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Abstract. Γ-uncertainties have been introduced for adjusting the degree of conservatism of
robust counterparts of (discrete) linear optimization problems under interval uncertainty. This
article’s contribution is a generalization of this approach to (mixed-integer) nonlinear optimization
problems. We focus on the cases in which the uncertainty is linear but also derive formulations
for the general case. We present cases where the robust counterpart of a nonlinear combinatorial
problem is solvable with a polynomial number of oracle calls for the underlying nominal problem
and elaborate on it using a quadratic assignment problem. We show the computational efficiency
with a numerical study tackling a patient transport problem and the quadratic assignment
problem.

1. Introduction

Robust optimization is an established area for dealing with uncertainties in optimization problems.
Several approaches have been developed in this area in the last decades, especially in the field of
(mixed-integer) linear programming. However, for combinatorial optimization, those are usually
not meaningful since the underlying problem’s structure is changed, rendering solution algorithms
for the nominal problem not applicable. To circumvent this, Bertsimas and Sim introduced Γ-
uncertainties in [BS03] and [BS04] for combinatorial optimization problems with a linear objective
and mixed-integer linear constraints, both under uncertainty. For X Ď t0, 1un, ū, ∆u ě 0, ∆u0 :“ 0
and a nonnegative integer Γ, they have shown that

min
xPX

max
uPUΓ

uJx (1)

where

UΓ “ tu P rū, ū ` ∆us : ui ‰ ūi for at most Γ coefficients i P t1, 2, . . . , nuu

is equivalent to

min
kPt0,1,...,nu

$

&

%

Γ∆uk ` min
xPX

$

&

%

ūJx `
ÿ

jPt1,2,...,nu

maxt0,∆uj ´ ∆ukuxj

,

.

-

,

.

-

. (2)

This equivalence implies oracle polynomiality of Problem (1), assuming that the objective functions
of Problem (1) and the subproblems of Problem (2) underlie the same structure (cf. [BS03, Theorem
3]). Since recent research has focused on nonlinear robust programming, see, e.g., [LMM`20],
[KLS22a] or [KLS22b], the main purpose of this article is extending their approach for combinatorial
problems with nonlinear objective functions.
Our contribution. We propose and study a generic framework for mixed-integer nonlinear
problems (MINLPs) under uncertainty that generalizes the framework of Γ-uncertainties for mixed-
integer linear problems (MIPs) introduced in [BS03] and [BS04]. We focus on uncertainty in the
objective. In particular, we provide reformulations for the case of linear and nonlinear uncertainties.
We discuss limits of our theoretical approach. We also show that a problem being subject to
so-called ‘assignment structure’ implies oracle polynomiality of the problem under uncertainty. We
demonstrate the efficiency of our reformulations with an exemplary numerical study.
Structure. The paper is structured as follows. In Section 2, we propose the Γ-counterpart for
MINLPs. We motivate our generalization with a piecewise linear objective function occurring in
logistics and the quadratic assignment problem under uncertainty, which are our working examples
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throughout this article. In Section 3, we reformulate our proposed model, demonstrate our main
results and show cases in which oracle-polynomiality holds. In Section 4, we conduct a numerical
study for our working examples. Finally, in Section 5, we provide a conclusion and propose some
interesting avenues for future research.
Notation and definitions. Z denotes the set of integral numbers, R denotes the set of real numbers.
Indexing them with ě 0 refers to the respective set of nonnegative numbers. Throughout this
article, m, n denote positive integral numbers. We define rns :“ t1, 2, . . . , nu and rns0 :“ rns Y t0u.
x¨, ¨y denotes an inner product. When it is indexed, the index refers to the corresponding real
vector space. For a function fi indexed with i, we denote the uncertainty set by Ui and the nominal
scenario by ūi. When there exists a function ℓ defined on X and an inner product defined on a
vector space containing U with fpx, uq “ xu, ℓpxqy for every x P X , u P U , we call the uncertainty
linear. For m ˆ n-matrices A and B, we define the matrix interval rA,Bs :“ tC P Rmˆn : Ai,j ď

Ci,j ď Bi,j @i P rms, j P rnsu. When the uncertainty set is an (possibly multi-dimensional) interval,
we say that the uncertainty is an interval uncertainty. The matrix A b B denotes the Kronecker
product of the matrices A and B. The vector vecpAq denotes the vectorization of A.

2. The setting

Our proposed generalization of Problem (1) is tailored for the nominal problem

inf
xPX

ÿ

iPrms

f̄ipxq, (3)

where f̄i : X Ñ R is an arbitrary function with domain X for every i P rms. We assume that the
objective function is under uncertainty. It is modeled such that the uncertainty is separable, i.e.,
we model it such every function f̄i ‘has’ its own uncertainty set Ui that contains a nominal scenario
ūi with f̄pxqi “: fipx, ū

iq for all x P X for a function fi : X ˆ Ui Ñ R.
Now, let Γ P rms. To adapt Bertsimas’ and Sim’s approach, we propose the following model as the
so-called Γ-counterpart of Problem (3):

inf
xPX

$

&

%

sup
SĎrms:|S|ďΓ

$

&

%

ÿ

iPS
sup
uiPUi

fipx, u
iq `

ÿ

iPrmszS

fipx, ū
iq

,

.

-

,

.

-

. (4)

Showing that this is a generalization of Problem (1) is trivial: Assuming that fipx, uq “ uixi and
Ui is a one-dimensional interval, it is a matter of simple arithmetic to obtain Problem (1).
In the following, we illustrate two examples for which our introduced Γ-counterpart can be applied
but the original result stated in our introduction cannot.

2.1. Working examples.

Example 1 (Vehicle Routing Problem under soft deadline uncertainty). Problems occurring in
the application of logistics involving deliveries within given due times can often be modeled as
combinatorial problems with (non-)linear objective functions, e.g., taxi routing, delivery of goods or
patient transport. For all three of these cases, being on time is important for customer satisfaction.
At the same time, it is usually not problematic when vehicle arrives too early for a pick-up.
For tasks i P rms, we denote the due time with bi P Rě0. If a job is finished after bi then a penalty
cost is incurred. A program for (unweighted) penalty costs is

inf
xPX

ÿ

iPrms

maxt0, xi ´ biu. (5)

Problem (5) may model, e.g., a special case of vehicle routing problems with general time windows,
see [HYI08]. In practice, the due time can be uncertain: We assume that bi P Ui :“ rb̄i ´ ∆bi, b̄is
for some nominal scenario b̄i and a perturbation ∆bi. To reduce conservatism, the goal is to ensure
robustness against Γ deviations of the due times, resulting in the following optimization problem:

inf
xPX

$

&

%

sup
SĎrms:|S|ďΓ

$

&

%

ÿ

iPS
maxt0, xi ´ b̄i ` ∆biu `

ÿ

iPrmszS

maxt0, xi ´ b̄iu

,

.

-

,

.

-

. (6)

Problem (6) is exactly Γ-counterpart (4) by setting fipx, bq :“ maxt0, xi ´ biu.
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Assuming that the feasible set of Problem (5) is a mixed-integer polyhedron, one could reformulate
its objective function such that resulting optimization problem is a MIP. One could solve it by
applying reformulations for MIPs under Γ-uncertainty. However, this would render any oracle for
solving Problem (5) not applicable, contradicting the oracle-based approach.

Example 2 (Quadratic Assignment Problem under uncertainty). The Quadratic Assignment
Problem (QAP) models the process of assigning n facilities to n locations such that the cost of
transporting goods is minimized. With binary variables xi,r, i, r P rns, that indicate whether facility
i is assigned to location r, the feasible set can be modeled in the following fashion:

X “

$

&

%

x P t0, 1un
2

:
ÿ

iPrns

xi,r “ 1 @r P rns,
ÿ

rPrns

xi,r “ 1 @i P rns

,

.

-

.

For each pair of facilities pi, jq P rns2, ci,j ě 0 denotes the flow between i and j and for all pair
of locations pr, sq P rns2, dr,s ě 0 denotes the distance between r and s. Thus, the QAP can be
modeled by

min
xPX

ÿ

pi,j,r,sqPrns4

ci,jdr,sxi,rxj,s. (7)

In [FF15], the authors have assumed that the flow is subject to linear interval uncertainty, i.e.,
ci,j P Ui,j “ rc̄i,j , c̄i,j `∆ci,js for c̄i,j , ∆ci,j ě 0 for all pi, jq P rns2. The Γ-counterpart (4) is given
by:

min
xPX

$

&

%

ÿ

pi,j,r,sqPrns4

c̄i,jdr,sxi,rxj,s ` max
SĎrns2:|S|ďΓ

$

&

%

ÿ

pi,jqPS

∆c̄i,j
ÿ

r,sPrns

dr,sxi,rxj,s

,

.

-

,

.

-

. (8)

Note that it looks slightly different to the Γ-counterpart in Example 1 since the uncertainty is linear,
allowing this reformulation.

It is important to point out that, while the uncertainty of Problem (7) is modeled linearly, one
can not apply the original results of [BS03] since an uncertain parameter ci,j affects the sum
ř

pr,sqPrns2 dr,sxi,rxj,s R t0, 1u and not exactly one binary variable.

3. Reformulations of problems with uncertain objectives

In this section, we present equivalent reformulations for the Γ-counterpart introduced in Section 2.
Several of the proofs are inspired by those in [BS03]. Furthermore, we discuss the applicability of
oracle-based approaches with a focus on problems over matrix spaces.

3.1. A general reformulation. In a first step, it turns out that it is possible to obtain first
reformulations of Γ-counterpart (4) without any assumptions on the functions fi or the uncertainty
sets Ui.

Lemma 1. Let Γ P rms. Then Γ-counterpart (4) is equivalent to

inf
x,p,θ

Γθ `
ÿ

iPrms

fipx, ū
iq ` pi

s.t. x P X ,

pi ` θ ě sup
uiPUi

fipx, u
iq ´ fipx, ū

iq @i P rms,

p P Rm
ě0, θ P Rě0.

(9)

Proof. The structure of this proof is similar to the proof of [BS03, Theorem 3]. For all i P rms, we
introduce the binary variables

si :“

#

1, if i P S,
0, otherwise.
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The inner maximization problem of Γ-counterpart (4) is equivalent to

sup
s

ÿ

iPrms

fipx, ū
iq ` sip sup

uiPUi

fipx, u
iq ´ fipx, ū

iqq

s.t.
ÿ

iPrms

si ď Γ,

s P t0, 1um.

(10)

Clearly, Problem (10) is equivalent to its LP relaxation because Γ is assumed to be integral.
Inserting its dual into Γ-counterpart (4) proves the claim. □

In Lemma 1, to obtain a computationally tractable formulation, it is necessary to reformulate the
inequality

pi ` θ ě sup
uiPUi

fpx, uiq ´ fpx, ūiq (11)

for all i P rms. In [BTdHV15], the authors proposed various approaches, especially for linear
(concave) uncertainties. Regarding approaches for nonconcave uncertainties, we refer to [BTdHV15]
and [LMM`20]. However, their approaches are not suited for combinatorial optimization when
one wishes to apply oracles.
One can reformulate Problem (9) to obtain a problem with feasible set X and without the new
variables p and θ. This is especially important when it comes to oracle-based optimization since
they usually require the feasible set not being modified (at the very last, not drastically).

Lemma 2. If Γ P rms then Γ-counterpart (4) is equivalent to

inf
kPrms0

$

&

%

inf
xPX

$

&

%

Γθkpxq `
ÿ

iPrms

fipx, ū
iq ` supt0, θipxq ´ θkpxqu

,

.

-

,

.

-

, (12)

where θkpxq :“ supukPUk
fkpx, ukq ´ fkpx, ūkq and θ0pxq :“ 0, resp. for all x P X .

Proof. Since Γ P rms, Γ-counterpart (4) is equivalent to Problem (9). For all i P rms, pi occurs in
exactly one inequality only (besides the nonnegativity constraint), so we obtain

p˚
i “ supt0, sup

uiPUi

fipx
˚, uiq ´ fipx

˚, ūiqq ´ θ˚u @i P rms (13)

for an optimal solution px˚, p˚, θ˚q of Problem (9). Inserting Equation (13) into the objective
function of Problem (9) results in

Γθ `
ÿ

iPrms

fipx, ū
iq ` supt0, sup

uiPUi

fipx, u
iq ´ fipx, ū

iqq ´ θu. (14)

Since (14) is convex and piecewise linear in θ, either θ˚ “ 0 or θ˚ “ θkpxq for one k P rms. □

In particular, Lemma 2 is already sufficient to reformulate Problem (6) given in Example 1:
Example 1 continued. Consider Problem (6):

inf
xPX

$

&

%

sup
SĎrms:|S|ďΓ

$

&

%

ÿ

iPS
maxt0, xi ´ b̄i ` ∆biu `

ÿ

iPrmszS

maxt0, xi ´ b̄iu

,

.

-

,

.

-

.

Applying Lemma 2, an equivalent reformulation is

inf
kPrms0

$

&

%

inf
xPX

$

&

%

Γθkpxq `
ÿ

iPrms

maxt0, xi ´ b̄i,maxt0, xi ´ b̄i ` ∆biu ´ θkpxqu

,

.

-

,

.

-

(15)

where θkpxq :“ maxt0, xk ´ b̄k ` ∆bku ´ maxt0, xk ´ b̄ku and θ0pxq :“ 0. Thus, for k “ 0, it is
necessary to solve infxPX

ř

iPrms maxt0, xi ´ b̄i ` ∆biu. For k ą 0, we distinguish between three
cases:

i) xk ě b̄k, i.e., θkpxq “ ∆bk and

maxt0, xi ´ b̄i,maxt0, xi ´ b̄i ` ∆biu ´ θkpxqu “ maxt0, xi ´ b̄i, xi ´ b̄i ` ∆bi ´ ∆bku. (16)

4



ii) xk P rb̄k ´ ∆bk, b̄ks, i.e., θkpxq “ xk ´ b̄k ` ∆bk and

maxt0, xi ´ b̄i,maxt0, xi ´ b̄i ` ∆biu ´ θkpxqu “

maxt0, xi ´ b̄i, xi ´ b̄i ` ∆bi ´ xk ` b̄k ´ ∆bku.
(17)

iii) xk ď b̄k ´ ∆bk, i.e., maxt0, xk ´ b̄ku “ maxt0, xk ´ b̄k ` ∆bku “ 0. Thus, θkpxq “ 0 and
we refer to the case of k “ 0.

For each k P rms, by applying Equations (16) and (17), we solve

inf
xPX

ÿ

iPrms

maxt0, xi ´ b̄i, xi ´ b̄i ` ∆bi ´ ∆bku ` Γ∆bk

s.t. xk P rb̄k ´ ∆bk, b̄ks

(18)

and
inf
xPX

ÿ

iPrms

maxt0, xi ´ b̄i, xi ´ b̄i ` ∆bi ´ xk ` b̄k ´ ∆bku ` Γpxk ´ b̄k ` ∆bkq

s.t. xk ě bk.

(19)

Therefore, in total, we need to solve 2m` 1 optimization problems with a piecewise linear objective
with the addition of one hard bound for exactly one variable, resp. for k P rms. Using logistics
as an example, we can interpret this as follows: For k P rms we solve two optimization problems.
In particular, we distinguish whether the nominal bound b̄k is satisfied or not. In both cases, we
compare the violations for xi and xk and add Γ times the violation of the bound xk. For k “ 0, Γ
is multiplied by 0 and vanishes, but all the bounds realize their worst-case. Summing it up, the
reformulation models a trade-off between the worst-case and the effect of not satisfying the b̄k
bound.
We apply this reformulation to a special case of the vehicle routing problem with general time
windows in Section 4.

3.2. Linear interval uncertainties. In recent decades, research has focused on linear interval
uncertainties, and they are well studied. Therefore, in this subsection we will show how to deal
with linear uncertainties in the context of MINLPs under uncertainty. In doing so, we note that
many combinatorial problems model their uncertainties linearly.

3.2.1. The special case of 0{1-functions. In this subsubsection, we discuss one more case, namely
the Γ-counterpart (4) under linear one-dimensional nonnegative uncertainty with 0{1-functions,
i.e., functions with co-domain t0, 1u:

Assumption 3. For the Γ-counterpart (4) and for all i P rms we assume:
(i) The uncertainty set Ui is a 1-dimensional positive interval, i.e., Ui “ rūi, ūi ` ∆uis Ď Rą0

and ∆ui ą 0.
(ii) There is a 0{1-function ℓi : X Ñ t0, 1u such that fipx, uiq “ uiℓipxq for all ui P Ui.

Although Assumption 3 seems restrictive, it covers many combinatorial problems under uncertainty,
e.g., the quadratic knapsack problem or the quadratic matching problem. Under this assumption,
proving oracle-polynomiality is straightforward:

Theorem 4. Let Γ P rms and assume that Assumption 3 holds. Then Γ-counterpart (4) is
equivalent to

min
kPrms0

$

&

%

Γ∆uk ` min
xPX

$

&

%

ūJℓpxq `
ÿ

jPrms

maxt0,∆uj ´ ∆ukuℓjpxq

,

.

-

,

.

-

. (20)

Proof. Under Assumption 3, problem (3) is equivalent to minpx,yqPXy
uJy with Xy :“ X ˆ ℓpX q Ď

Rn ˆ t0, 1um. Then the result stated in the introduction implies that the modified problem’s
Γ-counterpart is equivalent to

min
kPrms0

$

&

%

Γ∆uk ` min
xPXy

$

&

%

ūJy `
ÿ

jPrms

maxt0,∆uj ´ ∆ukuyj

,

.

-

,

.

-

where ∆u0 :“ 0. Since yj “ ℓjpxq, the claim follows. □
5



Theorem 4 demonstrates that one can solve the Γ-counterpart with an optimization oracle of
Problem (3). This result only implies that The proofs are both heavily inspired by the resp. proofs
in [BS03] and [LK14]:

Theorem 5. Let Γ P rms and assume that ∆u1 ě ∆u2 ě ¨ ¨ ¨ ě ∆um ě 0. If Assumption 3 holds
then the Γ-counterpart (4) is equivalent to

min
kPL

$

&

%

Γ∆uk ` min
xPX

$

&

%

fpx, ūq `
ÿ

iPrks

p∆ui ´ ∆ukq ℓipxq

,

.

-

,

.

-

for L :“ tΓ ` 1, . . . ,Γ ` γ,m ` 1u with γ being the largest odd integer smaller than pm ` 1q ´ Γ
and ∆m`1 :“ 0. Furthermore, if the optimal value of the kth subproblem is smaller than Γ∆ul for
l P L then one can replace L with L˚ :“ tk P L : k ą lu.

Proof. Since Assumption 3 holds, this statement is a consequence of Theorem 1 in [LK14, Theorem
1] by introducing binary variables yi, i P rms, with yi “ ℓipxq (as in the proof of Theorem 4). □

In particular, Theorem 5 implies that one only needs to solve at most rm´Γ
2 s ` 1 subproblems

instead of m ` 1, as in the case of Theorem 4. [LK14] demonstrates that this significantly reduces
the number of subproblems one needs to solve. We also demonstrate that in Section 4.

Remark 6. Applying Theorem 4, one also can determine α-approximations (for α ě 1), if Prob-
lem (3) is α-approximable1, generalizing [BS03, Theorem 4]. Since we do not tackle approximations
in this publication and since the proof would be almost identical to the original one, we do not
specifically demonstrate it.

3.2.2. Matrix interval uncertainties. In this subsubsection, we consider problems in matrix spaces.
This will prove beneficial when we aim to reformulate the QAP’s Γ-counterpart introduced in
Example 2. Before we dive into theory, we would like to recall that Rrˆs is generated by rs
standard matrices F p,q where the entry in row p and column q equals 1 and the other entries equal
0.

Assumption 7. Let ri and si be nonnegative integers for all i P rks. Let V be a real matrix vector
space and let W i :“ Rriˆsi , i P rks, be a vector space. Furthermore, we assume that the resp.
standard matrices form an orthonormalbasis w.r.t. the inner product x¨, ¨yW i . Γ-counterpart (4)
satisfies the following:

i) For all i P rks, U i “ rŪ i ´ ∆U i, Ū i ` ∆U is for a nominal matrix Ū i P Rrˆs and a matrix
∆U i P Rrˆs

ě0 , and,
ii) the functions fi : V ˆ W i Ñ R, i P rks, are subject to linear uncertainty w.r.t. the inner

product x¨, ¨yW i and a function ℓi.

Note that, when the standard matrices form an orthonormalbasis of Rrˆs with respect to an inner
product x¨, ¨y, the equation

xA,By “
ÿ

iPrrs

ÿ

jPrss

Ai,jBi,j . (21)

holds. Using Equation (21), we can provide a reformulation of the Γ-counterpart (4):

Lemma 3. Assume that Assumption 7 holds and that additionally, for all i P rks and x P X , ℓipxq

is a nonnegative matrix. Furthermore, we set ∆U0 :“ f0px,∆U0q are matrices of only zeros. Then
Γ-counterpart (4) is equivalent to

inf
lPrks0

inf
xPX

Hpl, xq, (22)

1The following definition is not formal and is usually applied for combinatorial problems: Assume that
f˚ P p´8,8q is the optimal value of Problem (3). Then Problem (3) is called α-approximable when there
exists a real number α ě 1 and an algorithm ALG with input pf,X q, output x̃, the inequality αf˚ ě fpx̃q holds for
every instance pf,X q and the running time of algorithm ALG is polynomial in the encoding length of pf,X q.
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where H : rks0 ˆ X Ñ R is the function defined by

Hpl, xq :“Γ
ÿ

pPrrls

ÿ

qPrsls

∆U l
p,qℓ

l
p,qpxq `

ÿ

iPrks

ÿ

pPrris

ÿ

qPrsis

Ū i
p,qℓ

i
p,qpxq`

max

$

&

%

0,
ÿ

pPrris

ÿ

qPrsis

∆U i
p,qℓ

i
p,qpxq ´

ÿ

pPrris

ÿ

qPrsis

∆U l
p,qℓ

l
p,qpxq

,

.

-

“Γflpx,∆U lq `
ÿ

iPrks

fipx, Ū
iq ` maxt0, fipx,∆U iq ´ flpx,∆U lqu

Proof. We begin by applying Lemma 2. Thus, Γ-counterpart (4) is equivalent to

inf
kPrms0

$

&

%

inf
XPX

$

&

%

ΓθkpXq `
ÿ

iPrms

fipX, Ū iq ` supt0, θipXq ´ θkpXqu

,

.

-

,

.

-

,

where θkpXq :“ supUkPUk
fkpX,Ukq ´ fkpX, Ūkq and θ0pXq :“ 0 for all X P X and k P rms0.

Applying Equation (21), we obtain

sup
UPrŪi´∆Ui,Ūi`∆Uis

fipx, U
iq ´ fipx, Ū

iq “ max
UPrŪi´∆Ui,Ūi`∆Uis

xℓipxq, U i ´ Ū iyW i

“ max
ZiPr´∆Ui,∆Uis

xZi, ℓipxqyW i

“ max
ZiPr´∆Ui,∆Uis

ÿ

pPrris,qPrsis

Zi
p,qℓipxqp,q

“
ÿ

pPrris

ÿ

qPrsis

∆U i
p,qℓ

i
p,qpxq

Eq. (21)
“ x∆U i, ℓipxqyW i .

However, after simple arithmetic, this implies the lemma. □

While Lemma 3 provides a reformulation without including maximizing over an uncertainty set,
we would still require to break the piecewise structure of H, which is, at least straight-forwardly,
not possible without introducing an exponential number of subproblems or altering the feasible set,
both contradicting the approach of oracle-polynomiality. However, we can solve this problem when
a so-called assignment-structure is involved.

3.3. Assignment structures. In this subsection, we discuss a problem structure for which the
Γ-counterpart is solvable in oracle-polynomial time. Throughout this subsection, we assume that,
additionally to Assumption 7, that the feasible set X encodes the following structure:

X Ď tX P Rmˆn : @i P rms D!j P rns : Xi,j ‰ 0u. (23)

When a set satisfies (23), we say that it is underlying an assignment structure. In this case, we
also say that the resp. problem underlies an assignment structure.
Permutation matrices, i.e., the matrices of the set

Πn :“ tP P t0, 1unˆn :
ÿ

iPrns

Pi,j “ 1 @j P rns,
ÿ

jPrns

Pi,j “ 1 @i P rnsu,

are closely related to assignment structures. Naturally, whenever X Ď Πn, X underlies an
assignment structure.
In this section, we discuss the problem

min
XPX

xu,XsyRk1

where u P Rk1 is a vector under interval uncertainty, s P Rk2 is a vector that is not under uncertainty
and X P X Ď Rk1ˆk2 where X underlies an assignment structure.
In the next theorem, we show that, under these assumptions, one can ‘shift’ the vector s into the
uncertainty set by transforming the inner product of the objective:
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Lemma 4. Let Γ P rk1s, s P Rk2 and u P Rk1 be a vector under interval uncertainty, i.e., for
some ū P Rk1 and ∆u P Rk1

ě0, ui P rūi, ūi ` ∆uis for all i P rk1s. Assume that the set X Ď Rk1ˆk2

underlies an assignment structure and that Xs is nonnegative for all X P X . Set

U :“
ą

iPrk1s

rūi, ūi ` ∆uis,

Ũ :“
ą

pi,jqPrk1sˆrk2s

rsj ūi, sj ūi ` sj∆uis.

Then the Γ-counterparts of

inf
XPX

xu,XsyRk1 , (24)

where u P U , and

inf
XPX

xY,XyRk1ˆk2 , (25)

where Y P Ũ , are equivalent.

Proof. Since Assumption 7 is satisfied, by Lemma 3, the Γ-counterpart of Problem (24) is equivalent
to

inf
lPrk1s0

$

&

%

inf
XPX

$

&

%

Γ∆ulpXsql ` xū, XsyW `
ÿ

iPrk1s

maxt0,∆uipXsqi ´ ∆ulpXsqlu

,

.

-

,

.

-

(26)

where ∆u0 :“ pXsq0 :“ 0. Since X underlies an assignment structure, we have that

pXsql “
ÿ

jPrk2s

Xljsj

“ Xl,σplqsσplq

where, for all l P rk2s, j “: σplq P rns denotes the column index where Xlj is not equal to zero.
Thus, Problem (26) is equivalent to

inf
lPrk1s0

$

&

%

inf
XPX

$

&

%

Γ∆ulXl,σplqsσplq ` xū, XsyW `
ÿ

iPrk1s

maxt0,∆uiXi,σpiqsσpiq ´ ∆ulXl,σplqsσplqu

,

.

-

,

.

-

(27)

where σp0q :“ X0,0 :“ 0. Since σplq P rns, Program (27) is equivalent to

inf
pl1,l2qPK

$

&

%

inf
XPX

$

&

%

Γ∆ul1Xl1,l2st ` xū, XsyW `
ÿ

iPrk1s

maxt0,∆uiXi,σpiqsσpiq ´ ∆ul1Xl1,l2sl2u

,

.

-

,

.

-

(28)

where K :“ rk1s ˆ rk2s Y tp0, 0qu, X0,0 :“ 0 and s0 :“ 0. By Lemma 3 and since xū, XsyRk1 “

xūsJ, XyRk1ˆk2 , Problem (28) is the Γ-counterpart of Problem (25). Finally, the claim follows since
Yl1,l2 P rsl2 ūl1 , sl2 ūl1 ` sl2∆ul1s for all l1 P rk1s and l2 P rk2s. □

Lemma 4 states that the Γ-counterpart of a problem subject to vector uncertainty is equivalent
to the Γ-counterpart of a problem subject to matrix uncertainty by shifting a vector into the
uncertainty set. This does not seem to be of importance at first. However, when it comes to
problems underlying an assignment structure and X Ď t0, 1uk1ˆk2 , we finally obtain the desired
oracle-polynomiality:

Theorem 8. Let Γ P rk1s, s P Rk2
ě0 and u P Rk1 be a vector under interval uncertainty, i.e., for

some ū P Rk1 and ∆u P Rk1
ě0, ui P rūi, ūi ` ∆uis for all i P rk1s. Define U :“

Ś

iPrk1srūi, ūi ` ∆uis

Assume that

X Ď tt0, 1uk1ˆk2 :
ÿ

jPrns

Xi,j “ 1 @i P rk1su.
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Assume that V :“ Rk1ˆk2 is equipped with an inner product such that the standard matrices form
an orthonormalbasis. Then the Γ-counterpart of

min
XPX

xu,XsyRk1 , (29)

where u P U , is equivalent to

min
pl1,l2qPrk1sˆrk2sYtp0,0qu

"

Γ∆ul1sl2 ` min
XPX

xūsJ ` Y l1,l2 , XyV

*

where s0 :“ ∆u0 :“ 0 and, for all pi, j, l1, l2q P rk1s ˆ rk2s ˆ prk1s ˆ rk2s Y t0, 0uq

Y l1,l2
i,j :“ maxt0,∆uisj ´ ∆ul1sl2u.

Proof. Let V :“ Rk1ˆk2 . The conditions of Lemma 4 are satisfied, so the Γ-counterpart of
Problem (29) is equivalent to the Γ-counterpart of Problem (25). Since the standard matrices
of V form an orthonormalbasis, Equation (21) holds. Furthermore, X is a 0{1-matrix and
Y P

Ś

l1Prk1s,l2Prk2srūl1sl2 , ūl1sl2 ` ∆ul1sl2s is subject to interval uncertainty. Thus, we can apply
[BS03, Theorem 3]. It implies that the Γ-counterpart of Problem (29) is equivalent to

min
pl1,l2qPK

Γ∆ul1sl2 `

$

&

%

min
XPX

xū, XsyW `
ÿ

iPrk1s

maxt0,∆uisσpiq ´ ∆ul1sl2uXi,σpiq

,

.

-

, (30)

since Y P
Ś

l1Prk1s,l2Prk2srūl1sl2 , ūl1sl2 ` ∆ul1sl2s, K :“ rk1s ˆ rk2s Y tp0, 0qu and ∆u0s0 :“ 0.
Furthermore, since X P X ,

ÿ

iPrk1s

maxt0,∆uisσpiq ´ ∆ul1sl2uXi,σpiq “
ÿ

iPrk1s

ÿ

jPrk2s

maxt0,∆uisj ´ ∆ul1sl2uXi,j

“ xY l1,l2 , XyV .

Hence Problem (30) is equivalent to

min
pl1,l2qPK

Γ∆ul1sl2 `

ˆ

min
XPX

xūsJ ` Y l1,l2 , XyV

˙

.

□

Theorem 8 shows that the Γ-counterparts of problems underlying an assignment structure are oracle-
polynomially solvable, when the decision variable is 0{1-valued. This allows us to reformulate the
problem without needing to solve an exponential number of subproblems, incorporating piecewise
linear functions or modifying the feasible set, cf. Lemma 4. We demonstrate this with the QAP
that we model over matrix spaces:
Example 2 continued. We consider the QAP under interval uncertainty

min
x

ÿ

pi,j,r,sqPrns4

ci,jdr,sxi,rxj,s

s.t. x P X “ tx P t0, 1urns
2

:
ÿ

iPrns

xi,r “ 1 @r P rns,
ÿ

rPrns

xi,r “ 1 @i P rnsu
(31)

with uncertain coefficients ci,j P Ui,j :“ rc̄i,j , c̄i,j ` ∆ci,js Ď Rě0 for all i, j P rns and dr,s ě 0 for
all r, s P rns. Let Γ P rn2s.
We begin by reformulating the QAP as a matrix program over the set of permutation matrices:

min
XPΠn

trpCXDXJq (32)

where C :“ pci,jqi,jPrns and D :“ pdi,jqi,jPrns. In particular, we can reformulate Problem (32) as a
problem over Rn2

ˆn2

, where x, ¨, ¨y denotes the Frobenius product:
min
Z

xvecpCq, ZvecpDqy

s.t. Z P tX b X : X P Πnu.
(33)

9



Problem (33) is naturally a problem subject to an assignment structure. Thus, we can apply
Theorem 8. It implies the Γ-counterpart’s equivalence to the problem

min
pk1,k2,k3,k4qPrns

4

Ytp0,0,0,0qu

"

Γp∆ck1,k2
qdk3,k4

` min
xPX

tFk1,k2,k3,k4
pxqu

*

, (34)

where

Fk1,k2,k3,k4pxq “
ÿ

pi,j,r,sqPrns4

pc̄i,jdr,s ` maxt0,∆ci,jdr,s ´ ∆ck1,k2dk3,k4uqxi,rxj,s

for pk1, k2, k3, k4q P rns4, F0,0,0,0pxq :“
ř

pi,j,r,sqPrns4pc̄i,jdr,s ` ∆ci,jdr,sqxi,rxj,s, and ∆c0,0 :“

d0,0 :“ 0. If we assume that the flow and the distance coefficients are symmetric, i.e., ∆ci,j “ ∆cj,i
and dr,s “ ds,r for all i, j, r, s P rns, then we only need to solve subproblems of the set

M :“ tpk1, k2, k3, k4q P rns4 : k1 ă k2, k3 ă k4u Y tp0, 0, 0, 0qu.

Thus, one needs to solve 1` p
npn´1q

2 q2 “ n4
´n3

2 ` 1 QAPs to solve Problem (34). By application of
Theorem 5, we can reduce the number of subproblems to rn

4
´n3

4 ` 1
2 ´ Γ

2 s ` 1. In the next section,
we demonstrate how the application of Theorem 5 significantly speeds up the the optimization
process.

4. Numerical study

The problems were implemented in Python 3.7. To solve the optimization problems, we used
Gurobi 9.0.1. [Gur20] running on machines with Xeon E3-1240 v5 CPUs (4 cores, 3.5 GHz each).

4.1. Vehicle routing problem with soft time windows under uncertainty. We elaborate
on Example 1, based on the patient transport problem discussed in [ABLT23] and the vehicle
routing program with general time windows (VRPGTW) discussed in [HYI08]. We consider a
complete digraph D “ pN,Aq with nodes N :“ rns, a start depot 0, a copy of the start depot n` 1,
the digraph D̄ “ pV, Āq with nodes V :“ rn ` 1s0 and arcs

Ā “ A Y tp0, jq : j P Nu Y tpi, n ` 1q : i P N Y t0uu.

With δoutpvq and δinpvq, we denote the outgoing and the incoming arcs of v P V in D̄. The following
data are given: For every arc a P Ā, the travel time is modeled as ta P Rě0 and for every node
i P N , a service time si P Rě0 and a soft due time bi P Rě0 is given. Given a homogeneous fleet
of K vehicles, all nodes i P N have to be ‘visited’ by exactly one vehicle exactly once and with
as little delay as possible. The vehicles start and end at the depot. In the following, the binary
variables xk

i,j P t0, 1u for pi, jq P Ā and k P rKs denote whether vehicle k ‘uses’ arc pi, jq and the
real variables Ti P Rě0, i P V , denote the arrival time of a vehicle at node i. With this notation,
we obtain the following formulation of the VRPGTW:

min
x,T

ÿ

iPN

maxt0, Ti ´ biu (35a)

s.t.
ÿ

kPrKs

ÿ

pi,jqPδoutpiq

xk
i,j “ 1 @i P N, (35b)

ÿ

p0,jqPδoutp0q

xk
0,j “ 1 @k P rKs, (35c)

ÿ

pi,jqPδinpjq

xk
i,j ´

ÿ

pj,iqPδoutpjq

xk
j,i “ 0 @k P rKs, j P N, (35d)

ÿ

pi,n`1qPδinp0q

xk
i,0 “ 1 @k P rKs, (35e)

xk
i,jpTi ` si ` ti,j ´ Tjq ď 0 @k P rKs, pi, jq P A, (35f)

xk
i,j P t0, 1u @k P rKs, pi, jq P A, (35g)

Ti ě 0 @i P V. (35h)

Constraint (35b) ensures that each i P N is served exactly once by exactly one vehicle. Con-
straints (35c) and (35e) ensure that each vehicle leaves and enters the depot or stays at the depot.
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In combination with constraints (35b), (35c) and (35e), constraint (35d) ensures that each node is
served exactly once and by exactly one vehicle. Constraint (35f) ensures that, if vehicle k serves
node j after node i, the arrival time Tj is at least as large as the arrival time Ti added to the time
it requires for serving i and going from i to j. Finally, (35g) and (35h) ensure that x is binary
and T is nonnegative. Note that this formulation is only one of many possibilities to formulate
vehicle routing problems – for an overview, we refer the reader to [MS20]. We attempt to be robust
against scenarios of the set

Ś

iPN rb̄i ´ ∆bi, b̄is. Solving the Γ-counterpart for all Γ P rms would
show how many shifts of the due times are possible without any (or only little) delay.
For our experiments we use the Solomon instances r101, r102, c101, c102, rc101 and rc102. If these
names begin with r, the nodes are generated randomly, if they begin with c, they are clustered, and
otherwise some nodes are generated randomly and some are clustered - for a detailed description
of the construction, see [Sol87]. As due time bi we chose the start time specified in the original
instance for the customer, i.e., node i. The uncertainty set was constructed randomly, i.e., ∆bi is a
uniformly distributed random variable in r0, b̄is. Since we were ultimately aiming to find optimal
solutions for the Γ-counterpart, we tested N “ r8s and N “ r10s, K P r3s and all Γ P N , and
calculated the optimal solutions for the respective nominal problem. We selected the first |N |

customers of the list given in the resp. instance.
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Figure 1. Optimal values for the respective Γ-counterparts for instances rc101
(upper left), rc102 (upper right), c101 (lower left) and r102 (lower right), with
N “ r8s and K P r3s. If a yellow point for a value of Γ is ‘missing’, its value
coincides with the green point of the same Γ.

In Figure 1 we show that the robust optimal values for N “ r8s, K P r3s and the instances rc101,
rc102, c101 and r102 (we have neglected the other two cases and the results for N “ r10s because
the graphs are similar). As expected, the optimal value, i.e., the cumulated delays, increases with
an increasing number of vehicles K. In addition, at K “ 1 the optimal value for increasing Γ
strongly rises, while at K “ 2, 3 the change in the optimal value is not so marked. This is also to
be expected: If there is exactly one vehicle, the changes in the due times are supposed to be met by
this one vehicle, which is clearly not really possible, especially in clustered settings. However, the
total delays are more robust for K “ 2, 3 – while the robust values differ between K “ 1, 2, 3, the
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difference between K “ 1 and K “ 2 is much higher than in K “ 2 and K “ 3. So if more vehicles
are available, this can lead to more robust solutions. The difference in the price of robustness is
evident, e.g., in c101: For K “ 1 the nominal optimal value is less than 200 and for K “ 2, 3 it is 0.
For Γ “ 1 and K “ 1 we obtain a delay of at least 400, while for K “ 2, 3 we remain around the
optimal nominal value for K “ 1. For Γ “ 2 the delay increases only slightly and does not change
afterwards. However, for K “ 1, the optimum value increases up to Γ “ 6 and is above 1200, while
for K “ 2, 3 the optimum value is below 200. We note that for other cases, the difference between
the nominal optimal values and the optimal values for Γ ě 1 is not as large as can be seen in
r102. In this particular case, the increase in nominal optimal values for Γ stopped at Γ “ 2 for all
K “ 1, 2, 3.
Table 1 and Table 2 show the running time (in seconds) to solve the Γ-counterpart for Γ P r2s, the
nominal problem for all instances with N “ r8s, r10s and K P r3s. As the number of constraints
increases with more customers and more vehicles, i.e., increasing |N | and K, the running time
increases in most cases. Note that when reformulating the Γ-counterpart, only the objective of the
subproblems (19) will be affected, while the optimal solutions of the other subproblems can be
reused. Thus, of the 2|N | ` 1 problems, only |N | problems need to be solved to obtain an optimal
solution of the Γ counterpart when different values of Γ are considered. This explains the fact that
the running time for Γ “ 2 is usually at most half as large as that for Γ “ 1. We note that the
value of Γ does not have any other significant influence on the running time and that the running
times are relatively high, especially for |N | “ 10.

Table 1. Running times of various instances in seconds for Γ “ 1, 2, the nominal
case, N “ r8s and K “ 1, 2, 3.

Instances: Nominal case Γ “ 1 Γ “ 2
N “ r8s K “ 1 K “ 2 K “ 3 K “ 1 K “ 2 K “ 3 K “ 1 K “ 2 K “ 3
r101 17 1 2 79 43 26 40 15 14
r102 11 22 15 105 356 246 49 136 123
c101 1 1 1 28 7 8 19 4 5
c102 10 21 24 124 394 434 62 183 298
rc101 5 1 2 107 156 224 30 19 22
rc102 7 69 291 101 823 2965 49 284 1282

Table 2. Running times of various instances in seconds for Γ “ 1, 2, the nominal
case, N “ r10s and K “ 1, 2, 3. If no optimal solution has been obtained after 24
hours, the resp. fields are marked with –.

Instances: Nominal case Γ “ 1 Γ “ 2
N “ r10s K “ 1 K “ 2 K “ 3 K “ 1 K “ 2 K “ 3 K “ 1 K “ 2 K “ 3
r101 551 6 3 9080 5178 2316 5612 1525 376
r102 1175 1066 119 15358 54885 15637 9433 18285 5875
c101 15 2 5 8026 2444 168 4161 65 28
c102 1566 431 111 22081 32098 21335 15285 12692 12703
rc101 681 14 7 8279 11024 9364 2949 1253 350
rc102 902 2505 8425 13327 70041 – 6804 37788 –

This concludes our numerical study of the VRPGTW under uncertainty. As already mentioned,
we used an optimization oracle to solve the problems given in Example 3.1 as a MINLP instead of
using any VRPGTW solvers to demonstrate that our reformulation can be solved to optimality. In
the future, it might be interesting to conduct experiments including instances with more customers
but rather than solving them to global optimality, they could be solved only to a certain gap, i.e.,
to find solutions which are ‘sufficiently robust’ or to apply a VRPGTW oracle.
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4.2. Quadratic assignment problem under uncertainty. Here, we solve and compare different
reformulations of the Γ-counterpart of the QAP. We have chosen instances from [FF15] and from
the QAPLIB [BKR97]. The goal of this section is to prototypically evaluate whether the new
reformulations can be solved within a similar order of magnitude when compared to that of the
nominal versions. As we do not have an efficient problem-specific QAP oracle at hand, we chose
small instances where the Γ-counterpart could be solved with Gurobi within 24 hours. As expected,
instances with less uncertain coefficients are computationally easier to handle. Therefore, by
choosing scr12, we included an instance with ci,j “ 0 for some pi, jq P r12s2. We also chose fei9,
an instance that was examined in [FF15]. For fei9, the number of facilities is n “ 9, while for
scr12, it is n “ 12 (both taken from [FF15]). Finally, we also chose nug12 from [BKR97]. For
each instance, we generated three different uncertainty sets. For fei9, the uncertainty set U1 is
taken from [FF15]. Other uncertainty sets, denoted by U2 and U3, are generated randomly: for
all pi, jq P rns2, ∆cij P r0, c̄ijs is randomly chosen. For scr12 and nug6, U1 is generated by setting
∆cij “ 0.1c̄ij for all pi, jq P rns2. Furthermore, U2 and U3 are generated randomly analogously to
fei9. In Figure 2 the change in the objective value for different Γ can be observed for two of our
instances are shown. As expected, the optimal objective value is increasing in Γ. As can be seen
for scr12, only a mild increase in cost of robust protection can be seen for increasing values of Γ.
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(b) Optimal objective value ˆ10´2 for different values of Γ
for scr12.

Figure 2. Optimal values for different instances.

Now we compare the running time of different equivalent formulation of the Γ-counterpart. In
particular, we test following formulations:

‚ QAP: Formulation (34).
‚ QAPred: Formulation (34) after reducing the number of subproblems with Theorem 5.
‚ MIP: A linearized QAP under uncertainty after applying Theorem 1 of [BS03].
‚ BP: A linearized QAP under uncertainty after applying Theorem 3 of [BS03].
‚ BPred : A linearized QAP under uncertainty after applying the original result of Bertsimas

and Sim discussed in Section 1 and Theorem 1 of [LK14].
In particular, we apply a standard linearization technique: Whenever there occurs an product of
two binary variables x and y, it can be replaced by a binary variable z when adding the inequalities

z ď x, z ď y, z ě x ` y ´ 1.

The nominal problems can be solved within a few seconds. A comparison of running times for fei9,
scr12 and nug12 and Γ “ 1 can be found in Tables 3, 4 and 5. If no optimal solution could be
computed after 24 hours, we stopped the process. Running times are measured in seconds.
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Table 3. Comparison of running times for different instances for Γ “ 1 and the
deterministically constructed uncertainty set U1. – if not solvable within 24 hours.

CPU (s) nug12 fei9 scr12
QAP – 3420 36579
QAPred 1054 174 221
MIP 31417 25 1718
BP – 86243 –
BPred 34318 4096 49126

Table 4. Comparison of running times for different instances for Γ “ 1 and the
deterministically constructed uncertainty set U2. – if not solvable within 24 hours.

CPU (s) nug12 fei9 scr12
QAP – 3542 74641
QAPred 591 178 298
MIP 24655 25 819
BP – – –
BPred – 4538 73847

Table 5. Comparison of running times for different instances for Γ “ 1 and the
randomly constructed uncertainty set U3. - if not solvable within 24 hours.

CPU (s) nug12 fei9 scr12
QAP – 3503 45851
QAPred 9507 178 275
MIP 19550 30 1860
BP – – –
BPred – 4384 56979

It is evident that the instances with n “ 12 can be solved more efficiently than the linearizations
after reducing the number of subproblems by excluding all redundant scenarios (applying Theorem 5,
neglecting identical subproblems and taking symmetry of coefficients into account), for all regarded
uncertainty sets. Only for the smaller instance, MIP is faster. This demonstrates the benefit of the
reformulations proposed here. Without using them, the corresponding robust counterparts are
algorithmically very challenging. All instances have in common that without reducing the number
of problems, i.e., avoiding a repetition of scenarios or applying Theorem 5, these instances cannot
be solved within the time limit, even for smaller instances.
Finally, we would like to point out two things: Firstly, if one would like to solve Γ-counterpart for
different values of Γ, it is preferable to apply QAPred since one only has to calculate the optimal
solutions of the subproblems for Γ “ 1, 2, since the value of Γ does not influence the subproblems.
Secondly, this computational study demonstrates that our formulations are applicable in practice.
Naturally, instead of using Gurobi, one can also use algorithms that solve QAPs more efficiently.
However, for our purposes, our method proved to be highly beneficial, when compared to the
standard linearization approach.

5. Conclusion

In this article, we studied Γ-counterparts of discrete nonlinear optimization problems under
uncertainty in the objective. We established reformulations of Γ-counterparts by applying refor-
mulations techniques developed in [BTdHV15]. Similar to Γ-uncertainties in [BS03] and [BS04],
our reformulations work for MINLPs in general and for combinatorial optimization problems with
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linear uncertainty when attempting to optimize over the original feasible set X . Although these
reformulations are not necessarily computationally tractable, we have given examples where this
is indeed the case, namely for linear uncertainties with 0{1 functions and optimization problems
subject to an assignment structure. In addition, we have discussed the general case with an
application in logistics and have deepened it with a problem where transports are subject to a
soft due date. In a prototypical numerical study, we have shown that our reformulations work in
practice and are efficient. Possible further research for this topic include, naturally, more extensive
numerical studies for the derived reformulations. Furthermore, one could also investigate whether
the generalizations of [Pos13], [Pos14] and [Pos18] to the proposed Γ-counterpart are possible
and tractable as well. Furthermore, the price of robustness, as introduced in [BS04], was not
investigated in this publication as it was in [BS04] which could also be subject to future research.
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