1 the scheme (6) is referred to as a split inexact Uzawa method
by Esser, Zhang and Chan [13], where the connection of PDA with preconditioned or linearized
ADMM has been revealed, see also [8,31]. Later, it was shown in [18] that PDA (6) can be viewed
as a weighted proximal point method applied to the variational inequality (VI) representation of
the optimality conditions of (2). The overrelaxed, inertial and accelerated versions of (6) were
investigated in [9]. See also [7] for a stochastic variant of PDA.

The effectiveness of the PDA scheme (6) is essentially guaranteed by the extrapolation or
inertial step x̄n = xn + δ(xn − xn−1) since the Arrow-Hurwicz method (5), which corresponds
to δ = 0, fails to converge in general. For a fixed δ ∈ [0, 1], the scheme (6) can be written
abstractly as (xn, yn) = T (xn−1, yn−1) for some suitably defined mapping T . Therefore, PDA can
be viewed as a one-step fixed point iterative method. Recently, Malitsky [22] proposed a fully
adaptive forward-backward type splitting algorithm, called golden ratio algorithm, for solving
mixed VI problem, where a novel convex combination technique is introduced. It is shown that the
golden ratio algorithm preserves O(1/N) ergodic convergence and R-linear convergence under an
error bound condition. The mixed VI problem is to find z∗ ∈ Rm such that

θ(z)− θ(z∗) + ⟨z − z∗, F (z∗)⟩ ≥ 0, ∀z ∈ Rm, (7)

where θ : Rm → (−∞,+∞] is a closed proper convex function, and F : Rm → Rm is a monotone
mapping. Given an initial point z0 ∈ Rm and let z̄0 = z0, a basic version of the golden ratio
algorithm [22] applied to (7) iterates for n ≥ 1 as{

z̄n = ϕ−1
ϕ zn−1 +

1
ϕ z̄n−1,

zn = Proxτθ(z̄n − τF (zn−1)),
(8)

where τ > 0 is a step size parameter and ϕ is the golden ratio. By induction, z̄n is a convex
combination of {zi : i = 0, 1, . . . , n−1}. As a result, the update from zn−1 to zn in (8) is essentially
dependent on the whole iteration trajectory, which is vastly different from the one-step iterative
scheme (6). Note that the primal-dual problem (2) is equivalent to (7) with Rm = Rq×Rp, endowed
with the natural inner product ⟨(x, y), (u, v)⟩ := ⟨x, u⟩+ ⟨y, v⟩ for (x, y), (u, v) ∈ Rq × Rp,

θ(z) := g(x) + f∗(y) and F (z) := (K⊤y,−Kx). (9)

Given the special structure of θ and F in (9), the golden ratio algorithm (8) breaks into{
x̄n = ϕ−1

ϕ xn−1 +
1
ϕ x̄n−1, xn = Proxτg(x̄n − τK⊤yn−1),

ȳn = ϕ−1
ϕ yn−1 +

1
ϕ ȳn−1, yn = Proxτf∗(ȳn + τKxn−1).

(10)

Apparently, (10) is a Jacobian type algorithm, which fails to fully utilize the latest available infor-
mation. Furthermore, the primal and dual step sizes are identically τ , which offers less flexibility.
Given the nice convergence properties and the promising numerical results of golden ratio algo-
rithm [22], it is desirable to construct a Gauss-Seidel type golden ratio PDA for the saddle point
problem (2), which is able to fully take advantage of the problem structure. This motivated the
current work.

1.3 Contributions

We adapt the convex combination technique [22] into the Arrow-Hurwicz scheme (5) to construct
a Gauss-Seidel type golden ratio PDA (abbreviated as GRPDA), which not only preserves nice
convergence properties but also performs favorably in practice. Our main contributions are sum-
marized below.
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– Using the convex combination technique [22], we construct a GRPDA with fixed step size
parameters τ > 0 and σ > 0. Under the condition τσL2 < ψ ∈ (1, ϕ], global convergence
and O(1/N) ergodic rate of convergence measured by primal-dual gap function are established.
Since τσL2 > 1 is permitted, GRPDA converges in a broader range of parameters compared to
PDA, which typically requires τσL2 < 1. It is further explained that GRPDA is an ADMM-like
method with a proximal term 1

2∥x − xn−1∥2M , where M = 1
τ I − σK

⊤K, plus an extra linear
term. As a consequence of the extra linear term, the weighting matrix M is allowed to be
indefinite, leading to a broader range of parameters.

– When either g or f∗ is strongly convex, an accelerated GRPDA is constructed to improve the
ergodic convergence rate from O(1/N) to O(1/N2).

– Let b ∈ Rp. For regularized least-squares problem, i.e., f(·) = 1
2∥ · −b∥

2, or linear equality
constrained problem, i.e., f(·) = ι{b}(·), we show via spectral analysis that the permitted range
of ψ can be extended from (1, ϕ] to (1, 2] and meanwhile a relaxation step can be taken as well,
where the relaxation parameter lies in (0, 3/2). The analysis for these two special cases is based
on the fixed point theory of averaged operators [1, Chapter 5].

– We carry out numerical experiments on LASSO, nonnegative least-squares and minimax ma-
trix game problems, with comparisons to some state-of-the-art algorithms, to demonstrate the
favorable performance of the proposed algorithms.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we summarize some useful facts and
identities and define the primal-dual gap function used in subsequent analysis. The GRPDA with
fixed step sizes is presented in Section 3, where its convergence and O(1/N) ergodic rate of conver-
gence are established as well. In Section 4, we present an accelerated GRPDA that enjoys a faster
O(1/N2) ergodic rate of convergence under the assumption that either g or f∗ is strongly convex.
Section 5 is devoted to the analysis of two special cases, i.e., regularized least-squares problem
and linear equality constrained problem. Numerical results in comparison with some state-of-the-
art relative algorithms on LASSO, nonnegative least-squares and minimax matrix game problems
are given in Section 6 to demonstrate the efficiency of the proposed algorithms. Finally, some
concluding remarks are drawn in Section 7.

2 Preliminaries

In this section, we summarize some useful facts and identities and define the primal-dual gap
function, which will be useful in our analysis.

Fact 2.1 For any extended real-valued closed proper convex function h defined on an Euclidean
space Rm, λ > 0 and x ∈ Rm, it holds that p = Proxλh(x) if and only if

⟨p− x, y − p⟩ ≥ λ
(
h(p)− h(y)

)
, ∀y ∈ Rm.

Fact 2.2 Let {an}n∈N and {bn}n∈N be two nonnegative real sequences. If there exists an integer
N > 0 such that an+1 ≤ an − bn for all n > N , then limn→∞ an exists and limn→∞ bn = 0.

The proofs of Facts 2.1 and 2.2 are easily derived and thus are omitted. The following elementary
identities will be used in our analsis. For any x, y, z ∈ Rm and α ∈ R, there hold

⟨x− y, x− z⟩ = 1

2
∥x− y∥2 + 1

2
∥x− z∥2 − 1

2
∥y − z∥2, (11)

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2. (12)
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We next define the primal-dual gap function that will be used in our analysis. Let (x̄, ȳ) ∈ S be
any saddle point of the primal-dual problem (2). Then, there holdKx̄ ∈ ∂f∗(ȳ) and−K⊤ȳ ∈ ∂g(x̄),
which are equivalent to{

P (x) := g(x)− g(x̄) + ⟨K⊤ȳ, x− x̄⟩ ≥ 0, ∀x ∈ Rq,
D(y) := f∗(y)− f∗(ȳ)− ⟨Kx̄, y − ȳ⟩ ≥ 0, ∀y ∈ Rp.

The primal-dual gap function is defined by

G(x, y) := P (x) +D(y) ≥ 0, ∀(x, y) ∈ Rq × Rp. (13)

This primal-dual gap function is also used in, e.g., [9,23]. Note that, for fixed (x̄, ȳ) ∈ S, P (x) and
D(y), and thus G(x, y), are convex. Although P (·), D(·) and G(·, ·) depend on (x̄, ȳ), we do not
indicate this dependence in our notation since it is always clear from the context.

3 Golden ratio primal-dual algorithm

In this section, we present our GRPDA with fixed step sizes and establish its convergence and
O(1/N) ergodic convergence rate.

3.1 GRPDA with fixed step sizes

Recall that ϕ represents the golden ratio and L = ∥K∥ is the operator norm of K. Below, we
introduce our GRPDA with fixed step sizes τ > 0 and σ > 0.

Algorithm 3.1 (GRPDA with fixed step sizes)

Step 0. Let τ, σ > 0 and ψ ∈ (1, ϕ] be such that τσL2 < ψ. Choose x0 ∈ Rq, y0 ∈ Rp. Set z0 = x0
and n = 1.

Step 1. Compute 
zn = ψ−1

ψ xn−1 +
1
ψ zn−1,

xn = Proxτg(zn − τK⊤yn−1),

yn = Proxσf∗(yn−1 + σKxn).

(14)

Step 2. Set n← n+ 1 and return to Step 1.

The GRPDA (14) and the PDA (6) are quite similar, both of which are modifications of the
Arrow-Hurwicz scheme (5). The difference is that PDA (6) adopts an inertial or extrapolation tech-
nique, while GRPDA (14) uses a convex combination zn = ψ−1

ψ xn−1 +
1
ψ zn−1. To our knowledge,

this convex combination technique with ψ upper bounded by the golden ratio ϕ was initially intro-
duced by Malitsky [22] to solve monotone mixed VI problem (7). A direct adaptation of [22, Eq.
(10)] to the primal-dual problem (2) would give the algorithm (10), which is a Jacobian type algo-
rithm and has less flexibility since the primal and the dual step sizes are required to be identical.
In contrast, GRPDA (14) is a combination of [22] with the Arrow-Hurwicz scheme (5), and it is
of Gauss-Seidel type since it utilizes the latest available information. Compared with the direct
adaptation (10), the primal and the dual step sizes in (14) are not necessarily identical, which
offers more flexibility in practice. Moreover, compared with PDA (6), which requires τσL2 < 1,
the condition τσL2 < ψ ∈ (1, ϕ] required by GRPDA (14) permits larger step sizes. Apparently,
GRPDA has the same per iteration cost as those of the Arrow-Hurwicz method and the PDA.
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3.2 Connection with ADMM and PDA

It is well known that the classical PDA can be interpreted as a preconditioned or linearized ADMM
with positive definition proximal term, see [8,13,31]. As the main difference between GRPDA and
PDA is that the extrapolation step in (6) is replaced by the convex combination in (14), it is
natural to connect GRPDA with the ADMM. To be specific, we define the augmented Lagrangian
function of minx,w{g(x) + f(w) : Kx = w}, a reformulation of (1), as

Lσ(x,w, y) := g(x) + f(w) + ⟨y,Kx− w⟩+ σ

2
∥Kx− w∥2,

where y ∈ Rp is the Lagrange multiplier and σ > 0 is the penalty parameter. Then, by using the
Moreau decomposition y = Proxλf (y) + λProx 1

λ f
∗( yλ ) for any λ > 0 and y ∈ Rp and following

[8, 13,31], it is easy to show that GRPDA (14) is equivalent to

zn = ψ−1
ψ xn−1 +

1
ψ zn−1,

xn = argmin
x

{
Lσ(x,wn−1, yn−1) + ℓ(x, zn, xn−1, wn−1) +

1
2∥x− xn−1∥2M

}
,

wn = argmin
w
Lσ(xn, w, yn−1),

yn = yn−1 + σ(Kxn − wn),

(15)

where ℓ(x, zn, xn−1, wn−1) = 1
τ ⟨x, xn−1 − zn⟩ − σ⟨Kx,Kxn−1 − wn−1⟩, M = 1

τ I − σK⊤K and
w0 ∈ Rp is arbitrary. Here the proximal term 1

2∥x − xn−1∥2M is used to cancel out σ
2 ∥Kx∥

2 in
the x-subproblem. Since, by following [8, 13, 31], the derivation of (15) from (14) is standard, we
omit the details. By discarding the linear term ℓ(x, zn, xn−1, wn−1) in (15) and using the Moreau
decomposition to carry out a similar reduction, we obtain

ȳn−1 = 2yn−1 − yn−2,

xn = Proxτg
(
xn−1 − τK⊤ȳn−1

)
,

yn = Proxσf∗(yn + σKxn),

which is a form of PDA with δ = 1. Note that PDA requires τσL2 < 1 to guarantee the positive
definiteness ofM . In comparison, by introducing the linear term ℓ(x, zn, xn−1, wn−1), GRPDA (15)
allows larger step sizes since τσL2 < ψ ∈ (1, ϕ] suffices for global convergence. In this case, M is
permitted to be indefinite. This broader convergence region of GRPDA is beneficial in practice.

3.3 Convergence results

We next establish the convergence and O(1/N) ergodic convergence rate of GRPDA (14). For
convenience, we let β := σ/τ in the rest of this section. First, we present a useful lemma.

Lemma 3.1 Let {(xn, yn, zn)}n∈N be the sequence generated by Algorithm 3.1 from any initial
point (x0, y0) ∈ Rq ×Rp and z0 = x0, and let G(·, ·) be defined as in (13) with any fixed (x̄, ȳ) ∈ S.
Then, it holds for any (x, y) ∈ Rq × Rp that

τG(xn, yn) ≤ ⟨xn+1 − zn+1, x̄− xn+1⟩+
1

β
⟨yn − yn−1, ȳ − yn⟩+ ψ ⟨xn − zn+1, xn+1 − xn⟩

+τ⟨K⊤(yn − yn−1), xn − xn+1⟩. (16)

Proof. It follows from (14) and Fact 2.1 that

⟨xn+1 − zn+1 + τK⊤yn, x̄− xn+1⟩ ≥ τ
(
g(xn+1)− g(x̄)

)
, (17)⟨ 1

β
(yn − yn−1)− τKxn, ȳ − yn

⟩
≥ τ

(
f∗(yn)− f∗(ȳ)

)
. (18)
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Similar to (17), it holds that

⟨xn − zn + τK⊤yn−1, xn+1 − xn⟩ ≥ τ
(
g(xn)− g(xn+1)

)
. (19)

Elementary calculations show that the addition of (17), (18) and (19) gives

⟨xn+1 − zn+1, x̄− xn+1⟩+
1

β

⟨
yn − yn−1, ȳ − yn

⟩
+ ⟨xn − zn, xn+1 − xn⟩

+τ⟨K⊤(yn − yn−1), xn − xn+1⟩ − τ⟨K⊤ȳ, xn − x̄⟩+ τ⟨Kx̄, yn − ȳ⟩
≥ τ

(
f∗(yn)− f∗(ȳ)

)
+ τ

(
g(xn)− g(x̄)

)
,

which is the same as (16) by considering xn − zn = ψ(xn − zn+1) (implied by the first equality in
(14)) and following the definition of G(·, ·) in (13). This completes the proof. �

Now, we are ready to establish the convergence of GRPDA (14).

Theorem 3.1 Let {(xn, yn, zn)}n∈N be the sequence generated by Algorithm 3.1 from any initial
point (x0, y0) ∈ Rq ×Rp and z0 = x0, and let G(·, ·) be defined as in (13) with any fixed (x̄, ȳ) ∈ S.
Then, {(xn, yn)}n∈N converges to a solution of (2), i.e., an element of S.

Proof. From Lemma 3.1 and (11), we obtain

∥xn+1 − x̄∥2 +
1

β
∥yn − ȳ∥2 + 2τG(xn, yn)

≤ ∥zn+1 − x̄∥2 +
1

β
∥yn−1 − ȳ∥2 + 2τ⟨K⊤(yn − yn−1), xn − xn+1⟩

−ψ∥zn+1 − xn∥2 + (ψ − 1)∥xn+1 − zn+1∥2 − ψ∥xn+1 − xn∥2 −
1

β
∥yn − yn−1∥2. (20)

Since xn+1 = ψ
ψ−1zn+2 − 1

ψ−1zn+1, it follows from (12) that

∥xn+1 − x̄∥2 =
ψ

ψ − 1
∥zn+2 − x̄∥2 −

1

ψ − 1
∥zn+1 − x̄∥2 +

ψ

(ψ − 1)2
∥zn+2 − zn+1∥2

=
ψ

ψ − 1
∥zn+2 − x̄∥2 −

1

ψ − 1
∥zn+1 − x̄∥2 +

1

ψ
∥xn+1 − zn+1∥2, (21)

where the second equality is due to zn+2 − zn+1 = ψ−1
ψ (xn+1 − zn+1). By plugging (21) into (20)

and combining terms, we obtain

ψ

ψ − 1
∥zn+2 − x̄∥2 +

1

β
∥yn − ȳ∥2 + 2τG(xn, yn)

≤ ψ

ψ − 1
∥zn+1 − x̄∥2 +

1

β
∥yn−1 − ȳ∥2 + 2τ⟨K⊤(yn − yn−1), xn − xn+1⟩

−ψ∥zn+1 − xn∥2 + (ψ − 1− 1

ψ
)∥xn+1 − zn+1∥2 − ψ∥xn+1 − xn∥2 −

1

β
∥yn − yn−1∥2

≤ ψ

ψ − 1
∥zn+1 − x̄∥2 +

1

β
∥yn−1 − ȳ∥2 + 2τ⟨K⊤(yn − yn−1), xn − xn+1⟩

−ψ∥zn+1 − xn∥2 − ψ∥xn+1 − xn∥2 −
1

β
∥yn − yn−1∥2, (22)

where the second “≤” follows from ψ− 1− 1
ψ ≤ 0 as ψ ≤ ϕ. Recall that β = σ/τ . Then, τσL2 < ψ

is equivalent to τ <
√
ψ/β/L. Let τ = ζ

√
ψ/β/L with 0 < ζ < 1. It follows from Cauchy-Schwarz

inequality and L = ∥K⊤∥ that

2τ⟨K⊤(yn − yn−1), xn − xn+1⟩ ≤ 2ζ
√
ψ/β∥yn − yn−1∥∥xn+1 − xn∥

≤ ζ
(
ψ∥xn+1 − xn∥2 +

1

β
∥yn − yn−1∥2

)
,
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which together with (22) leads to

2τG(xn, yn) + an+1 ≤ an − bn, (23)

with {
an = ψ

ψ−1∥zn+1 − x̄∥2 + 1
β ∥yn−1 − ȳ∥2,

bn = ψ∥zn+1 − xn∥2 + (1− ζ)
(
ψ∥xn+1 − xn∥2 + 1

β ∥yn − yn−1∥2
)
.

(24)

Since G(xn, yn) ≥ 0, an ≥ 0 and bn ≥ 0, it follows from Fact 2.2 that limn→∞ an exists and
limn→∞ bn = 0. By the definition of bn, this implies

lim
n→∞

∥zn+1 − xn∥ = lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥yn+1 − yn∥ = 0.

Furthermore, we also have lim
n→∞

∥xn − zn∥ = 0 since xn − zn = ψ(xn − zn+1).

It follows from (24) and the existence of limn→∞ an that the sequences {zn+1}n∈N and {yn}n∈N,
and thus {(zn+1, yn)}n∈N, are bounded. Since lim

n→∞
∥xn − zn∥ = 0, {xn}n∈N is also bounded.

Let {(xnk+1, ynk)}k∈N be a subsequence of {(zn+1, yn)}n∈N, which is convergent to (x∗, y∗). Then
limn→∞ xnk = limn→∞ xnk+1 = x∗. Similar to (17) and (18), for any (x, y) ∈ Rq × Rp, there hold

{
⟨xnk+1 − znk+1 + τK⊤ynk , x− xnk+1⟩ ≥ τ

(
g(xnk+1)− g(x)

)
,⟨

1
β (ynk − ynk−1)− τKxnk , y − ynk

⟩
≥ τ

(
f∗(ynk)− f∗(y)

)
.

By driving k →∞, taking into account that both g and f∗ are closed (and thus lower semicontin-
uous) and canceling out τ > 0, we obtain

⟨K⊤y∗, x− x∗⟩ ≥ g(x∗)− g(x) and − ⟨Kx∗, y − y∗⟩ ≥ f∗(y∗)− f∗(y),

which hold for any (x, y) ∈ Rq×Rp. This implies that (x∗, y∗) ∈ S. Since all the discussions remain
valid for any (x̄, ȳ) ∈ S, (x̄, ȳ) can be replaced by (x∗, y∗) in the definition of {an}n∈N in the first
place. As such, we have limk→∞ ank = 0 since

lim
k→∞

∥znk+1 − x∗∥ = lim
k→∞

∥xnk − x∗∥ = 0 and lim
k→∞

∥ynk−1 − x∗∥ = lim
k→∞

∥ynk − x∗∥ = 0.

Since {an}n∈N is monotonically nonincreasing, it follows that limn→∞ an = 0 and thus

lim
n→∞

xn = lim
n→∞

zn+1 = x∗ and lim
n→∞

yn = y∗.

This completes the proof. �

Remark 3.1 Our analysis is motivated by Malitsky [22]. In particular, to get rid of the term
∥xn+1 − zn+1∥2 in (22), it is required that ψ − 1 − 1

ψ ≤ 0, and apparently the golden ratio is an

upper bound of such ψ. As long as τσL2 < ψ is satisfied, larger ψ allows larger step sizes τ and
σ, which is helpful to improve numerical performance. On the other hand, ψ > 1 is necessary to
guarantee the nonnegativity of {an}n∈N.
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3.4 Ergodic convergence rate

For convex-concave saddle point problems, many algorithms exhibit O(1/N) ergodic rate of con-
vergence, see [9, 24, 27]. It is shown by Nemirovski [27] that this rate is in fact tight. We next
establish the same ergodic rate of convergence for GRPDA, where the measure is the primal-dual
gap function defined in (13).

Theorem 3.2 Let {(xn, yn, zn)}n∈N be the sequence generated by Algorithm 3.1 from any initial
point (x0, y0) ∈ Rq ×Rp and z0 = x0, and let G(·, ·) be defined as in (13) with any fixed (x̄, ȳ) ∈ S.
Let N ≥ 1 be any integer and define

XN =
1

N

∑N

n=1
xn and YN =

1

N

∑N

n=1
yn. (25)

Then, it holds that

G(XN , YN ) ≤ 1

2τN

( ψ

ψ − 1
∥z2 − x̄∥2 +

1

β
∥y0 − ȳ∥2

)
.

Proof. It follows from (23) and (24) that 2τG(xn, yn) ≤ an − an+1 for all n ≥ 1. Sum this up for

n = 1, . . . , N , we obtain 2τ
∑N
n=1G(xn, yn) ≤ a1 − aN+1 ≤ a1. Since G(x, y) = P (x) +D(y) and

P (x) and D(y) are, respectively, convex in x and y, it follows from (25) that

G(XN , YN ) = P (XN ) +D(YN ) ≤ 1

N

N∑
n=1

P (xn) +
1

N

N∑
n=1

D(yn) =
1

N

N∑
n=1

G(xn, yn).

The conclusion follows since a1 = ψ
ψ−1∥z2 − x̄∥

2 + 1
β ∥y0 − ȳ∥

2. �

4 Accelerated GRPDA

When either g or f∗ is strongly convex, it was shown in [8] that one can adaptively choose the
primal and the dual step sizes, as well as the inertial parameter, so that PDA achieves a faster
O(1/N2) convergence rate. Similar results have been achieved in [23] for PDA with variable step
sizes determined by linesearch. In this section, we show that the same is true for GRPDA provided
that some algorithmic parameters are chosen adaptively. Similar to [8,23], the ratio β = σ/τ plays
an important role.

Under the regularity condition specified in Assumption 1.1, the “min” and the “max” in the
primal-dual problem (2) can be switched [30, Corollary 31.2.1], and thus (2) is equivalent to

min
y∈Rp

max
x∈Rq

f∗(y)− ⟨K⊤y, x⟩ − g(x), (26)

As such, by swapping the roles of (g,K, x, q) and (f∗,−KT , y, p), (26) is reducible to (2). Therefore,
we will only treat the case when g is strongly convex for succinctness, and it is completely analogues
when f∗ is strongly convex. In this section, we thus make the following assumption.

Assumption 4.1 Assume that g is γ-strongly convex, i.e., for some γ > 0 it holds that

g(y) ≥ g(x) + ⟨u, y − x⟩+ γ

2
∥y − x∥2, ∀x, y ∈ Rq, ∀u ∈ ∂g(x).

Our accelerated GRPDA is presented below. Recall that ϕ denotes the golden ratio.

Algorithm 4.1 (Accelerated GRPDA when g is γ-strongly convex)
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Step 0. Let ψ0 = 1.3247... be the unique real root of ψ3 − ψ − 1 = 0. Choose ψ ∈ (ψ0, ϕ), β0 > 0,

x0 ∈ Rq and y0 ∈ Rp, and set z0 = x0, φ = 1+ψ
ψ2 , τ0 = 1

L

√
ψ
β0

and n = 1.

Step 1. Compute

zn =
ψ − 1

ψ
xn−1 +

1

ψ
zn−1, (27)

xn = Proxτn−1g(zn − τn−1K
⊤yn−1). (28)

Step 2. Compute

ωn =
ψ − φ

ψ + φγτn−1
, (29)

βn = βn−1(1 + ωnγτn−1), (30)

τn = min
{
φτn−1,

ψ

τn−1βnL2

}
, (31)

yn = Proxβnτnf∗(yn−1 + βnτnKxn). (32)

Step 3. Set n← n+ 1 and return to Step 1.

Remark 4.1 We present the following remarks on Algorithm 4.1.

1. In Algorithm 4.1, ωn is used to update βn, which plays a key role in establishing the O(1/N2)
convergence rate. The condition ψ > ψ0, where ψ0 is the unique real root of ψ3 − ψ − 1 = 0,
ensures that ωn > 0.

2. To achieve the O(1/N2) convergence rate, a balance between the increase rate τn/τn−1 and the
size of τn is maintained in (31). In particular, the ratio τn/τn−1 ≤ φ ∈ (1, ψ) for ψ ∈ (ψ0, ϕ).
It follows from φ = 1+ψ

ψ2 that larger ψ gives smaller bound φ, and vice versa.
3. Assume γ = 0. Then βn = β0 for all n ≥ 1. Furthermore, it is easy to show by induction

that, for all n ≥ 1, the “min” in (31) is always attained by the second term on the right hand
side and thus τn = τ0 for all n ≥ 1. Therefore, Algorithm 4.1 reduces to Algorithm 3.1, i.e.,
GRPDA with fixed step sizes τ = τ0 and σ = σ0 := β0τ0, in which case τ0σ0L

2 = ψ < ϕ mets
the requirement of Algorithm 3.1 as we require ψ < ϕ in Algorithm 4.1.

We next establish some useful properties of τn, βn and ωn generated in Algorithm 4.1. For
convenience, we let δn = τn

τn−1
in the rest of this section.

Lemma 4.1 Let {(ωn, βn, τn)}n∈N be generated by Algorithm 4.1 and define δn = τn
τn−1

for n ≥ 1.

Then, for all n ≥ 1, there hold 0 < βn−1 ≤ βn, ψ−φ
ψ+φγ

√
φτ0
≤ ωn < 1 and

1√
φ(1 + γ

√
φτ0)

√
ψ

L
√
βn
≤ τn ≤

√
δnψ

L
√
βn
≤
√
φψ

L
√
βn
≤
√
φψ

L
√
β0

=
√
φτ0. (33)

Moreover, there exists a constant c > 0 such that βn ≥ cn2 for all n ≥ 1.

Proof. Since β0 > 0, ωn > 0 for n ≥ 1 and τn > 0 for n ≥ 0, it is clear from (30) that 0 < βn−1 ≤ βn
for all n ≥ 1. Recall that δn = τn

τn−1
. It follows from (31) that τ2nβn ≤

δnψ
L2 ≤ φψ

L2 . Further considering

βn ≥ β0 > 0 for all n ≥ 1 and τ0 =
√
ψ/β0/L, we see that all the relations in (33), except the first

one, follow. Now, the relation ψ−φ
ψ+φγ

√
φτ0
≤ ωn follows from (29) and τn−1 ≤

√
φτ0 for all n ≥ 1.

On the other hand, ωn < 1 is obvious. We next prove the first inequality in (33) by induction.
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It follows from τ0 =
√
ψ√
β0L

and φ > 1 that τ0 ≥ 1√
φ(1+γ

√
φτ0)

√
ψ

L
√
β0
. Now, suppose that τk ≥

1√
φ(1+γ

√
φτ0)

√
ψ

L
√
βk

for 0 ≤ k ≤ n. Then, (31) implies that either

τn+1 = φτn ≥ τn ≥
1√

φ(1 + γ
√
φτ0)

√
ψ

L
√
βn
≥ 1√

φ(1 + γ
√
φτ0)

√
ψ

L
√
βn+1

since βn+1 ≥ βn and φ > 1, or

τn+1 =
ψ

τnβn+1L2
≥ L
√
βn√
φψ

ψ

βn+1L2
=

√
βn

φβn+1

√
ψ√

βn+1L

=
1√

φ(1 + ωn+1γτn)

√
ψ√

βn+1L

≥ 1√
φ(1 + γ

√
φτ0)

√
ψ√

βn+1L
,

where the first inequality follows from τn ≤
√
φψ

L
√
βn

and the second is due to ωn+1 < 1 and τn ≤
√
φτ0

for all n ≥ 0. Therefore, the first inequality in (33) also holds for all n ≥ 1.
To complete the proof, it only remains to show that there exists c > 0 such that βn ≥ cn2 for

all n ≥ 1. For simplicity, we let ω := ψ−φ
ψ+φγ

√
φτ0

. Then, ωn ≥ ω for all n ≥ 1 and thus

βn+1 = βn(1 + ωn+1γτn) ≥ βn

(
1 +

ωγ√
φ(1 + γ

√
φτ0)

√
ψ

L
√
βn

)
= βn + c0

√
βn, (34)

where c0 := ωγ
√
ψ√

φ(1+γ
√
φτ0)L

> 0. By induction, it is easy to show that βn ≥ cn2 for all n ≥ 1 with

c := min(c20/9, β1) > 0. This completes the proof. �

Now, we are ready to establish the promised O(1/N2) ergodic convergence rate.

Theorem 4.1 Let {(zn, xn, yn, ωn, βn, τn)}n∈N be the sequence generated by Algorithm 4.1 and
(x̄, ȳ) ∈ S be any solution of (2). For any integer N ≥ 1, define

SN =
N∑
n=1

βnτn, XN =
1

SN

N∑
n=1

βnτnxn and YN =
1

SN

N∑
n=1

βnτnyn.

Then, there hold ∥zN+2 − x̄∥ = O(1/N) and G(XN , YN ) = O(1/N2).

Proof. Fix n ≥ 1. Since g is γ-strongly convex, an inequality stronger than the one stated in Fact
2.1 can be used. It follows from (28) that zn − τn−1K

⊤yn−1 − xn ∈ τn−1∂g(xn), and thus

⟨xn − zn + τn−1K
⊤yn−1, x− xn⟩ ≥ τn−1

(
g(xn)− g(x) +

γ

2
∥xn − x∥2

)
, ∀x. (35)

By passing n+ 1 to n and x̄ to x in (35), we obtain

⟨xn+1 − zn+1 + τnK
⊤yn, x̄− xn+1⟩ ≥ τn

(
g(xn+1)− g(x̄) +

γ

2
∥xn+1 − x̄∥2

)
. (36)

Similarly, by passing xn+1 to x in (35) and multiplying both sides by δn = τn
τn−1

, we obtain

⟨δn(xn − zn) + τnK
⊤yn−1, xn+1 − xn⟩ ≥ τn

(
g(xn)− g(xn+1) +

γ

2
∥xn+1 − xn∥2

)
. (37)
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Similar to (18), it follows from (32) that⟨ 1

βn
(yn − yn−1)− τnKxn, ȳ − yn

⟩
≥ τn

(
f∗(yn)− f∗(ȳ)

)
(38)

From (27), it is easy to derive xn−zn = ψ(xn−zn+1). Then, by adding (36)-(38) and using similar
arguments as in Lemma 3.1, we obtain

τnG(xn, yn) ≤ ⟨xn+1 − zn+1, x̄− xn+1⟩+
1

βn

⟨
yn − yn−1, ȳ − yn

⟩
+ ψδn

⟨
xn − zn+1, xn+1 − xn

⟩
+τn⟨K⊤(yn − yn−1), xn − xn+1⟩ −

γτn
2
∥xn+1 − x̄∥2 −

γτn
2
∥xn+1 − xn∥2. (39)

By using (11), removing −γτn2 ∥xn+1 − xn∥2 ≤ 0 and using Cauchy-Schwartz inequality, we obtain
from (39) that

(1 + γτn)∥xn+1 − x̄∥2 +
1

βn
∥yn − ȳ∥2 + 2τnG(xn, yn)

≤ ∥zn+1 − x̄∥2 +
1

βn
∥yn−1 − ȳ∥2 − ψδn∥zn+1 − xn∥2 + (ψδn − 1)∥xn+1 − zn+1∥2

−ψδn∥xn+1 − xn∥2 −
1

βn
∥yn − yn−1∥2 + 2τn∥K⊤(yn − yn−1)∥∥xn+1 − xn∥.

Plugging in (21) and recalling L = ∥K∥ = ∥K⊤∥, we obtain

(1 + γτn)
ψ

ψ − 1
∥zn+2 − x̄∥2 +

1

βn
∥yn − ȳ∥2 + 2τnG(xn, yn)

≤ ψ + γτn
ψ − 1

∥zn+1 − x̄∥2 +
1

βn
∥yn−1 − ȳ∥2 +

(
ψδn − 1− 1 + γτn

ψ

)
∥xn+1 − zn+1∥2

−ψδn∥zn+1 − xn∥2 − ψδn∥xn+1 − xn∥2 −
1

βn
∥yn − yn−1∥2

+2τnL∥yn − yn−1∥∥xn+1 − xn∥. (40)

It follows from τn ≤
√
ψδn

L
√
βn

(the second inequality in (33)) that

2τnL∥yn − yn−1∥∥xn+1 − xn∥ ≤ ψδn∥xn+1 − xn∥2 +
1

βn
∥yn − yn−1∥2.

Furthermore, ψδn − 1− 1+γτn
ψ ≤ ψφ− 1− 1

ψ = 0 since δn ≤ φ. Therefore, (40) implies

(1 + γτn)
ψ

ψ − 1
∥zn+2 − x̄∥2 +

1

βn
∥yn − ȳ∥2 + 2τnG(xn, yn)

≤ ψ + γτn
ψ − 1

∥zn+1 − x̄∥2 +
1

βn
∥yn−1 − ȳ∥2. (41)

Since (1 + γτn)
ψ
ψ−1 = ψ(1+γτn)

ψ+γτn+1

ψ+γτn+1

ψ−1 and

ψ(1 + γτn)

ψ + γτn+1
≥ ψ(1 + γτn)

ψ + γφτn
= 1 +

ψ − φ
ψ + γφτn

γτn = 1 + ωn+1γτn,

where the inequality follows from τn+1 ≤ φτn, it follows that

(1 + γτn)
ψ

ψ − 1
≥ (1 + ωn+1γτn)

ψ + γτn+1

ψ − 1
=
βn+1

βn

ψ + γτn+1

ψ − 1
. (42)
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Define An := ψ+γτn
2(ψ−1)∥zn+1 − x̄∥2 + 1

2βn
∥yn−1 − ȳ∥2. Combining (41) and (42), we deduce

βn+1An+1 + βnτnG(xn, yn) ≤ βnAn. (43)

By summing (43) for n = 1, . . . , N , we obtain

βN+1AN+1 +
N∑
n=1

βnτnG(xn, yn) ≤ β1A1. (44)

The convexity of G(x, y), (44) and the definition of An imply that

G(XN , YN ) ≤ 1

SN

N∑
n=1

βnτnG(xn, yn) ≤
β1A1

SN
, (45)

∥zN+2 − x̄∥2 ≤
2(ψ − 1)

ψ + γτN+1

β1A1

βN+1
≤ 2β1A1

βN+1
. (46)

From Lemma 4.1, there exists c > 0 such that βn ≥ cn2 for all n ≥ 1. Then, (46) gives

∥zN+2 − x̄∥ ≤
√
2β1A1/c

N + 1
.

It follows from (34) that βn+1 − βn ≥ c0
√
cn, which together with (30) and ωn+1 < 1 implies

βnτn =
βn+1 − βn
ωn+1γ

≥ c0
√
cn

γ
.

As a result, SN =
∑N
n=1 βnτn = O(N2), and thus G(XN , YN ) = O(1/N2) follows from (45). �

5 GRPDA for two special cases

This section is devoted to GRPDA for two special cases of the structured convex optimization
problem (1), which are specified in the following assumption.

Assumption 5.1 Let b ∈ Rp be given. Assume that either f(·) = ι{b}(·), the indicator function of

the singleton {b}, or f(·) = 1
2∥ · −b∥

2.

The two cases specified in Assumption 5.1 correspond respectively to

min
x∈Rq
{g(x) : Kx = b} and min

x∈Rq
1

2
∥Kx− b∥2 + g(x),

which are abundant in practice. For example, linear inverse problems, which include many signal
and image processing applications, usually enforce data fitting via f(Kx), which takes the form
1
2∥Kx − b∥

2 for noisy data and ι{b}(Kx), or equivalently Kx = b, for ideal noiseless data. A well
known application is compressive signal/image sensing [11,26], which recovers sparse or compress-
ible signals from a small number of linear measurements via solving the basis pursuit and/or the
LASSO problems [10,32].

The aim of this section is to propose a relaxed GRPDA when f satisfies Assumption 5.1,
which is a modification of Algorithm 3.1 in two aspects: (i) extending the permitted range of ψ
from (1, ϕ] to (1, 2], and (ii) introducing a relaxation step. In the rest of this section, we always
assume that f satisfies Assumption 5.1. Then, for any u ∈ Rp and σ > 0, it is easy to show that
Proxσf∗(u) = ηu+ ϱb, where

(η, ϱ) := (η(σ), ϱ(σ)) =

{
(1,−σ) if f(·) = ι{b}(·),
(1,σ)
1+σ if f(·) = 1

2∥ · −b∥
2.

(47)

In both cases, it holds that η = η(σ) ∈ (0, 1] for any σ > 0.
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5.1 GRPDA as fixed point iteration

The iterative scheme GRPDA (14) applied to (1) appears as
yn−1 = η(yn−2 + σKxn−1) + ϱb,

zn = ψ−1
ψ xn−1 +

1
ψ zn−1,

xn = Proxτg(zn − τK⊤yn−1),

(48)

where η and ϱ are determined by (47). Note that, since f satisfies Assumption 5.1, the schemes
(48) and (14) are equivalent in the sense that they, if initialized properly, generalize exactly the
same sequence of iterates. Our choice of (48), which states explicitly the computing formulas of
(yn−1, zn, xn), instead of (zn, xn, yn) as in (14), is mainly for convenience of analysis.

To present our relaxed GRPDA, we first represent (48) as a fixed point iterative scheme, which
is summarized below.

Lemma 5.1 Let ξn = (zn; xn; yn−1). Then, the iterative scheme (48) can be represented as the
fixed point iteration ξn = S ◦ T(ξn−1), where

T(·) = T (·) + ϑ1, ϑ1 = (0; −ϱτK⊤b; 0),

S(·) = S(·) + ϑ2, ϑ2 = (0; 0⊤; ϱb),

S =

 I 0 0
0 Proxτg 0
0 0 I

 and T =

 1
ψ I (1− 1

ψ )I 0
1
ψ I (1− 1

ψ )I − ητσK
⊤K −ητK⊤

0 ησK ηI

 . (49)

Proof. Direct verification from (48). �

Let C be the set of complex numbers and Λ(M) be the set of eigenvalues of a matrix M . The
following theorem is our key to extend ψ from (1, ϕ] to (1, 2] and to take a relaxation step.

Theorem 5.1 Let τ, σ > 0 and ψ ∈ (1, 2] be such that τσL2 < ψ and η ∈ (0, 1]. Then, the matrix
T , and thus the affine mapping T, defined in (49) is firmly nonexpansive.

Proof. It follows from, e.g., [1, Proposition 4.2] that T is firmly nonexpansive if and only if 2T − I
is nonexpansive, which is clearly equivalent to |λ| ≤ 1 for any λ ∈ Λ(2T − I). Since η ∈ (0, 1], we
have 2η − 1 ∈ (−1, 1]. Therefore, to guarantee nonexpansiveness of 2T − I, it is sufficient to show
that |λ| ≤ 1 for any λ ∈ Λ(2T − I) \ {±1, 2η− 1}. The reason that we exclude ±1 and 2η− 1 from
the spectrum Λ(2T − I) will be clear below.

Let λ ∈ Λ(2T − I) \ {±1, 2η− 1} and ξ = (z; x; y) ∈ Rq ×Rq ×Rp be any eigen-pair of 2T − I,
i.e., (2T − I)ξ = λξ and λ /∈ {±1, 2η − 1}. By the definition of T , (2T − I)ξ = λξ appears as( 2

ψ
− 1

)
z +

(
2− 2

ψ

)
x = λz, (50)

2

ψ
z +

(
1− 2

ψ

)
x− 2ητσK⊤Kx− 2ητK⊤y = λx, (51)

2ησKx+ (2η − 1)y = λy. (52)

Combining (50) and (51), we obtain

(λ+ 1)(z − x)− 2ητσK⊤Kx− 2ητK⊤y = 0. (53)

First, we show that KK⊤y ̸= 0 by contradiction. Assume that KK⊤y = 0. Then, it holds that
KK⊤Kx = 0 from (52), combining which with (53) gives (λ+1)K(z−x) = 0. Since λ ̸= −1, there
must hold Kz = Kx. Then, multiplying both sides of (51) by K shows that (1− λ)Kx = 0, which
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further implies that Kx = 0 since λ ̸= 1. As a result, it follows from (52) and λ ̸= 2η−1 that there
must hold y = 0. Thus, along with Kx = 0 and λ ̸= −1, (53) would lead to x = z. Since λ ̸= 1, it
then follows from (50) that x = z = 0, which contradicts to the fact that ξ is an eigenvector and
has to be nonzero. Therefore, there must hold KK⊤y ̸= 0.

Since KK⊤y ̸= 0, we thus have y ̸= 0. For simplicity, we let λ1 := λ+1
2 . Since λ /∈ {±1, 2η− 1},

we have λ1 /∈ {0, 1, η}. Then, (50) and (52) can be restated, respectively, as(
1− 1

ψ

)
x =

(
λ1 −

1

ψ

)
z and σKx =

λ1 − η
η

y. (54)

Multiplying both sides of (52) by τK⊤, adding to (51) and using (50), we obtain

(λ+ 1)(z − x− τK⊤y) = 0.

Since λ ̸= −1, we thus obtain z − x = τK⊤y, wihch together with (54) gives

−
(
λ1 −

1

ψ

)λ1 − η
η

y = −
(
λ1 −

1

ψ

)
σKx

=
(
λ1 −

1

ψ

)
σK(τK⊤y − z)

=
(
λ1 −

1

ψ

)
τσKK⊤y − σ

(
λ1 −

1

ψ

)
Kz

=
(
λ1 −

1

ψ

)
τσKK⊤y − σ

(
1− 1

ψ

)
Kx

=
(
λ1 −

1

ψ

)
τσKK⊤y −

(
1− 1

ψ

)λ1 − η
η

y.

By combining the two terms of y on both sides, we obtain

(λ1 − 1)
η − λ1
η

y =
(
λ1 −

1

ψ

)
τσKK⊤y,

which simplifies to

η − λ1
η

y =
(λ1 − 1)

(
λ1 − 1

ψ

)
|λ1 − 1|2

τσKK⊤y. (55)

Here λ1 denotes the complex conjugate of λ1. Recall that y ̸= 0. Then (55) implies that y is an
eigenvector of KK⊤. Since KK⊤ is real symmetric, positive semidefinite and ∥KK⊤∥ = L2, its
eigenvalues must be real and lie in [0, L2]. It is then implied by KKT y ̸= 0 and 0 < τσL2 < ψ
that there exists ψ1 ∈ (0, ψ) such that τσKK⊤y = ψ1y.

Let s, t ∈ R and λ = s + t
√
−1 ∈ C. Then λ1 = 1+s

2 + t
2

√
−1 and it is elementary to deduce

from (55) that

4η − 2− 2s

η
=

(s+ 1− 2
ψ )(s− 1) + t2

|λ1 − 1|2
ψ1, (56)

t

η
=
t
(
1− 1

ψ

)
ψ1

|λ1 − 1|2
. (57)

We split the discussions in two cases, (i) t = 0, and (ii) t ̸= 0.
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– Case (i). If t = 0, we have s2 − 2η(1− ψ1)s− 1 + 2ης = 0 from (56), where ς := 1 + ψ1 − 2ψ1

ψ .

Let u := η(1−ψ1) and v := η2(1−ψ1)
2− 2ης +1. Then, we have λ = s = u±

√
v. Since s ∈ R,

there must hold η2(1− ψ1)
2 − 2ης + 1 ≥ 0, which, by further considering η ≤ 1, implies that

0 < η ≤


min

{
1,

ς−
√
ς2−(1−ψ1)2

(1−ψ1)2

}
, ψ1 ̸= 1,

min
{
1, 1

4(1− 1
ψ )

}
, ψ1 = 1.

By ψ1 ∈ (0, ψ) and ψ > 1, it is elementary to show that
√
v < 1 − u and

√
v < 1 + u.

Consequently, we have λ ∈ (−1, 1).
– Case (ii). If t ̸= 0, we have |λ1 − 1|2 = ηψ1

(
1− 1

ψ

)
from (57). Then, (56) implies

(4η − 2− 2s)
(
1− 1

ψ

)
=

(
s+ 1− 2

ψ

)
(s− 1) + t2,

from which we obtain(
s+ 1− 2

ψ

)2

+ t2 = (4η − 2− 2s)
(
1− 1

ψ

)
+
(
s+ 1− 2

ψ

)(
2− 2

ψ

)
= 4

(
1− 1

ψ

)(
η − 1

ψ

)
=

(
1− 2

ψ

)2

+ 4η
(
1− 1

ψ

)
− 1

≤
(
1− 2

ψ

)2

+ 4
(
1− 1

ψ

)
− 1

= 4
(
1− 1

ψ

)2

, (58)

where the inequality follows from η ∈ (0, 1] and ψ > 1. Since ψ ∈ (1, 2], a simple geometric
argument based on (58) shows that |λ| =

√
s2 + t2 ≤ 1.

Combining cases (i) and (ii), we have shown that |λ| ≤ 1 for any τ, σ > 0 and ψ ∈ (1, 2] such that
τσL2 < ψ. This completes the proof. �

5.2 Relaxed GRPDA

Now, we are ready to present a relaxed GRPDA when f satisfies Assumption 5.1. The relaxation
parameters lie in (0, 2/3) and the parameter ψ, which is restricted to (1, ϕ] in Algorithm 3.1, can
now be extended to (1, 2]. The relaxed GRPDA is summarized below.

Algorithm 5.1 (Relaxed GRPDA)

Step 0. Let τ, σ > 0 and ψ ∈ (1, 2] be such that τσL2 < ψ, (η, ϱ) = (η(σ), ϱ(σ)) be defined in (47),
and {ρn}n∈N ⊆ (0, 32 ) be such that

∑
n∈N ρn(1 −

2ρn
3 ) = +∞. Choose x0 ∈ Rq and y−1 ∈ Rp.

Set z0 = x0 and n = 1.
Step 1. Compute 

ỹn−1 = η(yn−2 + σKxn−1) + ϱb,

z̃n = ψ−1
ψ xn−1 +

1
ψ zn−1,

x̃n = Proxτg(z̃n − τK⊤ỹn−1).
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Step 2. Take a relaxation step 
yn−1 = yn−2 + ρn(ỹn−1 − yn−2),

zn = zn−1 + ρn(z̃n − zn−1),

xn = xn−1 + ρn(x̃n − xn−1).

Step 3. Set n← n+ 1 and return to Step 1.

The convergence of Algorithm 5.1 is established in the following theorem. The key of its proof is
to observe, based on Theorem 5.1 and [1, Proposition 4.32], that the operator S◦T is 2/3-averaged1,
and thus the convergence result follows from [1, Proposition 5.15].

Theorem 5.2 Let f satisfy Assumption 5.1 and {(zn, xn, yn−1)}n∈N be the sequence generated
by Algorithm 5.1 from any initial point (x0, y−1) ∈ Rq × Rp and z0 = x0. Then, {(xn, yn)}n∈N
converges to a solution of (2), i.e., an element in S.

Proof. Let S and T be defined as in (49), G := S ◦ T, and ξn = (zn;xn; yn−1) for n ≥ 0.
Then, the sequence {(zn, xn, yn−1)}n∈N generated by Algorithm 5.1 from (z0, x0, y−1) satisfies
ξn = ξn−1 + ρn(G(ξn−1)− ξn−1) for n ≥ 1. The key of the proof is to show that G is 2/3-averaged,
which we argue below.

Apparently, η defined in (47) lies in (0, 1]. It then follows from Theorem 5.1 that T defined in (49)
is firmly nonexpansive under the condition of Algorithm 5.1, i.e., τ, σ > 0 and τσL2 < ψ ∈ (1, 2].
On the other hand, it is well known that the proximal operator Proxτg is firmly nonexpansive for
any τ > 0. Then, by the definition in (49), S is also firmly nonexpansive. Consequently, it follows
from [1, Proposition 4.32] that G = S ◦ T is 2/3-averaged.

Denote by Fix(G) the set of fixed points of G, i.e., Fix(G) := {ξ ∈ Rq × Rq × Rp : ξ = G(ξ)}.
By the construction of S and T, it is elementary to show that

Fix(G) = {ξ = (z; x; y) | z = x, (x, y) ∈ S},

where S is defined in (4). By Assumption 1.1, S, and thus Fix(G), is nonempty. Consequently,
it follows from [1, Proposition 5.15] that the sequence {ξn}n∈N is Fejér monotone with respect to
Fix(G) and converges to a point in Fix(G). This completes the proof. �

6 Numerical Experiments

In this section, we present numerical results on LASSO [32], nonnegative least-squares and minimax
matrix game problems to demonstrate the performance of Algorithm 3.1 (GRPDA), the accelerated
GRPDA given in Algorithm 4.1 (A-GRPDA), and the relaxed GRPDA described in Algorithm 5.1
(R-GRPDA). All the experiments were performed within Python 3.8 running on a 64-bit Windows
PC with an Intel(R) Core(TM) i5-4590 CPU@3.30 GHz and 8GB of RAM. All the results presented
in this section are reproducible by specifying the seed of the random number generator in our code,
which is available at https://github.com/cxk9369010/Golden-Ratio-PDA.

In this section, we let ∥·∥ = ∥·∥2 be the ℓ2-norm induced by the dot inner product. For LASSO
and nonnegative least-squares problems, the component function f has the form f(·) = 1

2∥ · −b∥
2.

Thus, Assumption 5.1 is satisfied and the relaxed GRPDA described in Algorithm 5.1 can be
applied. Furthermore, GRPDA with fixed step sizes (Algorithm 3.1) can adopt the larger value
ψ = 2 as well (equivalent to setting ψ = 2 and ρn ≡ 1 in Algorithm 5.1). Since f∗ (rather than
g, as required by Algorithm 4.1) is strongly convex, we can switch (g,K, x, q) with (f∗,−KT , y, p)

1 An operator P is α-averaged for some α ∈ (0, 1) if there exists a nonexpansive operator Q such that P =
(1− α)I + αQ.

https://github.com/cxk9369010/Golden-Ratio-PDA
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and reduce (26) to (2), so that g is strongly convex. As such, the accelerated GRPDA given in
Algorithm 4.1 is also applicable.

The algorithmic parameters are specified as follows. For GRPDA, we used fixed step sizes

τ =
√
ψ√
βL

and σ = βτ . For the minimax matrix game problem, we set ψ = 1.618, while for LASSO

and nonnegative least-squares problems, which satisfy Assumption 5.1, we set ψ = 2. For A-

GRPDA, we set ψ = 1.5 and β0 = 1, while for R-GRPDA we set τ =
√
2√
βL

, σ = βτ and ρn ≡ 1.49.

The following state-of-the-art algorithms are compared:

– PDA (as given in (6)) with τ = 1√
βL

and σ =
√
β 1
L and δ = 1.

– PGM (proximal gradient method, e.g., [3]) with fixed step size α > 0. For LASSO and non-
negative least-squares problems, it holds that f(Kx) = 1

2∥Kx− b∥
2, and the PGM appears as

xn = Proxαg(xn−1 − αK⊤(Kxn−1 − b)). We set α = 1/∥K∥2.
– FISTA (fast iterative shrinkage thresholding algorithm [3]) with fixed step size α > 0. For

LASSO and nonnegative least-squares problems, FISTA appears as
tn =

(
1 +

√
1 + 4t2n−1

)
/2,

yn−1 = xn−1 +
tn−1−1
tn

(xn−1 − xn−2),

xn = Proxαg(yn−1 − αK⊤(Kyn−1 − b)),

where t0 = 1 and x−1 = x0. The same as PGM, we set α = 1/∥K∥2.
– GRAAL (golden ratio algorithm [22], or as given in (10)) with τ = ϕ

2L , where ϕ = 1.618.

The choice of β for GRPDA, R-GRPDA and PDA will be specified later. For all algorithms, we
used the same initial points. For the three tested problems, the evaluation of the proximal point
mappings is relatively cheap compared with matrix-vector multiplications. As such, all the com-
pared algorithms have the same dominant per iteration cost, i.e., two matrix-vector multiplications,
we only compare the their performance in terms of iteration numbers.

Problem 6.1 (LASSO) The LASSO problem has the form minx F (x) :=
1
2∥Kx − b∥

2 + µ∥x∥1,
where K ∈ Rp×q and b ∈ Rp are given, and x ∈ Rq is an unknown signal. In the context of
compressive sensing, p is much smaller than q.

Apparently, the above LASSO problem corresponds to (1) with f(u) = 1
2∥u − b∥

2 and g(x) =
µ∥x∥1. Thus, Assumption 5.1 is satisfied and ψ = 2 can be adopted in GRPDA. The seed of the
random number generator was set to 1. We generated x∗ ∈ Rq randomly. Specifically, s nonzero
components of x∗ were determined uniformly at random, and their values were drawn from the
uniform distribution in [−10, 10]. The matrix K ∈ Rp×q is constructed as in [23] by one of the
following ways:

(i) All entries of K were generated independently from N (0, 1), the normal distribution with mean
0 and standard deviation 1.

(ii) First, we generated a matrix A ∈ Rp×q, whose entries are independently drawn from N (0, 1).
Then, for a scalar v ∈ (0, 1) we constructed the matrix K column by column as follows:
K1 = A1/

√
1− v2 and Kj = vKj−1 + Aj , j = 2, . . . , q. Here Kj and Aj represent the jth

column of K and A, respectively. As v increases, K becomes more ill-conditioned. In this
experiment, we tested v = 0.5 and 0.9.

The additive noise ν ∈ Rp was generated from N (0, 0.1). Finally, we set b = Kx∗ + ν.
The step size ratio β = σ/τ was set to be 400 as in [23], which was determined based on

numerical experience. All the algorithms were initialized at x0 = 0 and y0 = −b. For the LASSO
problem, we first compared the performance of GRPDA with varying ψ. The results are given
in Figure 1, where the decreasing behavior of function value errors F (xn) − F ∗ as the algorithm
proceeded is presented. Here F ∗ = infx F (x) was approximately computed by running our algo-
rithms for sufficiently many iterations. It can be seen from Figure 1 that GRPDA with larger ψ
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converges faster for all the tested three cases. Thus, in our comparison with other algorithms, we
set ψ = 2. Besides, instead of terminating the algorithms with some stopping criteria, we ran all
algorithms for a fixed number of iterations and examined their convergence behavior, see Figure
2. The parameters p, q, s and v are given in the captions of the figures.
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(a) Case (i).
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(b) Case (ii) with v = 0.5.
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(c) Case (ii) with v = 0.9.

Fig. 1 Evolution of F (xn)− F ∗ for the LASSO problem with different ψ and (p, q, s) = (200, 1000, 10).

It can be seen from Figure 2 that primal-dual type methods outperform the PGM, FISTA
and GRAAL. For all the three tested cases, GRPDA performs better than PDA, R-GRPDA is
even better and A-GRPDA is the best. In particular, the proposed Gauss-Seidel type golden ratio
algorithms, including GRPDA, A-GRPDA and R-GRPDA, perform much better than the Jacobian
type golden ratio algorithm GRAAL as given in (10).
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(a) Case (i) with (p, q, s) = (200, 1000, 10).
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(b) Case (i) with (p, q, s) = (1000, 2000, 100).
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(c) Case (ii) with (p, q, s, v) = (1000, 5000, 100, 0.5).
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(d) Case (ii) with (p, q, s, v) = (1000, 5000, 100, 0.9).

Fig. 2 Numerical results for the LASSO problem.
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Problem 6.2 (Nonnegative least-squares problem) The nonnegative least-squares problem
aims to find x ∈ Rq+ (the nonnegative orthant) such that ∥Kx−b∥ is minimized for given K ∈ Rp×q
and b ∈ Rp, i.e., minx∈Rq F (x) :=

1
2∥Kx− b∥

2 + ιRq+(x).

Similar to the LASSO problem, the nonnegative least-squares problem can also be solved by
A-GRPDA and R-GRPDA since the data fitting term 1

2∥Kx − b∥
2 remains the same. The only

difference is that the ℓ1-norm µ∥·∥1 in LASSO is now replaced by the indicator function ιRq+(·). Since
the proximal mapping of the indicator function ιRq+(·) is just the projection on Rq+, all the compared

algorithms keep feasibility of the nonnegativity constraint. As such, F (xn) =
1
2∥Kxn − b∥

2 since
xn ≥ 0 is always satisfied. For this experiment, we consider two types of data described below.

(i) Real data from the Matrix Market library2. Two instances were tested, i.e., “illc1033” and
“illc1850”, where K ∈ Rp×q is sparse and has sizes (p, q) = (1033, 320) and (1850, 712), re-
spectively. These matrices were used in the testing of the famous LSQR algorithm [28] and are
much more ill-conditioned than the other two instances “well1033” and “well1850” available at
the library. The entries of b ∈ Rp were drawn independently from N (0, 1).

(ii) Random matrix. K ∈ Rp×q has approximately dpq nonzeros, with d ∈ (0, 1) as in [23], and x∗

is a sparse vector, whose s nonzero entries were drawn uniformly from [0, 100]. We set b = Kx∗,
which gives F ∗ = 0. The following two cases were tested.
(a) p = 1000, q = 2000, d = 0.5 and s = 100. The nonzero entries of K were generated

independently from the uniform distribution in [0, 1].
(b) p = 10000, q = 20000, d = 0.01 and s = 500. The nonzero entries of K were generated

independently from the normal distribution N (0, 1).

For GRPDA and R-GRPDA, we set β = 1, except for the random data with p = 1000, for
which we set β = 25 as in [23]. The same as the LASSO case, all the algorithms were initialized at
x0 = 0 and y0 = −b.
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(a) illc1033.
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(b) illc1850.

Fig. 3 Numerical results for nonnegative least-squares problem: Real data.

Similar to the LASSO case, the decreasing behavior of F (xn)−F ∗ as the algorithms proceeded
is presented in Figure 3 for real data and Figure 4 for random data. It can be observed from Figure 3
that A-GRPDA performs the best, followed by FISTA. In comparison, for random data R-GRPDA
performs the best, followed by GRPDA and PDA, as shown in Figure 4. Other algorithms seem
to be less efficient. Nonetheless, all the compared algorithms perform favorably and have attained
fairly high precision in a reasonable number of iterations.

2 https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lsq/lsq.html.
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(a) p = 1000
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(b) p = 10000

Fig. 4 Numerical results for nonnegative least-squares problem: Random data.

Problem 6.3 (Minimax matrix game) Let ∆q = {x ∈ Rq : x ≥ 0,
∑q
i=1 xi = 1} be the

standard unit simplex in Rq, and K ∈ Rp×q. The minimax matrix game problem is given by

min
x∈Rq

max
y∈Rp

ι∆q (x) + ⟨Kx, y⟩ − ι∆p(y). (59)

Apparently, (59) is a special case of (2) with g = ι∆q and f∗ = ι∆p . We note that the projec-
tion onto ∆q can be computed efficiently, see, e.g., [2, Corollary 6.29]. Therefore, any algorithms
depending on the proximal operators of ι∆q can be implemented efficiently. In our implementation,
we used the algorithm from [12] to compute the projection onto the standard unit simplex. To
compare different algorithms, we used the primal-dual gap function as defined in (13), which can
be easily computed for a feasible pair (x, y) ∈ ∆q ×∆p by G(x, y) := maxi(Kx)i −minj(K

⊤y)j .
Here subscript i (or j) denotes the ith (or jth) component of the underlying vector.

For this minimax matrix game problem, the only relevant algorithms discussed at the beginning
of this section are PDA, GRPDA and GRAAL. The rest are not applicable. In this experiment, we
set β = 1 for PDA and GRPDA. The initial point for all algorithms was set to be x0 = 1

q (1, . . . , 1)
⊤

and y0 = 1
p (1, . . . , 1)

⊤. We tested two types of random matrix K ∈ Rp×q with seed = 50, i.e., (i)

(p, q) = (100, 100) and all entries of K were generated independently from the uniform distribution
in [−1, 1], and (ii) (p, q) = (100, 500) and all entries of K were generated independently from the
normal distribution N (0, 1).
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Fig. 5 Numerical results for minimax matrix game problem.
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The decreasing behavior of the primal-dual gap function as the algorithms proceeded is given
in Figure 5, from which it can be seen that in both tests GRPDA performs comparably with PDA
and both GRPDA and PDA outperform GRAAL. Recall that in this experiment β was set to
be 1 and thus the primal step size τ and the dual step size η are equal. We attribute the faster
convergence of GRPDA and PDA, as compared to GRAAL, to the Guass-Seidel nature of GRPDA
(14) and PDA (6), as compared to the Jacobian type iteration GRAAL (10).

7 Concluding remarks

In this paper, motivated by the recent work [22], we proposed, analyzed and tested a golden ratio
primal-dual algorithm (GRPDA), which can be viewed as a new remedy to the classical Arrow-
Hurwicz method. Different from the PDA in [8], which uses an extrapolation or inertial step, the
proposed GRPDA uses a convex combination technique originally introduced in [22]. Global iterate
convergence and O(1/N) ergodic rate of convergence, measured by the primal-dual gap function,
are established. When either g or f∗ is strongly convex, we managed to modify the algorithm
so that it enjoys a faster O(1/N2) ergodic convergence rate. For two widely used special cases,
i.e., regularized least-squares problem and linear equality constrained problem, we further show
via spectral analysis that the algorithmic parameter ψ can be enlarged from (1, ϕ] to (1, 2], which
allows larger primal and dual step sizes. Moreover, in the fixed point perspective the iterative
mapping is 2/3-averaged and thus a relaxation step can be taken with parameter ρ ∈ (0, 2/3). Our
preliminary numerical results on LASSO, nonnegative least-squares and minimax matrix game
problems show that the proposed algorithms perform favorably. In particular, GRPDA with fixed
step sizes is comparable with PDA in general, and the relaxed and accelerated variants can achieve
superior performance.

Some interesting issues remain to be investigated. For example, how to modify the proposed
algorithms so that they are suitable to the cases when the operator norm ∥K∥ is hard to evaluate,
how to adapt the proposed algorithms to more general settings, including the general linearly con-
strained separable convex optimization problem minx,y{f(x)+ g(y) : Ax+By = b}, or when when
the coupling term is nonbilinear. Moreover, for large scale finite sum problem, which are abundant
in machine learning, it is interesting to design and analyze their stochastic and/or incremental
counterparts. We leave these issues for further investigations.
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Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, second edition, 2011.

2. A. Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization. SIAM-Society for Industrial
and Applied Mathematics, 2017.

3. A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences, 2(1):183–202, 2009.

4. D. P. Bertsekas and E. M. Gafni. Projection methods for variational inequalities with application to the traffic
assignment problem. Math. Programming Stud., 17:139–159, 1982.

5. T. Bouwmans, N. S. Aybat, and E. H. Zahzah. Handbook of “Robust low-rank and sparse matrix decomposition:
applications in image and video processing”, volume 45. 2016.

6. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations & Trends in Machine Learning, 3(1):1–122, 2010.

7. A. Chambolle, M. J. Ehrhardt, P. Richtarik, and C.-B. Schonlieb. Stochastic primal-dual hybrid gradient
algorithm with arbitrary sampling and imaging application. SIAM Journal on Optimization, 28(4):2783–2808,
2018.

8. A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to
imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

9. A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal-dual algorithm. Mathe-
matical Programming, 159(1–2):253–287, SEP 2016.

10. S. Chen, M. A. Saunders, and D. L. Donoho. Atomic decomposition by basis pursuit. SIAM Review, 43(1):129–
159, 2001.



24 Xiaokai Chang1, Junfeng Yang2

11. D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.
12. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-ball for learning in

high dimensions. In The 25th international conference on Machine learning, pages 272–279, 2008.
13. E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first order primal-dual algorithms for

convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4):1015–1046, 2010.
14. M. Fazel, T. K. Pong, D. F. Sun, and P. Tseng. Hankel matrix rank minimization with applications in system

identification and realization. SIAM Journal on Matrix Analysis and Applications, 34:946–977, 2013.
15. D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite-element

approximations. Computers and Mathematics with Applications, 2:17–40, 1976.
16. R. Glowinski and A. Marrocco. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par
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