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This work concerns the assortment optimization problem that refers to selecting a subset of items that

maximizes the expected revenue in the presence of the substitution behavior of consumers specified by a

parametric choice model. The key challenge lies in the computational difficulty of finding the best subset

solution, which often requires exhaustive search. The literature on constrained assortment optimization lacks

a practically efficient method that is general to deal with different types of parametric choice models (e.g.,

the multinomial logit, mixed logit or general multivariate extreme value models).

In this paper, we propose a new approach that allows to address this issue. The idea is that, under a

general parametric choice model, we formulate the problem into a binary nonlinear programming model,

and use an iterative algorithm to find a binary solution. At each iteration, we propose a way to approximate

the objective (expected revenue) by a linear function, and a polynomial-time algorithm to find a candidate

solution using this approximate function. We also develop a greedy local search algorithm to further improve

the solutions. We test our algorithm on instances of different sizes under various parametric choice model

structures and show that our algorithm dominates existing exact and heuristic approaches in the literature,

in terms of solution quality and computing cost.

Key words : parametric choice model, assortment optimization, binary trust region, greedy local search.

History :

1



Tien Mai and Andrea Lodi: Assortment optimization under parametric discrete choice models
2

1. Introduction

Assortment optimization is an important problem that arises in many practical applications such

as retailing, online advertising, and social security. The problem refers to select a subset of items

that maximizes the expected revenue in the presence of the substitution behavior of consumers

specified by a choice model. Typically, an assortment decision consists of two main steps, namely,

(i) training a choice model to predict the behavior of customers for a given set of products, and

(ii) solving an assortment optimization problem built based on that trained choice model to get

the best assortment decision. For the first step, there exists a number of parametric models based

on the discrete choice framework (McFadden 1978), i.e., the framework that allows to describe the

choices of decision makers among alternatives under certain general assumptions. These models

are widely used in many demand modeling applications (e.g. Ben-Akiva and Lerman 1985), and

believed to be accurate in many contexts. The second step often requires an exhaustive search over

a large sets of feasible assortments, in which the large number of possible solutions could make the

optimization problem intractable. Existing approaches often focus on designing algorithms, exact

or heuristic, for some specific choice models and mostly considering uncapacitated problems, or

problems under a simple upper bound constraint on the size of the assortment. In other words,

to the best of our knowledge, it lacks a solution framework that is general enough to deal with

generalized choice models, e.g., the multivariate extreme value (MEV) family model (McFadden

1978). In this paper, we address this issue by proposing a new algorithm that allows to solve

problems under various parametric choice model structures.

The first step for an assortment decision is building a demand model that can predict the

behavior of customers when they are offered a set of products. More precisely, we aim at specifying

a probabilistic model that can assign a probability distribution over the products. The random

utility maximization framework (McFadden 1978, Train 2003) is widely used in the context. The

principle of this framework is that each product is associated with a random utility, and a customer

selects a product in an assortment by maximizing his/her utilities. The utility associated with a

product j is assumed to be a sum of two parts, one can be observed and the other one cannot be

observed by the analyst. More precisely, an utility uj associated with product j can be written as

uj = βTaj + εj, where aj is the vector of attributes/features of product j and β is the vector of

the model parameters, which can be obtained by estimating/training the choice model, and εj is

the random part that cannot be observed by the analyst. Under the maximum utility framework,

this way of modeling allows to calculate the probability that a customer selects a product i if

he/she is offered an assortment S, that is P (ui ≥ uj, ∀j ∈ S). This probabilities allow to compute

a log-likelihood function based on a set of observations, and then the model parameters can be
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estimated using maximum likelihood estimation. Given a vector of parameters estimated, these

probabilities also allow to compute the expected revenue given by an offered assortment.

Different assumptions made on the random terms εj lead to different choice models, and there

are a number of existing choice models that can be used for modeling demand. Among the existing

discrete choice models, the multinomial logit (MNL) is the most widely used due to its simple

structure. However, there is an issue related to the independence of irrelevant alternatives (IIA)

property of this model (Ben-Akiva and Lerman 1985), which may not hold in several contexts and

lead to inaccurate prediction. There are a number of models that have been proposed in order

to relax this property, e.g., the nested logit (Ben-Akiva 1973, Ben-Akiva and Lerman 1985), the

cross-nested logit Vovsha and Bekhor (1998), the paired comparison logit (Koppelman and Wen

2000), the ordered generalized extreme value (Small 1987), and the network MEV model (Daly

and Bierlaire 2006). These models all belong to the MEV family of models (McFadden 1978). The

MEV model, in particular the cross-nested and network MEV models are generally flexible, as one

can show that such models can approximate any random utility maximization models (Fosgerau

et al. 2013).

Beside the MEV family, mixed logit (MMNL) is also convenient to relax the IIA from the MNL

model. This model is refereed to as the Random Parameter Logit model, as it is extended from

the MNL by assuming that parameters are random. Similar to some MEV models, the MMNL

one is also able to approximate any random utilities choice model (McFadden and Train 2000).

However, the choice probabilities given by the MMNL model have no closed form and often require

simulation to approximate, leading to the fact the the estimation and the application of this model

is expensive in some contexts.

It is worth mentioning that, apart from the aforementioned models (for which we refer to para-

metric choice models), non-parametric models have recently received a growing attention. In par-

ticular, Feige et al. (2011) have proposed a generic choice model for the case of limited data, where

the choice behavior is represented by a distribution over all possible rankings of the alternatives.

This non-parametric model is general, but the estimation as well as the application in revenue

management problems is costly, as one needs to deal with a very large number of possible rankings,

which is factorial on the number of products.

The difficulty when solving the assortment optimization problem under a discrete choice model

lies in the fact that the resulting expected revenue function is highly nonlinear and non-convex, so

in general, in order to obtain the best assortment, one must solve a mixed-integer nonlinear and

non-convex optimization problem, which is computationally hard. For instance, if the number of

products is 100, then the number of subsets that we have to consider (if there is no restriction on

the size of the assortments) is 2100. There is also a trade-off between having a flexible and accurate
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(in prediction) demand model and the complexity of the corresponding optimization problem. For

instance, under the multinomial logit (MNL) model, the objective function is simply a fraction of

two linear functions, and there exist efficient algorithms that allow to find optimal assortments

in polynomial time (Rusmevichientong et al. 2010). But for more flexible choice models, e.g., the

mixed multinomial logit or nested logit models (Train 2003), the resulting objective functions are

much more complicated, and the optimization problems becomes difficult to solve. Yet, to the best

of our knowledge, the only approach that is general enough to handle a general class of parametric

choice models is the simple greedy local search proposed by Jagabathula (2014). This approach

is however time consuming, in particular when the number of products is large. In this paper,

we exploit the structure of the objective function to design a new “local search type” algorithm,

which is not only efficient to find a good solution, but also general enough to handle constrained

problems.

Our contributions:

(i) We propose a new approach that allows to make an assortment decision where the customers’

behavior can be captured by various choice models (most of the parametric choice models in the

literature, including the MNL, MMNL and network MEV models). Our algorithm, called Binary

Trust Region (BiTR), is based on the idea that we can iteratively approximate the objective

function by a linear or quadratic one using Taylor’s expansion. Then, we can perform a search over

a local region using this approximate function to find a better assortment solution. In this context,

at each iteration, the algorithm requires solving a sub-problem, which is a mixed-integer linear

programming problem, to find a candidate solution. For some relevant special cases, we propose a

polynomial-time algorithm that allows to solve these sub-problems exactly.

(ii) We suggest a way to improve solutions given by the BiTR by performing a greedy local

search algorithm, i.e., searching over a local region by enumerating all feasible solutions in this

region. We present a mathematical representation and investigate some theoretical properties of

the approach under the MNL model, which would help to further improve the greedy algorithm.

(iii) We test our algorithm on instances under the MNL, MMNL and network MEV models

using a real data set from a retail business. The results based on several instances of different sizes

are promising, as our approach dominates existing heuristic and exact approaches in the literature,

in terms of solution quality and computing cost.

(iv) Our approach provides an efficient way to make assortment decisions under flexible and

general choice models, e.g., the MMNL and network MEV models. Thus, it could also be useful

for the dynamic version of the static problem considered in this paper, i.e., the network revenue

management problem (Liu and Van Ryzin 2008).
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The remainder of the paper is structured as follows. In Section 2, we review the relevant literature

in assortment optimization. In Section 3, we present in detail different parametric choice models

that can be used to model demand, and the assortment problem under such models. We present

our BiTR and the greedy local search in Section 4. The numerical results are provided in Section

5, and finally Section 6 concludes.

2. Literature review

There is a rich literature for the assortment problem under different parametric choice models.

For the MNL problem, Talluri and Van Ryzin (2004) show that the unconstrained problem can

be solved by enumerating a small number of revenue-ordered subsets. For the capacitated MNL

(i.e., problem with an upper bound constraint on the size of the assortment), Rusmevichientong

et al. (2010) show that the optimal assortment may no-longer be revenue-ordered. In addition,

they suggest an efficient algorithm to find the best assortment with the complexity of O(mC),

where m is the number of products and C is the maximal number of products that an assortment

can have. They also develop a method to learn the model parameters and optimize the profit at

the same time. Rusmevichientong and Topaloglu (2012) consider a robust optimization version of

the MNL problem, i.e. the model parameters are not known certainly, but belong to a compact

uncertainty set. Interestingly, they show that for the uncapacitated problem, the revenue-ordered

subsets remain optimal even when the goal is to maximize the worst-case expected revenue.

The problem under the MMNL model is typically NP -hard (Désir and Goyal 2014, Bront et al.

2009). Bront et al. (2009) present a mixed-integer linear programming (MILP) formulation for the

MMNL problem, so the problem can be solved using a MILP solver, e.g., CPLEX, GUROBI. They

also suggest a greedy heuristic that achieves good performance in their experiments. Méndez-Dı́az

et al. (2010) strengthen the mixed-integer programming formulation through valid inequalities.

Rusmevichientong et al. (2014) consider two special cases of the uncapacitated MMNL model for

which they show that the revenue-ordered subsets are optimal. There are also near-optimality

algorithms for such problem, e.g., Désir and Goyal (2014) propose a fully polynomial time approx-

imation scheme (FPTAS) for the capacity constrained MMNL problem.

There are also some studies focusing on the nested logit model. Davis et al. (2014) study the

problem under the two-level nested logit model and show that if the nest dissimilarity parameters

are all less than one and the no-purchase alternative belongs to a nest of its own, the uncapacitated

problem can be solved to optimality in a computationally efficient manner. Gallego and Topaloglu

(2014) extend this result for the uncapacitated problem and Li et al. (2015) consider the assortment

problem under the d-level nested logit model. Yet, to the best of our knowledge, there is no study

for the problem under the cross-nested model (an alternative/product can belong to more than

one nest) or the general MEV model (McFadden 1978, Daly and Bierlaire 2006, Mai et al. 2017).
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Jagabathula (2014) has recently proposed a local search algorithm, called ADXOpt, that can

be used with any choice model. This algorithm is based on three simple operations, i.e., adding

or removing one product, or exchanging an available product with a new one. Jagabathula (2014)

also shows that if the problem is the capacitated MNL, ADXOpt converges to an optimal assort-

ment solution. This algorithm has been shown to have very good performance in some numerical

experiments (Bertsimas and Mǐsić 2017).

Finally, regarding the assortment optimization under a non-parametric choice model, Feige et al.

(2011) also propose a constraint sampling based method to estimate the non-parametric model

from choice observations from consumers. The estimation can be done by maximum likelihood,

or norm minimization thanks to the work of van Ryzin and Vulcano (2014, 2017), or a column

generation algorithm (Bertsimas and Mǐsić 2017, Jena et al. 2017). Moreover, once the estimation

is performed, the assortment problem under this non-parametric model can be solved conveniently

using mixed-integer linear programming (Bertsimas and Mǐsić 2017).

3. Assortment optimization under parametric choice models

In this section we briefly present some basic concepts of discrete choice modeling and the assortment

problem under parametric choice models

3.1. Parametric discrete choice models

The discrete choice framework assumes that each individual (decision maker) n associates an

utility uni with each alternative/option i in a choice set Sn. This utility consists of two parts: a

deterministic part vni that contains observed attributes/features, and a random term εni that is

unknown to the analyst. Different assumptions for the random terms lead to different types of

discrete choice models. In general, a linear-in-parameters formula is used, i.e, vni = βTani, where

“T” is the transpose operator, β is a vector of parameters to be estimated and ani is the vector of

attributes of alternative i as observed by individual n.

The random utility maximization (RUM) framework (McFadden 1978) is the most widely used

approach to model discrete choice behaviors. This framework assumes that the decision maker aims

at maximizing the utility, so the choice probability that an alternative i in choice set Sn is chosen

by individual n is given as

P (i|Sn) = P (vni + εni ≥ vnj + εnj,∀j ∈ Sn). (1)

The MNL model is widely used in this context. This model results from the assumption that

the random terms εni, i ∈ Sn, are independent and identically distributed (i.i.d.) and follow the

standard Gumbel distribution. The corresponding choice probability has the simple form

P (i|Sn) =
evni∑
j∈Sn e

vnj
.
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If the model is linear-in-parameters, the choice probabilities can be written as a function of param-

eters β as

P (i|Sn) =
eβ

Tani∑
j∈Sn e

βTanj
.

It is well known that the MNL model exhibits the IIA property, which implies proportional sub-

stitution across alternatives. This property means that for two alternatives, the ratio of the choice

probabilities is the same no matter what other alternatives are available or what the attributes of

the other alternatives are. In this context we note that if alternatives share unobserved attributes

(i.e., random terms are correlated), then the IIA property does not hold.

Coverserly, MMNL is one of the models that allow to relax the IIA property of the MNL model.

This model is often used in practice as it is fully flexible in the sense that it can approximate

any random utility model (McFadden and Train 2000). In the MMNL model, parameters β are

assumed to be random, and the choice probability is obtained by taking the expectation over the

random coefficients

P (i|Sn) =Eβ

[
eβ

Tani∑
j∈Sn e

βTanj

]
=

∫
eβ

Tani∑
j∈Sn e

βTanj
f(β)dβ,

where f(β) is the density function of β. Then, a Monte Carlo method can be used to approximate

the expectation, i.e., if we assume β1, . . . , βK being K realizations sampled over the distribution of

β, then the choice probabilities can be computed as

P (i|Sn)≈ P̂K(i|Sn) =
1

K

K∑
k=1

eβ
T
k ani∑

j∈Sn e
βT
k
anj

.

The MMNL model is preferred in many applications due to its flexibility (McFadden and Train

2000). As mentioned, these models are typically costly to estimate because the estimation requires

simulation. In addition, the use of the MMNL also leads to additional complexity to the assortment

optimization problem.

The IIA property from the MNL model can also be relaxed by making different assumptions

on the random terms {ε1, . . . , ε|Sn|}, resulting in several choice models, e.g., the nested logit (Ben-

Akiva 1973), network MEV models (Daly and Bierlaire 2006). In general, such models allow for

different ways of modeling the correlation between alternatives. For examples, a nested logit model

is appropriate when the set of alternatives can be partitioned into different subsets (called nests),

and these subsets are assumed to be disjoint. The cross-nested logit model generalizes the nested

one by allowing alternatives to belong in more than one nest. As mentioned, the cross-nested logit

model can approximate any RUM models (Fosgerau et al. 2013).
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In the following, we present the formulation of the choice probabilities given by a cross-nested

logit model of nests (Ben-Akiva and Bierlaire 1999)

P (i|Sn) =
∑
l∈L

(∑
j∈Sn αjle

µlvnj
)1/µl∑

l′∈L

(∑
j∈Sn αjl′e

µl′vnj
)1/µl′

αile
µlvni∑

j∈Sn αjle
µlvnj

, (2)

where L is the set of nests, αjl and µl, ∀j ∈ Sn, l ∈L, are the parameters of the cross-nested model.

These parameters have the properties that (i) µl > 0, ∀l ∈L, and (ii) αjl > 0 if alternative j belongs

to nest l, and αjl = 0 otherwise. If each alternative belongs to only one nest, the model becomes a

nested logit model and the choice probability of alternative i in nest l can be written in a simpler

form as

P (i|Sn) =
eµlivni

(∑
j∈nest li

eµlivnj
)1/µli

−1∑
l′∈L

(∑
j∈nest l′ e

µl′vnj
)1/µl′

,

where li is the nest/subset that contains alternative i ∈ Sn. Note that in this case αil = 1 if i in

nest l, otherwise αil = 0.

The network MEV model generalizes most of existing MEV models including the nested and

cross-nested models. This model is generally flexible as it allows to represent the correlation struc-

ture between alternatives by a rooted, directed graph where each node without successors is an

alternative (see Figure 1). Choice probabilities given by a network MEV model are typically com-

plicated, as their computation requires performing recursive equations or solving dynamic pro-

gramming problems (Mai et al. 2017).

r

alternatives

nests

r

alternatives

nests

Figure 1 Two-level and three-levels network MEV structures (Mai et al. 2017)

3.2. Assortment optimization

Based on the discrete choice framework, we aim at defining a parametric model that can predict the

choice behavior of customers in the market. We assume that there are m products available, indexed

from 1 to m. There is also the no-purchase alternative (the possibility that the customer does not

purchase any of the products in the choice set that is offered), and we denote that alternative by

index 0. This no-purchase alternative is always available in any assortment. The entire set of all
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possible alternatives now becomes U = {0,1, . . . ,m}. The expected revenue from offering the set of

products S ⊂U is denoted by R(S) and is given by

R(S) =
∑
i∈S

riP (i|S), (3)

where ri is the revenue of option i. If a linear-in-parameters MNL model is used, then R(S) can

be written simply as

R(S) =
∑
i∈S

ri
eβ

Tai∑
j∈S e

βTaj
,

where ai, i∈ U is the vector of attributes/features of alternative i, and β is the vector of parameter

estimates given by the choice model. Note that for notational simplicity, we omit an index for

individual n but note that the utilities can be individual specific.

The problem that we wish to solve is to find the set of products S∗ ⊆U , S∗ ⊃ {0}, that maximizes

the expected revenue

max
S⊆U
S⊃{0}

R(S). (4)

Solving the problem typically requires enumerating all the subsets of the full choice set U , which

is intractable as the number of subsets is 2m. The problem can be formulated in an integer opti-

mization form as follows. Let xi, i ∈ U be a binary variable that is 1 if i ∈ S and 0 otherwise. The

problem (4) can be written as follows

max
xi∈{0,1}
i∈U

∑
i∈S

riP (i|S;S = {i|xi = 1}∪ {0}). (5)

Under the MNL model, the problem can be formulated into the integer nonlinear model

max
xi∈{0,1}
i∈U

m∑
i=1

rixiVi
V0 +

∑m

j=1 xjVj
, (AO-MNL)

where Vi = eβ
Tai , i= 0, . . . ,m. In the case that the MMNL model is used, the assortment optimiza-

tion is formulated accordingly as

max
xi∈{0,1}
i∈U

m∑
i=1

1

K

K∑
k=1

rixiVik
V0k +

∑m

j=1 xjVjk
, (AO-MMNL)

where Vik = eβ
T
k ai , i= 0, . . . ,m, and β1, . . . , βK are K realizations sampled over the randomness of

β.

If we use a network MEV model, the problem formulation becomes more complicated, e.g., the

integer nonlinear programming model under the nested logit (each product belongs to only one

nest) reads as

max
xi∈{0,1}
i∈U

m∑
i=1

xiV
µli
i

(∑
j∈Mi

xjV
µli
j

)1/µli
−1∑

l′∈L

(∑
j∈(nest l′) xjV

µl′
j

)1/µl′
, (AO-Nested)
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where L is the set of nests, li is the nest that contains product i, i= 0, . . . ,m, and µl, l ∈L, are the

parameters of the nested model. Problem (AO-Nested) is typically difficult to solve exactly, even

its continuous relaxation is, as the objective function is nonlinear and highly non-convex. Note

that (AO-Nested) becomes (??) if µl = 1, ∀l ∈L.

We do not write out the formulations for the problems under more complicated choice models,

e.g., the cross-nested (Vovsha and Bekhor 1998) or network MEV models (Daly and Bierlaire 2006,

Mai et al. 2017), but note that they are more complicated than (AO-Nested). In the case of the

network MEV model, the choice probability function as well as the expected revenue even have no

closed form, and need to be evaluated by recursive equations.

The challenge when solving the assortment optimization problems mentioned above is the nonlin-

earity and non-convexity of the objective functions. For the MNL and MMNL models, it is possible

to formulate the nonlinear problems into MILPs, so we can overcome the non-convexity issue and

the problem can be solved by a Brand-and-Bound algorithm (Bront et al. 2009, Méndez-Dı́az et al.

2010). However, this approach leads to large MILP models with many additional variables and

constraints, making the MILP difficult to solve for large instances. Moreover, for the MEV problem,

it is very hard to formulate the nonlinear problems into MILP models.1 The approach presented

in the next section provides a convenient way to deal with such problems.

4. The Algorithmic Framework

In this section, we introduce the binary trust region (BiTR) algorithm, for which the search is

driven by the gradient of the objective function. The algorithm is enhanced by a greedy local search

that is useful to improve the solutions given by the BiTR. Then, we consider in detail the special

case in which the assortment optimization problem is only subject to bound constraints (on the

size of the assortment) and we show that the sub-problems that BiTR iteratively solves are solvable

in polynomial time. In general, the BiTR algorithm is heuristic but for the case of the MNL with

only bound constraints, we show that the overall algorithm becomes an exact method. In addition,

thanks to the linear-fractional structure of the MNL-based problem, we show that several steps of

the greedy local search algorithm can be skipped.

4.1. Binary Trust Region Algorithm

We first write the assortment problem incorporating linear business constraints as

maximize
x

f(x) (AO)

subject to Ax≤ b

xi ∈ {0,1},

1 The possibility of transforming the problem into a MILP in case of the MNL model is granted by considering
assortment constraints that are linear. This is generally the case and few types of simple constraints on the assortment
structure will be discussed in Section 4.
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where f(x) is the objective function (i.e., expected revenue), and Ax≤ b are some business con-

straints. We note that these constraints include x0 = 1 to ensure that the non-purchase item is

always available in any assortment, and the most popular constraint that can be included is the

capacity constraint, i.e.,
∑

i xi ≤ U for a constant 1≤ U ≤m+ 1. It is important to note that in

the context of parametric choice models, the continuous relaxation of f(x) is continuously differ-

entiable.

Our algorithm is inspired by the trust region method in continuous optimization (Nocedal and

Wright 2006). This is an iterative algorithm where, at each iterate, we build a model function

and define a region around the current iterate within which we trust the model function to be an

adequate representation of the objective function. Then, we find a next iterate by maximizing the

model function inside the region that we trust in the hope of finding a new candidate solution with

better objective value. The size of the region is reduced or enlarged according to the quality of the

new solution found.

We first introduce how to define a model function to approximate the objective function around

an iterate xk, i.e, at iteration k. Since f(x) is continuously differentiable, at a point x the value of

f(x) can be expressed as

f(x) = f(xk) +∇f(xk)T (x−xk) +
1

2
(x−xk)T∇2f(xk + t(x−xk))(x−xk),

for some scalar t∈ (0,1), where ∇f and ∇2f are the first and second derivatives of function f . So,

if we define a model function mk(x) as

mk(x) = f(xk) +∇f(xk)T (x−xk) +
1

2
(x−xk)TBk(x−xk),

where Bk is some symmetric matrix, then the difference between mk(x) and f(x) is O(||p||2), where

p= x−xk, meaning that mk(x) can be a good approximation of f(x) if ||p|| is small. Note that if

Bk is equal to the true Hessian ∇2f(xk), then the model function actually agrees with the Taylor

series to three terms. In this case the difference is O(||p||3) and the model function becomes even

more accurate when p is small.

We now turn our attention to our assortment problem noting that the problem contains binary

variables, leading to the fact that the steps p cannot be too small. Actually, it requires that p ∈

{−1,0,1}m+1, so ||p|| ≥ 1. So, in this context, the model function mk cannot give an approximation

with any approximation error as in continuous cases, but we expect that the approximation errors

are small enough to help us find a better binary candidate solution.

The BiTR algorithm works as follows. At each iteration k with iterate xk, we define a model

function mk(x) and maximize that function in a region to obtain a new solution x̄k. If f(x̄k)> f(xk),
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we update xk+1 = x̄k, remain or enlarge the trust region, and go to the next iteration, otherwise

we keep the current solution, i.e., we set xk+1 = xk, and reduced the region. We stop the algorithm

when none of the operations result in a strict increase in the revenues. Moreover, because we

cannot guarantee that the algorithm converges to an optimal solution, even a local optimum, we

can perform a local search in order to check whether we can find a better solution. We describe

each step of the algorithm in the following.

To obtain a new solution at each iteration, we seek a solution of the following subproblem:

maximize
x

mk(x) = f(xk) +∇f(xk)T (x−xk) +
1

2
(x−xk)TBk(x−xk) (P1)

subject to Ax≤ b (6)

||x−xk|| ≤∆k

x∈ {0,1}m+1,

where ∆k > 0 is the trust-region radius at iterate k, and ||x−xk|| is a norm of vector x−xk. In our

context, we choose the Manhattan norm so the constraints in (P1) can be linearized. Moreover, (P1)

is a mixed-integer quadratic problem, which could be expensive to solve. In the case of continuous

optimization, the more Bk is close to the Hessian, the more accurate the model function is. It is,

however, not the case with integer variables, as the length of step (x− xk) cannot be arbitrarily

small, but needs to be greater than 1. So, in our case, in order to simplify the sub-problem, we just

choose Bk = 0. So, in summary, we write (P1) as

maximize
x

∇f(xk)Tx (P2)

subject to Ax≤ b
m∑
i=0

|xi−xki | ≤∆k (7)

x∈ {0,1}m+1,

where, in turn, constraint (7) can be linearized as

m∑
i=0
xki =1

(1−xi) +
m∑
i=0
xki =0

xi ≤∆k, (8)

so as (P2) becomes a mixed-integer linear programming problem.2

Once linearized, problem (P2) can be solved by using a commercial solver (e.g., CPLEX,

GUROBI) and, typically, after solving it and obtaining a candidate solution x̄k, we can evaluate

2 Constraint (8) is referred to as local branching constraint by (Fischetti and Lodi 2003).
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the solution as well as adjust the trust region radius ∆k by computing the agreement between the

model function mk and the objective function f at xk as

ρk =
f(x̄k)− f(xk)

mk(x̄k)−mk(xk)
=

f(x̄k)− f(xk)

∇f(xk)T (x̄k−xk)
.

We note that since x̄k is obtained by minimizing the model mk over a region that includes xk, the

denominator is non-negative. Thus, if ρk < 0, then f(x̄k) is less than f(xk), so the candidate x̄k

must be rejected, and we also need to reduce the ∆k in the hope of having more accurate model

function mk. On the other hand, if ρk > 0 then x̄k is accepted and the radius ∆k can be expanded

to extend the search, or kept equal if ρk is not sufficiently large.

We stop the algorithm if after some successive iterations the objective values are not improved.

It is easy to see that the Algorithm 1 always terminates after a finite number of iterations. This

is due to the fact that there is a finite number of possible solutions and the algorithm only stays

at each solution candidate for a limited steps. Moreover, in order to further improve the solution

given by the algorithm, we can perform a greedy local search. The idea is to search in a local region

around the solution given by the trust region algorithm. In summary, Algorithm 1 describes our

binary trust region algorithm.

The following remarks are in order. First, ∆max and ∆min stand for the maximum and minimum

values that the radius of the trust region can take, and they are integer values. Second, in a

basic trust region algorithm in continuous optimization, the radius ∆k is reduced or enlarged by

multiplying with scalars (smaller and larger than 1, respectively). In our binary problem we just

simply add/remove one unit so that the radius remains integer. Third, we expect that from Step

1 to Step 4, the algorithm performs more quickly as compared to a greedy local search algorithm

(e.g., Algorithm 2 or the ADXOpt), as these steps require smaller numbers of function evaluations.

And finally, as the last step of Algorithm 1 is a greedy local search algorithm, the final solution

given by the BiTR, therefore, inherits some nice properties of the local search, one of them being

the global convergence for the case of the MNL model, as will be pointed out in the next section.

Greedy Local Search. We now consider Step 3 of Algorithm 1 in which a greedy local search

algorithm, i.e., a search algorithm based on enumerating all the feasible solutions in a local area is

run to improve the solution provided by the first part if BiTR. The idea of a local search approach

is that we iteratively perform a search over a local region of a solution candidate. The local search

around a point x∗ can be formulated into the mathematical programming model

maximize
x

f(x) (LS)

subject to Ax≤ b
m∑
i=0

|xi−x∗i | ≤∆,

x∈ {0,1}m+1,
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Algorithm 1: Binary trust region algorithm

# 1. Initializing

Choose an initial solution x0, ∆max >∆min ≥ 1, ∆min ≤∆0 ≤∆max, η > 0, k= 0

# 2. Iteratively perform the search by solving subproblems

do
Compute x̄k by solving subproblem in (P2)

Compute the agreement ρk = f(x̄k)−f(xk)

∇f(xk)T (x̄k−xk)

if ρk > 0 then
xk+1 = x̄k # We accept the candidate

if ρk > η then
∆k+1 = min{∆k + 1,∆max} # We enlarge the trust region radius

else
∆k+1 = ∆k# We maintain the trust region radius

else
# We keep the current candidate and reduce the trust region radius

xk+1 = xk

∆k+1 = max{∆k− 1,∆min}
k= k+ 1

until After some successive iterations, the objective f(xk) is not increased ;

# 3. Run a greedy local search algorithm from the current candidate xk to improve it

Execute Algorithm 2.

where ∆ is an integer number standing for the radius of the local region that we wish to search.

In general, we can choose ∆ small, so all the feasible solutions can be enumerated. If we let A(x)

denote the assortment given by binary solution x, i.e., A(x) = {i|xi = 1}, then if ∆ = 1, we can

solve (LS) by searching over the set of assortments obtained by adding or removing one item from

A(x∗), and for ∆ = 2 we can search over the set of assortments obtained by adding/removing one or

two items or exchanging an existing item with a new item from the entire choice set. In Algorithm

2 we present a general representation of the local search method for the case ∆ = 2.

We have the following remarks in order. First, in Step 1.2, M stands for the set of all assortments

satisfying the business constraints, including the constraint that the non-purchase option has to

be available in any assortment. Second, Steps 2.1, 2.2 and 2.3 correspond to the case that ∆ = 1

and those steps require O(m) evaluations of the expected revenue function. In addition, Steps 2.4

to 2.7 correspond to ∆ = 2 and require O(m2) objective function evaluations. These steps could

become time consuming when the number of products is large. Third, the steps from 2.4 to 2.7 can

be performed in turn in order to reduce the complexity at each iteration, i.e., we can perform the

search on MX
k first and if we cannot find a better assortment we continue the search on M 2D

k and
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Algorithm 2: Greedy local search

# 1. Initializing

1.1. Choose an initial point x0, let S0 = S(x0), R0 = f(x0), k= 0

1.2. Define X = {x|Ax≤ b, x∈ {0,1}m+1}, and M = {S| S =A(x), x∈X}

# 2. Greedily perform the search by adding and removing products

repeat
2.1. MD

k = {S|S = Sk\{i}, i∈ Sk\{0}} # Deletion

2.2. MA
k = {S|S = Sk ∪{i}, i /∈ Sk}} # Addition

2.3. Select

S̄ = argmaxS∈(MD
k
∪MA

k
)∩MR(S)

if R(S̄)≤R(Sk) then
2.4. MX

k = {S|S = Sk\{i}∪ {j}, i∈ Sk\{0}, j /∈ Sk} # Exchange

2.5. M 2D
k = {S|S = Sk\{i, j}, i, j ∈ Sk\{0},} # Deletion of two products

2.6. M 2A
k = {S|S = Sk ∪{i, j}, i, j /∈ Sk,} # Addition of two products

2.7. Select

S̄ = argmaxS∈(MX
k
∪M2A

k
∪M2D

k
)∩MR(S)

2.8. if R(S̄)>R(Sk) then
Sk+1 = S̄, k= k+ 1

Until R(S̄)≤R(Sk);

Return Sk.

then on M 2A
k , otherwise we accept the better assortment and go to the next iteration. Fourth, if

we remove Steps 2.5 and 2.6, the algorithm becomes similar to the ADXOpt algorithm proposed

in Jagabathula (2014), except for the fact that we allow the algorithm to perform the local search

under general business constraints (instead of only a cardinality constraint on the number of offered

products). Finally, we note that, in general, the local search algorithm requires a search over a

large set of assortments, and could be slow if the number of products is large, so it is critical to

start from a good starting point x0, so that less iterations would be required until the algorithm

stops. Moreover, in some applications where finding a local optimum is too costly, we can also stop

the algorithm when it exceeds a time budget.

4.2. Solving (P2) under bound constraints

In this section, we consider the special case in which the linear constraints (6) are simple bound

constraints, i.e., LB ≤ |S| ≤UB.



Tien Mai and Andrea Lodi: Assortment optimization under parametric discrete choice models
16

We first let Sk and S denote the assortments given by binary vectors xk, x, respectively, and

define function

C(S) =

{
∇f(xk)Tx=

∑
i∈S∇f(xk)i if Ax≤ b

N otherwise,

where N is a “small enough” number. In fact,
∑m

i=0 |xi−xki | ≤∆k for a given ∆k > 0 is equivalent to

the situation that there are at most ∆k products that either appear in S or in Sk, but not in both.

So, the constraint
∑m

i=0 |xi − xki | ≤∆k can be reformulated in the equivalent form |S4 Sk| ≤∆k,

where 4 is the symmetric difference operator, i.e., S4 Sk = (S\Sk)∪ (Sk\S). So under a bound

constraint on the size of the assortment, (P2) can be written equivalently in another form as

maximize
S⊂U

C(S) (P4)

subject to LB ≤ |S| ≤UB

|S4Sk| ≤∆k

S ⊃ {0},

We also remark that, given set Sk, a set S such that |S4Sk| ≤∆k can be obtained by performing

at most ∆k operations of adding new products or removing available products to/from Sk. For

the sake of illustration, in Figure 2 we also show an example of S and Sk with ∆k = 3. In this

example, we can obtain S by removing two products (on the left of of the figure) from Sk and add

one new product (on the right of the figure). The algorithm described in the following is based on

this remark. More precisely, we can perform the search by adding and/or removing products from

Sk under the condition that the number of operations does not exceed ∆k, and benefiting from the

fact that the objective is an affine function.

SSk

Figure 2 An illustration of S and Sk when ∆k = 3.
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Algorithm 3: Solving sub-problem (P4)

Begin
1. Take a number of largest elements of arrays {−∇f(xk)i|i∈ Sk\{0}, and

{∇f(xk)i|i∈ U\Sk

−∇f(xk)σ1
≥−∇f(xk)σ2

≥ ...≥−∇f(xk)σmin{∆k,|Sk|−1}

∇f(xk)π1
≥−∇f(xk)π2

≥ ...≥∇f(xk)πmin{∆k,m+1−|Sk|}

where σ1, . . . σmin{∆k,|Sk|−1} ∈ Sk\{0} and π1, . . . , πmin{∆k,m+1−|Sk|} ∈ U\Sk
2. Define a function T : [0,1, ...,∆k]× [0,1, ...,∆k]→R

T (v, d) =


N if v+ d>∆k,or v > |Sk| − 1, or d>m+ 1− |Sk|
N if |Sk|+ v− d /∈ [LB,UB]∑d

j=1∇f(xk)πj −
∑v

i=1∇f(xk)σi otherwise,

where N is a “very small” number.

3. Select (v∗, d∗) = argmax0≤v,d≤∆k
T (v, d), and return

S∗ = Sk +π1 + . . .+πv∗ −σ1− . . .−σd∗ .

It is possible to prove that the running time of Algorithm 3 is polynomial with respect to m and

∆k. Moreover, a solution given by Algorithm 3 is also an optimal solution to (P4) (Theorem 1).

We start the proof by introducing the following lemma.

Lemma 1. At iterate k, the function T defined in the algorithm satisfies

C(Sk) + T (v, d)≥ max
S⊃{0}

{C(S)| |S\Sk|= v, |Sk\S|= d},

For all v, d such that 0≤ v≤min(∆k, |Sk|−1), and 0≤ d≤min(∆k,m+1−|Sk|), and |Sk|+v−d∈

[LB,UB].

Proof of Lemma 1. Indeed, if a set S such that |S\Sk|= v and |Sk\S|= d, meaning that there

exit products i1, . . . , id ∈ Sk\{0} and j1, . . . , jv ∈ U\Sk such that

S = Sk− i1− . . . id + j1 + . . . jd.

The capacity of S is |Sk|+v−d. So under the assumption of the lemma and the definition of C(S),

the expected revenue given by S is

C(S) =C(Sk)−∇f(xk)i1 − . . .−∇f(xk)id +∇f(xk)j1 + . . .+∇f(xk)jv .
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And because −∇f(xk)i1 , . . . ,−∇f(xk)id and ∇f(xk)j1 , . . .−∇f(xk)jv are the d and v largest ele-

ments in {−∇f(xk)i|i∈ Sk\{0}}, and {∇f(xk)i|i∈ U\Sk}, respectively, so we have

C(S)≤C(Sk)−∇f(xk)σ1
− . . .−∇f(xk)σd +∇f(xk)π1

+ . . .−∇f(xk)πv =C(Sk) + T (v, d).

Q.E.D.

The following theorem shows the convergence as well as the complexity of Algorithm 3.

Theorem 1. Algorithm 3 returns an optimal solution to (P4) and the complexity is O(∆km+

∆2
k).

Proof of Theorem 1. This is obvious to verify that Step 1 runs in O(∆km) time and Steps 2

and 3 runs in O(∆2
k) time. So, in total the running time of Algorithm 3 is O(∆km+∆2

k). Note that

most of the cases ∆k is much smaller than m and the complexity can be approximated by O(m).

Now we prove that the assortment S∗ returned by Algorithm 3 is an optimal solution to (P4).

In order to do so, we just need to verify that

C(S∗)≥ max
S⊃{0}

{C(S)| |S4Sk| ≤∆k, LB ≤ |S| ≤UB}.

From Step 3 we have
C(S∗) =C(Sk) + T (v∗, d∗)

=C(Sk) + max{T (v, d)| 0≤ v, d≤∆k}

= max
0≤v≤min(∆k,|Sk|−1)

0≤d≤min(∆k,m+1−|Sk|)
|Sk|+v−d∈[LB,UB]

{C(Sk) + T (v, d)}.

So, according to Lemma 1

C(S∗)≥ max
0≤v≤min(∆k,|Sk|−1)

0≤d≤min(∆k,m+1−|Sk|)
|Sk|+v−d∈[LB,UB]

S⊃{0}

{
C(S)

∣∣∣ |S\Sk|= v, |Sk\S|= d
}

≥ max
|S|∈[LB,UB]

S⊃{0}

{
C(S)

∣∣∣ |S4Sk| ≤∆k

}
.

(9)

The last equation is due to that fact that
S ⊂U

∣∣∣∃v, d such that



0≤ v, d≤∆k

v≤ |Sk| − 1

d≤m+ 1− |Sk|
|S\Sk = v

Sk\S|= d


≡
{
S
∣∣∣S ⊂U , |S4Sk| ≤∆k

}
.

Finally, (9) indicates that S∗ is an optimal solution to (P4). This completes the proof. Q.E.D.
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The special case of the MNL model. For the problem under the MNL model, due the fact that

the objective function is simply a function of linear functions, it is possible to prove some results

that guarantee the convergence of the local search algorithm, as well as allow to improve Algorithm

2. More precisely, Jagabathula (2014) shows that under the MNL and an upper bound constraint

(|S| ≤ UB), the ADXOpt can return an optimal solution. In addition to his results, we consider

the MNL problem with a bound constraint (LB ≤ |S| ≤ UB), and we can show that Algorithm 2

has some interesting properties that not only guarantee the convergence to an optimal solution,

but also gives some suggestions to remove unnecessary steps to further speed up the local search

algorithm. We present these properties through the following series of propositions and we refer

the reader to Appendix for the proofs.

Proposition 1. Under the MNL model and a bound constraint LB ≤ |S| ≤ UB, the solution

given by Algorithm 2 is optimal.

Proposition 2. Under the MNL model and a bound constraint LB ≤ |S| ≤UB, at iteration k,

if Step 2.3 of Algorithm 2 returns an assortment S̄ such that R(Sk)≥R(S̄) and LB < |Sk|<UB,

then Sk is an optimal solution and the algorithm can be terminated.

Remark 1. Proposition 2 indicates that after performing the search by adding and removing

one products, if we obtain a solution that is strictly in the bound, then that is an optimal solution

and we do not need to perform Steps 2.4 - 2.7 of Algorithm 2. Moreover, we can show, by a

similar way, that for an unconstrained problem, after Step 2.3 if R(Sk)≥R(S̄), then Sk an optimal

solution. To prove this, we only need to consider the case that |Sk|=m+ 1 (the case that Sk only

contains non-purchase product is not reasonable). In this case Sk contains all the products, and

we also can show that A(−Vi)≥B(−Viri),∀i∈ U . Now for any other assortment S ⊂U , we always

can obtain S by removing some products from Sk. According to the above inequality we also can

prove easily that R(S)≤R(S∗). This remark is also consistent with those found by Jagabathula

(2014).

Proposition 3. Under the MNL model and a bound constraint LB ≤ |S| ≤UB, at an iteration

k, if R(Sk)≥R(S),∀S ∈MD
k ∪MA

k , then R(Sk)≥R(S),∀S ∈M 2D
k ∪M 2A

k .

Remark 2. The results from Proposition 3 simply indicate that under the MNL model and a

bound constraint, Steps 2.4 and 2.5 can be safety removed from the algorithm. In other words,

after Step 2.3 if we cannot find a better assortment, we can continue the search by performing only

the “exchange” operation (i.e., Step 2.4). In this context Algorithm 2 is similar to ADXOpt.

Proposition 4. Under the MNL model, at iteration k, a product j 6∈ Sk can be added to Sk if

R(Sk)< rj, and a product i∈ Sk \ {0} can be removed from Sk if R(Sk)> rj.
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Remark 3. These results can be useful for reducing the computing cost. More precisely, at

iteration k we can check if R(Sk) ≥ maxj /∈Sk rj then the step “addition” can be skipped, and if

R(Sk)≤mini∈Sk\{0} ri then the step “deletion” can be skipped. In addition, if R(Sk)≥maxj /∈Sk rj

and R(Sk)≤mini∈Sk\{0} ri, then if |Sk| is strictly in the bound, |Sk| is an optimal solution (Proposi-

tion 2), otherwise we continue the search with the “exchange” operation. As a result, Steps 2.1-2.2

of Algorithm 2 can be modified to reduce the sizes of |MD
k | and |MD

k | as follows: MD
k = {S| S =

Sk\{i}, i∈ Sk\{0},R(Sk)> ri} and MA
k = {S|S = Sk ∪{i}, i /∈ Sk},R(Sk)< rj}.

These results also directly lead to the optimality of revenue-ordered subsets for uncapacitated

MNL (Talluri and Van Ryzin 2004). More precisely, the above results indicate that the optimal

assortment S∗ should satisfy the inequality mini∈S∗\{0} ri ≥ R(S∗) ≥ maxj∈U\S∗ rj, which simply

leads to the optimality of the revenue-ordered subsets.

Proposition 5. Under the MNL model and a bound constraint LB ≤ |S| ≤ UB, if at an iter-

ation k we have Sk = LB, and after Step 2.3 of Algorithm 2 R(S̄) ≤ R(Sk), then from the next

iteration only steps of type “exchange” can provide better assortments.

Remark 4. Proposition 5 indicates that if the algorithm reaches to an exchange step and if

the size of the assortment is LB, then we should keep exchanging products to find an optimal

solution (steps “deletion” and “addition” can be skipped), and the size of the optimal assortment is

|S∗|=LB. We also note that it is not the same for the case of |Sk|=UB. Indeed, if |Sk|=UB, then

the condition that no product should be removed from Sk is that R(Sk)≤mini∈Sk\{0} ri. If a product

i∈ Sk\{0} is exchanged with j /∈ Sk, then the new expected revenue is R(Sk+1) =
A−Viri+Vjrj
B−Vi+Vj

. And

we also have the fact that limrj→∞R(Sk+1) =∞, so if there is a product j with “large enough”

revenue, the condition R(Sk+1)≤mini∈Sk+1\{0} ri may be violated, meaning that at iteration k we

can probably remove a product to get a better assortment.

5. Numerical studies

In this section, we report the results of our computational experiments performed to assess the

effectiveness of the BiTR algorithm on different problem instances.

5.1. Data and models

We illustrate the performance of the approach using a real data set of the sales of a major US

shoes retailer. The data set was provided by the JDA Software (https://jda.com/), a company

developing software for the retail industry. There are 1053 different products across the whole

period. Each item is characterized by a set of different features, i.e., class, sub-class, brand, mate-

rial and color. We use a data set collected from the week 35th to 52nd of the year 2013 in 229

stores across the U.S. There are 3,565 assortments given to the customers and there are 134,320

https://jda.com/
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transactions/observations recorded. The number of products in the assortments vary between 43

and 162.

There are several products’ features that can be taken into account, e.g, price, item class, item

material and item color. Some features take real positive values, (e.g., price), and some take discrete

values (e.g., item color, item class). We build choice models based on these features and note that

discrete-value features are included into the models using binary attributes. For example, there is

an attribute a referring to the red color, so for any item, its a attribute takes value 1 if the item

is red, and 0 otherwise. In total, there are 111 binary attributes.

We specify MNL, MMNL and network MEV models for the experiment using the above

attributes. These models are estimated/trained using maximum likelihood estimation. We do not

present the estimation results because it is out of scope of this paper, but we note that the network

MEV model estimation is more computationally expensive as compared to the MNL and MMNL

models, and we use the techniques from Mai et al. (2017) to speed up the network MEV model

estimation. Moreover, we observe that the network MEV model performs better than the others

in terms of in- and out-of-sample fits.

In these experiments, we compare our BiTR with the ADXOpt proposed in Jagabathula (2014),

as it is the only general method that can deal with instances under the three choice models

above. The both algorithms are implemented in MATLAB to have a fair comparison. Moreover,

Jagabathula (2014) shows that his algorithm performs relatively better as compared to other

existing heuristic approaches. For the MNL and MMNL problems, due to the fact that it is possible

to formulate the optimization problems into MILP models and solve them using a commercial

solver, we also compare our algorithm with the MILP approach proposed in Bront et al. (2009).

Finally, before presenting our experimental results for instances under the three choice models

above, we note that the codes for estimating the discrete choice models are implemented in MAT-

LAB, and we have used an Intel(R) 3.20 GHz machine with a x64-based processor. It is running

in the 64-bit Window 10 Operating System. The machine has a multi-core processor but we only

use one processor to estimate the models as the code is not parallelized. For maximizing the log-

likelihood we use the limited memory BFGS algorithm (L-BFGS) (see for instance Nocedal and

Wright 2006, Chapter 9).

5.2. Case study 1: Multinomial logit - MNL

We test different methods when the choice model is the MNL. In this context, the assortment

optimization problem (AO-MNL) (see, Section 3.2) is a 0-1 linear fractional programming model,

and it is well known that it is possible to formulate a 0-1 linear fractional programming model into

an equivalent MILP model (Wu 1997). More precisely, this can be done by defining variables

y=
1

V0 +
∑m

i=1 xiVi
,
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and (AO-MNL) can be rewritten as

maximize
x,y

m∑
i=1

riVixiy

subject to V0y+
m∑
i=1

Vixiy= 1

Ax≤ b

xi ∈ {0,1} i= 1, . . . ,m,

y≥ 0.

(10)

The nonlinear term xiy can be linearized by defining new continuous variables zi = xiy, i= 1, . . . ,m.

Since y is continuous, and xi,∀i, are 0-1 variables, Wu (1997) suggests that zi can be included

in the model using the following inequalities: (i) y − zi ≤H −Hxi, (ii) zi ≤ y and (iii) zi ≤Hxi,

for i = 1, . . . ,m, where H is a large positive value that defines a valid upper bound for y. In

this context, it is enough to choose H = 1/ev
∗
0 , and the constraints zi ≤ Hxi can be tightened

by (ev
∗
0 + ev

∗
i )zi ≤ xi, i = 1, . . . ,m (Méndez-Dı́az et al. 2010). So, we obtain the following MILP

formulation for (AO-MNL):

maximize
x,y

m∑
i=1

riVizi

subject to Ax≤ b

V0y+
m∑
i=1

Vizi = 1

V0y−V0zi ≤ 1−xi, i= 1, . . . ,m

zi ≤ y, i= 1, . . . ,m

(V0 +Vi)zi ≤ xi, i= 1, . . .m

xi ∈ {0,1}, zi ≥ 0, i= 1, . . . ,m

y≥ 0.

(11)

We compare the performance of the BiTR, ADXOpt and MILP approaches. We consider in this

experiment three types of feasible sets, i.e., no-constraints, capacity constraints (0 ≤ |S| ≤ UB)

and bound constraints (LB ≤ |S| ≤UB). Note that the ADXOpt presented in Jagabathula (2014)

cannot directly handle bound constraints, so we use the extended version in Algorithm 2, where

the initial points are chosen arbitrarily in the feasible set X. Moreover, it is well known that the

unconstrained MNL problem can be efficiently solved by only considering revenue-ordered subsets

of products (Talluri and Van Ryzin 2004). So, for the unconstrained case, we also report the

computing time for the unconstrained MNL instances with the revenue-order (RO) approach. Note

that, as proven in Section 4.2, for the MNL case BiTR is an exact method in case of the classes of
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constraints considered in these experiments. This is true for ADXOpt too for unconstrained and

capacity constraints only.

In this experiment, we choose a time budget of 600 seconds, meaning that when an approach

exceeds the time budget, we stop and report the best objective value found. For each instance

and each method, we report the computing time as well as the percentage gap between the corre-

sponding objective value and the best one found by the three approaches, e.g., the percentage gap

associated with the ADXOpt is computed as follows

%Gap =
Best value−Value found by ADXOpt

Best value
× 100.

Table 1 reports the computing time when solving the MNL instances using the MILP (via the

MILP solver CPLEX), ADXOpt, BiTR and RO approaches, where the symbol “-” indicates that

the approach exceeds the time budget of 600 seconds, and in the cases that the objectives are

not the optimal, we report the percentage gaps in parentheses. Bold numbers indicate the best

performance. The RO is, expectedly, the fastest approach to solve unconstrained instances. The

BiTR is slower than the RO, but the differences, in terms of computing time, are small. It is also

clear that the BiTR dominates the MILP and ADXOpt approaches in terms of both computing

time and solution quality. For the MILP approach, even though there are 15/24 instances that

CPLEX cannot prove optimality within the time budget, all the solutions returned are optimal.

The ADXOpt algorithm is generally faster than the MILP, but there are 6/24 instances where the

ADXOpt cannot find optimal solutions. It is important to note that all the solutions given by the

BiTR without the “local search step” (i.e., Algorithm 1 without Step # 3) are also optimal. In

other words, the solutions obtained after Step #2 of Algorithm 1 are optimal, and in Step #3

the algorithm only needs to check the optimality of the solutions using the properties presented in

Section 4 above.

In order to provide a view of the performance of the BiTR and ADXOpt approaches, we take

the instances of 1,000 products and plot in Figure 3 the computing times and objective values over

iterations. It is clear that the BiTR converges remarkably faster to the optimal solution compared

to the ADXOpt. For unconstrained and capacity instances, the ADXOpt manages to find optimal

solutions within the time budget, but it is not the case with bound constraints (i.e, 300≤ |S| ≤ 500,

and 650≤ |S| ≤ 750).

5.3. Case study 2: Mixed logit - MMNL (random parameters logit)

In this section, we report the computing results with MMNL instances. We assume that the price

sensitivity parameter βp is no-longer deterministic, but follows a normal distribution, i.e., βp ∼

N(β0
p , σp), and β0

p , σp are model parameters to be estimated. The model parameters can be obtained
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m Constraints MILP ADXOpt BiTR RO

100

- 0.2 0.52 0.12 0.03
|S| ≤ 50 0.3 0.60 0.12

30≤ |S| ≤ 50 0.4 0.56 0.13
50≤ |S| ≤ 70 0.4 1.72 0.14

200

- 0.4 1.69 0.14 0.06
|S| ≤ 100 - 2.16 0.14

70≤ |S| ≤ 100 0.8 7.41 0.21
120≤ |S| ≤ 160 1.0 30.81 0.22

400

- - 6.76 0.20 0.13
|S| ≤ 20 - 6.76 0.21

100≤ |S| ≤ 200 1.4 52.92 0.35
250≤ |S| ≤ 350 18.4 246.72 0.45

600

- - 13.39 0.31 0.21
|S| ≤ 300 - 13.56 0.30

200≤ |S| ≤ 300 - -(0.05) 0.69
450≤ |S| ≤ 550 - -(0.02) 0.60

800

- - 24.08 0.54 0.31
|S| ≤ 400 - 25.13 0.55

300≤ |S| ≤ 400 - -(1.38) 1.46
550≤ |S| ≤ 650 - -(1.64) 1.18

1,000

- - 35.58 0.65 0.42
|S| ≤ 500 - 35.68 0.65

300≤ |S| ≤ 500 - -(1.37) 1.67
650≤ |S| ≤ 750 - -(2.41) 1.68

Table 1 Computing time (in seconds) and percentage gaps (%) for the MNL instances.

via maximum likelihood estimation. However, the estimation is out-of-scope of this experiment, so

we just fixed those parameters and use them for testing the performance of our algorithm.

In the case of the problem with the MMNL model, an equivalent MILP formulation can also be

obtained (Méndez-Dı́az et al. 2010). More precisely, we can define

yk =
1

V0k +
∑m

i=1 xiVik
, ∀k, and zik = xiyk, ∀i, k,
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Figure 3 Computing time and objective values found, given by the BiTR and ADXOpt for the MNL problem

with 1,000 products, and given a time budget of 600 seconds.

then (AO-MMNL) can be reformulated in a linear 0-1 form as

maximize
x,y

1

K

m∑
i=1

K∑
k=1

riVikzik

subject to Ax≤ b

Vokyk +
m∑
i=1

Vikzik = 1, ∀k

V0kyk−V0kzik ≤ 1−xi, ∀i, k

zik ≤ yk, ∀i, k

(V0k +Vik)zik ≤ xi, ∀i, k

xi ∈ {0,1}, zik ≥ 0, ∀i, k,

yk ≥ 0, ∀k.

(12)

The model (12) consists ofM binary andK(M+1) continuous variables, and 3MK+K constraints.

So, the size of this model increases proportionally with the number of products M and number of

draws K, leading to the fact that the model may be difficult to solve for large-scale instances (e.g.,

instances of thousands of products).
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We generate samples of K = 100,200 and 500 for the experiment. In this case study, due to the

large number of products and the complexity of the objective function, the cost to perform Steps

2.4 - 2.7 of Algorithm 1 and the “exchange” step of ADXOpt are expensive, we therefore only use

the steps of adding or removing one item for both the ADXOpt and the local search of Algorithm

1. Table 2 reports the numerical results for the MILP, ADXOpt, BiTR and the BiTR without the

“local search” step (BiTR-noLS) (i.e., Algorithm 1 without Step #3), where bold numbers indicate

best methods, i.e., return optimal solutions in shortest computing time. Similar to the MNL case,

the “-” indicates that CPLEX fails to return an optimal solution within a time budget of 600

seconds. For each instance and method, if the objective value found is not the best one, we report

in parentheses the percentage gaps with respect to the best solution found by all methods.

The results in Table 2 clearly show that the BiTR approach is very competitive. On the one

hand, it clearly outperforms ADXOpt as a heuristic algorithm. On the other hand, BiTR provides

solutions whose quality is way better than the one of CPLEX solving the MILP, and faster. Of

course, one needs to recall that CPLEX while solving the MILP formulation is designed to prove

optimality, so the comparison is only in terms of practical use of the approaches. Finally, the BiTR-

noLS is the fastest algorithm, and it is interesting to see that the approach manages to return best

objective values for 54/72 instances, and for the others the percentage gaps are also small.

We also report the computing time and objective values over iterations for the BiTR and ADX-

Opt approaches, in order to see how the two approaches converge to solutions. Similar to the

MNL case, we take the instances of 1,000 products with K = 500 (the largest instances). Figure

4 reports the computing time and objective value for the four types of feasible sets. Clearly, the

BiTR converges to the best solution quickly as compared to the ADXOpt. For unconstrained and

capacitated instances, ADXOpt manages to find good solutions within 600 seconds, but it is not

the case for the instances with bound constraints.

Given that fact that the ADXOpt and BiTR algorithms are heuristic, we also test the three

approaches on small-size instances in order to validate the quality of the solutions found. Note that

for these small instances, we do not remove step “exchange” from ADXOpt and Steps 2.4 - 2.7

from Algorithm 2, like we did instead for the large instances considered above. For these instances,

the MILP approach is able to return optimal solutions, so we use the optimal values given by

the MILP approach to evaluate the solutions given by the ADXOpt and BiTR. Table 3 reports

the results based on instances of 10, 20 and 30 products, where bold numbers indicate the fastest

methods. Interestingly, all the approaches are able to find optimal solutions for all the instances.

The ADXOpt approach is the fastest one, and the computing times of the MILP approach start to

be remarkably larger than those required by the two other approaches for m> 20. It is interesting

to note that the ADXOpt is faster than the BiTR for small-size instances. This can be explained
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Table 2 Computing time (seconds) and percentage gaps (%) for the MMNL instances
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Figure 4 Computing time and objective values found, given by the BiTR and ADXOpt algorithms for MMNL

instances with 1,000 products, K = 500, and given a time budget of 600 seconds.

by the fact that, for these instances, the cost of computing the objective function is much lower as

compared to the cost for solving the sub-problem of the BiTR algorithm.

K 5 10 20
m Constraints MILP ADXOpt BiTR MILP ADXOpt BiTR MILP ADXOpt BiTR

10

- 0.21 0.61 0.52 0.14 0.01 0.46 0.15 0.01 0.45
|S| ≤ 3 0.17 0.02 0.55 0.14 0.01 0.54 0.17 0.01 0.47

3≤ |S| ≤ 5 0.15 0.01 0.47 0.14 0.01 0.47 0.16 0.01 0.47
5≤ |S| ≤ 7 0.22 0.01 0.47 0.14 0.01 0.46 0.15 0.01 0.48

20

- 1.62 0.03 0.45 4.47 0.03 0.48 6.82 0.03 0.46
|S| ≤ 10 1.53 0.03 0.48 2.65 0.03 0.47 5.69 0.03 0.46

3≤ |S| ≤ 10 1.53 0.03 0.47 3.14 0.02 0.48 5.30 0.02 0.49
10≤ |S| ≤ 15 1.38 0.03 0.46 2.99 0.03 0.45 9.01 0.02 0.46

30

- 28.75 0.06 0.47 240.71 0.07 0.48 601.64 0.07 0.49
|S| ≤ 15 26.29 0.06 0.50 142.74 0.06 0.48 500.60 0.07 0.50

10≤ |S| ≤ 15 31.18 0.05 0.50 145.94 0.05 0.48 489.38 0.06 0.48
15≤ |S| ≤ 20 34.12 0.05 0.50 233.92 0.05 0.49 601.20 0.06 0.50

Table 3 Computing time (seconds) for the MMNL problem with small-size instances, all the approaches return

optimal solutions.
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5.4. Case study 3: Network MEV model

For this case study, we build a cross-nested structure by grouping the products according to certain

common features. For example, we create a nest grouping of products whose color is red, or a nest

grouping of products that belong to a specific item class (see Figure 5 for an illustration). This

way of modeling results in a cross-nested logit model (i.e., a two-level network MEV model) of

111 nests and the network of correlation structure contains 1,981 directed links. We estimate the

parameters µ and α and the parameters associated with all the products’ attributes. In total, there

are 223 parameters to be estimated. We use the dynamic programming techniques proposed by

Mai et al. (2017) to accelerate the estimation and the computation of the objective function (i.e.,

expected revenue).

Root

Nests

Prod 0 Prod 1 Prod 2 Prod 3 Prod 4

...[1] [2] [3]

...

[1]: Color Red
[2]: Class A
[3]: Material B

Figure 5 Example of a cross-nested correlation structure between products.

In this study, we also remove the “exchange” step from ADXOpt and Steps 2.4 - 2.7 from

Algorithm 2, due to that fact that these steps are too costly to perform. Table 4 reports the

computing time and percentage gap (%) for the ADXOpt, BiTR and BiTR-noLS (i.e., Algorithm

1 without Step #3). Bold numbers again indicate the fastest methods among those returning best

solutions. Symbol “-” is again used to indicate that the approach exceeds the time budget of 600

seconds without that any feasible solution is obtained. In general, the BiTR-noLS is the fastest one,

and the BiTR is faster than the ADXOpt. The BiTR returns best solutions for 17/24 instances, and

the ADXOpt manage to find best solutions for 15/24 instances. The average percentage gap given

by the BiTR is 0.12, which is significantly smaller than the average percentage gap of 0.24 given

by the ADXOpt. We also note that, even if it is very fast, the solutions given by the BiTR-noLS

are not as good as those given by the other approaches, meaning that the “local search” step of

Algorithm 1 really helps improve the solutions given by the BiTR-noLS.
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m Constraints ADXOpt BiTR BiTR-noLS

100

- 2.6(0.02) 2.6 1.1(2.29)
|S| ≤ 50 2.4(0.02) 2.2 0.8(2.29)

30≤ |S| ≤ 50 3.4 2.5 2.3
50≤ |S| ≤ 70 2.9(0.02) 1.7 1.6(0.20)

200

- 8.2 8.5 1.2(3.57)
|S| ≤ 100 8.2 8.4 1.1(3.57)

70≤ |S| ≤ 100 13.0 4.2(0.77) 4.0(0.77)
120≤ |S| ≤ 160 8.0(1.80) 7.6 2.1(6.73)

400

- 39.8 24.5(0.07) 3.9(0.84)
|S| ≤ 200 41.0 23.7(0.07) 3.9(0.84)

100≤ |S| ≤ 200 102.0 13.0(0.32) 10.4(0.47)
250≤ |S| ≤ 350 54.3(0.24) 12.3 12.1(0.76)

600

- 82.9 33.3 12.7(0.22)
|S| ≤ 300 82.4 32.8 12.7(0.22)

200≤ |S| ≤ 300 211.6 22.6(0.43) 21.8(0.43)
450≤ |S| ≤ 550 75.7(0.02) 16.0 15.7(0.77)

800

- 183.0(0.05) 92.7 21.0(0.55)
|S| ≤ 400 183.3(0.05) 93.1 20.6(0.55)

300≤ |S| ≤ 400 375.1 35.7(0.25) 34.5(0.25)
550≤ |S| ≤ 650 228.8 24.3(0.90) 23.6(0.90)

1,000

- 476.7 166.3 24.3(0.77)
|S| ≤ 500 478.2 166.4 24.5(0.77)

300≤ |S| ≤ 500 -(3.57) 57.9 45.2(0.10)
650≤ |S| ≤ 750 - 44.2 39.2(0.06)

Average percentage gap 0.24 0.12 1.16
Table 4 Computing time (seconds) and percentage gaps (%) for the network MEV instances.

In Table 4, the performance of the ADXOpt seems to be comparable on several instances. Thus,

we provide an additional experiment to have a closer look at the performance of our methods.

More precisely, we test the MEV instances with small time budgets, i.e., 120 and 20 seconds. Table

5 reports the percentage gap for the ADXOpt, BiTR and BiTR-noLS, where the values of 0.0

indicate that the corresponding algorithms return the best solutions. It is clear from the table

that the ADXOpt performs well on small instances of less than 400 items. However, for larger

instances, the gaps given by the ADXOpt are remarkably high. Especially, with instances of 1000

items, ADXOpt’s gaps can go up to 19.7%. In general, the experiment shows the effectiveness of

our approaches in handling large-scale instances with a very limited time budget.

Now, we turn our attention to the convergence of the BiTR and ADXOpt under the largest

instances, i.e., instances of 1,000 products. In Figure 6, we plot the computing time and objective

value for the four types of feasible sets. Similar to what we observed in the previous case studies, the

BiTR manages to go quickly to good solutions, while the ADXOpt can only improve the objective

value slowly, and it exceeds the time budget for 2/4 of the instances considered.

Similarly to the case study with MMNL instances, we also test on small instances to validate the

quality of the solutions given by the two heuristic approaches BiTR and ADXOpt. More precisely,
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Time budget = 120s Time budget = 20s

m Constraints ADXOpt BiTR
BiTR
noLS

ADXOpt BiTR
BiTR
noLS

- 0.0 0.0 0.0 0.0 0.0 0.0
100 |S| ≤ 50 0.0 0.0 0.0 0.0 0.0 0.0

30≤ |S| ≤ 50 0.0 0.0 0.0 0.0 0.0 0.0
50≤ |S| ≤ 70 0.0 0.2 0.2 0.0 0.2 0.2
- 0.0 0.0 0.8 0.9 0.0 0.8

200 |S| ≤ 100 0.0 0.0 0.8 0.5 0.0 0.8
70≤ |S| ≤ 100 0.0 0.8 0.8 5.8 0.0 0.0
120≤ |S| ≤ 160 0.0 0.6 0.6 1.4 0.0 0.0
- 0.0 0.1 0.8 3.7 0.0 0.5

400 |S| ≤ 200 0.0 0.1 0.8 3.7 0.0 0.5
100≤ |S| ≤ 200 8.7 0.0 0.1 12.0 0.0 0.1
250≤ |S| ≤ 350 1.2 0.0 0.0 8.1 0.0 0.0
- 0.6 0.0 0.2 8.4 0.0 0.1

600 |S| ≤ 300 0.5 0.0 0.2 7.0 0.0 0.1
200≤ |S| ≤ 300 9.9 0.0 0.0 12.8 0.0 0.0
450≤ |S| ≤ 550 0.8 0.0 0.0 4.8 0.0 0.0
- 2.2 0.0 0.5 12.9 0.0 0.1

800 |S| ≤ 400 2.5 0.0 0.5 15.0 0.0 0.0
300≤ |S| ≤ 400 11.4 0.0 0.0 14.4 0.0 0.0
550≤ |S| ≤ 650 5.7 0.0 0.0 7.2 0.0 0.0
- 4.4 0.0 0.5 16.4 0.0 0.0

1000 |S| ≤ 500 4.3 0.0 0.5 19.7 0.0 0.0
300≤ |S| ≤ 500 13.5 0.0 0.1 16.6 0.0 0.0
650≤ |S| ≤ 750 7.0 0.0 0.1 8.6 0.0 0.0

Average 3.0 0.1 0.3 7.5 0.0 0.1
Table 5 Percentage gaps (%) for the MEV instances, under small time budgets.

we use instances of 10, 15 and 20 products. For such instances, it is possible to enumerate all

the feasible assortments and find the optimal ones, so we are able to compare solutions given

by the BiTR and ADXopt to the optimal ones. Table 6 reports our numerical results, where ES

(Exhaustive Search) is the method of enumerating and searching over all the feasible solutions.

Interestingly, both BiTR and ADXOpt manage to return optimal solutions for all the instances.

The BiTR and ADXOpt perform similarly in terms of computing time, and the ES approach is,

expectedly, very slow as compared to the two other approaches.

In summary, the experiments show that our approach outperforms both existing exact and

heuristic methods (i.e., CPLEX solving MILP formulations and the ADXOpt), in the sense that

it is able to return better solutions in shorter computing times. This clearly indicates the benefits

of taking into consideration the gradient information of the objective function for the search. In

particular, the BiTR algorithm allows to return good solutions in a matter of seconds, which might

be of interest from a retail company’s viewpoint. That is, since the algorithm is general and fast,

it opens the possibility for considering several discrete choice models, and quickly solving several
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Figure 6 Computing time and objective values found, given by the BiTR and ADXOpt algorithms for MEV

instances of 1,000 products, and given a time budget of 600 seconds.

m Constraints ES ADXOpt BiTR

10

- 1.0 0.1 0.1
|S| ≤ 3 0.2 0.1 0.1

3≤ |S| ≤ 5 0.6 0.1 0.1
5≤ |S| ≤ 7 0.6 0.1 0.1

15

- 33.8 0.2 0.2
|S| ≤ 5 5.2 0.2 0.2

5≤ |S| ≤ 8 21.5 0.3 0.3
9≤ |S| ≤ 13 10.2 0.2 0.1

20

- 1200.7 0.2 0.3
|S| ≤ 10 717.8 0.7 0.7

3≤ |S| ≤ 10 705.5 0.5 0.5
10≤ |S| ≤ 15 681.8 0.3 0.2

Table 6 Computing time (seconds) for the MEV model and small-size instances, all the approaches return

optimal solutions.

assortment optimizations to find a collection of solution candidates, from which one can pick

solutions that make sense. Moreover, our approach is not limited to simple constraints considered

above, thus it provides great flexibility to deal with different business requirements.
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6. Conclusion

In this paper, we proposed a new algorithm for the assortment optimization problem under different

parametric choice models. The problem is challenging due to the fact that the expected revenue

function is highly nonlinear and non-convex. Our approach is based on the idea that we can

iteratively approximate the objective function by a linear one and perform a “local search” based on

this approximate function. In the special but natural case in which the constraints on the assortment

structure are lower and upper bounds on its size, we devised a polynomial-time algorithm that

solve the subproblem in each iteration, thus allowing us to efficiently find candidate assortments.

We also developed a greedy local search approach to further improve the solutions. In addition,

several theoretical properties of the greedy algorithm were also discovered for the MNL special

case. Those properties help to accelerate the search process.

We have tested our BiTR algorithm on instances under the MNL, MMNL and network MEV

models. The results show that our algorithm, called BiTR, dominates the classical heuristic algo-

rithm ADXOpt and it is practically effective with respect to CPLEX solving MILP formulations

of the problems.

In summary, the extensive computational tests have shown that the BiTR is able to provide good

solutions in short computing time. So, this method should be useful for some real-life applications,

e.g., online retail businesses, where one needs demand models to accurately capture customers’

demand, and a real-time solution method to quickly provide good assortment solutions under some

relatively simple business constraints.

For the future search, we are interested in extending the BiTR to handle the assortment-prices

planning problem, i.e., the problem of simultaneously selecting assortment and prices for products

in order to maximize the expected revenue. This is also interesting to see how the BiTR can

be applied for other data-driven optimization problems, e.g., the maximum captured problem in

facility location, where the demand of users is modeled and predicted by a general parametric

choice model.
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Appendix. Proofs of Propositions 1-5

Proof of Proposition 1. We let S∗ and x∗ denote an assortment and the corresponding binary solution

given by the local search algorithm. We will prove that for any assortment S such that LB ≤ |S| ≤ UB we

have R(S∗)≥R(S). First, we have

R(S∗) =

∑
i∈S∗ Viri∑
i∈S∗ Vi

.

Again, for notational simplicity we define A=
∑

i∈S∗ Viri and B =
∑

i∈S∗ Vi. We also have the fact that for

any other assortment S, S can be obtained by exchanging and removing/adding products from/to S∗. More

precisely, from S∗ we can keep doing the exchanges until we get an assortment S̄ such that S̄ ⊂ S or S ⊂ S̄,

then if S̄ ⊂ S we add more products to S̄ to obtain S, otherwise we remove some products from S̄. These

operations can be expressed in a formal way as follows

S =

{
(S∗− i1 + j1− ...− ip + jp) + jp+1 + . . .+ jh if |S∗| ≤ |S|
(S∗− i1 + j1− ...− ip + jp)− ip+1 + . . .+ il if |S∗|> |S|

(13)

i1, . . . , il ∈ S∗\{0}, and j1, . . . , jh /∈ S∗, and each operation “−it + jt” stands for exchanging it ∈ S∗ with

jt /∈ S∗. Now, we prove that R(S∗)≥R(S). Because S∗ is a solution of the local search algorithm, we have

R(S∗) =
A

B
≥ A+Vjrj −Viri

B+Vj −Vi

, ∀i∈ S∗\{0}, j /∈ S∗, (14)
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R(S∗) =
A

B
≥ A+Vjrj

B+Vj

, ∀j /∈ S∗, if |S|> |S∗|,

R(S∗) =
A

B
≥ A−Viri

B−Vi

, ∀i∈ S∗\{0}, if |S| ≤ |S∗|,

or equipvalently,

A(Vj −Vi)≥B(Vjrj −Viri) ∀i∈ S∗\{0}, j /∈ S∗,

AVj ≥BVjrj , ∀j /∈ S∗, if |S|> |S∗|,

A(−Vi)≥B(−Viri), ∀i∈ S∗\{0}, if |S| ≤ |S∗|.

So, if we incorporate the above inequalities with (13) we have

• If |S| ≥ |S∗|, then

A(−Vi1 +Vj1 − ...−Vip +Vjp +Vjp+1
+ . . .+Vjh)

≥B(−Vi1ri1 +Vj1rj1 − ...−Viprip +Vjprjp +Vjp+1
rjp+1

+ . . .+Vjhrjh),

or equivalently,

A

B
≥
A−Vi1ri1 +Vj1rj1 − ...−Viprip +Vjprjp +Vjp+1

rjp+1
+ . . .+Vjhrjh

B−Vi1 +Vj1 − ...−Vip +Vjp +Vjp+1
+ . . .+Vjh

,

or R(S∗)≥R(S).

• If |S|< |S∗|, then

A(−Vi1 +Vj1 − ...−Vip +Vjp −Vip+1
− . . .−Vil)

≥B(−Vi1ri1 +Vj1rj1 − ...−Viprip +Vjprjp −Vip+1
rip+1

− . . .−Vilril),

or equivalently,

A

B
≥
A−Vi1ri1 +Vj1rj1 − ...−Viprip +Vjprjp −Vip+1

rip+1
− . . .−Vilril

B−Vi1 +Vj1 − ...−Vip +Vjp −Vip+1
− . . .−Vil

,

and this also leads to R(S∗)≥R(S).

Q.E.D.

Proof of Proposition 2. First, we write

R(Sk) =

∑
i∈Sk

Viri∑
i∈Sk

Vi

.

For notational simplicity, let us define A=
∑

i∈Sk
Viri and B =

∑
i∈Sk

Vi, so R(Sk) =A/B. Under the assump-

tion of the proposition, we have

R(Sk)≥ argmaxS∈(MD
k
∪MA

k
)∩MR(S), (15)

with a note that MD
k ⊂M and MA

k ⊂M because |Sk| is strictly in the bounds. If we denote by S + j the

operation of adding product j to assortment S (i.e., S∪{j}), and by S− i the operation of removing product

i from S (i.e., S\{i}), then (15) can be written equivalently as{
R(Sk)≥R(Sk + j), ∀j /∈ Sk

R(Sk)≥R(Sk− i), ∀i∈ Sk\{0},
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⇔

{
A
B
≥ A+Vjrj

B+Vj
, ∀j /∈ Sk

A
B
≥ A−Viri

B−Vi
, ∀i∈ Sk\{0}

⇔

{
AVj ≥BVjrj , ∀j /∈ Sk

A(−Vi)≥B(−Viri), ∀i∈ Sk\{0}.
(16)

Now, for any assortment S such that LB ≤ |S| ≤ UB, we have the fact that S can be always obtained by

removing/adding some products from/to Sk, i.e., there exist products i1, . . . , ip ∈ Sk\{0} and j1, . . . , jq /∈ Sk

such that

S = Sk− i1− . . .− ip + j1 + . . .+ jq.

According to (16) we have

A(−Vi1 − . . .−Vip +Vj1 + . . .+Vjq )≥B(−Vi1ri1 − . . .−Viprip +Vj1rj1 + . . .+Vjqrjq ),

or equivalently,
A

B
≥
A−Vi1ri1 − . . .−Viprip +Vj1rj1 + . . .+Vjqrjq

B−Vi1 − . . .−Vip +Vj1 + . . .+Vjq

,

meaning that R(Sk)≥R(S). So Sk is an optimal solution. Q.E.D.

Proof of Proposition 3. Similar to the proof of Proposition 2, we also have that R(Sk) ≥ R(S), ∀S ∈

MD
k ∪MA

k , is equivalent to

⇔

{
AVj ≥BVjrj , ∀j /∈ Sk

A(−Vi)≥B(−Viri), ∀i∈ Sk\{0},
(17)

where A=
∑

i∈Sk
Viri and B =

∑
i∈Sk

Vi. So,{
A(Vj1 +Vj2)≥B(Vj1rj1 +Vj1rj1), ∀j1, j2 /∈ Sk

A(−Vi1 −Vi2)≥B(−Vi1ri1 −Vi2ri2), ∀i1, i2 ∈ Sk\{0}

⇔

{
A
B
≥ A+Vj1

rj1+Vj1
rj1

B+Vj1
+Vj2

, ∀j1, j2 /∈ Sk

A
B
≥ A−Vi1

ri1−Vi2
ri2

B−Vi1
−Vi2

, ∀i1, i2 ∈ Sk\{0}
⇔

{
R(Sk)≥R(Sk + j1 + j2), ∀j1, j2 /∈ Sk

R(Sk)≥R(Sk− i1− i2), ∀i1, i2 ∈ Sk\{0}.

This also means that R(Sk)≥R(S), ∀S ∈M2A
k ∪M2D

k . Q.E.D.

Proof of Proposition 4. We have that, at Step 2.1, a product i ∈ Sk\{0} could be removed from Sk if

R(Sk)<R(Sk− i), meaning that

A

B
<
A−Viri
B−Vi

⇔A>Bri, or equipvalently R(Sk)> ri

Similarly, at Step 2.2, a product j /∈ Sk can be added to Sk if

A

B
<
A+Vjrj
B+Vj

⇔A<Brj⇔R(Sk)< rj .

Q.E.D.

Proof of Proposition 5. We consider the case that |Sk|=LB. Because R(S̄)≤R(Sk), there is no product

that should be added to Sk. According to Proposition 4 we have

R(Sk)≥ rj , ∀j ∈ U\Sk.
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We now show, by contradiction, that if product ik ∈ Sk\{0} is exchanged with jk ∈ U\Sk then R(Sk)> rik .

Indeed, if R(Sk)≤ rik then {
A/B ≥ rjk
A/B ≤ rik

⇔

{
AVjk ≥BVjkrjk
A(−Vik)≤B(−Vikrik)

⇒A(Vjk −Vik)≥B(Vjkrjk −Vikrik)⇒ A

B
≥ A+Vjkrjk −Vikrik

B+Vjk −Vjk

,

meaning that R(Sk)≥R(Sk + jk − ik). This contradicts the supposition that ik is exchanged with jk by an

“exchange” step.

So, after the “exchange” step at iteration k, at the next iteration k+1 we have U\Sk+1 = U\Sk\{jk}∪{ik}.

Because R(Sk)> rik as stated above, so we have R(Sk)≥ rj , ∀j ∈ U\Sk+1. Moreover, R(Sk+1)>R(Sk), so

in general we have {
|Sk+1|=LB

R(Sk+1)≥ rj ,∀j ∈ U\Sk+1.

Hence, by induction, we complete the proof. Q.E.D.
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