
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

DANIEL REHFELDT , THORSTEN KOCH

On the exact solution of prize-collecting
Steiner tree problems

ZIB Report 20-11 (April 2020)

https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-1967-0077


Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


On the exact solution of prize-collecting Steiner

tree problems

Daniel Rehfeldt , Thorsten Koch

Zuse Institute Berlin,

Takustr. 7, 14195 Berlin, Germany

{rehfeldt,koch}@zib.de

TU Berlin, Chair of Software and Algorithms for Discrete Optimization,

Str. des 17. Juni 135, 10623 Berlin, Germany

October 12, 2020 (revision)

Abstract

The prize-collecting Steiner tree problem (PCSTP) is a well-known generalization of the
classic Steiner tree problem in graphs, with a large number of practical applications. It
attracted particular interest during the 11th DIMACS Challenge in 2014, and since then,
several PCSTP solvers have been introduced in the literature. Although these new solvers
further, and often drastically, improved on the results of the DIMACS Challenge, many
PCSTP instances have remained unsolved. The following article describes further advances
in the state of the art in exact PCSTP solving. It introduces new techniques and algorithms
for PCSTP, involving various new transformations (or reductions) of PCSTP instances to
equivalent problems; for example to decrease the problem size or to obtain a better IP
formulation. Several of the new techniques and algorithms provably dominate previous
approaches. Further theoretical properties of the new components, such as their complexity,
are discussed. Moreover, new complexity results for the exact solution of PCSTP and
related problems are given, which form the base of the algorithmic developments. Finally,
the new developments also translate into a strong computational performance: the resulting
exact PCSTP solver outperforms all previous approaches, both in terms of run-time and
solvability. In particular, it solves several formerly intractable benchmark instances from
the 11th DIMACS Challenge to optimality. Moreover, several recently introduced large-scale
instances with up to 10 million edges, previously considered to be too large for any exact
approach, can now be solved to optimality in less than two hours.

1 Introduction

The Steiner tree problem in graphs (SPG) is one of the fundamental (NP-hard) combinatorial op-
timization problems [32]. A well-known generalization is the prize-collecting Steiner tree problem
(PCSTP), stated as follows: Given an undirected graph G = (V,E), edge weights c : E → Q>0,
and node weights (or prizes) p : V → Q≥0, a tree S = (V (S), E(S)) ⊆ G is required such that

C(S) :=
∑

e∈E(S)

c(e) +
∑

v∈V \V (S)

p(v) (1)
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is minimized. By setting sufficiently high node weights for its terminals, each SPG instance
can be transformed to a PCSTP. However, while the number of real-world applications of the
classic Steiner tree problem in graphs is limited [22], the PCSTP entails many practical appli-
cations, which can be found in various areas, for instance in the design of telecommunication
networks [38], electricity planning [8], computational biology [30], geophysics [48], and even ma-
chine learning [28].

The PCSTP has been extensively discussed in the literature, both from theoretical and prac-
tical perspectives. The first approximation algorithm was introduced by [7], and achieved a
factor 3 approximation. This factor was later improved by [26], [31], and [19]. The latter achieve
a (2− 2

|V | )-approximation. Finally, [4] proposed a (2− ε) approximation; with 0.03 < ε < 0.04.

For approximation results on planar graphs see [5]. Moreover, a large number of heuristic al-
gorithms for PCSTP have been suggested, see e.g. [11, 12, 21]. As to (practical) exact solving,
the sophisticated branch-and-cut algorithm by [39] was an early milestone. Later, the PCSTP
attracted considerable interest in the wake of the 11th DIMACS Challenge [14] in December
2014—dedicated to Steiner tree problems—where the PCSTP categories could boast the most
participants by far. Furthermore, in the recent years a considerable number of additional solvers
for the PCSTP have been introduced [2, 9, 20, 21, 22, 37, 40, 49]. Some of these solvers, in
particular [37], drastically improve on the best results achieved at the DIMACS Challenge—
being able to not only solve many instances orders of magnitude faster, but also to solve a
number of instances for the first time to optimality. Exact approaches for PCSTP are usually
based on branch-and-bound or branch-and-cut [20, 22], include specialized (primal and some-
times dual) heuristics [33, 37], and make use of various preprocessing methods to reduce the
problem size [39, 45].

1.1 Contribution

This article introduces and analyses new techniques and algorithms for PCSTP that ultimately
aim for efficient exact solution. Most of the techniques are based on, or result in reductions
(or transformations) of the PCSTP to equivalent problems—these problems can be PCSTPs
itself, but can also be from different problem classes. The reductions can for example decrease
the problem size or allow us to obtain a stronger IP formulation. Moreover, several of the new
methods provably dominate previous approaches. While some of the techniques require to solve
NP-hard subproblems (not yet described in the literature), the underlying concepts allow us to
design empirically efficient heuristics. Furthermore, we provide complexity results for the exact
solution of PCSTP (and related problems), which underpin the design of most algorithms in this
article. Also these complexity results base on problem transformations.

This article extends existing work, especially [43, 44, 45]. However, it not only significantly
improves known results, but also combines them with several new techniques. Indeed, a salient
feature of this work is the intricate interaction of the individual algorithmic components and
their wide applicability within a branch-and-cut framework—from preprocessing and probing,
to IP formulation and separation methods, to heuristics, domain propagation, and branching.
The integration of the new methods into an exact solver also brings significant computational
advancements: The new solver is significantly faster than current state-of-the-art competitors,
and furthermore solves 24 benchmark instances for the first time to optimality. The newly
developed software has been integrated into the academic Steiner tree framework SCIP-Jack [22]
and will be made publicly available as part of its next major release.

Finally, while it will be shown that a set of methods is also directly applicable for the SPG, one
can furthermore extend several of the presented techniques and algorithms to related combinato-
rial optimization problems such as the node-weighted Steiner tree, or the (rooted and unrooted)
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maximum-weight connected subgraph problem. Moreover, one can also directly apply the PC-
STP algorithms to these two problems—by using the transformations to PCSTP described in
Section 2.2.

1.2 Notation and preliminaries

For a graph G we denote its vertices by V (G) and its edges by E(G). For a given graph G
we use n := |V (G)| and m := |E(G)|. For a walk W we likewise denote the set of vertices
and the set of edges it contains by V (W ) and E(W ). By d(v, w) we denote the distance of a
shortest path (with respect to c) between vertices v, w ∈ V . For U ⊆ V define the induced
edge cut as δ(U) := {{u, v} ∈ E | u ∈ U, v ∈ V \ U}; for a directed graph D = (V,A) define
δ+(U) := {(u, v) ∈ A | u ∈ U, v ∈ V \ U} and δ−(U) := δ+(V \ U). We also write δG or
δ+
D, δ

−
D to distinguish the underlying graph. For a single vertex v we use the short-hand notation

δ(v) := δ({v}), and accordingly for directed graphs. For any function x : M 7→ Q with M
finite, and any M ′ ⊆ M define x(M ′) :=

∑
i∈M ′ x(i). For an IP formulation F we denote the

optimal objective value and the set of feasible points of its LP relaxation by vLP (F ) and PLP (F ),
respectively.

Throughout this article it will be presupposed that a PCSTP instance IPC = (V,E, c, p)
is given such that (V,E) is connected; otherwise, one can optimize each connected component
separately. We call Tp := {v ∈ V | p(v) > 0} the set of potential terminals [37]. It will be
assumed that Tp 6= ∅. For ease of presentation we use {t1, t2, ..., ts} := Tp, so in particular
s := |Tp|. A t ∈ Tp will be called proper potential terminal if

p(t) > min
e∈δ(t)

c(e). (2)

The set of all proper potential terminals will be denoted by T+
p = {t+1 , t

+
2 , ..., t

+
s+}, with s+ :=

|T+
p |. Accordingly, define T−p := Tp \ T+

p . The distinction of proper and non-proper potential
terminals was already made in [50], where it was noted that non-proper potential terminals allow
for additional presolving methods. This distinction can also be found in [20, 37].

We will call any PCSTP solution that consists of just one vertex trivial. If T+
p = ∅, then

there exists a trivial optimal solution. In general, there exists an optimal solution whose leaves
are a subset of T+

p , or there exists at least one trivial optimal solution.
Finally, we define a variation of the PCSTP, the rooted prize-collecting Steiner tree problem

(RPCSTP)1. The RPCSTP incorporates the additional condition that a non-empty set Tf ⊆ V
of fixed terminals needs to be part of all feasible solutions. We assume w.l.o.g. that p(t) = 0 for
all t ∈ Tf .

1.3 Structure

The remainder of this article is structured as follows.

• Section 2 shows that PCSTP is fixed-parameter tractable (FPT) in |T+
p |. Furthermore,

we discuss (known and new) transformations from the node-weighted Steiner tree and
maximum-weight connected subgraph problem to PCSTP, which directly lead to FPT re-
sults. Also, we show that non-proper potential terminals naturally arise from these trans-
formation. Overall, Section 2 provides a strong theoretical motivation for distinguishing
between proper and non-proper potential terminals within PCSTP algorithms, which will
be a dominating theme throughout this article.

1Note that in the literature it is more common to denote only problems with exactly one fixed terminal as
rooted prize-collecting Steiner tree problem, e.g. in [39]
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• Section 3 introduces several new reduction techniques for PCSTP. Most importantly, a
new distance function based on so-called prize-constrained walks is introduced. By using
this distance function, we introduce for example a new edge elimination criterion. The new
techniques are also compared with previous methods from the literature.

• Section 4 makes further use of the concept of prize-constrained walks. By a combination
with the reduced-costs of a particular LP relaxation, prize-constrained walks allow us to
find vertices that need to be part of any optimal solution. We further show how this
information leads to a better IP formulation.

• Section 5 shows how to integrate the newly developed algorithms within a branch-and-cut
framework. Furthermore, computational results are given, as well as comparisons with
state-of-the-art PCSTP solvers.

• Finally, Section 6 offers a conclusion, and suggestions on possible future research.

2 Proper potential terminals and complexity

In a number of (real-world) PCSTP instances from the literature |T−p | is considerably larger than
|T+
p |, so it seems well-worthwhile to algorithmically distinguish between proper and non-proper

potential terminals. This section provides also a theoretical foundation for such a distinction.
Namely, by showing how proper and non-proper potential terminals arise from problems related
to PCSTP and by showing how the complexity of PCSTP depends on the number of proper
potential terminals.

2.1 On the complexity of PCSTP

In the following we demonstrate that for the complexity of PCSTP the number s+ = |T+
p | is

the crucial parameter. One observes throughout this article that the complexity of several new
PCSTP algorithms is likewise governed by s+. We first show the following.

Theorem 1. The PCSTP is fixed-parameter tractable for the parameter s+. It can be solved in
time O(3s

+

n+ 2s
+

n2 + n2 log n+mn).

A detailed proof is given in Appendix A.2. In the following we describe the main building
blocks. Consider a RPCSTP If = (G,Tf , c, p) with T+

p = ∅. By extending the well-known
dynamic programming algorithm from [16], we obtain the following result.

Proposition 2. An optimal solution to If can be found in time
O(3|Tf |n+ 2|Tf |n2 + n2 log n+mn).

Now we return to PCSTP. It will be assumed that no trivial solution exists for PCSTP
(otherwise one needs to compare the solution found in the following with the best trivial solution).
The following describes how to transform any PCSTP to an equivalent RPCSTP instance that
has no proper potential terminals and satisfies |Tf | = s+ + 1.

Transformation 1 (PCSTP to RPCSTP).
Input: PCSTP (V,E, c, p) with T+

p 6= ∅
Output: RPCSTP (V ′, E′, T ′f , c

′, p′)

1. Initially, set V ′ := V , E′ := E, c′ := c; define M :=
∑
t∈T+

p
p(t).
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2. Define p′ : V ′ → Q≥0 for all v ∈ V ′ by

p′(v) :=

{
p(v) if v ∈ T−p ,
0 otherwise.

3. Let j ∈ {1, ..., s+} such that p(tj) = mint∈T+
p
p(t).

4. Add vertex t′0 to V ′.

5. For each i ∈ {1, ..., s+}:

(a) add node t′i with p(t′i) := 0 to V ′;

(b) add edges {t′0, ti} and {ti, t′i} to E′, both of weight M .

6. For each i ∈ {1, ..., s+} \ {j}:

(a) add edge {ti, t′j} of weight M + p(tj) to E′;

(b) add edge {t′i, t′j} of weight M + p(ti) to E′.

7. Define fixed terminals T ′f := {t′1, ..., t′s+} ∪ {t
′
0}.

8. Return (V ′, E′, T ′f , c
′, p′).

Let I be a PCSTP. Let I ′ be the RPCSTP resulting from Transformation 1, and let S′ be an
optimal solution to I ′. One observes that S := S′ ∩ (V,E) is an optimal solution to I. Because
of the choice of M , one further observes that for each fixed terminal of I ′ exactly one incident
edge is in S′. Thus, for any optimal solution S to I one obtains the following relation

C(S) = C(S′)− |T ′f |M.

By combining Proposition 2 and Transformation 1, one obtains Theorem 1.
Note that one can also extend Transformation 1 such that the result is an SPG with s + 1

terminals (and at most 2n + 1 vertices). However, the structure of the resulting SPG does not
lend itself well to an efficient practical solution by state-of-the-art SPG algorithms. Still, one
can use this transformation to directly derive further complexity results for PCSTP from SPG.
E.g., [51] shows that an SPG with k terminals can be solved in time O(nk2k+log2 k log2 n), which
translates to O(ns2s+log2 s log2 n+log2 s) for PCSTP. One could also extend the result from [51]
(by verifying them for If similarly to Proposition 2) to show that the same bound holds for s+.

Having demonstrated that PCSTP is tractable if the number of proper potential terminals
is bounded from above, we now turn to the opposite case. The SPG is well-known to be fixed-
parameter tractable in n − |T |, which can be shown by enumeration of the non-terminal ver-
tices [27]. For node-weighted Steiner tree and maximum-weight connected subgraph problems
one can show similar results [10]. However, the situation for PCSTP with respect to n − s+ is
different, as the following proposition shows.

Proposition 3. PCSTP is NP-hard even if s+ = n.

Proof. We show that the (NP-complete [23]) vertex cover problem can be reduced to the decision
variant of PCSTP, such that the resulting instance satisfies s+ = n. Let Gcov = (Vcov, Ecov) be
an undirected graph and k ∈ N. In the vertex cover problem one has to determine whether a
subset of Vcov of cardinality at most k exists that is incident to all edges Ecov. Let n := |Vcov|
and m := |Ecov|. Assume that the vertices and edges of Gcov are given as {v1, v2, ..., vn} and
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{e1, e2, ..., em}, respectively. Construct a PCSTP instance I ′ = (V ′, E′, c′, p′) with 2n + m + 1
vertices and 2n+ 2m edges as follows. Denote the vertices of V ′ by u′i and v′i for i = 1, ..., n, and
w′i for i = 0, 1, ...,m. For each original edge ei = {vj , vk} ∈ Ecov create the two edges {w′i, v′j}
and {w′i, v′k} with cost c′({w′i, v′j}) = c′({w′i, v′k}) = 8. For each original vertex vi ∈ Vcov create
the two edges {v′i, u′i} and {u′i, w′0} with cost c({v′i, u′i}) = 1 and c({u′i, w′0}) = 4. Finally, define
the prizes of I ′ as follows. First, p′(w′i) = 10 for i = 0, 1, ...,m. Second, p′(v′i) = p′(u′i) = 2 for
i = 1, ..., n. Observe that all vertices in V ′ are proper potential terminals. We claim that an
independent set for Gcov of cardinality at most k exists if and only if there is a tree S′ ⊆ (V ′, E′)
that satisfies

C(S′)− 8m− 4n ≤ k. (3)

First, assume that a vertex cover with vertex index set Jcov exists such that |Jcov| ≤ k. Build
a tree S′ ⊆ (V ′, E′) as follows. Initially, set

V ′(S′) :=
{
v′j , u

′
j | j ∈ Jcov} ∪ {wj | j ∈ {0, ...,m}

}
.

For E′(S′) take all edges {v′j , u′j}, {u′j , w′0} with j ∈ Jcov. Furthermore, for i = 1, ...,m add
exactly one edge {w′i, v′j} with j ∈ Jcov. For S′ one observes that∑

e∈E′(S′)

c′(e) = 8m+ 5k

and ∑
v∈V ′\V ′(S′)

p′(v) = 4(n− k).

Thus, C(S′)− 8m− 4n = k.
Conversely, assume that a tree S′ exists that satisfies (3). Assume that S′ is an optimal

solution to I ′. One verifies that S′ contains all vertices w′i (e.g. by using Theorem 16). Note
that also δS′(w

′
i) = 1 for i = 1, ...,m. Let Jcov ⊆ {1, ..., n} such that v′j ∈ S′ ⇐⇒ j ∈ Jcov and

set k′ := |Jcov|. From the optimality of S′ one obtains

C(S′) = 8m+ 5k′ + 4(n− k′). (4)

From (3) it follows that k′ ≤ k.

2.2 From PCSTP to related problems

The distinction of proper potential terminals also arises in relation with the maximum-weight
connect subgraph problem (MWCSP), which is closely related to the PCSTP. Given an undirected
graph G = (V,E) with node weights w : V → Q, the MWCSP asks for a connected subgraph
S ⊆ G that maximizes ∑

v∈V (S)

w(v). (5)

See e.g. [3] for more detail on MWCSP. Let I = (V,E,w) be an MWCSP instance and assume
that w0 := minv∈V (S) w(v) is negative (otherwise I is trivial to solve). I can be transformed to
an equivalent PCSTP I ′ = (V,E, c, p) by setting c(e) := −w0 for all e ∈ E, and p(v) := w(v)−w0

for all v ∈ V , as described in [15]. It should be noted, though, that due to the special form of I ′,
algorithms tailored to MWCSP, such as [43], perform vastly better in practice on I than PCSTP
algorithms on I ′. As to proper potential terminals, one observes the following: For any v ∈ V it
holds that w(v) > 0 (in I) if and only if v is a proper potential terminal in I ′. Thus, one also
obtains the following corollary (which improves on a result from [10]).
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Corollary 4. MWCSP can be solved in time O(3qn + 2qn2 + n2 log n + mn), where q denotes
the number of positive weight vertices.

Another natural distinction between proper and non-proper potential terminals can be ob-
served for the node-weighted Steiner tree problem (NWSTP), see e.g. [34]. Given an undirected,
connected graph G = (V,E) with vertex weights w : V → Q≥0 and edge weights c : E → Q≥0,
and given a set of terminals T ⊆ V , the NWSTP asks for tree S ⊆ G with T ⊆ V (S) that
minimizes ∑

e∈E(S)

c(v) +
∑

v∈V (S)

w(v). (6)

Let I = (V,E, T, c, w) be an NWSTP instance and assume w.l.o.g. that w(t) = 0 for all t ∈ T . I
can be reduced to an equivalent PCSTP I ′ = (V,E, c′, p′) by the following, new, transformation.
Let z := maxv∈V w(v). Define c′(e) := c(e) + z for all e ∈ E. Define p′(t) := k for all t ∈ T ,
with a sufficiently large k ∈ Q≥0, e.g. k =

∑
e∈E c

′(e). Finally, define p′(v) = z − w(v) for all
v ∈ V \ T . A tree S is an optimal solution to I if and only if it is an optimal solution to I ′.
Furthermore, in this case S satisfies∑

v∈V (S)

w(v) = C(S)− (|T | − 1)z −
∑
v∈V

p(v). (7)

Note that T−p ⊇ {v ∈ V \ T | w(v) < z}. Likewise, the set of terminals T for I corresponds to
the set of proper potential terminals for I ′.

One can alternatively transform NWSTP to RPCSTP to avoid the use of the large constant k.
Also, one immediately obtains the following corollary (which was already shown algorithmically
in [10]) from Proposition 2.

Corollary 5. NWSTP can be solved in time O(3kn + 2kn2 + n2 log n + mn), where k denotes
the number of terminals.

Finally, one notes that PCSTP can be seen as a generalization of both MWCSP and NWSTP,
as these problems can be transformed to a PCSTP with the same number of edges and vertices.

3 Reductions within the problem class

The methods described in the following aim to reduce a given instance to a smaller one of the same
problem class. Several articles have addressed such techniques for the PCSTP, e.g. [37, 39, 45, 50],
but most are dominated by the methods described in the following. The new methods will not
only be employed for classic preprocessing, but also throughout the entire solving process, e.g.
for domain propagation, or within heuristics.

3.1 Taking short walks

The following approach uses a new, walk-based, distance function. It generalizes the bottleneck
Steiner distance concept that was the central theme of [50]. Let v, w ∈ V . A finite walk
W = (v1, e1, v2, e2, ..., er, vr) with v1 = v and vr = w will be called prize-constrained (v, w)-walk
if no v ∈ T+

p ∪ {v, w} is contained more than once in W . For any k, l ∈ N with 1 ≤ k ≤ l ≤ r
define the subwalk W (vk, vl) := (vk, ek, vk+1, ek+1, ..., el, vl); note that W (vk, vl) is again a prize-
constrained walk. In the following, let W be a prize-constrained (v, w)-walk. Define the prize-
collecting cost of W as

cpc(W ) :=
∑

e∈E(W )

c(e)−
∑

u∈V (W )\{v,w}

p(u). (8)
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Thereupon, define the prize-constrained length of W as

lpc(W ) := max{cpc(W (vk, vl)) | 1 ≤ k ≤ l ≤ r, vk, vl ∈ T+
p ∪ {v, w}}. (9)

Intuitively, lpc(W ) provides the cost of the least profitable subwalk of W . This measure will in
the following be useful to bound the cost of connecting any two disjoint trees that contain the
first and the last vertex of W , respectively. Finally, we denote the set of all prize-constrained
(v, w)-walks by Wpc(v, w) and define the prize-constrained distance between v and w as

dpc(v, w) := min{lpc(W ) |W ∈ Wpc(v, w)}. (10)

Note that dpc(v, w) = dpc(w, v) for any v, w ∈ V . Also, it is important to note that for each
subwalk the cost of an edge and the prize of an inner vertex is counted exactly once, even if an
edge or vertex is contained multiple times in the subwalk. Using the same measuring concept,
one could in fact also allow arbitrary finite walks instead of prize-constrained ones—and count for
each subwalk the costs of its edges and the prizes of its inner vertices exactly once. However, the
prize-constrained distance is already arbitrarily stronger than the bottleneck Steiner distance,
and additionally more closely related to the algorithms described below.

By using the prize-constrained distance one can formulate a reduction criterion that domi-
nates the special distance test from [50]. This criterion is expressed in the following theorem:

Theorem 6. Let {v, w} ∈ E. If
c({v, w}) > dpc(v, w) (11)

is satisfied, then {v, w} cannot be contained in any optimal solution to IPC .

Proof. Let S be a tree with {v, w} ∈ E(S). Further, let W = (v1, e1, ..., er, vr) be a prize-
constrained (v, w)-walk with lpc(W ) = dpc(v, w). Remove {v, w} from S to obtain two new trees.
Of these two trees denote the one that contains v by Sv, and the other (containing w) by Sw.
Define b := min{k ∈ {1, ..., r} | vk ∈ V (Sw)} and a := max{k ∈ {1, ..., b} | vk ∈ V (Sv)}. Further,
define x := max{k ∈ {1, ..., a} | vk ∈ T+

p ∪ {v}} and y := min{k ∈ {b, ..., r} | vk ∈ T+
p ∪ {w}}.

By definition, x ≤ a < b ≤ y and furthermore:

cpc(W (va, vb)) ≤ cpc(W (vx, vy)). (12)

Reconnect Sv and Sw by W (va, vb)), which yields a new tree S′. For this tree it holds that:

C(S′) ≤ C(S) + cpc(W (va, vb))− c({v, w})
(12)

≤ C(S) + cpc(W (vx, vy))− c({v, w})
≤ C(S) + lpc(W )− c({v, w})
= C(S) + dpc(v, w)− c({v, w})
(11)
< C(S).

Because of C(S′) < C(S) no optimal solution can contain {v, w}.

To obtain a criterion for the case of equality in (11), define d−pc(v, w) as the prize-constrained
distance with respect to the PCSTP (V,E\{e}, c, p), with e := {v, w}. If v and w are disconnected
in (V,E \{e}, c, p), define d−pc(v, w) :=∞. With this definition at hand, one obtains the following
corollary to Theorem 6.
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Corollary 7. Let e = {v, w} ∈ E. If

c(e) ≥ d−pc(v, w) (13)

is satisfied, then e is not contained in at least one optimal solution to IPC .

Figure 1 shows a PCSTP instance on which Theorem 6 allows one to eliminate an edge. Only
vertex v4 has a non-zero prize. Consider the (dashed) edge {v1, v2}. For the prize-constrained
(v1, v2)-walk W = (v1, {v1, v3}, v3, {v3, v4}, v4, {v3, v4}, v3, {v2, v3}, v2) it holds that dpc(v1, v2) =
lpc(W ) = 6.

v4

p=5

v3

v1 v2

1

9

5 5

Figure 1: PCSTP instance. Edge {v1, v2} (dashed) can be eliminated due to Theorem 6.

Algorithms for the prize-constrained distance

Since computing the bottleneck Steiner distance is already NP-hard [50], it does not come
as a surprise that the same holds for dpc (which can be shown in the same way). However,
the definition of dpc allows us to design a simple algorithm for finding upper bounds that yields
empirically strong results—significantly better than those of the more involved bottleneck Steiner
distance heuristics [45]. In particular, while the bottleneck Steiner distance heuristics in both [45]
and [50] consider only paths with at most two intermediary potential terminals, the following
algorithm can find walks where the number of intermediary potential terminals is only bounded
by |Tp|. Besides the (more time-consuming) dual-ascent [45], the bottleneck Steiner distance
(through the use of heuristics) has been the most important reduction concept for PCSTP [22,
45, 50]. Due to this importance, we will take a deeper look at the prize-constrained distance,
as well as at associated algorithms for computing upper bounds. We will denote the bottleneck
Steiner distance by B in the following, as in the original publication [50]; the definition of the
bottleneck Steiner distance is given in Appendix A.1.

To check whether an edge {v, w} can be deleted by means of criterion (13), we suggest the
procedure detailed in Algorithm 1, which is based on Dijkstra’s algorithm [13]. The algorithm
is given the edge e = {v, w} as well as one of its endpoint, say v, from which it computes
prize-constrained walks of length not higher than c(e). The algorithm starts with a priority
queue that contains v. In contrast to Dijkstra’s algorithm, all vertices except for potential
terminals and v can be reinserted into the priority queue after they have been removed. We
associate with each vertex u the distance distpc[u]—initially set to 0 for v and to ∞ otherwise.
As with Dijkstra’s algorithm, in each iteration one vertex u with minimum distance value is
removed from the priority queue and neighboring vertices of u are updated. However, a different
distance value than in Dijkstra’s algorithm is used and a neighboring vertex q is only updated
if distpc[u] + c({u, q}) ≤ c(e). Throughout the computation the following invariant is satisfied
for any u ∈ V \ {v}: either distpc[u] =∞ or distpc[u] + p(u) ≤ c(e), and in the latter case there
exists a prize-constrained (v, u)-walk Wu such that lpc(Wu) ≤ c(e).

9



Data: PCSTP (V,E, c, p), edge {vstart, vend} ∈ E
Result: deletable if edge has shown to be redundant, unknown otherwise
Q := {vstart};
E0 := E \ {{vstart, vend}};
c0 := c({vstart, vend});
foreach v ∈ V \ {vstart} do

distpc[v] :=∞;
forbidden[v] := false;

end
distpc[vstart] := 0;
forbidden[vstart] := true;
while Q 6= ∅ do

v := arg minu∈Q distpc[u];

Q := Q \ {v};
if v ∈ Tp then

forbidden[v] := true;
end
foreach w ∈ V with {v, w} ∈ E0 do

if forbidden[w] = false and distpc[v] + c({v, w}) ≤ c0 and
distpc[v] + c({v, w})− p(w) < distpc[w] then

if w = vend then
return deleteable;

end
distpc[w] := max{0, c({v, w}) + distpc[v]− p(w)};
if w /∈ Q then

Q := Q ∪ {w};
end

end

end

end
return unknown;

Algorithm 1: Checking whether a given edge can be deleted.

One obtains the following results:

Proposition 8. For any two vertices v, w ∈ V it holds that

dpc(v, w) ≤ B(v, w). (14)

Furthermore, let Ipc be the set of all PCSTP instances. It holds that

sup
(V,E,p,c)∈Ipc

max
v,w∈V

B(v, w)

dpc(v, w)
=∞. (15)

Proof. The relation (14) can be verified by the definitions of B and dpc. For the second part
consider the PCSTP depicted in Figure 2. Let n ∈ N, n ≥ 3. The prizes p and costs c are defined
as follows: p(v) = 0 for i = 0, ..., n, and p(wi) = 3 for i = 1, ..., n− 1; further, c ≡ 1. Observing
that

lim
n→∞

B(v0, vn)

dpc(v0, vn)
= lim
n→∞

n

3
=∞,

10



one can validate that (15) holds.

Next, we show that (the heuristic) Algorithm 1 can yield better results than the (exact)
bottleneck Steiner distance. To this end, first define B− analogously to d−pc. The next corollary
shows that the results from Algorithm 1 can be (in a relative sense) arbitrarily better than the
bottleneck Steiner distance.

Corollary 9. For any K ∈ N0 there is a PCSTP instance IK with an edge e = {v, w} such that

B−(v, w)

c(e)
≥ K,

while Algorithm 1 returns deletable for (IK , {v, w}).

Proof. If K = 0, condition (9) is trivially satisfied. Assume K ≥ 1, and consider the PCSTP
instance in Figure 2 for n = 3K. Add an arc {v0, vn} of cost 3 to the instance. For this
PCSTP together with the edge {v0, vn} the PCD algorithm returns deletable. On the other
hand, B−(v0, vn) = 3K.

w1

p=3

w2

p=3

wn-1

p=3

v0 v1 v2 vn-1 vn

1 1

1 1 1

1

Figure 2: PCSTP instance such that the ratio of the bottleneck Steiner distance and the prize-
constrained distance between v0 and vn becomes arbitrarily large.

Since Algorithm 1 runs in polynomial time and the decision variant of the prize-constrained
distance is NP-complete, Algorithm 1 cannot be in general exact—in the sense that it might
return unknown even though c({vstart, vend}) ≥ d−pc(vstart, vend)—unless P = NP. However,
under certain conditions Algorithm 1 is exact, as detailed in the following proposition (see Ap-
pendix A.3 for a proof).

Proposition 10. Let {v, w} ∈ E and let W be a (v, w)-walk with lpc(W ) = d−pc(v, w). If for all
t ∈ (V (W ) \ {v, w}) ∩ T+

p

p(t) ≤ min
e∈δ(t)∩E(W )

c(e) (16)

holds, then Algorithm 1 returns deletable if and only if c({v, w}) ≥ d−pc(v, w).

Corollary 11. Let v, w ∈ V . If T+
p ⊆ {v, w} holds (which includes T+

p = ∅), then both d−pc(v, w)
and dpc(v, w) can be computed in polynomial time (with respect to the encoding size of IPC).

To check whether an edge e can be eliminated, we run a restricted version of Algorithm 1
(which only checks at most a fixed number of edges during its execution) from both endpoints of
e. If none of the two tests are successful, we check for each vertex that has been visited in both
runs whether the corresponding walks can be combined to obtain a walk that allows to delete e.
This procedure will be referred to as prize-constrained distance (PCD) test.

11



We have also implemented an extension of PCD, referred to as extended prize-constrained
distance (EPCD) test, which will be sketched in the following. One downside of PCD, even in its
unrestricted form, is that once a potential terminal has been removed from the priority queue,
it cannot be used in any other walk. Thus, EPCD keeps for each vertex v a (bounded) list of
potential terminal that are part of the current (vstart, v)-walk. Whenever a vertex w could be
updated from a vertex v, but forbidden[w] = false, it is checked whether w is in the potential
terminal list of v, and if not, w is still updated. Another problem of PCD is that the cost
of an edge on a subwalk might be counted several times. Consider for example the instance
described in the proof of Corollary 9 and change the prizes for all wi to p(wi) := 2. It still holds
that d−pc(v0, vn) = 3, but PCD for edge {v0, vn} will only return deletable if c({v0, vn}) ≥ n.
Therefore, EPCD saves for each vertex (a limited number of) edges on the current subwalk.
This list is cleared as soon as the distance value of a vertex is set to 0. EPCD also allows that
non-proper potential terminals can be used several times on one walk, by keeping a similar list
of non-proper potential terminals on the current subwalk. Finally, we note that one can also
adapted other test from the SPG literature, such as NSV [17], and NTDk [18] to PCSTP by
using the prize-constrained bottleneck distance.

3.2 Using bounds

Bound-based reductions techniques identify edges and vertices for elimination by examining
whether they induce a lower bound that exceeds a given upper bound [17, 41]. In the following,
we will introduce an approach that improves on previous results both for PCSTP and SPG. For
any U ⊆ V such that T+

p ⊆ U , and for any vi, vj ∈ V let QU (vi, vj) be the set of all (vi, vj)-paths
in the graph induced by V \ (U \ {vi, vj}). Define dU : V × V 7→ Q≥0 ∪ {∞} as

dU (vi, vj) := inf
Q∈QU (vi,vj)

∑
e∈E(Q)

c(e)−
∑

v∈V \{U∪{vi}}

p(v),

with the common convention inf ∅ := ∞. Let vi ∈ V . Define vUi,0 := vi, and, recursively, for
k ∈ N

vUi,k := arg min{dU (vi, v) | v ∈ U \ ∪k−1
j=0{v

U
i,j}}, (17)

assuming that such a vertex exists.
With these definitions at hand, we introduce the following concept: a terminal-regions de-

composition of IPC is a partition (H0, H1, H2, ...,Hs+) of V such that for i = 1, ..., s+ it
holds that T+

p ∩ Hi = {t+i } and that the subgraph induced by Hi is connected—recall that

T+
p = {t+1 , t

+
2 , ..., t

+
s+}. Note thatH0 does not need to be connected. DefineHp := T+

p ∪(H0∩T−p ).
Further, define rpcH : T+

p 7→ Q≥0 by

rpcH (t+i ) := min
{
p(t+i ),min{dHp(t+i , v) | v /∈ Hi}

}
(18)

for t+i ∈ T+
p . We will refer to this value as the prize-collecting radius of Hi. The terminal-

regions decomposition concept generalizes the Voronoi decomposition for the PCSTP introduced
in [45]. Furthermore, the decomposition can easily be extended to SPG by using min{d(ti, v) |
v /∈ Hi} instead of rpcH (ti), which corresponds to setting sufficiently high prizes for each terminal
of the SPG. Notably, this approach generalizes the SPG Voronoi concept from [41]. In [43] we
introduced a related, but coarser, concept for the maximum-weight connected subgraph problem.
For ease of presentation assume rpcH (t+i ) ≤ rpcH (t+j ) for 1 ≤ i < j ≤ s+. Also, assume that in the
following a fixed terminal-regions decomposition H is given.
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Proposition 12. Let vi ∈ V \ T+
p . If vi ∈ V (S) for all optimal solutions S, then a lower bound

on C(S) is defined by

dHp(vi, v
Hp

i,1 ) + dHp(vi, v
Hp

i,2 ) +

s+−2∑
k=1

rpcH (t+k ) +
∑

t∈T−p \{vi}

p(t). (19)

A proof of the proposition is given in Appendix A.4. Each vertex vi ∈ V \ T+
p with the

property that the affiliated lower bound (19) exceeds a known upper bound can be eliminated.
Moreover, if a solution S corresponding to the upper bound is given and vi /∈ V (S), one can also
eliminate vi if the lower bound (19) is equal to C(S). A result similar to Proposition 12 can be
formulated for edges of an optimal solution.

Figure 3 depicts a PCSTP, the corresponding Voronoi decomposition as described in [45], and
another terminal-regions decomposition (found by the TRD test described below). The terminal-
regions decomposition shown in Figure 3c yields a stronger lower bound (19) than the Voronoi
decomposition in Figure 3b. For the filled vertex the lower bounds are 10 and 11, respectively
(10 is also the optimal solution value for the instance). Thus, if a feasible solution of cost smaller
than 11 is known (or one of cost 11 that does not contain the filled vertex), Proposition 12 implies
that the filled vertex can be deleted.

Another application of the terminal-regions decomposition can be found for PCSTP instances
with articulation points. While only a few instances from the literature contain articulation points
in their original form, this situation changes once the reduction techniques described so far have
been applied. Even more so once branch-and-bound has been initiated, see Section 5.1. Recall
that throughout this article IPC is assumed to be connected.

First, one observes that if a biconnected component B ⊆ G satisfies T+
p ⊆ V (B) and no

trivial solution exists, then there is at least one optimal solution S with S ⊆ B. The opposite
case, namely that T+

p * V (B), is not as straightforward and requires some groundwork. In the
remainder of this section it will be assumed that IPC contains at least one biconnected component
that does not contain all proper potential terminals. Let B ⊆ G be a biconnected component
and let R ⊆ G be a connected subgraph such that E(R) ∩ E(B) = ∅. A vertex v ∈ B such that
there is a path Q from v to R with V (Q) ∩ V (B) = {v} will be called gate vertex from B to R.

Lemma 13. Let B ⊆ G be a biconnected component and R ⊆ G a nonempty, connected subgraph
such that E(R) ∩ E(B) = ∅. There exists exactly one gate vertex from B to R.

Based on Lemma 13 and the terminal-regions decomposition, the following proposition gives
an additional criterion to eliminate biconnected components (see Appendix A.5 for a proof).

Proposition 14. Let B ⊆ G be a biconnected component with T+
p * V (B). Let R ⊆ G be a

connected subgraph with T+
p \V (B) ⊆ V (R) and assume that E(R)∩E(B) = ∅. If T+

p ∩V (B) = ∅,
then there is an optimal solution that does not contain any edge of B. Otherwise, let vi ∈ V (B)
be the gate vertex from B to R, let H be a terminal-regions decomposition of B, and define dHp

and vH
p

i,1 with respect to B. Let X := V (B) \ {vi} and define

L := dHp(vi, v
Hp

i,1 ) +
∑

t∈X∩T+
p

rpcH (t)− max
t∈X∩T+

p

rpcH (t) +
∑

t∈X∩T−p

p(t). (20)

If

L ≥
∑
v∈X

p(v) (21)

holds, then at for at least one solution S to IPC it holds that either S ⊆ B or E(S)∩E(B) = ∅.
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1
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1

(a) PCSTP instance (b) Voronoi decomposition

(c) terminal-regions decomposition

Figure 3: Illustration of a PCSTP instance (a), a Voronoi decomposition (b), and a terminal-
regions decomposition (c). Potential terminals are drawn as squares. All potential terminals
have a prize of 5. If an upper bound less than 11 is known, the filled vertex in (c) can be deleted
by means of the terminal-regions decomposition depicted in (c), but not by means of the Voronoi
decomposition.

The set R in Proposition 14 can for example be computed (or its non-existence can be shown)
by a depth-first-search on the graph (V,E \ E(B)) starting from any t ∈ T+

p \ V (B). If (21)
holds, it might still be the case that S ⊆ B for all optimal solutions S. This case can for example
be ruled out if a feasible solution S′ ( B is known that satisfies C(S′) ≤

∑
v∈V \V (B) p(v) (or by

more sophisticated criteria involving the terminal-regions decomposition of B). If such a S′ is
known, one can eliminate all edges of B from IPC .

To efficiently apply the previous two propositions, one would like to maximize the lower
bounds (19), and (20) respectively. However, as shown in Appendix A.6 and similar to a result
from [43], one obtains

Proposition 15. Given a vi ∈ V \ T+
p , finding a terminal-regions decomposition that maxi-

mizes (19) is NP-hard. The same holds for (20).

Thus, to compute a terminal-regions decomposition a heuristic approach will be used. Note
that the Voronoi decomposition method [45] yields a terminal-regions decomposition (by setting
H0 := T−p ) with the same bound (19), but in general not an optimal one. By using a simple local
search heuristic that checks edges between different regions and fully includes them in one of
the regions if advantageous, it is usually possible to improve the decomposition provided by the
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Voronoi method. In most cases one obtains even stronger results with the following adaptation of
Dijkstras algorithm to compute a terminal-regions decomposition from scratch: Put all t+i ∈ T+

p

in the initial priority queue (with distance value 0). Similar to Algorithm 1, we subtract from
the distance value of each vertex v ∈ V \ T+

p its prize p(v) when it is updated. Moreover, the

algorithm does not extend a region Hi from a vertex v ∈ Hi if an upper bound bi ∈ Q≥0 on
rpcH (t+i ) is already known and dHp(t+i , v) ≥ bi. Such upper bounds can be computed during
the execution of the algorithm. Subsequently, we apply the above mentioned local heuristic.
This procedure will be called terminal-regions decomposition (TRD) test. The corresponding
reduction method for biconnected components will be referred to as component terminal-regions
decomposition (CTRD) test.

4 Changing the problem class

A successful approach for the exact solution of the PCSTP is its transformation to some variant
of a directed Steiner tree problem [37, 39, 44], followed by the solution of a corresponding IP
or MIP formulation. This section uses the reduced-costs of the LP relaxation of a particular
IP formulation to find vertices that need to be part of any optimal solution—which allows for
another change of the problem class. The algorithmic part of this section is clustered around
a combinatorial criterion that associates with each proper potential terminal t a set of vertices
such that any optimal solution that contains one of these vertices also contains t.

4.1 Identifying roots

A cornerstone of the approach described in this section is the Steiner arborescence problem
(SAP), which is defined as follows: Given a directed graph D = (V,A), costs c : A→ Q≥0, a set
T ⊆ V of terminals and a root r ∈ T , a directed tree (arborescence) S ⊆ D of minimum cost∑
a∈A(S) c(a) is required such that for all t ∈ T the tree S contains a directed path from r to t.

Associating with each a ∈ A a variable x(a) that indicates whether a is contained in a solution
(x(a) = 1) or not (x(a) = 0), one can state the well-known directed cut (DCut) formulation [52]
for an SAP (V,A, T, c, r):

Formulation 1. Directed cut (DCut)

min cTx (22)

x(δ−(U)) ≥ 1 for all U ⊂ V, r /∈ U,U ∩ T 6= ∅, (23)

x(a) ∈ {0, 1} for all a ∈ A. (24)

In [52] also a dual-ascent algorithm for DCut was introduced that can quickly compute
empirically strong lower bounds. Dual-ascent is one of the reasons it has proven advantageous to
transform undirected problems such as the SPG to SAP [35, 41] and use DCut, but furthermore
such transformations can provide stronger LP relaxations, both theoretically and practically [17,
25]. For the PCSTP such a transformation is described in [44]. We additionally apply cost-
shifting [17, 37] in Step 2.

Transformation 2 (PCSTP to SAP).
Input: PCSTP (V,E, c, p)
Output: SAP (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, and M :=
∑
t∈T+

p
p(t).
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2. Define c′ : A′ → Q≥0 for all a = (v, w) ∈ A′ by

c′(a) :=

{
c({v, w})− p(w) if w ∈ T−p ,
c({v, w}) otherwise.

3. Add vertices r′ and v′0 to V ′.

4. For each i ∈ {1, ..., s+}:

(a) add arc (r′, ti) of weight M to A′;

(b) add node t′i to V ′;

(c) add arcs (ti, v
′
0) and (ti, t

′
i) to A′, both being of weight 0;

(d) add arc (v′0, t
′
i) of weight p(ti) to A′.

5. Define set of terminals T ′ := {t′1, ..., t′s+} ∪ {r
′}.

6. Return (V ′, A′, T ′, c′, r′).

The underlying idea of the transformation is to add a new terminal t′i for each original
potential terminal ti and provide additional arcs that make it possible to connect t′i from any
original potential terminal tj with cost p(tj). See Figure 5b for an example. Note that one needs
to compare any solution obtained by the above transformation with the best single vertex tree
in order to not miss a trivial optimal solution.

Each optimal solution to the SAP obtained from Transformation 2 can be transformed to an
optimal solution to the original PCSTP. For IPC = (V,E, c, p) one can therefore define the follow-
ing formulation, which uses the SAP (V ′, A′, T ′, c′, r′) obtained from applying Transformation 2
on IPC :

Formulation 2. Transformed prize-collecting cut (PrizeCut)

min c′
T
x−M + p(T−p ) (25)

x satisfies (23), (24) (26)

y({v, w}) = x((v, w)) + x((w, v)) for all {v, w} ∈ E (27)

y(e) ∈ {0, 1} for all e ∈ E. (28)

The y variables correspond to the solution to IPC ; note that removing them does not change
the optimal solution value, neither that of the LP relaxation.

Implied potential terminals

To avoid adding an artificial root (which entails big M constants and symmetry) in the trans-
formation to SAP, one can attempt to identify vertices that are part of all optimal solutions
to the original PCSTP. To this end, consider a PCSTP and let v, w ∈ V . Further, let W =
(v1, e1, v2, e2, ..., er, vr) with v1 = v and vr = w be a prize-constrained (v, w)-walk (as defined in
Section 3). Define the left-rooted prize-constrained length of W as:

~lpc(W ) := max{cpc(W (v, vi)) | vi ∈ V (W ) ∩ (T+
p ∪ {w})}. (29)

Furthermore, define the left-rooted prize-constrained (v, w)-distance as:

~dpc(v, w) := min{~lpc(W ) |W ∈ Wpc(v, w)}. (30)

Note that in general ~dpc is not symmetric. Definition (30) gives rise to
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Theorem 16. Let v, w ∈ V . If
p(v) > ~dpc(v, w) (31)

is satisfied, then every optimal solution that contains w also contains v.

Proof. Let S be a tree with w ∈ V (S) and v /∈ V (S). Further, let W = (v1, e1, ..., er, vr) be a

prize-constrained (v, w)-walk with ~lpc(W ) = ~dpc(v, w) and define a := min{k ∈ {1, ..., r} | vk ∈
V (S)} and b := min{k ∈ {a, a+ 1, ..., r} | vk ∈ T+

p ∪ {w}}. Note that

cpc(W (v, va)) ≤ cpc(W (v, vb)). (32)

Add the subgraph corresponding to W (v, va) to S, which yields a new connected subgraph S′.
If S′ is not a tree, make it one by removing redundant edges, without removing any node (which
can only decrease C(S′)). It holds that:

C(S′) ≤ C(S) + cpc(W (v, va))− p(v)

(32)

≤ C(S) + cpc(W (v, vb))− p(v)

≤ C(S) +~lpc(W )− p(v)

= C(S) + ~dpc(v, w)− p(v)

(31)
< C(S).

The relation C(S′) < C(S) implicates that any optimal solution that contains w also contains
v.

Corollary 17. Let v, w ∈ V . If
p(v) ≥ ~dpc(v, w) (33)

is satisfied and w is contained in an optimal solution, then v is also part of an optimal solution.

The left-rooted prize-constrained distance can be exemplified by means of Figure 4. It holds
that ~dpc(v0, v5) = 2, but ~dpc(v5, v0) = 3. A walk corresponding to ~dpc(v0, v5) is
(v0, {v0, v1}, v1, {v1, v2}, v2, {v2, v1}, v1, {v1, v3}, v3, {v3, v4}, v4, {v4, v5}, v5). Corollary 17 implies
that if v5 is part of an optimal solution, then there is an optimal solution that contains v0. The
converse does not necessarily hold. Indeed, v5 is not part of any optimal solution even though
v0 is (together with v2 and v3).

As for dpc, computing ~dpc is NP-hard (which can be shown analogously). However, one can
devise a simple algorithm for finding upper bounds, which is very similar to Algorithm 1. Let
t0 ∈ T+

p . The subsequently sketched algorithm provides a set of vertices T̄t0 such that ~dpc(t0, v) <

p(t0) for all v ∈ T̄t0 . Initialize distpcr[v] :=∞ for all v ∈ V \ {t0}, and set distpcr[t0] := 0. Start
Dijkstra’s algorithm with only t0 in the priority queue, but apply the following modifications:
First, update vertex w from vertex u if and only if both distpcr[u] + c({u,w}) < p(t0) and

distpcr[w] > distpcr[u] + c({u,w})− p(w). (34)

In this case set distpcr[w] := distpcr[u] + c({u,w})− p(w). No t ∈ Tp can be reinserted into the
priority queue after they have been removed. Finally, define T̄t0 := {u ∈ V | distpcr[u] < p(t0)}.
Note that t0 ∈ T̄t0 . This algorithm is basically the same as Algorithm 1, except for using p(v)
instead of c0 and using a slightly different update scheme.
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Figure 4: PCSTP instance. The prizes of the individual vertices are specified by p; only non-zero
prizes are shown.

Combining implications and reduced costs

By using LP information, the above algorithm can be combined with Transformation 2 to obtain
a criterion for potential terminals to be part of all optimal solutions. First, note that if a
separation algorithm or dual-ascent is applied, one obtains reduced costs for an LP relaxation
of DCut that contains only a subset of constraints (23). Second, observe that given an SAP
I ′ obtained from IPC with corresponding optimal solutions S′ and S, for ti ∈ Tp it holds that
ti ∈ V (S) if and only if (v′0, t

′
i) /∈ A′(S′). As a consequence one obtains

Proposition 18. Consider (V ′, A′, T ′, c′, r′) obtained by applying Transformation 2 on IPC . Let
Ũ ⊆ {U ⊂ V ′ | r′ /∈ U,U ∩ T ′ 6= ∅} and let L̃ be the objective value and c̃ the reduced costs of an
optimal solution to the LP:

min c′
T
x−M + p(T−p ) (35)

x(δ−(U)) ≥ 1 for all U ∈ Ũ , (36)

x(a) ∈ [0, 1] for all a ∈ A′. (37)

Moreover, let K be an upper bound on the cost of an optimal solution to IPC . Finally, let ti ∈ T+
p

and let T̄i ⊆ T+
p such that V (S) ∩ T̄i 6= ∅ ⇒ ti ∈ V (S) for each optimal solution S to IPC . If∑

j|tj∈T̄i

c̃((v′0, t
′
j)) + L̃ > K (38)

holds, then ti is part of all optimal solutions to IPC .

If a ti ∈ T+
p has been shown to be part of all optimal solutions, by building T̄i with Theorem 16

and using (38), Theorem 16 can again be applied—to directly identify further tj ∈ Tp that are

part of all optimal solutions by using the condition p(tj) > ~dpc(tj , ti). Identifying such fixed
terminals can considerably improve the strength of the techniques described in Section 3, which
usually leads to further graph reductions and the fixing of additional terminals.
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4.2 Rooting the problem: RPCSTP and SPG

Once at least one vertex has been shown to be part of at least one optimal solution, the PCSTP
can be reduced to a RPCSTP. Recall that we assume p(t) = 0 for all t ∈ Tf . We introduce the
following simple transformation (which is a straightforward extension of the single-root RPCSTP
transformation from [44]).

Transformation 3 (RPCSTP to SAP).
Input: RPCSTP (V,E, Tf , c, p) and tp, tq ∈ Tf
Output: SAP (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, r′ := tq.

2. Define c′ : A′ → Q≥0 for all a = (v, w) ∈ A′ by

c′(a) =

{
c({v, w})− p(w) if w ∈ T−p ,
c({v, w}) otherwise.

3. For each i ∈ {1, ..., s+}:

(a) add node t′i to V ′,

(b) add arc (ti, t
′
i) of weight 0 to A′,

(c) add arc (tp, t
′
i) of weight p(ti) to A′.

4. Define set of terminals T ′ := {t′1, ..., t′s+} ∪ Tf .

5. Return (V ′, A′, T ′, c′, r′).

A comparison of Transformation 2 and Transformation 3 is illustrated in Figure 5.
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from Transformation 2
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Figure 5: Illustration of a PCSTP instance (left) and the equivalent SAP obtained by Transfor-
mation 2 (middle). Given the information that the potential terminal with weight p = 7 is part
of at least one optimal solution, Transformation 3 yields the SAP depicted on the right. The
terminals of the SAPs are drawn as squares and the (two) potential terminals for the PCSTP
are enlarged.

For an RPCSTP (V,E, Tf , c, p) we define the transformed rooted prize-collecting cut (PrizeRCut)
formulation, similar to PrizeCut, based on the SAP instance (V ′, A′, T ′, c′, r′) obtained from
Transformation 3:
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Formulation 3. Transformed rooted prize-collecting cut (PrizeRCut)

min{c′Tx+ p(T−p ) | x satisfies (23), (24), (x, y) satisfies (27), y satisfies (28)}. (39)

By PrizeRCut(IRPC , tp, tq) we denote the PrizeRCut formulation for an RPCSTP IRPC
when using (fixed) terminals tp, tq in Transformation 3. While in [44] the root (tq) is fixed and
tp = tq holds, the choice of tp and tq in Transformation 3 might potentially affect the value of
the LP relaxation vLP (PrizeRCut(IRPC , tp, tq)). However, this value does not change, and even
more:

Theorem 19. Let IRPC be an RPCSTP and let tp, tq, tp̃, tq̃ be any of its fixed terminals. Define
R(ti, tj) := PLP (PrizeRCut(IRPC , ti, tj)). It holds that:

projy(R(tp, tq)) = projy(R(tp̃, tq̃)). (40)

Proof. Let (V,E, Tf , c, p) be the RPCSTP IRPC and denote the SAP resulting from applying
Transformation 3 on (IRPC , tp, tq) by (V ′, A′, T ′, c′, tq). Set D = (V ′, A′). Furthermore, let x, y
be a feasible solution to the LP relaxation of PrizeRCut(IRPC , tp, tq)—so (x, y) ∈ R(tp, tq). For
ease of presentation, we will use the notation xij instead of x((vi, vj)) for an arc (vi, vj). The
theorem will be proved in two steps: first by fixing tq and changing tp, and second by fixing tp
and changing tq. Note that due to symmetry reasons in both cases it is sufficient to show that
one projection is contained in the other.

1) projy(R(tp, tq)) = projy(R(tp̃, tq)) Let Ĩp̃ = (Ṽ , Ã, T̃ , c̃, tq) be the SAP resulting from ap-

plying Transformation 3 on (IRPC , tp̃, tq), and set D̃ := (Ṽ , Ã); note that Ṽ = V ′ and T̃ = T ′.

Define x̃ ∈ [0, 1]Ã by x̃((tp̃, t
′
i)) := x((tp, t

′
i)) for i = 1, ..., z (with the notation from Transforma-

tion 3) and by x̃ij := xij for all remaining arcs. Suppose that there is a U ⊂ Ṽ with tq /∈ U and

U ∩ T̃ 6= ∅ such that x̃(δ−
D̃

(U)) < 1. From x(δ−D(U)) ≥ 1 and the construction of x̃ it follows that

tp̃ ∈ U—otherwise x̃(δ−
D̃

(U)) ≥ x(δ−D(U)). For Uz := U \ {t′1, ..., t′z} one obtains

x(δ−D(Uz)) = x̃(δ−
D̃

(Uz)) ≤ x̃(δ−
D̃

(U)) < 1. (41)

Because of tq /∈ Uz and Uz ∩ T̃ ⊇ {tp̃} 6= ∅, one obtains a contradiction from (41). Therefore, x̃

satisfies (23) for the SAP Ĩp̃. Furthermore, ỹ defined by ỹ({vi, vj}) := x̃ij+x̃ji for all {vi, vj} ∈ E
satisfies ỹ = y.

2) projy(R(tp, tq)) = projy(R(tp, tq̃)) Define the SAP Ĩq̃ := (V ′, A′, T ′, c′, tq̃) (the result of
transforming (IRPC , tp, tq̃)). As there is only one underlying directed graph (namely D), in the
following we write δ− instead of δ−D. Let f be a 1-unit flow from tq to tq̃ such that fij ≤ xij for
all (vi, vj) ∈ A′. Define x̃ by x̃ij := xij + fji − fij for all (vi, vj) ∈ A′. Let U ⊂ V ′ such that
tq̃ /∈ U and U ∩ T ′ 6= ∅. If tq /∈ U , then f(δ−(U)) = f(δ+(U)) and so x̃(δ−(U)) = x(δ−(U)) ≥ 1.
On the other hand, if tq ∈ U , then f(δ+(U)) = f(δ−(U)) + 1, so

x̃(δ−(U)) ≥ x(δ−(U)) + 1 ≥ 1. (42)

Consequently, x̃ satisfies (23) for the SAP Ĩq̃. From xij + xji ≤ 1 for all (vi, vj) ∈ A′, it follows

that x̃ ∈ [0, 1]A
′
, and for the corresponding ỹ one verifies ỹ = y.

Consequently, if only the y variables are of interest, we write PrizeRCut(IRPC) instead of
PrizeRCut(IRPC , tp, tq). For the (heuristic) dual-ascent algorithm the choice of tp and tq still
matters, as it can change both lower bound and reduced costs, see Section 5.1.
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Theorem 19 has also consequences for two well-known IP formulations for SPG and NWSTP.
For SPG a widely used formulation is the bidirected cut formulation [52]: Replace each edge by
two anti-parallel arcs of the same weight as the original edge, and consider the resulting problem
as an SAP with an arbitrary terminal as the root. Solve this SAP by Formulation 1. As a direct
corollary of Theorem 19 one obtains a result that was already proved by [25].

Corollary 20. The optimal LP value of the bidirected cut formulation for SPG is independent
of the choice of the root.

For NWSTP a similar formulation has proven effective in practice [22, 37]: Transform the
problem to SAP in the same way as for SPG. Additionally, add the weight of each vertex to
all its incoming arcs. Note that when transforming an NWSTP to RPCSTP as described in
Section 2.2, and applying Transformation 3 to this RPCSTP, one obtains the same SAP as with
the procedure described above (given the same choice of the root). Thus, Theorem 19 directly
yields the following, new, result.

Corollary 21. The optimal LP value of the bidirected cut formulation for NWSTP is indepen-
dent of the choice of the root.

From the definitions of Transformation 2 and 3 one can acknowledge that switching from
PrizeCut to PrizeRCut (if possible) does not deteriorate (and can improve) the tightness of
the LP relaxation; due to its importance we formally state this observation in the following
proposition; a proof is given in Appendix A.7.

Proposition 22. For IPC = (V,E, c, p) let T0 ⊆ Tp such that T0 ⊆ V (S) for at least one optimal
solution S to IPC . Let IT0 := (V,E, T0, c, p) be an RPCSTP . With RT0 := PLP (PrizeRCut(IT0)),
R := PLP (PrizeCut(IPC)) it holds that

projy(RT0) ⊆ projy(R). (43)

Moreover, the inequality

vLP (PrizeCut(IPC)) ≤ vLP (PrizeRCut(IT0
)) (44)

holds and can be strict.

Finally, by combining the reductions to RPCSTP and SAP with the reductions techniques
described in Section 3, it is sometimes possible to either eliminate or fix each potential terminal.
Hence the instance becomes an SPG, which allows us to apply a number of additional algorithmic
techniques [22, 41].

5 Reduction-based exact solving

In the following, the integration of the individual PCSTP techniques within an exact solving ap-
proach will be described. Furthermore, the performance of the resulting solver will be discussed.

5.1 Interleaving the components within branch-and-cut

This section demonstrates that broad applicability of the PCSTP algorithms and techniques
introduced so far in a branch-and-cut framework. It also aims to highlight the strong interrelation
between the individual techniques.
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Presolving The exact solver described in this article is realized within the branch-and-cut
based Steiner tree framework SCIP-Jack [22]. SCIP-Jack already includes reduction tech-
niques for PCSTP [45] (in the sense of Section 3), but almost all of them have been replaced
by new methods introduced in this article. Besides PCD, EPCD, NSV, TRD, and CTRD (see
Section 3), the newly implemented tests include Non-terminal of Degree k [50] (by using the new
prize-constrained distance).

Probing In addition to the above presolving, we employ a technique similar to the probing [47]
approach for general MIPs: Instead of setting binary variables to 0 or 1, we fix or delete potential
terminals. By using the left-rooted prize-constrained distance, in each case it is often possible to
either fix or delete additional potential terminals—which can make further graph reductions by
means of the above presolving possible.

Domain propagation During the separation phase, SCIP-Jack uses the reduced costs pro-
vided by the LP solver and the best known upper bound to perform graph reductions [22]. These
reductions can allow for further ones my means of the algorithms described in the presolving
paragraph above. Therefore, we also reemploy these reduction techniques for domain propagation
(once a predefined number of edges has been deleted by the reduced cost criterion), translating
the deletion of edges and the fixing of potential terminals into variable fixings in the IP.

Dual heuristics SCIP-Jack includes the dual-ascent heuristic from [52] that provides a dual
solution as well as reduced costs. It is used in presolving (for reduced cost based reduction
tests), for primal heuristics (to find a subgraph that contains a good feasible solution), and for
computing initial cuts. Whenever a problem has been transformed to RPCSTP, we perform the
dual-ascent heuristic on several SAPs resulting from different choices of tp and tq, which usually
changes the lower bound (and the reduced costs) provided by the heuristic.

Primal heuristics SCIP-Jack includes several (generic) primal heuristics that can be applied
for PCSTP. Most compute new solutions on newly built subgraphs (e.g. by merging feasible
solutions). For these heuristics the new reduction techniques can often increase the solution
quality. In turn, an improved upper bound can trigger further graph reductions (e.g. by the
terminal-regions decomposition) or to fix additional terminals (by means of Proposition 18).
Additionally, we have implemented a new primal heuristic that starts with a single (potential
or fixed) terminal and connects other proper potential terminals ti to the current subtree S

if minv∈V (S)
~dpc(ti, v) ≤ p(ti) (only upper bounds on ~dpc are used). At each iteration a ti ∈

T+
p \ V (S) is chosen such that p(ti) − ~dpc(ti, v) is maximized. A similar approach has been

implemented as a local search heuristic.

LP and cutting-planes Also the LP kernel interacts with the remaining components: By
means of the prize-constrained distances and upper bounds provided by the heuristics it is usually
possible to switch to the PrizeRCut formulation. In turn, the reduced costs and lower bound
provided by an improved LP solution can be used to reduce the problem size [45]—which can
even enable further prize-constrained walk based reductions. Moreover, besides the separation
of (23), already implemented in SCIP-Jack, we also separate constraints for TransRCut of the
form

x(δ−(v)) + x((tp, t
′
i)) ≤ 1 ti ∈ T+

p \ Tf , v ∈ {u ∈ V | ~dpc(ti, u) < p(ti)},
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with tp and t′i as defined in Transformation 3. The constraints represent the implication that

v ∈ V (S) ⇒ t ∈ V (S) for any optimal solution S if ~dpc(t, v) < p(t). Corresponding constraints
are separated for TransCut.

Restart In the course of the solution process one can regularly either delete or fix each po-
tential terminal—through the combination of presolving, primal heuristics, the left-rooted prize-
constrained distance, and graph transformation and LP methods. In such a case one might
restart the solution process and use the SPG solver of SCIP-Jack [22]. The following restricted
restart strategy turned out to be empirically successful: If a PCSTP instance is transformed
to SPG at the root node of the branch-and-bound tree, we run aggressive SPG presolving and
translate it into variable fixings in the IP formulation (although it should be noted that not all
presolving reductions can be translated into variable fixings). In the remainder of the solution
process SPG specific primal heuristics and reduction techniques are used, but the remaining
algorithmic components are left unchanged. If all potential terminals are fixed already during
presolving, a full restart is initiated, including full SPG-specific presolving, and the instance is
handled entirely as an SPG.

Branching Finally, branching is performed on vertices—by rendering the vertex to branch on
a fixed terminal (and transforming the problem to RPCSTP if not already done) in one branch-
and-bound child node and removing it in the other. Branching on vertices is already described for
SPG in the literature [41]. As in probing, the implications from the left-rooted prize-constrained
distance often set the state for further graph changes, resulting in (local) variable fixings.

5.2 Computational results

To the best of our knowledge, the three currently fastest exact algorithms for PCSTP are mozart-
balls [20] (the winner of the exact PCSTP categories at the 11th DIMACS Challenge), SCIP-
Jack [22], and dapcstp [37]. While no solver dominates on all benchmarks, the branch-and-
bound solver dapcstp is very competitive, and on several test-sets orders of magnitude faster
than mozartballs—it is even faster than state-of-the-art heuristic methods [21]. Thus, dapcstp,
which is publicly available [36], will in the following be used for comparison. Furthermore, we
will compare the new PCSTP solver against SCIP-Jack without the new methods introduced
in this article. We will refer to this version as SCIP-Jack-base. Notably, SCIP-Jack-base is
faster than the version of SCIP-Jack described in [22, 45], since the implementation of existing
methods (e.g. data structures and cache-efficiency) has been improved.

The computational experiments were performed on Intel Xeon E3-1245 CPUs with 3.40 GHz
and 32 GB RAM. For both SCIP-Jack-base and the new solver, CPLEX 12.8 [29] is employed as
underlying LP solver. Furthermore, only single-thread mode is used, as dapcstp does not support
multiple threads. For the following experiments 12 well-known benchmark test-sets are used, as
detailed in Table 1. ACTMOD and HIV contain originally MWCSP and NWSTP instances,
which have been transformed to PCSTP by using the methods described in Section 2.2.

Strength of preprocessing

Table 2 shows the strength of the original PCSTP reduction algorithms of SCIP-Jack [45],
and the improved algorithms developed as part of this article. We provide the average number
of remaining vertices and edges per test set, computed as the arithmetic mean. It can be seen
that the new techniques are considerably stronger for most tests sets that are not completely or
almost completely reduced by the previous techniques. An exception are the test sets PUCNU
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Table 1: Details on PCSTP tests sets.

Name Instances |V | |E| Status Description

Cologne 29 741 - 1810 6332 - 16794 solved Instances from fiber optic
network design for German cities [38].

CRR 80 500 - 1000 625 - 25000 solved Mostly sparse instances, based on
C and D test-sets of the SteinLib [38].

ACTMOD 8 2034 - 5226 3335 - 93394 solved Instances from integrative
biological network analysis [15].

RANDOM 68 200 - 14000 1575 - 112369 solved Randomly generated instances
originally published in [6].

E 40 2500 3125 - 62500 solved Mostly sparse instances originally for
SPG, introduced in [38].

HANDS 20 39600 - 42500 78704 - 84475 solved
 Images of hand-written text derived

from a signal processing problem [14].
HANDB 28 158400 - 169800 315808 - 338551 unsolved

I640 100 640 960 - 204480 unsolved Random graphs with incidence weights.
Introduced at 11th DIMACS Challenge.

PUCNU 18 64 - 4096 192 - 28512 unsolved Instances derived from PUC set for
SPG. From 11th DIMACS Challenge.

H2 14 64 - 4096 192 - 24576 unsolved Hard instances based on hypercubes.
Introduced at 11th DIMACS Challenge.

HIV 2 386 - 205717 1477 - 2466001 unsolved HIV mutation networks.
Introduced at 11th DIMACS Challenge.

MA 20 1000000 10000000 unsolved Random instances with Tp = V .
Introduced in [49].

and H2. However, these sets consist of instances that have been designed or carefully handpicked
to defy reduction techniques (as well as linear programming based algorithms), see [46].

Previous PCSTP reduction techniques are already rather sophisticated, see e.g. [39, 45, 50],
and especially dual-ascent based methods [37, 44] can have a large impact. The new reduction
algorithms developed in this article, especially PCD and EPCD, have in several cases a drastic
impact on instances that are still quite large after the application of the methods from [45]. One
example is the hardest instance from the E set, E18-B, which is reduced from around 11 thousand
to less than six thousand edges. Similarly, the size of several of the hardest MA instances is more
than halved. Finally, the slightly worse performance of the new reductions on the I640 instances
can be explained by the fact that the new reductions algorithms are executed less exhaustively
than their predecessors (to improve the overall run-time).

Table 2: Average problem size after application of original and improved reduction algorithms.

original reductions new reduction

Class Vertices[%] Edges[%] Vertices[%] Edges[%]

Cologne 0 0 0 0
CRR 2.9 0.3 1.6 0.1
ACTMOD 0.1 0.0 0.1 0.0
HANDS 0.1 0.1 0.1 0.0
RANDOM 2.2 0.6 1.0 0.3
E 7.2 1.8 5.4 0.6
HANDBD 5.8 5.8 3.1 3.1
I640 37.2 31.5 38.9 32.5
PUCNU 74.9 65.1 72.6 63.3
H2 92.4 92.3 91.1 89.0
HIV 10.1 9.1 0 0
MA 5.3 7.0 2.3 2.5
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Branch-and-cut results, and comparisons

This subsection provides computational results of the entire branch-and-cut framework developed
for this article. Table 3 provides aggregated results of the experiments with a time limit of two
hours for test-sets that contain only instances with less than a million edges, and a time limit
of 24 hours for the remaining (two) sets. The first column shows the test-set considered in the
current row. The second columns shows the number of instances in the test-set. Columns three
to five show the shifted geometric mean [1] (with shift 1) of the run time taken by the respective
solvers: First, dapcstp, second, SCIP-Jack-base, third, the new solver. The next three columns
provide the maximum run time, the last thee columns the number of solved instances.

Table 3: Computational comparison of the solvers dapcstp [37], SCIP-Jack-base, denoted by
base, and the solver described in this article, denoted by new.

mean time [s] maximum time [s] # solved

test-set # dapcstp base new dapcstp base new dapcstp base new

Cologne 29 0.1 0.0 0.0 0.2 0.3 0.1 29 29 29
CRR 80 0.2 0.2 0.1 4.9 1.7 0.7 80 80 80
ACTMOD 8 0.8 0.3 0.1 3.3 1.4 0.9 8 8 8
HANDS 20 2.5 2.2 0.2 54.1 14.5 2.9 20 20 20
RANDOM 68 0.8 2.6 0.2 78.6 >7200 19.4 68 67 68
E 40 2.0 0.6 0.2 >7200 76.4 18.5 37 40 40
HANDB 28 32.9 35.0 6.9 >7200 >7200 >7200 25 25 26
I640 100 9.2 21.4 7.8 >7200 >7200 >7200 90 80 91
PUCNU 18 441.7 177.1 58.2 >7200 >7200 >7200 7 10 14
H2 14 525.5 2210.0 708.6 >7200 >7200 >7200 5 3 6

HIV 2 293.0 293.0 83.3 >86400 >86400 7100.2 1 1 2
MA 20 >86400 >86400 9080.0 >86400 >86400 29869.3 0 0 20

The new solver is on all but one test-set the fastest one, both in terms of the maximum and
average run time. Furthermore, it solves 34 more instances than dapcstp and 41 more instances
than SCIP-Jack-base to optimality. The first three test-sets can be solved within seconds by
all solvers, with dapcstp being the slowest—up to 7 times slower than the new solver both for the
mean and maximum time. One the next two sets, HANDS and RANDOM, the new solver is more
than an order of magnitude faster than the respectively slowest solver, both for the maximum
and mean run time. On RANDOM, the new solver also solves all instances within 20 seconds,
whether SCIP-Jack-base cannot even solve all instances within two hours. For the next five
test-sets, the new solver again consistently dominates, with the exception of test-set H2, where
dapcstp is slightly faster with respect to the shifted geometric mean. However, the new solver
manages to solve more instances on each of the five test-sets than dapcstp. A striking example
is the PUCNU test-set, where the new solver can solve twice as many instances. Finally, for the
two large-scale test-sets HIV and MA the new solver also shows a strong performance. On the
first test-set, the new solver is able so solve the hiv-1 instance, which contains more than two
million edges, to optimality in less than two hours. The best previously known result from the
literature was achieved in a 72 hours run on a large-memory machine [22]. Notably, hiv-1 has
been the largest instance from the 11th DIMACS Challenge solved to optimality so far. For the
MA instances, with 10 million edges each, both SCIP-Jack-base and dapcstp fail to solve any
instance. In contrast, the new solver can solve all of them, some even in less than two hours. To
the best of the authors’ knowledge these are by far the largest PCSTP instances that have been
solved to optimality in the literature to date.
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Table 4: Improvements on unsolved DIMACS instances.

Name gap [%] new UB previous UB
hiv-1 opt 656955.33150 656970.94
cc7-3nu opt 270 271
cc10-2nu opt 167 168
hc9u2 opt 190 190
handbd13 0.0 13.18549 13.19699
handbi13 0.1 4.24964 4.251
cc11-2nu 0.8 303 304
cc12-2nu 0.7 563 565
hc9p 1.1 3015 3043
hc9p2 1.4 30228 30242
hc10p 1.4 59778 59866
hc10p2 1.5 59804 59930
hc11p 1.6 118729 119191
hc11p2 1.7 118869 119236
i640-342 0.4 29790 29806
i640-343 0.5 30038 30056
i640-344 0.4 29879 29921
i640-345 0.5 29984 29991

Newly solved instances

Finally, we report on results on previously unsolved instances from the 11th DIMACS Challenge.
The results were obtained with a time limit of 24 hours. All improved instances are listed in
Table 4, with the first column giving the name of the instance, the second its primal-dual gap, the
third the improved found bound, and the fourth the previously best known one.2 The previously
best known solutions are from the 11th DIMACS Challenge and the articles [9, 20, 21, 22, 37],
respectively.

Four DIMACS instances can be solved to optimality, three of them, hiv-1, cc10-2nu, and
hc9u2, within the standard time limit of two hours. The remaining instance cc7-3nu lies just
above the time limit, with 8012 seconds. Furthermore, the new solver improves the best known
upper bounds for another 14 instances, which comprises more than half of the still unsolved
PCSTP instances from the 11th DIMACS Challenge.

6 Conclusion and outlook

This article has introduced a number of techniques and algorithms that aim at faster exact solu-
tion of PCSTP. Based on the newly shown fixed-parameter tractability of PCSTP with respect
to the number of proper potential terminals, a key element has been the distinction of these
vertices within most new algorithms. As an interesting byproduct, we have also demonstrated
that any PCSTP can be transformed to an SPG by adding s+ 1 terminals. Besides the theoret-
ical analyses of the new methods, a central result of this article is the integration of the various
methods into an exact branch-and-cut framework. The resulting solver significantly pushes the
boundaries of computational tractability for the PCSTP, being able to solve instances with up
to 10 million edges—over 30 times larger than any PCSTP instance solved in the literature so
far.

A computationally promising route for further research would be to design and implement a
PCSTP version of the extended reduction paradigm [42], based on the techniques described here.

2The solution of the instance cc7-3nu is already noted in the report [24], but is based on techniques described
in this article (which have not been published before).
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Additionally, further improving the LP relaxation seems to hold a high potential, both from a
computational and theoretical point of view. As to theoretical results, one might also further
improve the PCSTP complexity bounds.

Finally, the developments described in this article have been integrated into the SCIP-Jack
framework and will be published as part of its next release—with open source code and freely
available for academic use. In this way, further algorithmic developments can be built on the
work described in this article.
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A Further definitions and proofs

A.1 The bottleneck Steiner distance

The bottleneck Steiner distance for PCSTP was originally introduced in [50]. Let v, w ∈ V be
two distinct vertices. Denote by P(v, w) the set of all simple paths between v and w. For a
simple path P and vertices x, y ∈ V (P ) let P (x, y) be the subpath of P between x and y. Define
the Steiner distance of path P as

SD(P ) := max
x,y∈V (P )

∑
e∈E(P (x,y))

c(e)−
∑

v∈V (P (x,y))\{x,y}

p(v). (45)

With this definition at hand, define the bottleneck Steiner distance between v and w as

B(v, w) := min{SD(P ) | P ∈ P(v, w)}. (46)

A.2 Proof of Theorem 1

The proof of Theorem 1 is based on the well-known dynamic programming algorithm for SPG
by [16] that runs in O(3|T |n+2|T |n2+n2 log n+mn), where T is the set of terminals. We will refer
to this algorithm as Dreyfus-Wagner for short. See also [10] for an extension of Dreyfus-Wagner
to the node-weighted Steiner tree problem. Dreyfus-Wagner exploits the fact that any optimal
Steiner tree S for an SPG (G,T, c), with T 6= ∅ and positive c, can be split at any v ∈ V (S) into
two non-empty trees S1 and S2 such that T1 := V (S1) ∩ T 6= ∅, T2 := V (S2) ∩ T 6= ∅, and:

1. T1 ∩ T2 ⊆ {v} and T1 ∪ T2 = T ,

2. S1 is optimal for (G,T1 ∪ {v}, c), and S2 is optimal for (G,T2 ∪ {v}, c).

We show that a similar property holds for PCSTP. To this end, consider the RPCSTP If , defined
in Section 2.1. Moreover, we will consider only optimal (PCSTP and RPCSTP) solutions that
contain only proper potential or fixed terminals as leafs. If no such solution exists, there is a
trivial optimal solution, which can be found in linear time. For any T ⊆ Tf we denote by If (T )
the RPCSTP (G,T, c, p); so in particular If (Tf ) = If . For If we obtain the following result.

Lemma 23. Let T1, T2 ⊆ Tf be non-empty with T1 ∪T2 = Tf . Let S1, S2 be trees in G such that
all leaves of S1 are contained in T1, all leaves of S2 are contained in T2, and S1 ∩ S2 6= ∅. In
this case, there is a tree S ⊆ S1 ∪ S2 such that Tf ⊆ V (S), and

C(S) ≤ C(S1) + C(S2)−
∑
u∈V

p(u) + min
u∈V (S1∩S2)

p(u). (47)

Proof. Initially, set S := S1 ∪ S2 and Ŝ := S1 ∩ S2. Let v0 ∈ V (Ŝ) such that p(v0) =

minu∈V (Ŝ) p(u). Let ~S1 be the arborescence corresponding to S1 that is rooted in v0. De-

note its arcs by A(~S1). For any w ∈ V (Ŝ) \ {v0} there is an (incoming) arc (u,w) ∈ A(~S1).

Let E′S := {{u,w} ∈ E(S1) \ E(S2) | w ∈ V (Ŝ) ∧ (u,w) ∈ A(~S1)} and E′′S := {{u,w} ∈ E(Ŝ) |
(u,w) ∈ A(~S1)}. Note that |E′S∪̇E′′S | = |V (Ŝ)| − 1. Because of T+

p = ∅ it holds that∑
e∈E′S

c(e) +
∑
e∈E′′S

c(e) ≥
∑

u∈V (Ŝ)\{v0}

p(u). (48)
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Because of E′′S ⊆ E(Ŝ), inequality (48) implies∑
e∈E′S

c(e) +
∑
e∈Ŝ

c(e) ≥
∑

u∈V (Ŝ)\{v0}

p(u). (49)

Note that any e ∈ E′S lies in a cycle of S and that each cycle of S contains an e ∈ E′S . Remove
E′S from S to obtain a new tree S̃ (which contains Tf ). It holds that:

C(S1) + C(S2) = C(S) +
∑
e∈Ŝ

c(e) +
∑
u∈V

p(u)−
∑

u∈V (Ŝ)

p(u) (50)

= C(S̃) +
∑
e∈E′S

c(e) +
∑
e∈Ŝ

c(e) +
∑
u∈V

p(u)−
∑

u∈V (Ŝ)

p(u) (51)

(49)

≥ C(S̃) +
∑
u∈V

p(u)− p(v0) (52)

= C(S̃) +
∑
u∈V

p(u)− min
u∈V (S1∩S2)

p(u). (53)

Thus, S̃ satisfies (47).

This lemma sets the stage for the desired result:

Lemma 24. Let S be an optimal solution to If and choose any, arbitrary but fixed, v ∈ V (S).
Further, let S1, S2 ⊆ S be trees such that V (S1 ∩ S2) = {v} and S1 ∪ S2 = S. Define T1 :=
(Tf ∩ V (S1)) ∪ {v} and T2 := (Tf ∩ V (S2)) ∪ {v}. It holds that S1 is an optimal solution to
If (T1), and S2 to If (T2). Furthermore:

C(S) = C(S1) + C(S2)−
∑

u∈V \{v}

p(u) (54)

holds.

Proof. First, observe that (54) holds because of V (S1 ∩ S2) = {v}. Suppose S1 is not optimal.
Thus, there exists a tree S̃1 such that all its leaves are contained in T1 and such that

C(S̃1) < C(S1). (55)

We also assume that all leaves of S2 are contained in T2; note that because of T+
p = ∅ one can

always modify S2 to satisfy this property without increasing C(S2). By Lemma 23 there exists
a S̃ ⊆ S̃1 ∪ S2 such that Tf ⊆ V (S̃) and

C(S̃) ≤ C(S̃1) + C(S2)−
∑
u∈V

p(u) + p(v) (56)

(55)
< C(S1) + C(S2)−

∑
u∈V

p(u) + p(v) (57)

= C(S), (58)

which is a contradiction to the assumption that S is optimal.
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Based on the proceeding lemma, we can apply an extension of Dreyfus-Wagner to solve If .
We define an slight modification of the prize-collecting cost from Section 3.1. For a (v, w)-walk
W let

c′pc(W ) :=
∑

e∈E(W )

c(e)−
∑

u∈V (W )\{w}

p(u). (59)

Let W(v, w) be the set of all finite walks from v to w and define

d′pc(v, w) := min{c′pc(W ) |W ∈ W(v, w)}. (60)

Note that if T+
p = ∅, it is sufficient to consider only simple paths instead of walks. The next

subsection concludes the proof of Theorem 1.

A.2.1 Proof of Proposition 2

Proof. Initially, choose an arbitrary t0 ∈ Tf and set T−f := Tf \ {t0}. For every pair (v, w) of
vertices, set

g({w}, v) := d′pc(v, w) +
∑

u∈V \{w}

p(u). (61)

For i = 2, ..., |T−f | define the functions f and g recursively as follows. For Ti ⊆ T−f with |Ti| = i
set

f(Ti, w) = min
T(Ti|T 6=∅

(
g(T,w) + g(Ti \ T,w)−

∑
u∈V \{w}

p(u)
)

(62)

and
g(Ti, v) = min

u∈V

(
f(Ti, u) + d′pc(v, u)

)
. (63)

These values can be computed by a dynamic programming algorithm.

Claim 1: After the termination of the above dynamic programming algorithm it holds that
g(T−f , t0) = C(S) for any optimal solution S to If .

We will show by induction on i ∈ {1, ..., |T−f |} that for any Ti ⊆ T−f with |Ti| = i, and any
v ∈ V \ Ti it holds that

g(Ti, v) = C(S) (64)

for any optimal solution S to If (Ti∪{v}). First, one observes from the definition of d′pc that (64)

holds for any t ∈ T−f and any v ∈ V \ {t}. Next, let i ∈ {2, ..., |T−f |}. Assume that (64) holds

for all non-empty T ⊂ T−f with |T | < i. Choose any Ti ⊆ T−f with |Ti| = i, and choose any
v ∈ V \ Ti. Let S be an optimal solution to If (Ti ∪ {v}). Split S as follows: If δS(v) = 1 let
P := (v, ∅), otherwise let P ⊆ S be the path from v to the first vertex w ∈ V (S) with δS(w) > 2
or w ∈ Ti. Observe that

C(P ) = d′pc(v, w) +
∑

u∈V \{w}

p(u). (65)

Let S̃ := (V (S\P )∪{w}, E(S\P )). Because of Lemma 24, S̃ is an optimal solution to If (Ti∪{w})
and P to If ({v, w}). Further:

C(S) = C(S̃) + C(P )−
∑

u∈V \{w}

(65)
= C(S̃) + d′pc(v, w). (66)

Moreover, S̃ can be split into two trees S̃1 and S̃2 such that S̃1 ∩ S̃2 = {w}, S̃1 ∪ S̃2 = S̃, and
S̃1 ∩ Ti 6= ∅, S̃2 ∩ Ti 6= ∅. With T̃1 := (Ti ∩ S̃1) ∪ {w} and T̃2 := (Ti ∩ S̃2) ∪ {w}, it holds by
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Lemma 24 that S̃1 is an optimal solution to Tf (T̃1) and S̃2 to Tf (T̃2). Lemma 24 furthermore
implies that:

f(Ti, w) ≤ C(S̃1) + C(S̃2)−
∑

u∈V \{w}

p(u). (67)

From the optimality of S̃ combined with Lemma 23 we obtain:

f(Ti, w) = C(S̃1) + C(S̃2)−
∑

u∈V \{w}

p(u). (68)

Similarly, from Lemma 23 and Lemma 24 we obtain.

g(Ti, w)
(68)

≤ C(S̃1) + C(S̃2) + d′pc(v, w) (69)

= C(S̃)−
∑

u∈V \{w}

p(u) + d′pc(v, w) (70)

(66)
= C(S). (71)

Equality follows from Lemma 23 and the optimality of S.

Claim 2: The above dynamic programming algorithm terminates in time O(3|Tf |n + 2|Tf |n2 +
n2 log n+mn).

For i ≥ 2 the algorithm differs from Dreyfus-Wagner essentially only in the weight functions of
the trees. For i = 1 one observes the following. For a given v ∈ V , the distances d′pc(v, w) on If to
all w ∈ V can be computed in time O(n log n+m) by using an adaptation of Dijkstra’s algorithm,
similar to Algorithm 1, that runs in time O(n log n+m). Thus, the distances for all pairs (v, w)
can be computed in O(n2 log n+mn). Consequently, the overall dynamic programming algorithm
algorithm has the same run time as Dreyfus-Wagner.

A.3 Proof of Proposition 10

Proof. First, one can verify from the definition of Algorithm 1 that if it returns deletable, then
c({v, w}) ≥ d−pc(v, w) holds—also without condition (16). To show the converse, assume in the
following that c({v, w}) ≥ d−pc(v, w). To simply the presentation it will also be assumed that

p(v) = 0, (72)

which does neither change d−pc(v, w), nor the behavior of Algorithm 1. Further, note that because
of (16) one can assume that W is a (simple) path. Otherwise, replace W by a shortest path
(with respect to the edge costs c) between v and w in the subgraph corresponding to W . Indeed,
because of (16) the prize-constrained length of this shortest path is not higher than that of W . As
before, write W = (v1, e1, v2, e2, ..., er, vr) with v1 = v and vr = w. Condition (16) furthermore
implies that

lpc(W (v, vk+1)) = lpc(W (v, vk)) + c({vk, vk+1})− p(vk) (73)

for any k ∈ {1, 2, ..., r − 1}.
In the following, we will show that

distpc[vk] ≤ lpc(W (v, vk))− p(vk) (74)
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holds for any k ∈ {1, ..., r − 1}. Thereby, the proof is concluded: Algorithm 1 can in this case
reach w from vr−1 due to

distpc[vr−1] + c({vr−1, vr})
(74)

≤ lpc(W (v, vr−1))− p(vr−1) + c({vr−1, vr}) (75)

(73)
= lpc(W (v, vr)) (76)

= d−pc(v, w) (77)

≤ c({v, w}). (78)

Thus, the algorithm returns deletable.
We will show (74) by induction on k = 1, ..., r− 1. First, one readily verifies that (74) holds

for k = 1. Next, let k ∈ {1, ..., r − 2} and assume that (74) holds for k. Suppose

distpc[vk+1] > lpc(W (v, vk+1))− p(vk+1). (79)

Now perform Algorithm 1 until distpc[vk] satisfies (74). At this point, forbidden[vk+1] must have
been set to true, otherwise one could update distpc[vk+1] from vertex vk: Indeed, distpc[vk] +
c({vk, vk+1}) ≤ c({v, w}) holds, which can be shown equivalently to (75)-(78). Thus, also the
second condition for updating distpc[vk+1] from vertex vk is fulfilled. For the third (and last
condition), one obtains:

distpc[vk] + c({vk, vk+1})− p(vk+1)
(74)

≤ lpc(W (v, vk)− p(vk) + c({vk, vk+1})− p(vk+1) (80)

(73)
= lpc(W (v, vk+1)− p(vk+1) (81)

(79)
< distpc[vk+1]. (82)

If forbidden[vk+1] is set to true, the vertex vk+1 must already have been removed from Q
in Algorithm 1 (which happens exactly one time, because at this point vk+1 will be marked as
forbidden). We will show (by induction) for j = 1, ..., k that vj satisfies (74) at the point when
vk+1 is removed from Q. In this way, we obtain a contradiction, because if vk satisfies (74), then

distpc[vk]
(74)

≤ lpc(W (v, vk)− p(vk) (83)

(73)
= lpc(W (v, vk+1)− c({vk, vk+1}) (84)

(16)

≤ lpc(W (v, vk+1)− p(vk+1) (85)

(79)
< distpc[vk+1]. (86)

This implies that vk would have been removed before vk+1 from Q. Consequently, the algorithm
would have updated distpc(vk+1) to distpc[vk] + c({vk, vk+1})− p(vk+1), and (74) would hold for
vk+1, as shown in (80),(81).

We conclude with the induction for j = 1, ..., k. By definition, v1 satisfies (74) when vk+1 is
removed from Q. Assume that the same holds for vj with j ∈ {2, ..., k − 1}. Then vj must have
been removed from Q before vk+1, because distpc[vj ] < distpc[vk+1] holds, which can be shown
similarly to (83)-(86). Thus, one could update distpc[vj+1] from vj to

distpc[vj+1] := distpc[vj ] + c({vj , vj+1})− p(vj+1)
(73),(74)

≤ lpc(W (v, vj+1))− p(vj+1), (87)

which shows that vj+1 satisfies (74).
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A.4 Proof of Proposition 12

Proof. Initially, define b : V → {0, 1, 2, ..., s+} such that v ∈ Hb(v) for all v ∈ V . Assume that
vi is contained in all optimal solutions. This assumption implies that |T+

p | ≥ 2. Let S be any
optimal solution. Denote the (unique) path in S between vi and any tj ∈ V (S) ∩Hp by Qj and
the set of all such paths by Q. First, we can assume that |Q| ≥ 2, because if Q was just contained
in one path, say Qk, then we could simply remove vi from Qk to obtain another optimal solution.
Second, if a vertex vk is contained in two distinct paths in Q, the subpaths of these two paths
between vi and vk coincide. Otherwise there would need to be a cycle in S. Additionally, there
are at least two paths in Q having only the vertex vi in common. Otherwise, due to the precedent
observation, all paths would have one edge {vi, v′i} in common. This edge could be discarded to
yield a tree of smaller cost than C(S).

Let Qk ∈ Q and Ql ∈ Q be two distinct paths with V (Qk) ∩ V (Ql) = {vi} such that∣∣{{v, w} ∈ E(Qk) ∪ E(Ql) | b(v) 6= b(w)}
∣∣ (88)

is minimized. Define Q− := Q\ {Qk, Ql}. Consider a (t, vi)-path Qr ∈ Q−. If t ∈ T+
p , let Q′r be

the subpath of Qr between t and the first vertex not in the region of t. Suppose that Qk has an
edge e ∈ E(S) in common with a Q′r: Consequently, Ql cannot have any edge in common with
Qr, because this would require a cycle in S. Furthermore, Qk and Qr have to contain a joint
subpath including vi and e. But this would imply that Qk contained at least one additional edge
{vx, vy} with b(vx) 6= b(vy). Thus, Qr would have initially been selected instead of Qk.

Following the same line of argumentation, one validates that Ql has no edge in common with
any Q′r. Conclusively, the paths Qk, Ql, and all Q′r are edge-disjoint. Next, we use these paths
to derive the lower bound (19) on C(S). To this end we introduce additional notation. First,
denote the union of Qk, Ql, and all Q′r by Q. Define SQ := S ∩Q. Because for each non-proper
potential terminal in V (S) \V (SQ) there is one incident edge in E(S) \E(SQ), and because this
mapping can be chosen to be bijective, it holds that

c(E(S) \ E(SQ))− p((V (S) \ V (SQ)) ∩ T−p ) ≥ 0. (89)

From the definitions of dHp and rpcH one infers

c(E(SQ)) + p(T+
p \ V (S))− p(V (SQ) ∩ T−p ) (90)

≥
s+−2∑
q=1

rpcH (t+q ) + dHp(vi, v
Hp

i,1 ) + dHp(vi, v
Hp

i,2 )− p(vi). (91)
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Finally, one obtains:

C(S) = c(E(S)) + p(V \ V (S))

= c(E(S)) + p(T+
p \ V (S)) + p(T−p \ V (S))

= c(E(S)) + p(T+
p \ V (S)) + p(T−p )− p(V (S) ∩ T−p )

= c(E(S)) + p(T+
p \ V (S)) + p(T−p )

− p(V (SQ) ∩ T−p )− p((V (S) \ V (SQ)) ∩ T−p )

= c(E(SQ)) + c(E(S) \ E(SQ)) + p(T+
p \ V (S)) + p(T−p )

− p(V (SQ) ∩ T−p )− p((V (S) \ V (SQ)) ∩ T−p )

(89)

≥ c(E(SQ)) + p(T+
p \ V (S)) + p(T−p )− p(V (SQ) ∩ T−p )

(90)

≥
s+−2∑
q=1

rpcH (t+q ) + dHp(vi, v
Hp

i,1 ) + dHp(vi, v
Hp

i,2 )− p(vi) + p(T−p )

=

s+−2∑
q=1

rpcH (t+q ) + dHp(vi, v
Hp

i,1 ) + dHp(vi, v
Hp

i,2 ) + p(T−p \ {vi}).

The first equality is just the definition of C(S). The second inequality follows from Tp = T+
p ∪̇T−p .

The next three equalities result from splitting up individual sums. The last equality follows from
the fact that either vi ∈ T−p or p(vi) = 0.

A.5 Proof of Proposition 14

Proof. Throughout this proof it will be assumed that no trivial (i.e. single-vertex) optimal
solution exists—otherwise, the proof is already complete. Note that this assumption implies
that T+

p 6= ∅.
First, assume that T+

p ∩B = ∅. Thus, T+
p ⊆ R. Recall that because no trivial solution exists,

there is at least one optimal solution S whose leaves are a subset of T+
p . Consequently, S cannot

contain any edge of B. Otherwise, from the ends of this edge there would be two disjoint paths
to T+

p , and thus there would be at least two gate vertices from B to R.
Second, assume that T+

p ∩B 6= ∅. Let S be a feasible solution with S * B and E(S)∩E(B) 6=
∅. We will show that a feasible solution S′ with C(S′) ≤ C(S) exists, such that either S′ ⊆ B or
E(S′)∩E(B) = ∅. In this way, the proof is concluded. Assume that all leaves of S are contained
in T+

p , otherwise one can always choose a S of no higher cost that satisfies this property. Because
this assumption implies S ∩R 6= ∅, the gate vertex vi from B to R is contained in S. Moreover,
any path Q ⊆ S starting from vi satisfies either E(Q) ∩E(B) = ∅ or E(Q) ⊆ E(B). Otherwise,
there would be at least two gate vertices from B to R. Let SB be the subgraph of S that
consists of all paths in S from vi to vertices in B. The above considerations imply that the
subgraph S′ obtained by removing SB from S and adding vi is connected. Similar to the proof
of Proposition 12 one can now show that

c(E(SB)) + p(X \ V (SB)) ≥ L. (92)
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Therefore, it holds that

C(S) = c(E(S)) + p(V \ V (S))

= c(E(S′)) + p((V \ V (S′)) \X) + c(E(SB)) + p(X \ V (SB))

(92)

≥ c(E(S′)) + p((V \ V (S′)) \X) + L

(21)

≥ c(E(S′)) + p((V \ V (S′)) \X) + p(X)

= c(E(S′)) + p((V \ V (S′))

= C(S′),

which concludes the proof.

A.6 Proof of Proposition 15

We will show that the NP-hardness holds already for the SPG variant of the terminal-regions
decomposition (which implies the NP-hardness for PCSTP). Note that if T−p = ∅, then there
always exists a terminal-regions decomposition with H0 = ∅ that maximizes the lower bound (19).
Therefore, for an SPG (V,E, T, c) define the terminal-regions decomposition as a partition H ={
Ht ⊆ V | T ∩Ht = {t}

}
of V such that for each t ∈ T the subgraph induced by Ht is connected.

Define for all t ∈ T
rH(t) := min{d(t, v) | v /∈ Ht}. (93)

Note that this definition is just a special case of the PCSTP version (for PCSTP instances
with sufficiently high prizes). First, the decision variant of the terminal-regions decomposition
problem is stated. Let α ∈ N0 and let G0 = (V0, E0) be an undirected, connected graph with
costs c : E → N. Furthermore, set T0 := {v ∈ V0 | p(v) > 0}, and assume that α < |T0|. For each
terminal-regions decomposition H0 of G0 define T ′0 ( T0 such that |T ′0| = α and rH0(t′) ≥ rH0(t)
for all t′ ∈ T ′0 and t ∈ T0 \T ′0. Let CH0

:=
∑
t∈T0\T ′0

rH0
(t). We now define the α terminal-regions

decomposition problem as follows: Given a k ∈ N, is there a terminal-regions decomposition
H0 such that CH0 ≥ k? The next lemma forthwith establishes the NP-hardness of finding a
terminal-regions decomposition that maximizes (19), or (20)—which corresponds to α = 2 and
α = 1, respectively.

Lemma 25. For each α ∈ N0 the α terminal-regions decomposition problem is NP-complete.

Proof. Given a terminal-regions decomposition H0 it can be tested in polynomial time whether
CH0 ≥ k. Consequently, the terminal-regions decomposition problem is in NP.

In the remainder it will be shown that the (NP-complete [23]) independent set problem can be
reduced to the terminal-regions decomposition problem. To this end, let Gind = (Vind, Eind) be
an undirected, connected graph and k ∈ N. The problem is to determine whether an independent
set in Gind of cardinality at least k exists. To establish the reduction, construct a graph G0 from
Gind as follows. Initially, set G0 = (V0, E0) := Gind. Next, extend G0 by replacing each edge
el = {vi, vj} ∈ E0 with a vertex v′l and the two edges {vi, v′l} and {vj , v′l}. Define edge weights
c0(e) = 1 for all e ∈ E0 (which includes the newly added edges). If α > 0, choose an arbitrary

vi ∈ V0∩Vind and add for j = 1, ..., α vertices t
(j)
i to both V0 and T0. Finally, add for j = 1, ..., α

edges {vi, t(j)i } with c0({vi, t(j)i }) = 2 to E0.
First, one observes that the size |V0| + |E0| of the new graph G0 is a polynomial in the

size |Vind| + |Eind| of Gind. Next, rH0
(vi) = 2 holds for a vertex vi ∈ G0 ∩ Gind if and only

38



if Hvi contains all (newly inserted) adjacent vertices of vi in G0. Moreover, in any terminal-

regions decomposition H0 for (G0, c0), it holds that rH0
(t

(j)
i ) = 2 for j = 1, ..., α. Hence, there

is an independent set in Gind of cardinality at least k if and only if there is a terminal-regions
decomposition H0 for (V0, E0, T0, c0) such that

CH0
≥ |Vind|+ k

This proves the proposition.

A.7 Proof of Proposition 22

Proof. We only show the second part of the proposition. First it follows from the construction of
Transformation 2 and 3 that each optimal solution x0, y0 to the LP relaxation of TransRCut(IT0

)
can be transformed to a solution x, y to the LP relaxation of TransCut(IPC) without changing
the objective value: By setting x((vi, vj)) := x0((vi, vj)) and x((vj , vi)) := x0((vj , vi)) for all
{vi, vj} ∈ E, x((r′, t0)) := 1 for any t0 ∈ T0, x((ti, t

′
i)) := 1 for all ti ∈ T0, and by setting the

remaining x((vi, vj)) accordingly. Thus vLP (PrizeCut(IPC)) ≤ vLP (PrizeRCut(IT0)). To see
that the inequality can be strict, consider the following wheel instance (which is well-known to
have an integrality gap for DCut on SPG):

v0

v1v2

v3

v4 v5

v6

Set c(e) = 1 for all edges e. Further, set p(v0) = p(v1) = p(v3) = p(v5) = 4, p(v2) = p(v6) = 0,
and p(v4) = ε with 0 < ε < 1. Let T0 := {v0, v1, v3, v4, v5}. Let I be the PCSTP and IT0

the cor-

responding RPCSTP. It holds that vLP (TransCut(I)) = 4.5 +
ε

2
< 5 = vLP (TransRCut(IT0

)).

Part of the solution corresponding to vLP (TransCut(I)) is shown below (with numbers next to
the arcs denoting the x values), the remaining x and y are set accordingly (e.g., x((r′, v1)) = 1).

v0

v1v2

v3

v4 v5

v6

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
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