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Abstract In this paper, we consider binary quadratically constrained quadratic
problems and propose a new approach to generate stronger bounds than the
ones obtained using the Semidefinite Programming relaxation. The new relax-
ation is based on the Boolean Quadric Polytope and is solved via a Dantzig-
Wolfe Reformulation in matrix space. For block-decomposable problems, we
extend the relaxation and analyze the theoretical properties of this novel ap-
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diamond graph), we establish equivalence to the one based on the Boolean
Quadric Polytope. We conjecture that equivalence holds for any block struc-
ture with a chordal sparsity graph. The tailored decomposition algorithm in
the matrix space is used for efficiently bounding sparsely structured problems.
Preliminary numerical results show that the proposed approach yields very
good bounds in reasonable time.
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1 Introduction and literature review

A generic Binary Quadratically Constrained Quadratic problem (BQCQP) can
be written in the following form:

min x>Qx (1a)

s. t. x>Aix ≤ bi ∀i ∈ I (1b)

x ∈ {0, 1}n , (1c)

where I is the index set of the constraints, while Q and Ai both are symmetric
n×n-matrices and bi ∈ R for all i ∈ I. No further assumptions on the matrices
are required, in particular, the continuous relaxation of the problem can be
non convex.

BQCQPs play an important role in the field of Mathematical Program-
ming. They have applications in many different fields, such as Telecommuni-
cations, Finance, Biology, Energy, Robotics, just to cite a few of them (see [25],
[26] for more details). The solution of BQCQPs is NP-hard and the solution
techniques for BQCQPs draw heavily on both discrete and continuous the-
ory and methodologies. For a detailed description of solution techniques for
nonlinear problems and quadratic problems we refer the reader to [16] and [25].

The techniques proposed in this paper are closely related to conic opti-
mization (more precisely semidefinite, copositive and completely positive op-
timization) on one side, and Dantzig-Wolfe Reformulation (DWR) and Column
Generation (CG) on the other side.

DWR, firstly introduced in [17], is a well known technique used to obtain
tight bounds for discrete problems. Its principle is to replace the feasibility
region corresponding to a subset of constraints of the model by the convex
hull of its extreme points. This is obtained through an inner representation
that exploits the Minkowski-Weyl Theorem, a classic result in polyhedral the-
ory saying that every polyhedron is the convex combination of its extreme
points plus the conic combination of its extreme rays. CG is a technique fre-
quently used for solving problems with a large (usually exponential) number
of columns. CG is normally used for handling linear programs, but it can be
applied to any nonlinear program, under some convexity assumptions. The
fact that the application of DWR leads to reformulated problems with an
exponential number of variables makes it natural to use CG to solve these
reformulations effectively. Among the various articles and surveys on CG and
DWR available in the literature, we point out [2], [18], [33] and [40].

In order to rewrite the BQCQP (1) in matrix form, we make use of the
Hilbert product 〈A,B〉 = trace(AB) and introduce the matrix variable X to
represent all products of the original variables: Xij = xixj , ∀i, j = 1, . . . , n.
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Now, we can equivalently rewrite the original problem as follows:

min 〈Q,X〉 (2a)

s. t. 〈Ai, X〉 ≤ bi ∀i ∈ I (2b)

X = xx> (2c)

x ∈ {0, 1}n . (2d)

Several conic reformulations for quadratic programs are formulated on the
extended (matrix) space obtained after adding an additional set of variables
representing the products of the original variables. Since the constraint im-
posing an exact relation between the original and the new set of variables
is non convex and difficult to deal with, a standard technique is relaxing this
constraint, and obtain lower bounds to be used in a Branch-and-Bound frame-
work.

SemiDefinite Programming (SDP) based relaxations, which require the ma-
trix variable to lie in the cone of positive semidefinite matrices, represent a
nice tool in this context. SDP is particularly interesting because it enjoys
polynomial complexity and usually leads to relatively tight dual bounds (see,
e.g., [35]). We refer the reader to [30] and [32] for a survey on SDP. Spe-
cific software has been developed for SDP, for example the commercial solver
MOSEK, SeDuMi (see [38]), SDPT3 (see [39]), CSDP (see [11]) among others.
The open source software BiqCrunch is a semidefinite-based solver for binary
quadratic problems (see [37]). In this work we will present a new relaxation to
provide even tighter bounds for problem (1).

Among the other types of conic relaxations, two important classes are rep-
resented by the copositive and completely positive relaxations, that respec-
tively lead to optimization in the cone of Copositive matrices and Completely
positive matrices. The subject of copositive programming was first introduced
in [29]. Then, it has received increasing interest over the last few decades and
a large number of works has been produced. For a description of copositive
optimization, we start referring to [15] and to the survey [22]. Other papers
which present reviews of recent advances in this field, along with applications,
are [5] and [9]. The book [4] is also a useful source.

The first important result about copositive programming is given in [7]:
the authors consider the so-called Standard quadratic problem, which is the
minimization of a quadratic function over a simplex, and they prove that its
completely positive relaxation is a reformulation of the original problem.

This first reformulation of a quadratic program in copositive form is fol-
lowed by other results. A noticeable result is given in [13]. The author ex-
tended the first result to every linearly constrained quadratic problem with
binary variables.

Solving a copositive problem remains obviously very hard. Typically, hier-
archies of polyhedral cones are used to approximate the copositive cone. These
are used, for instance, in [6] and in [12], while in [14] the author proposes a
doubly non negative relaxation of the completely positive cone. A different ap-
proach is given in [8], where the authors propose a feasible direction heuristic
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to solve a problem in the completely positive cone. However, the initial point
with a factorization is needed, which is trivial in some cases, but difficult in
general.

Geometrical aspects of these cones have been extensively studied. The inte-
rior of the completely positive cone has been described in [23] and their result
has been improved in [19]. Other important results are obtained in [20].

2 Boolean Quadric Polytope (BQP) relaxation

As mentioned above, it is well known that the SDP relaxation of the formu-
lation given in (2) can be used to obtain strong dual bounds for problem (1).
In this work, we present a seemingly novel relaxation of problem (2) that al-
lows us to obtain dual bounds stronger than the ones obtained using the SDP
relaxation. We intend to replace the constraint (2c) by letting the matrix X
be a convex combination of rank-1 matrices Xp of the type Xp = xpx

>
p , where

xp ∈ {0, 1}n. The problem then takes the following form:

min 〈Q,X〉 (3a)

s. t. 〈Ai, X〉 ≤ bi ∀i ∈ I (3b)

X =
∑
p∈P

λpXp (3c)

∑
p∈P

λp = 1 (3d)

λp ≥ 0 ∀p ∈P , (3e)

where P = {p ∈ N : xp ∈ {0, 1}n} is the index set of all possible binary
extreme points xp. Thus P is a finite set of size exponential in n, that is
|P| = 2n.

It is interesting to investigate the relation between problem (3) and the
well-known Boolean Quadric Polytope [34], the convex hull BQPn of all binary
rank-1 matrices Xp ∈ Rn×n.

Proposition 1 The problem (3) is a relaxation of (1), and its domain is the
n-dimensional Boolean Quadric Polytope BQPn.

Proof It is a relaxation because all the solutions of the original problem (1)
are achieved by our reformulation with λ ∈ {0, 1}|P|, that is in the case when
only one extreme point is considered (due to the constraint (3d)). Then, by
the constraints (3c) and the constraints on the λ variables, we know that a
solution X of (3) is a convex combination of rank-1 binary matrices Xp given
by Xp = xpx

>
p , where xp is binary, hence it is in BQPn. ut

We now introduce the notions of Copositive and Completely Positive ma-
trices: let A ∈ Sn. We say that A is CoPositive (COP) if x>Ax ≥ 0 for all
x ∈ Rn

+. On the other hand, we say that A is ComPletely Positive (CPP)
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if there exist k and B ∈ Rn×k
+ such that A = BB>. We notice that, since

every point in BQPn is a convex combination of doubly non-negative ma-
trices, it is clearly in the CPP cone, which we denote by C∗. Indeed, if we
define bp :=

√
λpxp, then (3c) becomes X =

∑
p∈P bpb

>
p , which implies that

X ∈ C∗. Hence the bounded polyhedron BQPn is strictly contained in the
non-polyhedral cone C∗ and thus the domain of (3) is typically strictly con-
tained in that of the CPP relaxation. By consequence, the BQP relaxation
is stronger than the CPP relaxation which in turn is stronger than the SDP
relaxation, since the SDP cone contains the CPP cone.

Related works on an inner approximation of the CPP cone include [27,41].
While [41] offers theoretical error bounds for a general setting of discretization
of the CPP cone (or a base of it), [27] takes a different approach which uses
2×2 blocks overlapping in at most one diagonal entry. This would correspond
to a cut node in the specification graph. In the sequel, we will consider a more
general case of diamond graphs; see Proposition 2.

2.1 Solving the BQP relaxation

In this section we present a way to solve (3) via Column Generation (CG) in
the matrix space. CG starts with a subset of variables P̄ ⊂P and iteratively
verifies (via an auxiliary problem called Pricing problem) if the solution ob-
tained with the variables used so far is optimal or if it is potentially necessary
to add additional variables taken from P \ P̄.

Let RMP(P̄) be the Restricted Master problem with variables P̄, that is
problem (3) with P replaced by P̄. Given the extreme points {xpx>p : p ∈ P̄},
problem RMP(P̄) can be written in the following form:

min 〈Q,X〉 (4a)

s. t. 〈Ai, X〉 ≤ bi ∀i ∈ I (4b)

X =
∑
p∈P̄

λp
(
xpx

>
p

)
(4c)

∑
p∈P̄

λp = 1 (4d)

λp ≥ 0 ∀p ∈ P̄ . (4e)

We can replace the constraints (4c) in the objective function and in the
other constraints, thus obtaining a linear problem in the λ variables only. We
also introduce the notation Xp := xpx

>
p . Hence we have:
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RMP(P̄) min
∑
p∈P̄

〈Q,Xp〉λp (5a)

s. t.
∑
p∈P̄

〈Ai, Xp〉λp ≤ bi ∀i ∈ I [ρ] (5b)

∑
p∈P̄

λp = 1 [π0] (5c)

λp ≥ 0 ∀p ∈ P̄ . (5d)

The dual of RMP(P̄) reads as follows:

max b>ρ+ π0 (6a)

s. t.
∑
i∈I
〈Ai, Xp〉ρi + π0 ≤ 〈Q,Xp〉 ∀p ∈ P̄ (6b)

ρ ≤ 0 , (6c)

where ρ ∈ R|I| are the dual variables corresponding to the quadratic con-
straints and π0 ∈ R is the dual variable corresponding to the equality con-
straint.

CG can be viewed as a dual cutting plane method. Once RMP(P̄) is solved
to optimality, the optimal dual variables ρ∗, π∗0 are available. The Pricing prob-
lem reduces to check if all the constraints (6b) are satisfied with ρ = ρ∗, π = π∗0
for every point Xp as p ∈P\P̄. If these constraints are valid for every p ∈P,
then our primal feasible solution is also feasible for the dual of the master pro-
gram, so it is optimal. Otherwise, there are points Xp ∈ P \ P̄ that violate
these constraints. The pricing problem consists of finding an extreme point
that corresponds to a violated constraint (6b) (in other words, an extreme
point with a negative reduced cost). To do so, the reduced cost is minimized
for every point X ∈P. If the minimum is less than 0, we can add the corre-
sponding constraint in the dual and the corresponding variable in the master,
otherwise the algorithm terminates. The pricing problem takes the following
form:

min 〈Q,X〉 −
∑
i∈I
〈Ai, X〉ρ∗i − π∗0 (7a)

s. t. X = xx> (7b)

x ∈ {0, 1}n , (7c)

and can be rewritten in vector form:

min x>(Q−
∑
i∈I

ρ∗iAi)x− π∗0 (8a)

s. t. x ∈ {0, 1}n . (8b)
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While the master program is linear, the pricing problem is an unconstrained
binary quadratic program. If the original problem is convex, i.e., if the matrix
Q is positive semidefinite and so are all the matrices Ai, then all the pricing
problems are convex as well: indeed, the matrix in its objective function (8a)
is sum of positive semidefinite matrices because of the non positivity of the
dual variables ρ∗, see (6c).

2.2 Computational experiments with the BQP relaxation

When using this framework, we need to solve a sequence of linear master
problems and unconstrained quadratic binary pricing problems to obtain the
optimal value of the BQP-relaxation related to the original problem. In our
implementation Cplex is used as solver for both the master and the pricing
problems. From a technical point of view, to ensure feasibility in the first iter-
ations of the algorithm, we initialize RMP(P̄) with a set of dummy columns
that makes the set of constraints feasible and with a sufficiently large cost.
Since the most challenging task is solving the pricing problem, we use an early
stopping strategy when dealing with it. We impose that the solver stops as
soon as it finds a point with a negative reduced cost. If the algorithms finds
it, then we can add this point to the set of extreme points for the master and
proceed in the column generation algorithm. If there are no such points, this
means that no other extreme point can be added so the algorithm has already
found the optimum and it can stop.

It is worth noticing that the proposed methodology could be extended to
solve instances with also continuous and general integer variables but in a first
round of tests we focus on purely binary instances from the QPLIB library [25].

We compare the performance of our method with BiqCrunch [31], an open
source SDP solver for binary quadratic programs. When running BiqCrunch,
we consider two standard sets of parameters. The first set (BC-bound) is used
to obtain the value of the SDP bound (see, e.g., [35]), without any additional
inequality. The second set (BC-cuts) provides the value of the SDP bound with
the addition of the so-called triangle inequalities [1]. The results are collected
in Table 1. The first column contains the names of the instances. Then, for each
of the BiqCrunch set of parameters and for our algorithm (BQP), two sub-
columns represent the root node gap and the time, in seconds, spent to obtain
it. The root node gap is calculated as the difference between the optimum and
the value of the lower bound given by the relaxation, divided by the optimal
value, in percentage.

The average gap exceeds 1000% for the basic SDP bound, it is equal to
132% for the SDP bound with triangle inequalities and to 76% for our method.
The fact that the BQP relaxation provides a dual bound that is also stronger
than the SDP relaxation with triangle inequalities is theoretically confirmed by
the results in [34]. In terms of computing time, BQP is still competitive with
BC with cuts. Taking into account that the pricing problem is solved with a
generic solver, the results obtained are definitely encouraging. We might indeed
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Instance BC-bound BC-cuts BQP

T (s) Gap (%) T (s) Gap (%) T (s) Gap (%)

QPLIB-0067 0 5 22 2 0 1
QPLIB-1976 27 433 193 371 7 368
QPLIB-2017 113 441 114 441 124 240
QPLIB-2029 180 562 180 562 1865 192
QPLIB-2036 220 740 220 740 185 313
QPLIB-2055 21 41 104 35 92 32
QPLIB-2060 36 42 655 33 153 32
QPLIB-2067 72 68 149 65 242 62
QPLIB-2073 57 18 1078 10 285 10
QPLIB-2085 85 33 2642 23 1066 23
QPLIB-2087 123 71 172 71 2935 56
QPLIB-2096 82 18 2679 11 1210 11
QPLIB-2357 16 13 46 0 3223 0
QPLIB-2359 74 11 54 2 2888 0
QPLIB-2512 2 428 117 120 6 100
QPLIB-2733 10 762 1006 178 19258 154
QPLIB-2957 78 > 1000 2392 357 11261 100
QPLIB-3307 5 798 1044 198 472 100
QPLIB-3413 33 > 1000 678 210 11 100
QPLIB-3587 5 791 109 104 2 100
QPLIB-3614 4 680 123 100 2 100
QPLIB-3714 2 101 20 0 1607 0
QPLIB-3751 2 100 20 0 7709 0
QPLIB-3757 482 18 344 37 8850 0
QPLIB-3762 1 17 2 0 1037 0
QPLIB-3775 5 100 25 0 32932 0
QPLIB-3803 12 33 57 0 5620 0
QPLIB-3815 2 29 41 6 1807 2
QPLIB-6647 1009 > 1000 11271 150 232 100
QPLIB-7127 646 > 1000 1662 > 1000 2750 0

average 95.1 > 1000 881.28 132 3623.48 76

Table 1: Gap and time, QPLIB instances.

obtain a significant speed-up in the procedure by using ad-hoc algorithms for
unconstrained quadratic problems.

3 BQP block relaxation

Now we present a generalization of the relaxation proposed in the previous
sections that exploits the sparsity of a problem by decomposing it into several
blocks. The new block decomposition presents interesting links with the theory
of matrix completion problems. We report some useful definitions below.

Definition 1 We define the support of a matrix M ∈ Rm×n as

Supp(M) := {(p, q) ∈ {1, . . . ,m} × {1, . . . , n} : Mpq 6= 0} .

Definition 2 Given n ∈ N and k ≤ n, we define a k-block sequence in Rn the
set {b1, . . . , bk}, where the blocks bj ⊆ {1, . . . , n} ∀j ∈ J := {1, . . . , k} and⋃

j∈J bj = {1, . . . , n}. We indicate with dj = |bj | the size of each block. We
also assume that no block is a subset of another one and that they are sorted
according to the order of their first element.
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(c) Sparsity graph

Fig. 1: Example of a block-decomposable matrix.
Nonzero entries are symbolized by a star ∗

Definition 3 Let n, k ≤ n ∈ N and J = {1, . . . , k}. Given a k-block sequence,
matrix blocks are defined as Bj := bj×bj ⊆ {1, . . . , n}2 for all j ∈ J . We define

the set BJ :=
⋃

j∈J Bj as a block structure in Rn×n.

Definition 4 The sparsity graph of a block structure BJ in Rn×n is a graph
G(V,E) with V = {1, . . . , n} and with edges on the block structure: {p, q} ∈ E
if and only if (p, q) ∈ BJ .

According to the definition, every subgraph of the sparsity graph induced
by the vertices of a block is complete. Hence, the sparsity graph of a block
structure is given by the union of cliques. In Figure 1 we show, for a given
matrix (a), its block structure (b) and its sparsity graph (c).

Definition 5 Given a matrix M ∈ Rn×n, an index set J with |J | ≤ n and a
block structure BJ in Rn×n, we say that M is block-decomposable under BJ
if Supp(M) ⊆ BJ .

In general, several block structures are valid for a single matrix. For in-
stance, every matrix is trivially decomposable in a structure consisting of just
one n × n block. In this case |J | = 1, but this means no decomposition. We
are therefore interested in structures with |J | > 1 blocks and potentially we
seek a large value of |J |. This means that the nonzero entries of the matrix
fit in (possibly overlapping) smaller blocks. A special case is when the blocks
are disjoint:

Definition 6 If all the blocks in BJ have pairwise empty intersection (that is
{bj}j∈J is a partition of {1, . . . , n}) then the matrix is called block-separable.

Definition 7 A quadratic problem of the form (1) is called block-decomposable
(resp. block-separable) if there exists a common block structure BJ under
which all the matrices of the problem (Q andAi ∀i ∈ I) are block-decomposable
(resp. block-separable).

When dealing with block-decomposable binary problems, we are interested
in a relaxation of the problem that takes into account only the vertices of the
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BQP for each block. Hence, we consider a much smaller number of extreme
points than the one related to the problem in the original space. In this re-
spect, our approach deviates significantly from Padberg’s study [34] of the
facet structure of sparse problems in a more general context.

It remains to show how to write the relaxation taking into account the
intersections of the blocks, whether this is still a relaxation for the original
problem and if it is equivalent to the one we introduced in Section 2. We will
see that the problem of the equivalence is not trivial and it is related to a
matrix completion problem.

The theory of matrix completion problems is well developed for semidefinite
and completely positive completion. However, the BQP completion problem,
to the best of our knowledge, has not been treated in depth, but it can be
helpful and interesting, as we will see, because it is strictly related to binary
quadratic problems.

In the rest of this section we assume to have a problem of the form (2)
and a block structure BJ under which the problem is block-decomposable.
We also introduce the following notation in order to split the parameters of
the problem into blocks:

Definition 8 For every j ∈ J we define:

Qj ∈ Rn×n : (Qj)pq :=

{
Qpq if (p, q) ∈ Bj \ (B1 ∪ · · · ∪Bj−1)

0 otherwise,

Aj
i ∈ Rn×n : (Aj

i )pq :=

{
(Ai)pq if (p, q) ∈ Bj \ (B1 ∪ · · · ∪Bj−1)

0 otherwise,

for every i ∈ I. We also use the following notation for the restriction to the
blocks:

XBj := X|Bj
= {Xpq : (p, q) ∈ Bj} ∈ Rdj×dj ∀X ∈ Rn×n,

xbj := x|bj = {xp : p ∈ bj} ∈ Rdj ∀x ∈ Rn.

If we introduce variables Y j ∈ Rdj×dj for every block j ∈ J , we can provide
a relaxation of the original problem based on the blocks. In the following, with
an abuse of notation we consider Qj = (Qj)Bj ∈ Rdj×dj and Aj

i = (Aj
i )

Bj ∈
Rdj×dj . With this notation we have

〈Q,X〉 =
∑
j∈J
〈Qj , XBj 〉, 〈Ai, X〉 =

∑
j∈J
〈Aj

i , X
Bj 〉, ∀i ∈ I.
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Considering the variables Y j , we can now write the following problem:

min
∑
j∈J
〈Qj , Y j〉 (9a)

s. t.
∑
j∈J
〈Aj

i , Y
j〉 ≤ bi ∀i ∈ I (9b)

(Y j)Bj∩Bh = (Y h)Bj∩Bh ∀j, h ∈ J , j < h (9c)

Y j =
∑
l∈Pj

µj
l (y

j
l )(yjl )> ∀j ∈ J (9d)

∑
l∈Pj

µj
l = 1 ∀j ∈ J (9e)

µj
l ≥ 0 ∀l ∈Pj ,∀j ∈ J , (9f)

where yjl ∈ {0, 1}dj ∀l = 1, . . . , 2dj , ∀j ∈ J are binary vector of the dimension
of the corresponding block j. Here Pj are the index sets of all the possi-
ble extreme points yjl ∈ {0, 1}dj as j ∈ J . With this relaxation we allow a
convex combination of extreme points for every block, with the additional re-
quirement, given by constraint (9c), that the intersections of blocks must be
consistent.

Clearly, if we consider the trivial decomposition in one single n dimensional
block, formulation (9) is the same as the one we proposed in (3). Moreover, the
index sets Pj , j ∈ J are still exponentially large, but their sizes depend on the
size of the blocks: |Pj | = 2dj . Hence, the total number of points is potentially
reduced with respect to the one-block formulation, since

∑
j∈J |Pj | � 2n.

Also formulation (9) can be solved via CG with a procedure similar to the
one outlined in Section 2.1. The difference with respect to problem (7) is that
now the pricing problem decomposes into one problem for each block and those
problems are all independent. Furthermore, the size of these problems is the
same as the size of the corresponding block, hence they are potentially smaller
and therefore easier to solve than a single n-dimensional pricing problem.

4 Comparison to the original BQP relaxation — role of chordality

We now analyze the relations between the BQP relaxation (3) and the BQP
block relaxation (9). Our aim is to study conditions that guarantee their equiv-
alence. We will prove that the latter formulation always provides a lower bound
for the former one. Moreover, we will see that proving the other implication is
a matrix completion problem in BQP, defined in analogy to the PSD and CPP
matrix completion problem as treated, e.g., in [4,21,24,28]. We will describe
the problem and we will prove this second implication under some conditions.
To this aim, we start with the case of only two overlapping blocks, then we
will see how the results can be extended to the case of several blocks and
analyze the conditions needed on the block structure to guarantee the result.
It turns out that a crucial property is chordality of the sparsity graph. The
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smallest chordal graph relevant in this context is the diamond (K4 with one
edge removed), which gave rise to the title of our study.

4.1 Two overlapping blocks

Here we suppose that all the matrices Q, Ai of the problem are decomposable
into two overlapping blocks. Without loss of generality we can assume that each
of those two blocks has consecutive components. We introduce some specific
notation for the two-block case. Let Bj = bj × bj be the two blocks, j = 1, 2.
Then let Bc = bc× bc = B1∩B2 the intersection block. We indicate with r the
dimension of bc; further, let ba := b1 \ bc, let s be its dimension, and let Ba :=
ba×ba; similarly let bd := b2\bc, let t be its dimension and let Bd := bd×bd. To
each p = 1, . . . , 2n we can assign a triple of indices {k, l,m} : k ∈ {1, . . . , 2ds},
l ∈ {1, . . . , 2dr} and m ∈ {1, . . . , 2dt}, each of them indicates the sub-vector of
xp in the corresponding sub-block. Hence we can replace λp and xp in the one-
block formulation with λk,l,m, and xk,l,m, respectively. Similarly, considering
the two-block formulation, to each p = 1, . . . , 2d1 we can assign a pair of indices
{k, l} : k ∈ {1, . . . , 2ds}, l ∈ {1, . . . , 2dr}, and to each p = 1, . . . , 2d2 we can
assign a pair of indices {l,m} : l ∈ {1, . . . , 2dr} and m ∈ {1, . . . , 2dt}. And so,
for p = 1, . . . , 2d1 we replace µ1

p and y1
p with µk,l and y1

k,l respectively, and

for p = 1, . . . , 2d2 we replace µ2
p and y2

p with νl,m and y2
l,m, respectively. We

note that, given any triple {k, l,m} : k ∈ {1, . . . , 2ds}, l ∈ {1, . . . , 2dr} and
m ∈ {1, . . . , 2dt}, the vectors xk,l,m, y1

k,l, and y2
l,m are linked by the following

relations: (xk,l,m)b1 = y1
k,l, (xk,l,m)b2 = y2

l,m, and (y1
k,l)

bc = (y2
l,m)bc =: ycl .

Proving the equivalence is not a trivial task, even in the case of two blocks
only. We start with the following.

Lemma 1 Let (Y 1, µ, Y 2, ν) be a feasible solution to the block-formulation (9).
If

2s∑
k=1

µk,l =

2t∑
m=1

νl,m (10)

holds for all l = 1, . . . , 2r, then there exists an equivalent feasible solution
(X,λ) to the one-block formulation (3), i.e. XB1 = Y 1 and XB2 = Y 2.

Proof Under the given assumptions, we look for coefficients λk,l,m that satisfy:

2t∑
m=1

λk,l,m = µk,l ∀k, ∀l (11a)

2s∑
k=1

λk,l,m = νl,m ∀m, ∀l (11b)

λk,l,m ≥ 0 ∀k, ∀l, ∀m. (11c)



Mining for diamonds 13

Indeed, if this holds, then clearly:

2s∑
k=1

2r∑
l=1

2t∑
m=1

λk,l,m =

2s∑
k=1

2r∑
l=1

µk,l =

2r∑
l=1

2t∑
m=1

νl,m = 1

and

XB1 =

2s∑
k=1

2r∑
l=1

2t∑
m=1

λk,l,m(xk,l,m)b1(xk,l,m)b1
>

=

2s∑
k=1

2r∑
l=1

µk,l(y
1
k,l)(y

1
k,l)
> = Y 1

XB2 =

2r∑
l=1

2t∑
m=1

2s∑
k=1

λk,l,m(xk,l,m)b2(xk,l,m)b2
>

=

2r∑
l=1

2t∑
m=1

νl,m(y2
l,m)(y2

l,m)> = Y 2.

So, we just have to show that there exists a feasible solution for (11). But these
are the constraints of a transportation problem for each fixed l = 1, . . . , 2r.
A classical result is that a transportation problem is feasible if and only if
the sum of the right-hand-side of the first set of constraint equals the same
sum in the second set of constraints, because both of them equal the global
sum

∑
k,m λk,l,m. But in our case, this equality is exactly (10), so it holds by

hypothesis and this concludes the proof. ut
Remark 1 We notice that this lemma is also true when r = 0. Indeed, in
this case both formulations (10) and (11) can be defined without the index l,
and moreover, the hypotheses of the lemma are clearly always verified, since∑2s

k=1 µk =
∑2t

m=1 νm = 1.

The hypotheses of Lemma 1 do not hold in general. The following propo-
sition gives a result with some hypothesis on the size of the intersection.

Proposition 2 Let (Y 1, µ, Y 2, ν) be a solution feasible to the multiple block
formulation (9). If the dimension of the intersection block is r ≤ 2, then there
exists an equivalent feasible solution (X,λ) to the one-block formulation (3),
i.e. XB1 = Y 1 and XB2 = Y 2.

Proof In this case, constraints (9c) become:
∑

k,l µk,ly
c
l y

c
l
> =

∑
l,m νl,my

c
l y

c
l
>.

If all the matrices ycl y
c
l
> are linearly independent, equality (10) must hold, for

each l. Among the matrices ycl y
c
l
> there is always the null matrix, which is

dependent on the others. However, if the nonzero matrices are linearly inde-
pendent, that is, all of the matrices are affinely independent, condition (10)
holds for all l such that ycl y

c
l
> is nonzero. And since the sum of all coefficients

is always 1, then by difference it holds also for the null matrix. If r = 1 or
r = 2, it is easy to see that the matrices are affinely independent, so (10)
holds, hence the result is true. Thanks to Remark 1, this result is proved also
for r = 0. ut

This result holds with r ≤ 2, but if r > 2, the number of ycl y
c
l
> matrices

is 2r, thus exceeding the dimension of the space r(r + 1)/2 plus 1. Hence,
they are affinely dependent and condition (10) cannot be directly obtained. In
order to better understand the equivalence statement, and the conditions that
guarantee it, in the following section we consider the multiple block case.
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Fig. 2: A not BQP completable matrix.

4.2 Multiple-block case and BQP completion

In the previous subsection we proved that, whenever we have a specific 2-block-
decomposable problem (i.e., with intersection size r ≤ 2), for any solution of
the block relaxation (9) there is an equivalent solution of the BQP relax-
ation (3). In this section we assume that our problem is decomposable with
respect to a more general block structure BJ . The following proposition states
that the inverse inclusion is always true: given any feasible solution of (3), an
equivalent solution of (9) can be obtained. This means that multiple-block
relaxation always provides a valid lower bound for the one-block relaxation.

Proposition 3 Given a block structure BJ , suppose that problem (3) is BJ -
decomposable. Given any feasible point for problem (3), i.e. a feasible matrix
X and the corresponding coefficients λp, p = 1, . . . , 2n, then there exists a

solution of (9), given by Y j and µj
l with l = 1, . . . , 2dj , j ∈ J , such that

XBj = Y j ∀j ∈ J .

Proof We are given a matrix X and coefficients λp ≥ 0 ∀p,
∑2n

p=1 λp = 1,

such that X =
∑2n

p=1 λp(xpx
>
p ) with xp ∈ {0, 1}n. We introduce the following

notation. For every j ∈ J , let b̄j = {1, . . . , n}\ bj the complement of the block

bj in {1, . . . , n}. To each p = 1, . . . 2n we can assign a couple of indices {l,m}:
l ∈ {1, . . . 2dj}, m ∈ {1, . . . 2n−dj}. Let yl := (xp)bj and zm := (xp)b̄j be the
restrictions of xp to bj and b̄j . We can hence rename xp as xl,m, λp as λl,m

and write: X =
∑2n

p=1 λp(xpx
>
p ) =

∑2dj

l=1

∑2n−dj

m=1 λl,m(xl,m x>l,m) ∀j ∈ J .
Hence, for all j ∈ J we can define:

µj
l :=

2n−dj∑
m=1

λl,m ∀l = 1, . . . , 2dj . (12)

Clearly, µj
l ≥ 0 and

∑2dj

l=1 µ
j
l =

∑2dj

l=1

∑2n−dj

m=1 λl,m =
∑2n

p=1 λp = 1. Moreover,
for all j ∈ J , it holds:

XBj =

2dj∑
l=1

2n−dj∑
m=1

λl,m(xl,m x>l,m)Bj =

2dj∑
l=1

(

2n−dj∑
m=1

λl,m)(yly
>
l ) =

2dj∑
l=1

µj
l (yly

>
l ) .
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So there is a feasible point for (9), equivalent to the solution of (3), where µj
l

are given by (12) and Y j are defined as: Y j :=
∑2dj

l=1 µ
j
l (yly

>
l ) as j ∈ J . ut

Hence, in the 2-blocks case with intersection size r ≤ 2, we get the equiv-
alence of the two formulations by combining Propositions 2 and 3.

We now try to extend the result of Proposition 2 to the case of general
blocks. However, we show that it does not hold for any block structure and we
notice that it can be stated in terms of a BQP matrix completion problem.
For a detailed description of completion problems (specifically PSD and CPP
completion) we refer to [4]. The first result we report resembles similar ones
for PSD and CPP completion problems; it shows that not all the specification
graphs are BQP completable (the proof is based on the example given in
Figure 2).

Proposition 4 If a graph is not chordal, then it is not BQP completable.

Proof If the graph is not chordal, it contains a cycle of length l ≥ 4 with no
chords. Without loss of generality we suppose that the vertices of this cycle are
the first ones. Any matrix with this specification graph, restricted to the first
l entries, would be specified in the following entries: {i, i+ 1} ∀i = 1, . . . , l− 1
and {1, l} (and the symmetric elements, of course). This means that the block
structure, restricted to these entries, is made up of l consecutive 2× 2 blocks
on the diagonal, and one 2 × 2 block connecting the first and the last entry
of the cycle. Hence, we can always have the matrix shown in Figure 2 [4,
Example 1.35], where the question marks correspond to unspecified elements.

Indeed, every 2× 2 matrix on the diagonal is given by 1
2

(
0 0
0 0

)
+ 1

2

(
1 1
1 1

)
and

the 2×2 matrix restricted to elements {1, l} is given by 1
2

(
1 0
0 0

)
+ 1

2

(
0 0
0 1

)
so

they are convex combinations of 2 × 2 binary matrices of rank one. But it is
known that the only PSD matrix with ones on the entries (i, j) s.t. |i− j| ≤ 1
is the all-1 matrix [28, Lemma 6], hence the matrix in Figure 2 is not PSD
completable. Since BQP is a subset of the semidefinite cone, this matrix is
neither BQP completable. ut

However, due to Proposition 2 and the properties of chordal graphs, we
can state the following result:

Proposition 5 If a graph G is chordal and the size of the intersection of any
two maximal cliques of G is at most 2, then G is BQP completable.

Proof We prove the statement by induction on the number n of maximal
cliques. If there are only two maximal cliques, the result is given by Propo-
sition 2. Now we suppose to have n > 2 maximal cliques and we assume by
inductive hypothesis that the result holds true for n − 1 cliques. Since the
graph G is chordal, there is a perfect elimination ordering (PEO) of its ver-
tices [28]. Without loss of generality, we suppose that the vertices of G are
sorted according to this ordering. We also sort the maximal cliques according
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to the order of their first vertex. We recall that, by definition of PEO, each
vertex, together with its neighbours which follow it in the order, form a clique.
In particular, all the neighbours of the first vertex belong to the first maximal
clique C1. We now consider the subgraph G′ of G induced by the last n − 1
maximal cliques C2∪· · ·∪ Cn. By inductive hypothesis G′ is BQP completable.
Hence G is completable if G′′ is completable, where G′′ is obtained by adding
to G all the edges which complete G′. In this way we now have two cliques:
C1 and C2∪· · ·∪ Cn. We notice that C1∩ (C2∪· · ·∪ Cn) = C1∩C2, again for
the PEO property. Hence, if |C1 ∩ C2| ≤ 2, we can apply again Proposition 2
and conclude the proof. ut

Hence by Proposition 3 we have the following corollary:

Corollary 1 If a problem is decomposable under a block structure whose spar-
sity graph G is chordal and the size of the intersection of any two maximal
cliques of G is at most 2, then Formulations (3) and (9) are equivalent.

The crucial property is that any two cliques must have intersection size r ≤ 2,
that is that the sparsity graph restricted to them either is not connected
(r = 0), or has a cut edge (in this case r = 1 and the graph is block-clique),
or has an induced diamond graph (r = 2).

We already observed that BQPn ⊂ C∗ ⊂ S+. However, since the CPP
completable graphs are block-clique graphs, and the PSD completable graphs
are chordal graphs, we have the following:

Corollary 2 The class of BQP completable graphs is strictly larger than the
class of CPP completable graphs and contained in that of PSD completable
graphs.

As a consequence, it is natural to investigate what can happen for more
general chordal graphs. We propose the following conjecture:

Proposition 6 (Conjecture) Chordal graphs are BQP completable.

By combining this result with Proposition 4, we would get that a graph is
BQP completable if and only if it is chordal. To the best of our knowledge, the
conjecture stated above has not been studied yet. However, this result could
be very useful, since it could allow to efficiently tackle specific sparse problems
and get stronger bounds than SDP ones. Our preliminary experiments seem
to support the conjecture; see below.

In order to prove the conjecture, we can restrict ourselves to a simpler
two-block case, with both of the blocks having dimension n− 1, and only the
elements {1, n} not covered by the blocks. This means that the dimension
of the block intersection is n − 2 and the dimension of both s and t (see
notation in Section 4.1) is 1. This result is obtained by following the proof
of the completion problem in [28]: the authors strongly exploit the structure
and the properties of chordal graphs, showing that they can reduce to two
blocks with only one missing entry. Under these assumptions they prove their
result for PSD completion and they prove that they can extend it to every
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chordal graph, just using the properties coming from the structure of these
graphs. We could try to prove the same result for BQP matrices, but it is not
straightforward. We also notice that this result does not hold if the extreme
matrices are general real nonnegative rank-1 matrices (this is the case of CPP
completion, which only holds for block-clique graphs).

4.3 Computational experiments with the BQP block relaxation

From the computational point of view, formulation (9) might be better than
formulation (3). The most important pros are the reduced number of extreme
points, and the smaller size of the pricing problems (solving those problems
was the most time consuming part in the one-block formulation). However,
due to the high number of constraints related to the intersections between
blocks, the master program gets more difficult (although still linear).

In our implementation of the CG for solving the BQP multiple-block re-
laxation, we again used dummy columns for the initialization of the master
problem and an early stopping technique when solving it. Furthermore, in
order to deal with the master problem, we implemented a purging technique
for the columns: more precisely, every ten iterations, we remove 50% of the
columns which have a positive reduced cost for more than ten iterations.

In general, the block structure might not be unique. Therefore, one impor-
tant issue is how to build a block structure that fits the problem. We shall
note that the (aggregate) sparsity graph of the problem is not chordal in gen-
eral. To obtain such a property we need to add edges, resulting in what is
called chordal extension of the graph (see [24] for an application of chordal
extension to SDP). Computing the minimal (in terms of additional edges)
chordal extension is a NP-hard problem, and heuristics are proposed to find
a minimal extension quickly [24,36]. In our preliminary experiments we used
the heuristic proposed in [36] to obtain (almost) minimal chordal extensions
to solve the QPLIB instances presented in Section 2.2. The computing times
for the BQP block relaxation based on such chordal extension were always
higher than the ones obtained from the single block BQP relaxation. The re-
sults seem to indicate that the minimal chordal extension is not always the one
leading to the easiest possible block decomposition. Finding the best decom-
position for a generic formulation is an extremely challenging task (see [3] for
an application of automatic detection of decompositions for standard Dantzig-
Wolfe Reformulation) and it goes beyond the scope of this paper. This is the
reason why we decided to focus our computational experiments on a class of
instances where the block decomposition is straightforward. We hence com-
pared the performance obtained using formulation (9) and formulation (3) on
the SONET instances. We consider a formulation of the SONET instances that
has been introduced in [10]; some of these instances are also included in the
QPLIB. Those instances have a block-diagonal quadratic objective function.
Such a structure allows to easily exploit the block decomposition. In Table 2,
we report the results of BiqCrunch with triangle inequalities (BC-cuts) and
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Instance BC-cuts
BQP

Single block Multiple block

Name # T (s) Gap (%) # Fails T (s) # Fails T (s) Gap (%)

ins.16 5 89 186 0 304 0 0.26 85
ins.17 5 171 205 1 7210 0 0.28 68
ins.18 5 74 232 0 1402 0 0.46 89
ins.19 5 53 274 2 15215 0 0.44 90
ins.20 5 67 175 4 28900 0 0.42 84
ins.21 5 85 340 4 28826 0 0.70 80
ins.22 5 109 397 2 14645 0 0.92 76
ins.23 3 139 212 2 32570 0 0.43 91
ins.24 5 171 > 1000 3 22156 0 1.34 88
ins.25 5 204 384 2 14542 0 1.52 78

average 5 116 362 2 16577 0 0.68 83

Table 2: Performance comparison on the SONET instances.

of the CG approach based on the single and multiple-block BQP relaxation
(BQP, single or multiple block). We show the computational time to solve the
instances and the final gap obtained. We also compared the number of failures
between the single and multiple block formulations. For each size of instance,
each line presents the number of instances and the average results. The table
shows clear evidence that our approach is extremely good: thanks to the block
decomposition we are able to obtain (in a very short time) a gap that is more
than four times smaller than the one obtained using the SDP relaxation with
triangle inequalities. Furthermore, with the multiple block formulation all the
instances are solved, while the single block formulation reaches the time limit
(10h) or the maximum number of iterations (105) in 20 out of 48 instances. We
notice that the overall number of iterations to solve the relaxation is dramat-
ically reduced with the multiple block formulation: indeed, on average just 10
iterations are needed with Formulation (9), while the single block relaxation
generates more than 40000 iterations on average.

In order to better understand the difficulty caused by the intersections
between blocks, we compared the two BQP formulations in instances with
increasing intersection between blocks. More specifically, for each of the block-
separable SONET instances, we increased the size of each block by a number r
varying from 1 to 10 in such a way that every block has r elements in common
with (at least) one of the subsequent blocks. We thus added randomly gener-
ated elements in the objective function to fill the increased blocks and solved
each instance with the two BQP algorithms. We show the results with the plot
in Figure 3: for every instance, with size r from 0 (the original instances) to
10, we show the ratio (in logarithmic scale) between the computational time
of the multiple block and of the single block formulation to solve it. We notice
that only one instance has not been solved by either algorithm, and does not
appear in the plot; for every other case, we used the timelimit (10h) as value
for every failure.
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Fig. 3: Performance of block BQP on problems with different intersection size.

If the intersection between blocks is small, then the multiple block formu-
lation is more efficient than the single block one: for separable problems it
was already clear from Table 2, but Figure 3 shows that it is true even with
some values of r > 0. However, if the intersection size grows, then the block
formulation becomes heavier, because the master has more constraints, the
pricing problems are larger, and more extreme points can be generated, so the
number of iterations also grows. Hence, if r ≥ 6, the single block formulation
is preferable in a significant number of cases, at least in our examples.

We further notice that, for every instance solved by both algorithms, the
objective function optimal values are equal, even with r > 2: this observation,
given by around 500 instances with some random elements, may corroborate
our conjecture.

5 Conclusions

In this work, we presented two relaxations for BQCQP that are stronger than
the widely used SDP relaxation. We carefully analyzed the relation between
the proposed relaxations and discussed the equivalence of the two formula-
tions. We showed that the BQP block relaxation is always a relaxation of the
BQP relaxation (while it is still unclear whether equivalence holds in general).
By using the connection with a matrix completion problem, we identified prob-
lem classes in which this equivalence is ensured, and other classes where this is
not guaranteed. We proved that the BQP completion is possible for problems
with chordal graphs (if the maximal dimension of the intersection of blocks
is 2), and we also proved that if the graph is not chordal, completion does
not hold. A complete proof of the BQP completion result is still open. From
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a computational point of view, since both problems are exponential in size,
we proposed a column generation algorithm to get a solution in reasonable
time. The reported results show that the proposed formulations provide sig-
nificantly tighter bounds than the ones obtained using the SDP relaxation in a
reasonable amount of time. Moreover, if the problems have a block structure,
the decomposition can be solved very quickly.
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