
Exact and Approximation Algorithms for Sparse
PCA

Yongchun Li
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA 30332, ycli@gatech.edu

Weijun Xie
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA 30332, wxie@gatech.edu

Sparse Principal Component Analysis (SPCA) is designed to enhance the interpretability of traditional

Principal Component Analysis (PCA) by optimally selecting a subset of features that comprise the first

principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate

solutions, typically achieved through tractable semidefinite programs (SDPs) or heuristic methods. To solve

SPCA to optimality, we propose two exact mixed-integer SDPs (MISDPs) and an arbitrarily equivalent

mixed-integer linear program (MILP). The MISDPs allow us to design an effective branch-and-cut algorithm

with closed-form cuts that do not need to solve dual problems. For the proposed mixed-integer formula-

tions, we further derive the theoretical optimality gaps of their continuous relaxations. Besides, we apply

the greedy and local search algorithms to solving SPCA and derive their first-known approximation ratios.

Our numerical experiments reveal that the exact methods we developed can efficiently find optimal solu-

tions for datasets containing hundreds of features. Furthermore, our approximation algorithms demonstrate

both scalability and near-optimal performance when benchmarked on larger datasets, specifically those with

thousands of features.

Key words : Sparse PCA, Mixed-Integer Programming, Semidefinite Programming, Greedy, Local Search

1. Introduction

This paper studies the sparse principal component analysis (SPCA) problem:

(SPCA) w∗ := max
x∈Rn

{
x⊤Ax : ∥x∥2 = 1,∥x∥0 ≤ k

}
, (1)

where A is the sample covariance matrix out of a dataset with n features and thus is positive

semidefinite, the zero-norm ∥x∥0 denotes the number of non-zero entries in x, and k≤ n is a positive

integer. When reducing the dimensionality of a dataset, traditional PCA typically relies on all

n features to calculate the first principal component. This approach, though comprehensive, may

lead to a low-dimensional representation that is difficult to interpret. In contrast, the zero-norm

constraint in SPCA (1) confines the first principal component to rely on at most k features, thereby

offering a more interpretable and concise dimensionality reduction. Hence, the SPCA problem (1)

is often capable of selecting the k most relevant and important features from a high-dimensional

1

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
2

dataset, which significantly improves the interpretability of the dimensionality reduction in machine

learning [33, 57] and is helpful for the exact recovery of sparse signals in information theory

[4]. Besides, SPCA (1) tends to exhibit greater robustness to noise compared to conventional

PCA [57]. These advantages of SPCA have benefited many application fields such as biology,

finance, cloud computing, and healthcare, which often deal with high-dimensional datasets (see,

e.g., [15, 34, 39, 44]).

1.1. Summary of Main Contributions and Organization

Given the support of variable x, we observe that SPCA (1) reduces to the PCA problem, i.e.,

finding the largest eigenvalue of a principal submatrix of A indexed by the support. Hence, the

objective of SPCA (1) can be recast as selecting a k × k principal submatrix from matrix A to

maximize the largest eigenvalue. This motivates us to derive two exact mixed-integer semidefinite

programs (MISDPs) and an almost equivalent mixed-integer linear program (MILP) of SPCA (1).

Below, we summarize the main contributions and an outline of this paper.

(i) Sections 2 and 3 develop the equivalent MISDP (6) and MISDP (15) for SPCA (1), respec-

tively and derive the worst-case optimality gaps of their continuous relaxations. We show

that the continuous relaxation of the MISDP (15) is stronger than the one proposed by

d’Aspremont et al. [21].

In Subsection 2.2, we develop a branch-and-cut algorithm for SPCA based on the MISDP

(6), which can efficiently solve small- or medium-sized instances (e.g., n≤ 100s) to optimality.

(ii) Section 4 derives the first-known MILP (22) for SPCA (1), which can be arbitrarily close to

SPCA (1). The MILP can solve small instances to optimality. We also prove the optimality

gap of its continuous relaxation.

(iii) Section 5 investigates the scalable greedy and local search algorithms for approximately solv-

ing SPCA (1). We derive their first-known approximation ratios and prove the tightness when

k ≤ n/2. The numerical study demonstrates that these two approximation algorithms are

superior to the existing ones in the literature.

(iv) Section 6 evaluates the computational efficiency and solution quality of our proposed methods

on various real datasets, where the dimension n ranges from 13 to 2,365.

Our contributions have both theoretical and practical relevance. Theoretically, we contribute three

exact mixed-integer convex programs to SPCA along with the optimality gaps of their continuous

relaxations and prove the first-known approximation ratios of the greedy and local search algo-

rithms. Table 1 displays our theoretical contributions and the comparison with existing results.

Practically, our branch-and-cut algorithm and MILP (22) can efficiently yield optimal solutions for

small and medium-size instances. Our approximation algorithms are scalable and successfully apply

to the large-scale data analytics problem, i.e., identifying critical factors for drug abuse analysis.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
3

Table 1 Summary of theoretical guarantees for SPCA (1)

Convex relaxation Optimality gap

Continuous relaxation of MISDP (6) min{k,n/k}
Continuous relaxation of MISDP (15) min{k,n/k}
Continuous relaxation of MILP (22) min{k(

√
d/2+1/2), n/k

√
d+(n− k)(

√
d/2+1/2)}

SDP relaxation in [16] expexp(Ω(
√
log log(n)))

Approximation algorithm Approximation ratio

Greedy Algorithm 1 1/k

Local Search Algorithm 2 1/k

Truncation algorithm [16] n−1/3

Thresholding algorithm [17] 1/2− (3/2) tr(A)/w∗

Randomized algorithm [17] 1/2−
√
tr(A)/(kw∗)

SDP-based algorithm [17] –

1.2. Relevant Literature

In this subsection, we survey the relevant literature on SPCA (1) from three aspects: exact mixed-

integer convex programs, convex relaxations, and approximation algorithms.

Exact Mixed-Integer Programs. SPCA (1) is highly nonconvex as it maximizes a convex

function subject to two nonconvex constraints (i.e., a quadratic equality constraint and a zero-norm

constraint). Unlike traditional PCA, which admits closed-form solutions, SPCA (1) is notoriously

known to be NP-hard and inapproximable (see, e.g., [41]). As a result, the equivalent formulations

and exact algorithms for solving SPCA (1) to optimality are limited in the literature (see, e.g.,

[9, 27, 42]). Moghaddam et al. [42] introduced a branch-and-bound method to solve SPCA (1), and

they pruned redundant nodes using the eigenvalue of principal submatrices and a greedy algorithm.

Recently, Berk and Bertsimas [9] embedded various upper and lower bounds into a branch-and-

bound framework, which can efficiently prune nodes and guarantee optimality for quite a few

instances. It is worth mentioning that Gally and Pfetsch [27] proposed an equivalent MISDP for-

mulation for SPCA (1). Our MISDP (15) differs from [27] by deriving additional valid inequalities.

Another interesting work can be found in Dey et al. [23], where the authors developed approximate

convex integer programs for SPCA (1) with an optimality gap of (1+
√

k/(k+1))2.

Convex Relaxations. In addition to exact solutions of SPCA (1), researchers have actively

investigated tractable convex relaxations. A common approach in the literature is developing SDP

relaxations for SPCA with theoretical guarantees (e.g., [2, 20, 21, 25, 37, 56]). [2] proposed sufficient

conditions for when the SDP relaxation attains the same optimal value as SPCA under the well-

known spiked covariance model, in which the covariance matrix A is the identity matrix plus

a sparse rank-one matrix. [16] proved a 1/ expexp(Ω(
√

log log(n))) optimality gap for the SDP

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
4

relaxation proposed in [21]. For another SDP relaxation in [20], [25] derived its optimality gap using

randomization techniques. This paper derives the theoretical optimality gaps of the continuous

relaxations of both MISDPs. Albeit convex, solvers often have difficulty in solving large-scale

instances of SDP formulations (e.g., n= 100s). The computational challenge of these SDP problems

urgently calls for more effective methods to compute the relaxation values for SPCA. From a

different angle, this paper solves the continuous relaxations of the proposed MISDP formulations

as the maximin saddle point problem, where the subgradient method enjoys a O(1/T) convergence

rate [45] based on Euclidean projections.

Approximation Algorithms. Another early thread of work on SPCA is developing high-

quality heuristics for solving SPCA to near optimality, such as the greedy algorithm [20, 30],

the truncation algorithm [16], the power method [35], the truncated power method [55], and the

variable neighborhood search method [14]. In particular, the truncation algorithm in [16] provides

the best-known approximation ratio n−1/3, which admits an efficient implementation to return a

feasible solution to SPCA. This paper investigates the greedy and local search algorithms and

proves their first-known approximation ratios 1/k.

We close this subsection by summarizing several recent works on SPCA (1) that have cited our

paper since it became available online. [12] reformulated SPCA (1) as a similar MISDP around

the same time as our MISDP (15); however, it is worth noting that our MISDP (15) is equipped

with a novel type of valid inequalities and may yield a stronger continuous relaxation. Using the

second-order cone relaxations and greedy rounding schemes, [12] focused on the computational

improvement of solving SPCA in practice and achieved an optimality gap of 1−2% on testing cases

with n= 1,000s. [17] proposed three approximation algorithms based on thresholding, randomized

matrix multiplication, and SDP relaxation methods, respectively. By enforcing their algorithms to

satisfy the zero-norm constraint in SPCA (1), the resulting approximation ratios are presented in

Table 1 which depend on the data matrix A and optimal value w∗ of SPCA (1). We also compare

our approximation algorithms with theirs in the numerical study. A recent study by [6] explored the

underlying properties of SPCA under the spiked covariance model for statistical guarantees. Specif-

ically, they reformulated SPCA under the spiked covariance model as a mixed-integer second-order

cone program, which can be efficiently solved by their customized algorithm on large-scale instances

with n= 20,000. Another recent work [24] studied two classical variants of the spiked covariance

model: the Wigner and Wishart models. In both cases, the authors proposed a subexponential-time

algorithm with a high-probability guarantee for the exact recovery of the support of x in SPCA

(1). In contrast to [6, 24], our results apply to any covariance matrix A in SPCA (1). Recently,

[37] introduced a novel permutation-invariant SDP relaxation for SPCA (1), providing remarkably

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
5

tight upper bounds. Nevertheless, this approach may encounter computational difficulties when

applied to datasets comprising hundreds of features.

Notation. The following notation is used throughout the paper. We let Sn,Sn
+ denote the set of

all the n×n symmetric real matrices and the set of all the n×n symmetric positive semidefinite

matrices, respectively. We use bold lower-case letters (e.g., x) and bold upper-case letters (e.g.,

X) to denote vectors and matrices, respectively and use corresponding non-bold letters (e.g.,

xi,Xij) to denote their components. We let 0 denote the zero vector. We use ⌈·⌉ to denote the ceil

function. We let Rn denote the set of all the n dimensional vectors and let Rn
+ denote the set of

all the n-dimensional nonnegative vectors. Given a positive integer n and an integer s≤ n, we let

[n] := {1,2, · · · , n} and let [s,n] := {s, s+1, · · · , n}. We let In denote the n×n identity matrix and

let ei denote its i-th column vector. Given a set S and an integer k, we let |S| denote its cardinality

and let
(
S
k

)
denote the collection of all the size-k subsets out of S. Given a m× n matrix A and

two sets S ⊆ [m], T ⊆ [n], we let AS,T denote a submatrix of A with rows and columns indexed by

sets S and T , respectively. Given a vector x ∈Rn, we let Diag(x) denote a diagonal matrix with

diagonal elements x, let ∥x∥2 denote the two norm, let ∥x∥∞ denote the infinity norm, and let

∥x∥0 denote the zero norm that counts the number of non-zero entries in x. Given a symmetric

matrix A, let tr(A) denote the trace of matrix A and let λmax(A) denote the largest eigenvalue of

A. The additional notation will be introduced later as needed.

2. Exact MISDP Formulation (I)

This section derives an equivalent mixed-integer semidefinite programming (MISDP) formulation

for SPCA (1) based on spectral decomposition and disjunctive programming techniques. The pro-

posed MISDP formulation facilitates the development of a branch-and-cut algorithm, which allows

for exactly solving SPCA (1).

To begin with, for each i∈ [n], we let the binary variable zi = 1 if the i-th feature is selected and

0 otherwise. Thus, SPCA (1) can be written as the following mixed-integer nonconvex program:

(SPCA) w∗ := max
x∈Rn,z∈Z

{
x⊤Ax : ∥x∥2 = 1, |xi| ≤ zi,∀i∈ [n]

}
, (2)

where we let Z denote the feasible set of binary variables z throughout the paper, i.e.,

Z :=

{
z ∈ {0,1}n :

∑
i∈[n]

zi ≤ k

}
.

Based on the mixed-integer nonconvex formulation (2), we derive an equivalent mixed-integer

convex program for SPCA in the following subsection.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
6

2.1. An Equivalent MISDP Reformulation of SPCA

According to proposition 1 in [42], when the support of variable x is known, SPCA (1) essentially

reduces to a conventional PCA problem, which is summarized in Part (i) of Lemma 1. Note that

Part (ii) is a simple extension of Part (i). Furthermore, Part (iii) of Lemma 1, as proposed by [20]

in their section 2, reformulates the largest eigenvalue function using the Cholesky factorization of

matrix A.

Lemma 1 [20, 42] For a symmetric matrix A∈ Sn and a subset S ⊆ [n], the following hold:

(i) maxx∈Rn

{
x⊤Ax : ∥x∥2 = 1, xi = 0,∀i /∈ S

}
= λmax(AS,S),

(ii) maxX {tr(AS,SX) : tr(X) = 1}= λmax(AS,S), and

(iii) If matrix A is positive semidefinite, then λmax(AS,S) = λmax(
∑

i∈S cic
⊤
i), where A =C⊤C,

C ∈ Rd×n denotes the Cholesky factorization matrix of A, d is the rank of A, and ci ∈ Rd

denotes the i-th column vector of C for each i∈ [n].

We make the following remarks about Lemma 1: Part (i) of Lemma 1 reduces SPCA (1) to

select an at most size-k×k principal submatrix of A with the maximum largest eigenvalue, which

leads to a combinatorial reformulation of SPCA (1) as shown below; Part (ii) of Lemma 1 suggests

that the SDP relaxation of the largest eigenvalue problem is exact, which paves the way for the

development of two exact MISDPs; and by leveraging Part (iii) in Lemma 1, we derive an exact

MILP for SPCA in Section 4.

According to Part (i) in Lemma 1, we introduce a subset variable S to represent the support of

variable x in SPCA (1) and rewrite it as

w∗ :=max
S

{λmax(AS,S) : |S| ≤ k,S ⊆ [n]} . (3)

Suppose that matrix A has a rank of d. Then, by computing the Cholesky factorization A=C⊤C

with C ∈Rd×n, Part (iii) of Lemma 1 allows us to recast the objective of SPCA (3) as below.

w∗ :=max
S

{
λmax

(∑
i∈S

cic
⊤
i

)
: |S| ≤ k,S ⊆ [n]

}
. (4)

Following the construction of SPCA (2), we let the binary variable zi represent whether to select the

i-th column vector ci or not for each i∈ [n], which reformulates SPCA (4) as an integer program:

w∗ :=max
z∈Z

{
λmax

(∑
i∈[n]

zicic
⊤
i

)}
. (5)

In the celebrated work on SPCA by d’Aspremont et al. [20], they derived an SDP relaxation

for SPCA (5) based on the Cholesky decomposition of A. By leveraging their SDP relaxation and

disjunctive programming techniques [5], we reduce SPCA (5) to an equivalent MISDP, as shown

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
7

in the theorem below. It is worth noting that our Theorem 1 differs from [20][proposition 1] in two

aspects: (i) [20] studied the modified SPCA problem (1) that moves the zero-norm constraint to

the objective as a regularization term. In contrast, our Theorem 1 focuses on SPCA (1); and (ii)

Theorem 1 proposes an exact MISDP that relies on the disjunction of bilinear terms, rather than

the SDP relaxation in [20].

Theorem 1 SPCA (2) admits an equivalent MISDP formulation:

(SPCA) w∗ := max
z∈Z,

X,W1,··· ,Wn∈Sd
+

{∑
i∈[n]

c⊤i Wici : tr(X) = 1,X ⪰Wi, tr(Wi) = zi,∀i∈ [n]

}
. (6)

Proof. By leveraging Part (ii) in Lemma 1 to reformulate the objective of SPCA (5) as an SDP,

we have that

w∗ := max
z∈Z,X∈Sd

+

{∑
i∈[n]

zic
⊤
i Xci : tr(X) = 1

}
, (7)

where the objective function comes from the identity tr(cic
⊤
i X) = c⊤i Xci for each i∈ [n].

In SPCA (7), the objective function contains bilinear terms {ziX}i∈[n]. To convexify them, we

create two copies of the matrix variable X, denoting by Wi1,Wi2 for each i∈ [n], and one of them

is equal to X depending on the value of binary variable zi. As a result, SPCA (7) becomes

w∗ := max
z∈Z,X,Wi1,Wi2∈Sd

+

{∑
i∈[n]

c⊤i Wi1ci :X =Wi1 +Wi2,∀i∈ [n], tr(X) = 1,

tr(Wi1) = zi, tr(Wi2) = 1− zi,∀i∈ [n]

}
.

Above, the matrix variables {Wi2}i∈[n] are redundant and can be replaced by inequality X ⪰Wi

for each i∈ [n]. Thus, we arrive at the equivalent reformulation (6) for SPCA. □

Theorem 1 presents a novel equivalent MISDP reformulation (6) for SPCA (1). We note that

the MISDP (6) has several interesting properties: (i) it can be directly solved via exact MISDP

solvers such as YALMIP; (ii) matrix variables X and {Wi}i∈[n] have a dimension of d×d, where d

is the rank of covariance matrix A. This finding suggests that we can further reduce the problem

size of the MISDP (6) when matrix A is low-rank; and (iii) in the MISDP (6), binary variables

are separable from the other matrix variables. This observation motivates us to employ Benders

decomposition [28] to solve the MISDP (6), as detailed in the subsequent subsection.

By relaxing binary variables, the continuous relaxation of the MISDP (6) provides an upper

bound for SPCA (1), which can help evaluate the solution quality of different heuristics. In the

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
8

following proposition, we provide the theoretical guarantee for the quality of this continuous relax-

ation. Formally, the continuous relaxation of the MISDP (6) is defined as follows:

w1 := max
z∈Z,

X,W1,··· ,Wn∈Sd
+

{∑
i∈[n]

c⊤i Wici : tr(X) = 1,X ⪰Wi, tr(Wi) = zi,∀i∈ [n]

}
, (8)

where we let Z denote the continuous relaxation of binary feasible set Z, i.e.,

Z :=

{
z ∈ [0,1]n :

∑
i∈[n]

zi ≤ k

}
.

Proposition 1 The continuous relaxation (8) of the MISDP (6) achieves a min{k,n/k} optimality

gap of SPCA (1), i.e.,

w∗ ≤w1 ≤min
{
k,

n

k

}
w∗.

Proof. First, the inequality w∗ ≤ w1 stems from the fact that problem (8) serves as a convex

relaxation of MISDP (6). Thus, it remains to show that (i) w1 ≤ kw∗ and (ii) w1 ≤ n/kw∗.

Part (i). For any feasible solution (z,X,{Wi}i∈[n]) to the continuous relaxation (8), we have

that ∑
i∈[n]

c⊤i Wici ≤
∑
i∈[n]

c⊤i ci tr(Wi) =
∑
i∈[n]

zic
⊤
i ci ≤

∑
i∈[n]

ziw
∗ ≤ kw∗,

where the first inequality is because the trace of the product of two symmetric positive semidefinite

matrices is no larger than the product of the traces of these two matrices [18], the first equality is

from tr(Wi) = zi for each i∈ [n], the second inequality is because

c⊤i ci = λmax

(
cic

⊤
i

)
≤ max

S⊆[n]:|S|=k
λmax

(∑
j∈S

cjc
⊤
j

)
:=w∗,

and the last inequality is due to
∑

i∈[n] zi ≤ k.

Part (ii). In addition, given any feasible solution (z,X,{Wi}i∈[n]) of the continuous relaxation

(8), we have ∑
i∈[n]

c⊤i Wici ≤
∑
i∈[n]

c⊤i Xci =
1(

n−1
k−1

) ∑
S∈([n]

k)

∑
i∈S

c⊤i Xci ≤
(
n
k

)(
n−1
k−1

)w∗ =
n

k
w∗,

where the first inequality is due to Wi ⪰X for all i ∈ [n] and the second one is from Part (ii) in

Lemma 1. □

Proposition 1 shows that the continuous relaxation (8) is at most min{k,n/k} away from the

optimal value of SPCA (6), implying that if k = 1 or k = n, then the continuous relaxation value

w1 exactly matches the optimal value w∗. It is important to note that our analysis of the k-factor

optimality gap in Proposition 1 may not be tight. The continuous relaxation (8) nearly coincides

with the optimal value of SPCA (1) in our numerical study. We leave it as an interesting future

question to improve the worst-case guarantee of this upper bound.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
9

2.2. Solving SPCA (6) by the Benders Decomposition Method

It is well-established that solving large-scale SDPs can be challenging, and the same holds for the

MISDP (6). To solve the MISDP (6) efficiently, this subsection applies the Benders decomposition

scheme [8, 28] to develop a branch-and-cut method. Furthermore, a side product of the Benders

decomposition method is to transform the continuous relaxation (8) of the MISDP (6) into a

maximin problem, enabling the use of the efficient subgradient method.

The Benders decomposition method lies in separating binary variables from continuous variables.

That is, for any fixed binary variables z ∈ Z in the MISDP (6), the resulting subproblem is a

convex program for which we can use the duality theory to develop Benders cuts. Therefore, by

separating binary variables, we rewrite SPCA (6) as

w∗ :=max
z∈Z

H1(z) := max
X,W1,··· ,Wd∈Sd

+

{∑
i∈[n]

c⊤i Wici : tr(X) = 1,X ⪰Wi, tr(Wi) = zi,∀i∈ [n]

}
. (9)

The Benders decomposition method is of particular interest when the dual of the above sub-

problem over (X,{Wi}i∈[n]) is easy to compute for any z ∈Z, ensuring that the Benders cuts are

effective to generate. Using Part(ii) in Lemma 1, we show below that the strong duality of the

inner maximization problem in (9) holds, and the dual problem admits a closed-form solution for

any binary z ∈Z.

Proposition 2 For the function H1(z) defined in SPCA (9), we have that

(i) For any z ∈Z, function H1(z) is equivalent to

H1(z) = min
µ,Q1,··· ,Qn∈Sd

+

{
λmax

(∑
i∈[n]

Qi

)
+

∑
i∈[n]

µizi : cic
⊤
i ⪯Qi +µiId,0≤ µi ≤ ∥ci∥22,∀i∈ [n]

}
,

(10)

which is concave in z.

(ii) For any binary z ∈ Z, an optimal solution to the problem (10) is µ∗
i = 0 if zi = 1 and ∥ci∥22

otherwise, and Q∗
i := (1−µ∗

i /∥ci∥22)cic⊤i for each i∈ [n].

Proof. See Appendix A.1. □

According to Part (i) of Proposition 2, we provide an equivalent reformulation (10) of the function

H1(z) by dualizing the subproblem in (9). Plugging the closed-form solution to the dual problem

(10) in Part (ii) of Proposition 2, we have that

H1(z) := λmax

(∑
i∈S

cic
⊤
i

)
+

∑
i∈[n]\S

∥ci∥22 = λmax(AS,S)+
∑

i∈[n]\S

∥ci∥22,

for any given solution z ∈Z with its support S. The result above reduces SPCA (9) to

w∗ =max
z∈Z

H1(z) = max
z∈Z,w∈R+

{
w :w≤H1(z)≤ λmax(AS,S)+

∑
i∈[n]\S

∥ci∥22zi,∀S ⊆ [n], |S| ≤ k

}
. (11)

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
10

Therefore, for any solution (ẑ, ŵ)∈Z ×R, the most violated constraint is

w≤ λmax(AŜ,Ŝ)+
∑

i∈[n]\Ŝ

∥ci∥22zi,

where set Ŝ denotes the support of ẑ. Based on the closed-form valid inequalities above, we can

solve MISDP (6) to optimality in a branch-and-cut framework to improve the computational per-

formance, as shown in Section 6.

Following the framework of SPCA (9), we can rewrite the SDP relaxation (8) with the form of

maxz∈Z H1(z). However, we note that for any continuous z ∈Z, the dual representation of function

H1(z) in problem (10) remains challenging to solve. Motivated by Part (ii) in Proposition 2, we

propose an efficient function H1(z) to approximate H1(z) by fixing Qi := (1− µi/∥ci∥22)cic⊤i for

each i ∈ [n] in problem (10). As a result, we have H1(z)≥H1(z) for any z ∈ Z. In the following

theorem, we show that the relaxed function H1(z) becomes exact for any binary solution z ∈ Z,

and the resulting upper bound still achieves a min{k,n/k} optimality gap.

Theorem 2 The following hold for the relaxed function H1(z):

(i) For any z ∈Z, function H1(z) is upper bounded by

H1(z) := min
µ∈Rn

{
λmax

(∑
i∈[n]

(
1− µi

∥ci∥22

)
cic

⊤
i

)
+

∑
i∈[n]

µizi : 0≤ µi ≤ ∥ci∥22,∀i∈ [n]

}
; (12)

(ii) If z ∈Z, then H1(z) =H1(z) = λmax(
∑

i∈[n] zicic
⊤
i); and

(iii) The continuous relaxation of SPCA

w2 :=max
z∈Z

H1(z) (13)

achieves a min{k,n/k} optimality gap, i.e., w∗ ≤ w1 ≤ w2 ≤ min{k,n/k}w∗, where w1 is

defined in (8).

Proof. See Appendix A.2. □

We remark that (i) Compared to H1(z), the function H1(z) is formulated by a simple convex pro-

gram (12) involving an n-dimensional variable µ. Hence, the corresponding continuous relaxation

(13) can be efficiently solved by the subgradient method with a convergence rate of O(1/T) (see,

e.g., [45]); (ii) On the other hand, the SDP relaxation w1 = maxz∈Z H1(z) tends to be stronger

than w2 =maxz∈Z H1(z). Thus, there is a trade-off between the computational efficiency and tight

upper bounds; (iii) It is worth mentioning that both upper bounds w1 and w2 achieve the same

optimality gap min{k,n/k}, which implies that there might be room to improve the analysis of

the optimality gap in Proposition 1. We leave this to interested readers; and (iv) when z ∈ Z is

binary, both problems (10) and (12) are equivalent and admit a closed-form solution, as shown in

Proposition 2, which facilitates the implementation of the branch-and-cut method.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
11

3. Exact MISDP Formulation (II)

In addition to the MISDP (6), this section proposes another exact MISDP reformulation (15) for

SPCA (1) based on the results in Part (i) and Part (ii) of Lemma 1. For the proposed MISDP

(15), we also guarantee the quality of its continuous relaxation and prove that it is stronger than

the existing SDP relaxation [21].

3.1. A Naive Exact MISDP Formulation

We first establish a naive exact MISDP formulation of SPCA (2) based on Part (ii) of Lemma 1.

Proposition 3 SPCA (2) admits the following MISDP formulation:

(SPCA) w∗ := max
z∈Z,X∈Sn

+

{
tr(AX) : tr(X) = 1,Xii ≤ zi,∀i∈ [n]

}
. (14)

and its continuous relaxation value is equal to λmax(A).

Proof. See Appendix A.3. □

It should be noted that the work of [27] was the first to derive the equivalent MISDP formulation

(14) for SPCA, which relies on characterizing sophisticated extreme points. Our proof is based

on Part (ii) of Lemma 1, which is different from theirs. Although the MISDP (14) is equivalent

to SPCA (2), it might be a weak formulation, provided that its continuous relaxation is equal to

the trivial upper bound λmax(A). In [27], the authors proposed valid inequalities Xij ≤ zi/2 for all

i, j ∈ [n] to strengthen the MISDP (14). Next, we use two different types of valid inequalities that

can significantly strengthen the MISDP (14).

3.2. A Stronger MISDP Reformulation with Valid Inequalities

This subsection presents valid inequalities to strengthen SPCA (14) and derives the optimality

gap of the resulting continuous relaxation. To be specific, Part (i) of Lemma 2 includes the valid

inequalities that are first proposed by [11] in their section 4. We derive another type of valid

inequalities for the MISDP (14), as summarized in Part (ii) of Lemma 2.

Lemma 2 The following two inequalities are valid to SPCA (14)

(i)
∑

j∈[n]X
2
ij ≤Xiizi for all i∈ [n]; and

(ii)
(∑

j∈[n] |Xij|
)2

≤ kXiizi for all i∈ [n].

Proof. See Appendix A.4. □

We make the following remarks about Lemma 2.

(a) The valid inequalities for SPCA (14) in Lemma 2 exhibit significant strength, potentially

dominating existing ones, such as

|Xij| ≤ zi,X
2
ij ≤Xiizj,X

2
ij ≤ zizj,∀i, j ∈ [n];

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
12

(b) The constraints in Lemma 2 can be expressed by second-order cones as shown in [7], which

thus can be efficiently handled by SDP solvers like MOSEK and SDPT3; and

(c) Plugging the valid inequalities in Lemma 2 into the MISDP (14), we arrive at a stronger

MISDP of SPCA, which is summarized below. Besides, constraints Xii ≤ zi for all i∈ [n] in the

MISDP (14) are implied by those in Part (i) of Lemma 2 and are thus removed.

Theorem 3 SPCA (2) is equivalent to the following MISDP formulation:

(SPCA)w∗ := max
z∈Z,X∈Sn

+

{
tr(AX) : tr(X) = 1,

∑
j∈[n]

X2
ij ≤Xiizi,

(∑
j∈[n]

|Xij|
)2

≤ kXiizi,∀i∈ [n]

}
.

(15)

Suppose that w3 denotes the continuous relaxation of SPCA (15), i.e.,

w3 := max
z∈Z,X∈Sn

+

{
tr(AX) : tr(X) = 1,

∑
j∈[n]

X2
ij ≤Xiizi,

(∑
j∈[n]

|Xij|
)2

≤ kXiizi,∀i∈ [n]

}
. (16)

We show that the continuous relaxation (16) is stronger than a known SDP relaxation for SPCA

introduced by d’Aspremont et al. [21], denoted by w4 that admits the formulation below.

w4 := max
X∈Sn

+

{
tr(AX) : tr(X) = 1,

∑
i∈[n]

∑
j∈[n]

|Xij| ≤ k

}
. (17)

Proposition 4 For the SDP relaxations of SPCA defined in (16) and (17), we have that w3 ≤w4.

Proof. See Appendix A.5. □

For the MISDP (15), analogous to Proposition 1, we also guarantee the theoretical gap of its

continuous relaxation (16). The upper bound (16) is quite close to the optimal value according to

our numerical study.

Proposition 5 The continuous relaxation (16) of the MISDP (15) yields a min{k,n/k} optimality

gap for SPCA, i.e.,

w∗ ≤w3 ≤min
{
k,

n

k

}
w∗.

Proof. See Appendix A.6. □

Albeit attaining the same theoretical optimality gaps, the proposed MISDP (6) and MISDP

(15) are generally not comparable, as shown in our numerical study. Besides, we note that the

continuous relaxation (8) of the MISDP (6) can be more challenging to solve due to the existence

of multiple positive semidefinite matrix variables. Next, we close this section by applying Benders

decomposition to solve the MISDP (15).

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
13

3.3. Solving SPCA (15) by the Benders Decomposition Method

The decomposition method developed for SPCA (15) in this subsection follows from Section 2.2.

Therefore, some details are omitted for brevity. First, we decompose the proposed MISDP (15) by

a master problem over binary variables z ∈Z and a subproblem over the matrix variable X ∈ Sn
+,

leading to the following two-stage optimization problem:

w∗ =max
z∈Z

H2(z) := max
X∈Sn

+

{
tr(AX) : tr(X) = 1,

∑
j∈[n]

X2
ij ≤Xiizi,

(∑
j∈[n]

|Xij|
)2

≤ kXiizi,∀i∈ [n]

}
.

(18)

It is desirable to derive an efficient dual formulation of H2(z) for any given z ∈ Z such that its

subgradient can be easily computed. Indeed, by leveraging Part(ii) in Lemma 1 and dualizing the

second-order cone constraints, the strong duality holds for the inner maximization problem over

X in (18). The proof is similar to that of Proposition 2 and is thus omitted.

Proposition 6 For any z ∈Z, function H2(z) is equivalent to

H2(z) := min
µ1,µ2,ν1,ν2,Λ,W1,W2,β

λmax (A+Λ+1/2Diag(µ1 +µ2 +ν1 +ν2)−W1 +W2)

+ 1/2(−µ1 +µ2)
⊤z+ k/2(−ν1 +ν2)

⊤z,

s.t. βi +(W1)ij +(W2)ij ≤ 0,∀i∈ [n], j ∈ [n],∑
j∈[n]

Λ2
ij +(µi1)

2 ≤ (µi2)
2,∀i∈ [n],

β2
i +(νi1)

2 ≤ (νi2)
2,∀i∈ [n],

(W1)ij ≥ 0, (W2)ij ≥ 0,∀i∈ [n],∀j ∈ [n],

µ1,ν1,β ∈Rn,µ2,ν2 ∈Rn
+,Λ,W1,W2 ∈ Sn,

(19)

which is concave in z.

For the minimization problem (19) that defines the function H2(z) in Proposition 6, we remark

that: (i) Note that for any given z ∈Z, functionH2(z) can be solved as a second-order cone program

and escape from the SDP curse. It can be solved more effectively via the first-order methods (e.g.,

the subgradient method) since the subgradient is easy to obtain and the projection only involves

second-order cone constraints; (ii) On the other hand, the continuous relaxation (16) can be written

as

w3 =max
z∈Z

H2(z). (20)

Plugging the minimization problem (19) into the relaxation above, the subgradient method can

be applicable to solve the entire maximin saddle problem (20) with O(1/T) rate of convergence

(see, e.g., [45]); and (iii) We can warm start the exact branch-and-cut algorithm by solving the

continuous relaxation (20) and adding all subgradient inequalities at the root relaxed node.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
14

4. An MILP Formulation for SPCA with Arbitrary Accuracy

In this section, inspired by the definition of eigenvalues, we derive an arbitrarily accurate mixed-

integer linear program (MILP) for SPCA (5), which enables us to directly leverage the computa-

tional power of commercial solvers such as Gurobi. In addition, we establish the optimality gap of

the corresponding relaxation.

4.1. An MILP Formulation for SPCA

This subsection provides a novel representation of the objective function of SPCA (5), i.e., the

largest eigenvalue of matrix
∑

i∈[n] zicic
⊤
i , which leads to an MILP formulation. To be specific,

according to the definition of eigenvalues, we observe that

λmax

(∑
i∈[n]

zicic
⊤
i

)
= max

w,x∈Rd

{
w :

(∑
i∈[n]

zicic
⊤
i

)
x=wx,∥x∥∞ = 1

}
,

where x represents an eigenvector, and the constraint of the infinity norm rules out the trivial

solution x= 0. We first replace the well-known constraint ∥x∥2 = 1 with ∥x∥∞ = 1 for computing

eigenvalues, which lays the foundation for our MILP. Plugging the identity above into the objective,

SPCA (5) becomes

w∗ = max
w,x∈Rd,z∈Z

{
w :

∑
i∈[n]

zicic
⊤
i x=wx,∥x∥∞ = 1

}
. (21)

For any solution z ∈ Z, we will show that the rest of SPCA (21) can be linearized using the

disjunctive programming and binary expansion techniques. Specifically, the nonlinearity of SPCA

(21) arises from three aspects:

(i) Bilinear terms in the expression
∑

i∈[n] zixcic
⊤
i . They can be easily linearized using the dis-

junctive programming techniques, provided that variable zi is binary for each i∈ [n];

(ii) Constraint ∥x∥∞ = 1. The nonconvex constraint ∥x∥∞ = 1 can be equivalently represented as

a union with 2d sets as follows

∪j∈[d]

{
x∈Rd : xj = 1,∥x∥∞ ≤ 1

}
∪j∈[d]

{
x∈Rd : xj =−1,∥x∥∞ ≤ 1

}
.

Since SPCA (21) is invariant with x and −x in, it suffices to use only d sets, i.e., ∪j∈[d]

{
x∈

Rd : xj = 1,∥x∥∞ ≤ 1
}
. This can be expressed as an MILP using the techniques in [5]; and

(iii) Bilinear term wx. We can start by approximating the continuous variable w using binary

expansion and then linearize the resulting bilinear terms through disjunction.

Following the above analyses, we can reformulate SPCA (21) as an MILP formulation.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
15

Theorem 4 Given a threshold ϵ > 0, the following MILP is O(ϵ)-close to SPCA (2), i.e., ϵ ≤

ŵ(ϵ)−w∗ ≤ ϵ
√
d, where ŵ(ϵ) is defined by

ŵ(ϵ) := max
w,z∈Z,y,α,x,,δ,µ,σ

w

s.t. x= δi1 + δi2,∥δi1∥∞ ≤ zi,∥δi2∥∞ ≤ 1− zi,∀i∈ [n],

x=
∑
j∈[d]

σj,∥σj∥∞ ≤ yj, σjj = yj,∀j ∈ [d],
∑
j∈[d]

yj = 1,

x=µℓ1 +µℓ2,∥µℓ1∥∞ ≤ αℓ,∥µℓ2∥∞ ≤ 1−αℓ,∀ℓ∈ [m],

w=wU − (wU −wL)

(∑
i∈[m]

2−iαi

)
,∣∣∣∣∣∣∣∣∑

i∈[n]

cic
⊤
i δi1 −wUx+(wU −wL)

∑
ℓ∈[m]

2−ℓµℓ1

∣∣∣∣∣∣∣∣
∞
≤ ϵ,

α∈ {0,1}m,y ∈ {0,1}d,

(22)

where wL and wU denote the lower and upper bounds of SPCA, respectively and m := ⌈log2((wU −

wL)ϵ
−1)⌉.

Proof. See Appendix A.7. □

We remark about Theorem 4 that

(i) Theorem 4 provides the first-known MILP formulation (22) with arbitrary accuracy of O(ϵ)

for SPCA;

(ii) It is worth noting that the MILP (22) relies on binarizing a continuous variable w, which

can potentially result in poor performance (see, e.g., [49, 52]). Our numerical results also

demonstrate that the branch-and-cut algorithm based on MISDP (6) exhibits higher efficiency

compared to directly solving the MILP (22) on large-scale instances;

(iii) Strong lower and upper bounds of SPCA can speed up the solution process, as the number of

binary variables α in the MILP (22) decreases with the difference between wL and wU ; and

(iv) One possible approach to enhance the computational efficiency is by decomposing the MILP

formulation (22) into d smaller-sized subproblems and then considering each set in the union

∪j∈[d]

{
x : xj = 1,∥x∥∞ ≤ 1

}
, respectively, as summarized below.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
16

Corollary 1 For any ϵ > 0, the optimal value of MILP (22) is equal to ŵ(ϵ) = maxj∈[d] ŵj(ϵ),

where for each j ∈ [d], ŵj(ϵ) is defined as

ŵj(ϵ) := max
w,z∈Z,y,α,x,δ,µ

w

s.t. x= δi1 + δi2,∥δi1∥∞ ≤ zi,∥δi2∥∞ ≤ 1− zi,∀i∈ [n],

∥x∥∞ ≤ 1, xj = 1,

x=µℓ1 +µℓ2,∥µℓ1∥∞ ≤ αℓ,∥µℓ2∥∞ ≤ 1−αℓ,∀ℓ∈ [m],

w=wU − (wU −wL)

(∑
i∈[m]

2−iαi

)
,∥∥∥∥∑

i∈[n]

cic
⊤
i δi1 −wUx+(wU −wL)

∑
i∈[m]

2−iµi1

∥∥∥∥
∞
≤ ϵ,

α∈ {0,1}m,

(23)

where wL and wU denote the lower and upper bounds of SPCA, respectively and m := ⌈log2((wU −

wL)ϵ
−1)⌉.

While the MILP (23) has a smaller size, it may be infeasible in some cases. Since the optimal value

of an infeasible maximization problem is −∞ by default, the result in Corollary 1 still holds.

4.2. Theoretical Optimality Gap

Analogous to the other two exact formulations, we are interested in deriving the theoretical guar-

antee when the binary z ∈Z of MILP (22) becomes continuous. Notably, our result suggests that

the upper bound obtained from the MILP (22) is generally worse than the previous ones in terms

of the optimaity gap.

Proposition 7 Given a threshold ϵ > 0, by relaxing the binary variables z to be continuous, let

w5(ϵ) denote the optimal value of the relaxed MILP formulation (22). Then we have

w5(ϵ)≤min
{
k(
√
d/2+1/2), n/k

√
d+(n− k)(

√
d/2+1/2)

}
w∗ + ϵ

√
d.

Proof. See Appendix A.8. □

5. Approximation Algorithms

In this section, motivated by the combinatorial formulation (4) of SPCA, we derive the approxi-

mation ratios of the well-known greedy and local search algorithms. We also construct worst-case

examples to show the tightness of both ratios when k≤ n/2.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
17

5.1. Greedy Algorithm

In this subsection, we guarantee the worst-case performance of the greedy algorithm, proposed by

[20] in section 3.2. Their greedy algorithm for SPCA proceeds as follows. Given a subset ŜG ⊆ [n]

denoting the selected vectors, the algorithm aims to find a new vector from the unchosen set

{ci}i∈[n]\ŜG
to maximize the largest eigenvalue until the subset ŜG attaining the size k. The detailed

implementation can be found in Algorithm 1.

Algorithm 1 Greedy algorithm for SPCA (4) proposed by [20]

1: Input: matrix A∈ Sn
+ of rank d, integer k ∈ [n], and ŜG := ∅

2: Compute the Cholesky factorization A=C⊤C of matrix A where C ∈Rd×n

3: Let ci ∈Rd denote the i-th column vector of matrix C for each i∈ [n]

4: for ℓ= 1, · · · , k do

5: Compute j∗ ∈ argmaxj∈[n]\Ŝ λmax(
∑

i∈ŜG∪{j} cic
⊤
i)

6: Add j∗ to the set ŜG

7: end for

8: Output: ŜG

We prove a 1/k-approximation ratio for greedy Algorithm 1 in the below.

Theorem 5 The greedy Algorithm 1 yields a 1/k-approximation ratio for SPCA (4), i.e., the

output ŜG of Algorithm 1 satisfies

λmax

(∑
i∈ŜG

cic
⊤
i

)
≥ 1

k
w∗.

Proof. Suppose that S∗ ⊆ [n] is an optimal solution of SPCA (4) is S∗. Then we have

λmax

(∑
i∈S∗

cic
⊤
i

)
≤

∑
i∈S∗

λmax(cic
⊤
i)≤ kmax

i∈[n]
λmax(cic

⊤
i)≤ kλmax

(∑
i∈ŜG

cic
⊤
i

)
,

where the first inequality results from the convexity of the largest eigenvalue function and the last

one is because the greedy Algorithm 1 chooses the largest-length vector at the first iteration. □

The approximation ratio 1/k of greedy Algorithm 1 is tight when k ≤ n/2 since we construct an

example whose greedy optimum exactly attain this ratio. The worst-case example is presented

below.

Example 1 For any integer k, let d= k+1, n= 2k, and we define the vectors {ci}i∈[n] ⊆Rd to be

ci =

{
ei, if i∈ [k],

ek+1, if i∈ [k+1, n],
∀i∈ [n].

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
18

Proposition 8 The approximation ratio 1/k of greedy Algorithm 1 is tight when k≤ n/2.

Proof. For Example 1, the greedy Algorithm 1 sequentially selects c1,c2, · · · ,ck, i.e., the output

set is ŜG = [k]. Thus, the output value of the greedy Algorithm 1 equals 1.

On the other hand, the true optimal value of Example 1 is equal to λmax

(∑
i∈[k+1,n] cic

⊤
i

)
=

λmax

(
kek+1e

⊤
k+1

)
= k. This completes the proof. □

5.2. Local Search Algorithm

The local search algorithm has been widely used to solve various machine learning and data ana-

lytics problems, including experimental design [40] and the maximum entropy sampling problem

[38]. This subsection studies the local search algorithm for solving SPCA (4) and establishes its

approximation ratio.

Specifically, the local search algorithm for SPCA (4) proceeds as follows: (i) initialize a feasible

solution Ŝ; (ii) at each iteration, swap an element in Ŝ with an element in [n] \ Ŝ and we update

the chosen set Ŝ if the swapping strictly increases the objective value of SPCA (4); and (iii) the

algorithm terminates when there is no improvement. More details are presented in Algorithm 2.

Algorithm 2 Local search algorithm for SPCA (4)

1: Input: matrix A∈ Sn
+, integer k ∈ [n], and initialize a size-k subset ŜL ⊆ [n]

2: Compute the Cholesky factorization A=C⊤C of matrix A where C ∈Rd×n

3: Let ci ∈Rd denote the i-th column vector of matrix C for each i∈ [n]

4: do

5: for each pair (i, j)∈ ŜL × ([n] \ ŜL) do

6: if λmax

(∑
ℓ∈ŜL∪{j}\{i} cℓc

⊤
ℓ

)
>λmax

(∑
ℓ∈ŜL

cℓc
⊤
ℓ

)
then

7: Update ŜL := ŜL ∪{j} \ {i}

8: end if

9: end for

10: while there is still an improvement

11: Output: ŜL

Theorem 6 The local search Algorithm 2 yields a 1/k-approximation ratio of SPCA, i.e., the

output ŜL of the local search Algorithm 2 satisfies

λmax

(∑
i∈ŜL

cic
⊤
i

)
≥ 1

k
w∗.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
19

Proof. First, for each j ∈ [n], we show that

λmax

(∑
ℓ∈ŜL

cℓc
⊤
ℓ

)
≥ λmax(cjc

⊤
j). (24)

To prove it, there are two cases to be discussed depending on whether j belongs to ŜL or not.

(i) j ∈ ŜL. The monotonicity of the largest eigenvalue of the sum of positive semidefinite matrices

results in the inequality (24).

(ii) j ∈ [n] \ ŜL. Then, the local optimality condition implies that there exists some i ∈ ŜL such

that

λmax

(∑
ℓ∈ŜL

cℓc
⊤
ℓ

)
≥ λmax

(∑
ℓ∈ŜL∪{j}\{i}

cℓc
⊤
ℓ

)
≥ λmax(cjc

⊤
j),

where the second inequality follows the analysis of Part (i).

Second, suppose that S∗ is an optimal solution to SPCA (4). Then, by the inequality (24), we

have

w∗ = λmax

(∑
i∈S∗

cic
⊤
i

)
≤

∑
i∈S∗

λmax(cic
⊤
i)≤ kλmax

(∑
ℓ∈ŜL

cℓc
⊤
ℓ

)
,

where the first inequality is because of the convexity of the largest eigenvalue function. □

We remark that Example 1 also confirms the tightness of our analysis for the local search

Algorithm 2 when k≤ n/2.

Proposition 9 The approximation ratio 1/k of local search Algorithm 2 is tight when k≤ n/2.

Proof. In Example 1, we show that the initial subset ŜL = [k] satisfies the local optimality condition.

For each pair (i, j)∈ ŜL × ([n] \ ŜL), we have

λmax

(∑
ℓ∈ŜL∪{j}\{i}

cℓc
⊤
ℓ

)
= λmax(Id −eie

⊤
i) = 1= λmax(Id −ede

⊤
d) = λmax

(∑
ℓ∈ŜL

cℓc
⊤
ℓ

)
,

where the identities are from the definitions of vectors {ci}i∈[n] in Example 1.

Therefore, the set ŜL achieves the local optimum with the largest eigenvalue of 1. Since the

optimal value of SPCA is w∗ = k, the approximation ratio of set ŜL is equal to k−1. □

In practice, the local search Algorithm 2 may enhance the performance of the greedy Algo-

rithm 1 by using its output as an initial solution, and our numerical study demonstrates that this

integration works effectively. Nevertheless, the results in Theorem 6 and Proposition 9 indicate

that the integrated algorithm still achieves a 1/k-approximation ratio. In addition, we apply the

power iteration method to calculate the largest eigenvalue [3] for the efficient implementation of

the greedy Algorithm 1 and the local search Algorithm 2.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
20

We close this subsection by introducing an enhancement to the local search Algorithm 2. Specif-

ically, we consider increasing the number of swapping elements at Step 5 in Algorithm 2, which

we refer to as the s-swap local search for any s∈ [k]. This improved s-swap local search achieves a

better guarantee, as shown below.

Corollary 2 The approximation ratio of the s-swap local search is s/k for any s ∈ [k]. The ratio

is tight when k≤ n/2.

Proof. See Appendix A.9. □

We note that while theoretically performing well, the s-swap local search with s≥ 2 may not be

practical due to its exponential time complexity in s. Therefore, we use the original local search

Algorithm 2 in the numerical study.

6. Numerical Study

This section presents numerical experiments testing our proposed formulations and algorithms

with varying-scale instances, where the dimension n spans from 13 to 2365. All the methods are

implemented in Python 3.6 with calls to Gurobi 9.5.2 and MOSEK 10.0.29 on a PC equipped with

a 2.3 GHz Intel Core i5 processor and 8G of memory. The codes and data used in our experiments

are available at https://github.com/yongchunli-13/Sparse-PCA.

6.1. A comparison of exact methods for SPCA

In this subsection, we compare the computational efficiency of our exact methods, including the

MISDP (6), MISDP (15), and MILP (22) on various small- and medium-sized real datasets [33, 46].

We use the custom branch-and-cut method to solve the two MISDPs. In contrast, the MILP (22)

can be directly solved by the Gurobi solver. It is worth noting that the MISDP (6) admits the

closed-form cuts that do not require solving dual problems, as shown in Proposition 2, while the

MISDP (15) requires solving the SDP problem (19) to obtain a valid cut. This makes solving

the MISDP (6) more efficient than the MISDP (15). Throughout this section, we set the target

accuracy of the MILP (22) as ϵ := 10−4. We also test Gurobi to solve the following nonconvex

SPCA formulation for comparison purposes.

w∗ := max
z∈Z,x∈Rn

{
x⊤Ax : ∥x∥2 = 1,∥x∥1 ≤

√
k, |xi| ≤ zi,∀i∈ [n]

}
. (25)

First, in Table 2, we benchmark the proposed methods on the commonly-used Pitprops dataset

with 13 features (i.e., n = 13) [33], testing seven cases with k chosen from {4, · · · ,10}. We let

time(s) denote the running time in seconds and let SPCA (25) denote the performance of Gurobi

https://github.com/yongchunli-13/Sparse-PCA

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
21

Table 2 Computational results of exact methods on the Pitprops dataset

Case MISDP (6) MISDP (15) MILP (22) SPCA (25)

n k w∗ time(s) w∗ time(s) ŵ(ϵ) time(s) w∗ time(s)

13 4 2.9375 1 2.9375 2 2.9375 1 2.9375 1

13 5 3.4062 1 3.4062 2 3.4062 1 3.4062 3

13 6 3.7710 1 3.7710 2 3.7710 2 3.7710 1

13 7 3.9962 1 3.9962 1 3.9962 1 3.9962 3

13 8 4.0686 1 4.0686 2 4.0686 2 4.0686 10

13 9 4.1386 1 4.1386 2 4.1386 1 4.1387 10

13 10 4.1726 1 4.1726 1 4.1726 1 4.1726 5

9.5.2 when solving the nonconvex SPCA (25). It is seen in Table 2 that our proposed exact formu-

lations (6), (15), and (22) successfully solve all cases to optimality within seconds. Besides, they

demonstrate a higher efficiency compared to directly using Gurobi 9.5.2.

To obtain a comprehensive understanding of the overall performance of our exact methods, we

further conduct experiments on ten UCI datasets [46] with sizes ranging from 13 to 128. The

information on each dataset is summarized in Table 3.

Table 3 Description of UCI datasets used

Dataset Dimension n Number of samples Reference

housing 13 506 [29]

keggdirected 20 48827 [43]

pol 26 15000 [26]

wdbc 30 569 [54]

dermatology 34 366 [32]

spambase 57 4601 [31]

digits 64 1797 [1]

buzz 77 583250 [36]

song 90 515345 [10]

gas 128 2565 [51]

Table 4 presents the computational results. For each UCI dataset, we consider two different

values of k. It is important to note that we let “–” denote the unsolved cases within one hour

throughout this section, as we set a one-hour time limit. According to the results in Table 4, it is

evident that when solving the UCI datasets in Table 3, the computational efficiency of the proposed

methods follows a descending pattern with the MISDP (6) being the most efficient, followed by

the MILP (22), and concluding with the MISDP (15). The observed efficiency sequence of exact

methods aligns with our theoretical analysis. As mentioned previously, the closed-form cuts for

MISDP (6) derived in Proposition 2 can significantly enhance the branch-and-cut performance

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
22

compared to the MISDP (15). Besides, the last column in Table 4 implies that Gurobi 9.5.2 can

only solve a limited number of cases. Notably, there are only three testing cases in Table 4 where

the MILP (22) outperforms the branch-and-cut algorithm based on the MISDP (6). Therefore,

we recommend using the branch-and-cut algorithm to solve the MISDP (6) to optimality when

n= 100s. When implementing the branch-and-cut algorithm, we first compute continuous relax-

ations and lower bounds returned by approximation algorithms as the warm start. Hence, having

tight upper and lower bounds is desirable to expedite the branch-and-cut algorithm. We will eval-

uate the performance of our proposed relaxations and approximation algorithms in the following

subsections.

Table 4 Computational results of exact methods on UCI datasets

Dataset
Case MISDP (6) MISDP (15) MILP (22) SPCA (25)

n k w∗ time(s) w∗ time(s) ŵ(ϵ) time(s) w∗ time(s)

housing
13 5 3.7239 1 3.7239 82 3.7239 2 3.7239 1

13 10 3.7342 1 3.7342 49 3.7342 2 3.7342 10

keggdi-
rected

20 5 451.5948 1 – 3600 451.5948 3 451.5948 1

20 15 451.9241 7 – 3600 451.9241 3 – 3600

pol
26 5 36.5574 30 – 3600 36.5574 50 36.5574 5

26 15 38.8281 40 – 3600 38.8281 907 38.8281 924

wdbc
30 5 5.4683 1 – 3600 5.4683 100 5.4683 7

30 15 5.6588 1 – 3600 – 3600 – 3600

derma-
tology

34 5 3.3751 1 – 3600 3.3751 534 3.3751 13

34 15 3.4161 87 – 3600 – 3600 – 3600

spam-
base

57 10 41.8519 727 – 3600 41.8519 21 – 3600

57 20 – 3600 – 3600 41.8587 33 – 3600

digits
64 10 5.8801 439 – 3600 – 3600 – 3600

64 20 – 3600 – 3600 – 3600 – 3600

buzz
77 10 2472.3111 28 – 3600 – 3600 – 3600

77 20 3993.1748 146 – 3600 – 3600 – 3600

song
90 10 2112.4768 17 – 3600 – 3600 – 3600

90 20 – 3600 – 3600 – 3600 – 3600

gas
128 10 18.2092 1 – 3600 18.2092 290 – 3600

128 20 18.6831 31 – 3600 18.6831 291 – 3600

6.2. A comparison of continuous relaxations for SPCA

In this subsection, we benchmark the performance of the proposed continuous relaxations for SPCA

(1). In addition to the datasets used in Tables 2 and 4, we extend our evaluation to include four

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
23

larger datasets: Eisen-1, Eisen-2, Colon, and Reddit, each with dimensions n=79, 118, 500, and

2000, respectively. These datasets have been studied in the SPCA literature [23].

We obtain the continuous relaxations by relaxing binary variables z ∈ Z in our exact formula-

tions. These relaxations provide upper bounds for SPCA (1). Specifically, the two MISDP formu-

lations (6) and (15) lead to the SDP relaxations (8) and (16), respectively. We use MOSEK to

solve the SDP relaxations (8) and (16) directly. It is interesting to note that the SDP problem (8)

inspires us an additional continuous relaxation (13) for SPCA, as detailed in Theorem 2. The relax-

ation (13) is free of solving SDPs and greatly improves the scalability. The continuous relaxation

(13) allows for an efficient subgradient method to solve it. Although the theoretical guarantees of

our proposed relaxations (8), (13), and (16) remain consistent, their practical performance varies

significantly. Given the superior performance of both SDP relaxations compared to the continuous

relaxation of the MILP (22), we omit reporting computational results for the latter relaxation.

In addition, the SDP relaxation (17) proposed by d’Aspremont et al. [21] serves as a benchmark

upper bound for SPCA.

The numerical results for the small Pitprops dataset can be found in Table 5, where gap(%)

represents the optimality gap of the upper bound and is defined by 100× (Upper Bound−w∗)/w∗.

We see that the SDP relaxation (16) achieves the smallest gaps in the first five cases. When k

is close to n, the SDP relaxation (8) tend to dominate the others. There is a trade-off between

efficiency and solution quality when comparing relaxations (8) and (13), as further demonstrated

in Table 6. Notably, the SDP relaxation (16) is consistently superior to the benchmark relaxation

(17), which aligns with the theoretical result in Proposition 4. However, the performance of our

SDP relaxation (8) is not comparable to the benchmark relaxation (17).

Table 5 Computational results of continuous relaxations on the Pitprops dataset

n=13 Relaxation (8) Relaxation (13) Relaxation (16) Benchmark (17)

k gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

4 5.75 1 43.61 2 0.41 1 2.71 1

5 2.37 1 23.85 3 0.18 1 1.52 1

6 0.39 1 11.87 3 0.15 1 1.13 1

7 0.00 1 5.57 3 0.00 1 0.89 1

8 0.29 1 3.69 3 0.26 1 1.87 1

9 0.00 1 1.93 3 0.03 1 1.64 1

10 0.09 1 1.10 2 0.12 1 1.10 1

Tables 6 and 7 provide a comprehensive comparison of the proposed relaxations across various

UCI datasets and large-scale datasets. When the optimal value is unavailable, we use the lower

bound returned by the local search Algorithm 2 to compute gap(%). For cases where n ≤ 34,

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
24

our SDP relaxation (8) can solve them to optimality within one hour. Compared to the SDP

relaxation (8), the SDP relaxation (16) extends the problem-solving capacity to cases with n≤ 100

and achieves an optimality gap of at most 0.72%. Likewise, the benchmark SDP relaxation (17)

fails to return any upper bound for cases where n ≥ 100, as shown in Table 7. In contrast, the

computational efficiency of our relaxation (13) stands out, as it can efficiently handle cases with

n≥ 100. It is also seen in Table 7 that the benchmark relaxation (17) is not comparable with our

efficient relaxation (13). In summary, we recommend using the SDP relaxation (16) to obtain an

upper bound of SPCA (1) if n≤ 100. For the large-scale SPCA problem, we recommend using the

relaxation (13).

Table 6 Computational results of continuous relaxations on UCI datasets

Dataset
Case Relaxation (8) Relaxation (13) Relaxation (16) Benchmark (17)

n k gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

housing
13 5 0.00 1 0.28 7 0.00 1 0.28 1

13 10 0.00 1 0.00 7 0.00 1 0.00 1

keggdi-
rected

20 5 0.00 3 0.07 10 0.00 1 0.07 1

20 15 0.00 2 0.00 10 0.00 1 0.00 1

pol
26 5 0.00 26 6.36 15 0.00 1 4.96 1

26 15 0.00 29 0.14 15 0.00 1 0.14 1

wdbc
30 5 0.00 34 0.19 15 0.00 2 0.19 1

30 15 0.00 40 0.00 16 0.00 2 0.00 1

derma-
tology

34 5 0.00 201 1.50 17 0.00 1 1.50 1

34 15 0.00 226 0.28 17 0.00 4 0.28 1

spam-
base

57 10 – 3600 0.02 30 0.00 74 0.02 9

57 20 – 3600 0.01 30 0.00 85 0.01 11

digits
64 10 – 3600 88.51 36 0.38 84 2.82 26

64 20 – 3600 31.31 36 0.72 91 4.07 24

buzz
77 10 – 3600 70.75 43 0.25 354 2.16 98

77 20 – 3600 26.77 44 0.62 406 3.59 135

song
90 10 – 3600 5.92 60 0.00 925 1.91 249

90 20 – 3600 2.53 61 0.00 1095 0.40 229

gas
128 10 – 3600 2.60 86 – 3600 – 3600

128 20 – 3600 0.00 86 – 3600 – 3600

6.3. A comparison of approximation algorithms for SPCA

This subsection numerically demonstrates the scalability and high-quality outputs of our approxi-

mation algorithms using various real datasets. We compare the optimality gaps of Algorithms 1 and

2 with existing ones, including the truncation algorithm [16] and the randomized and SDP-based

algorithms proposed by [17]. Notably, the thresholding algorithm in [17] reduces to the truncation

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
25

Table 7 Computational results of continuous relaxations on four large datasets

Dataset
Case Relaxation (8) Relaxation (13) Relaxation (16) Benchmark (17)

n k gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

Eisen-1
79 10 – 3600 4.38 50 0.00 461 2.10 124

79 20 – 3600 2.27 50 0.00 376 2.27 110

Eisen-2
118 10 – 3600 48.88 74 – 3600 - 3600

118 20 – 3600 30.19 74 – 3600 - 3600

Colon
500 10 – 3600 43.49 278 – 3600 - 3600

500 20 – 3600 43.29 279 – 3600 - 3600

Reddit
2000 10 – 3600 – 3600 – 3600 - 3600

2000 20 – 3600 – 3600 – 3600 - 3600

of the top eigenvector and is dominated by the truncation algorithm [16]. Hence, we exclude the

thresholding algorithm from our comparison.

First, Table 8 displays the computational results for the Pitprops dataset, where we compute

gap(%) as 100 × (w∗ − lower bound)/w∗ to evaluate the lower bounds. Note that we initialize

the local search Algorithm 2 using the output of the greedy Algorithm 1. To enhance the com-

putation, we employ the power iteration method to compute the largest eigenvalue [3]. We see in

Table 8 that the greedy Algorithm 1 and local search Algorithm 2 successfully find the optimal

solutions and outperform the others. Since both the randomized and SDP-based algorithms involve

randomization, and for them, we select the best output from 50 samples for each algorithm.

Table 8 Computational results of approximation algorithms on the Pitprops dataset

n=13
Truncation Randomized SDP-based Greedy Local Search

algorithm [16] algorithm [17] algorithm [17] Algorithm 1 Algorithm 2

k gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

4 1.57 1 0.13 1 0.00 1 0.00 1 0.00 1

5 0.32 1 11.01 1 0.00 1 0.00 1 0.00 1

6 0.36 1 16.33 1 0.00 1 0.00 1 0.00 1

7 0.08 1 10.76 1 0.00 1 0.00 1 0.00 1

8 0.09 1 0.16 1 14.40 1 0.00 1 0.00 1

9 0.18 1 0.89 1 2.59 1 0.00 1 0.00 1

10 3.91 1 0.08 1 1.34 1 0.00 1 0.00 1

Then, we evaluate the performance of various approximation algorithms on larger datasets, as

shown in Tables 9 and 10. For instances where the exact methods do not achieve optimality within

one hour, we replace the optimal value with the best lower bound to calculate the gap(%). We see

that for all testing cases, the local search Algorithm 2 achieves the smallest gap, offering the best

lower bound. The SDP-based algorithm relies on solving an SDP relaxation of SPCA and is less

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
26

scalable. Our computational experiments show that the local search Algorithm 2 outperforms the

other methods. Therefore, we recommend using this algorithm to solve practical SPCA problems.

Table 9 Computational results of approximation algorithms on UCI datasets

Dataset
Case

Truncation Randomized SDP-based Greedy Local Search

algorithm [16] algorithm [17] algorithm [17] Algorithm 1 Algorithm 2

n k gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

housing
13 5 5.67 1 0.13 1 0.00 1 0.00 1 0.00 1

13 10 5.94 1 0.40 1 0.00 1 0.00 1 0.00 1

keggdi-
rected

20 5 0.00 1 0.06 1 0.04 1 0.00 1 0.00 1

20 15 0.00 1 0.11 1 0.00 1 0.00 1 0.00 1

pol
26 5 1.99 1 2.99 1 5.67 1 0.00 1 0.00 1

26 15 15.58 1 1.78 1 0.56 1 0.00 1 0.00 1

wdbc
30 5 0.00 1 1.04 1 0.91 1 0.00 1 0.00 1

30 15 0.00 1 1.22 1 0.00 1 0.00 1 0.00 1

derma-
tology

34 5 0.00 1 0.97 1 0.73 1 0.00 1 0.00 1

34 15 0.00 1 1.54 1 0.57 1 0.00 1 0.00 1

spam-
base

57 10 0.00 1 0.22 1 0.13 1 0.00 1 0.00 1

57 20 0.00 1 0.08 1 0.02 1 0.00 1 0.00 1

digits
64 10 0.01 1 23.58 1 1.85 1 0.00 1 0.00 1

64 20 0.00 1 8.46 1 5.71 1 0.00 1 0.00 1

buzz
77 10 0.01 1 14.87 1 0.00 27 0.00 1 0.00 1

77 20 0.00 1 6.97 1 3.99 28 0.00 1 0.00 1

song
90 10 0.00 1 2.38 1 5.65 40 0.00 1 0.00 1

90 20 1.43 1 1.63 1 0.25 39 0.00 1 0.00 1

gas
128 10 0.01 1 2.62 1 1.13 80 0.00 1 0.00 1

128 20 0.00 1 1.54 1 0.00 66 0.00 1 0.00 1

6.4. Drugabuse Dataset

In this subsection, we apply the proposed local search Algorithm 2 to the Drugabuse dataset with

n= 2365 features, where the dataset comes from a questionnaire collected by the National Survey

on Drug Use and Health (NSDUH) in 2018. It has been reported [48] that with the growing illicit

online sale of controlled substances, deaths attributable to opioid-related drugs have quadrupled in

the U.S. since 1999. Thus, it is important to select a handful of features that domain experts can

further investigate. SPCA serves as an excellent tool for selecting the most representative features.

In Figure 1, we present the selected k = 10 features, where the vertical values correspond to the

selected features of the first PC scaled by 100. Among the ten selected features, there are three

categories: inhalants, drug injection, and drug treatment, which play a crucial role in the analysis

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
27

Table 10 Computational results of approximation algorithms on four large datasets

Dataset
Case

Truncation Randomized SDP-based Greedy Local Search

algorithm [16] algorithm [17] algorithm [17] Algorithm 1 Algorithm 2

n k gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

Eisen-1
79 10 10.61 1 4.28 1 14.55 5 0.00 1 0.00 1

79 20 15.47 1 1.83 1 13.93 4 0.00 1 0.00 1

Eisen-2
118 10 0.03 1 31.23 1 2.06 41 2.62 1 0.00 1

118 20 40.41 1 27.95 1 2.21 43 0.00 1 0.00 1

Colon
500 10 2.87 1 61.26 20 – 3600 0.00 1 0.00 1

500 20 29.14 1 52.93 20 – 3600 0.01 1 0.00 2

Reddit
2000 10 2.56 3 18.64 283 – 3600 0.00 1 0.00 1

2000 20 1.08 2 22.50 241 – 3600 0.83 4 0.00 1

of drug abuse. Specifically, SPCA selects six features related to drug treatment, which is consistent

with the literature [19, 53] that the treatment records of drug abuse are important. The three

drug injection features shed light on understanding the injection experiences of different drugs. It

is well known that drug injection users face a high risk of contracting HIV and other blood-borne

infections [47, 50]. Finally, the inhalants feature contributes to our understanding of the factors

contributing to drug abuse [13, 22].

Figure 1 10 features selected by local search Algorithm 2 for Drugabuse dataset

7. Conclusion

This paper investigates the sparse PCA problem by deriving three equivalent mixed-integer exact

formulations and studying two approximation algorithms: greedy and local search. We theoretically

guarantee the continuous relaxations of exact formulations and the worst-case performance of

approximation algorithms. We further develop a branch-and-cut algorithm for solving sparse PCA

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
28

to optimality. Our numerical study demonstrates the high solution quality and computational

efficiency of the proposed formulations and algorithms. The branch-and-cut algorithm manages

to solve small and medium instances, and the approximation algorithms consistently yield near-

optimal solutions for all the instances. The theoretical optimality gaps of the continuous relaxations

may not be sufficiently tight. As a potential avenue for future research, we aim to explore and

enhance these gaps.

Acknowledgment

This research has been supported in part by the National Science Foundation grants 224614 and

2246417 and the Office of Naval Research N00014-24-1-2066.

References

[1] Alpaydin E, Kaynak C (1998) Optical Recognition of Handwritten Digits. UCI Machine Learning Repos-

itory, DOI: https://doi.org/10.24432/C50P49.

[2] Amini AA, Wainwright MJ (2008) High-dimensional analysis of semidefinite relaxations for sparse prin-

cipal components. 2008 IEEE international symposium on information theory, 2454–2458 (IEEE).

[3] Angelidis G, Semlyen A (1995) Efficient calculation of critical eigenvalue clusters in the small signal

stability analysis of large power systems. IEEE transactions on power systems 10(1):427–432.

[4] Arous GB, Wein AS, Zadik I (2020) Free energy wells and overlap gap property in sparse PCA. Con-

ference on Learning Theory, 479–482 (PMLR).

[5] Balas E (1975) Disjunctive programming: cutting planes from logical conditions. Nonlinear Programming

2, 279–312 (Elsevier).

[6] Behdin K, Mazumder R (2021) Sparse PCA: A new scalable estimator based on integer programming.

arXiv preprint arXiv:2109.11142 .

[7] Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and

engineering applications, volume 2 (SIAM).

[8] Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer.

Math. 4(1):238–252, ISSN 0029-599X, URL http://dx.doi.org/10.1007/BF01386316.

[9] Berk L, Bertsimas D (2019) Certifiably optimal sparse principal component analysis. Mathematical

Programming Computation 11(3):381–420.

[10] Bertin-Mahieux T (2011) Year Prediction MSD. UCI Machine Learning Repository, DOI: https://

doi.org/10.24432/C50K61.

[11] Bertsimas D, Cory-Wright R (2020) On polyhedral and second-order cone decompositions of semidefinite

optimization problems. Operations Research Letters 48(1):78–85.

https://doi.org/10.24432/C50P49
http://dx.doi.org/10.1007/BF01386316
https://doi.org/10.24432/C50K61
https://doi.org/10.24432/C50K61

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
29

[12] Bertsimas D, Cory-Wright R, Pauphilet J (2022) Solving large-scale sparse PCA to certifiable (near)

optimality. The Journal of Machine Learning Research 23:13–1.

[13] Breakey WR, Goodell H, Lorenz PC, McHugh PR (1974) Hallucinogenic drugs as precipitants of

schizophrenia. Psychological Medicine 4(3):255–261.

[14] Carrizosa E, Guerrero V (2014) RS-sparse principal component analysis: A mixed integer nonlinear

programming approach with VNS. Computers & operations research 52:349–354.

[15] Chaib S, Gu Y, Yao H (2015) An informative feature selection method based on sparse PCA for vhr

scene classification. IEEE Geoscience and Remote Sensing Letters 13(2):147–151.

[16] Chan SO, Papailliopoulos D, Rubinstein A (2016) On the approximability of sparse PCA. Conference

on Learning Theory, 623–646.

[17] Chowdhury A, Drineas P, Woodruff DP, Zhou S (2020) Approximation algorithms for sparse principal

component analysis. arXiv preprint arXiv:2006.12748 .

[18] Coope I (1994) On matrix trace inequalities and related topics for products of hermitian matrices.

Journal of mathematical analysis and applications 188(3):999–1001.

[19] Coughlin LN, Tegge AN, Sheffer CE, Bickel WK (2020) A machine-learning approach to predicting

smoking cessation treatment outcomes. Nicotine and Tobacco Research 22(3):415–422.

[20] d’Aspremont A, Bach F, El Ghaoui L (2008) Optimal solutions for sparse principal component analysis.

Journal of Machine Learning Research 9(7).

[21] d’Aspremont A, Ghaoui LE, Jordan MI, Lanckriet GR (2005) A direct formulation for sparse PCA

using semidefinite programming. Advances in neural information processing systems, 41–48.

[22] De Barona MS, Simpson DD (1984) Inhalant users in drug abuse prevention programs. The American

journal of drug and alcohol abuse 10(4):503–518.

[23] Dey SS, Mazumder R, Wang G (2018) A convex integer programming approach for optimal sparse PCA.

arXiv preprint arXiv:1810.09062 .

[24] Ding Y, Kunisky D, Wein AS, Bandeira AS (2023) Subexponential-time algorithms for sparse PCA.

Foundations of Computational Mathematics 1–50.

[25] d’Aspremont A, Bach F, Ghaoui LE (2014) Approximation bounds for sparse principal component

analysis. Mathematical Programming 148:89–110.

[26] Evans T, Grant E (2021) Pol. UCI Machine Learning Repository, https://github.com/treforevans/

uci_datasets.

[27] Gally T, Pfetsch ME (2016) Computing restricted isometry constants via mixed-integer semidefinite

programming. Available at https: // optimization-online. org/ 2016/ 04/ 5395/ .

[28] Geoffrion AM (1972) Generalized Benders decomposition. Journal of optimization theory and applica-

tions 10(4):237–260.

https://github.com/treforevans/uci_datasets
https://github.com/treforevans/uci_datasets
https://optimization-online.org/2016/04/5395/

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
30

[29] Harrison Jr D, Rubinfeld DL (1978) Hedonic housing prices and the demand for clean air. Jour-

nal of environmental economics and management 5(1):81–102, https://www.kaggle.com/datasets/

heptapod/uci-ml-datasets/data.

[30] He Y, Monteiro RD, Park H (2011) An algorithm for sparse PCA based on a new sparsity control

criterion. Proceedings of the 2011 SIAM International Conference on Data Mining, 771–782 (SIAM).

[31] Hopkins M, Reeber E, Forman G, Suermondt J (1999) Spambase. UCI Machine Learning Repository,

DOI: https://doi.org/10.24432/C53G6X.

[32] Ilter N, Guvenir H (1998) Dermatology. UCI Machine Learning Repository, DOI: https://doi.org/

10.24432/C5FK5P.

[33] Jeffers J (1967) Two case studies in the application of principal component analysis. Journal of the

Royal Statistical Society: Series C (Applied Statistics) 16(3):225–236.

[34] Jiang R, Fei H, Huan J (2012) A family of joint sparse PCA algorithms for anomaly localization in

network data streams. IEEE Transactions on Knowledge and Data Engineering 25(11):2421–2433.

[35] Journée M, Nesterov Y, Richtárik P, Sepulchre R (2010) Generalized power method for sparse principal

component analysis. Journal of Machine Learning Research 11(2).

[36] Kawala F, Douzal A, Gaussier E, Diemert E (2013) Buzz in social media. UCI Machine Learning

Repository, DOI: https://doi.org/10.24432/C56G6V.

[37] Kim J, Tawarmalani M, Richard JPP (2022) Convexification of permutation-invariant sets and an

application to sparse principal component analysis. Mathematics of Operations Research 47(4):2547–

2584.

[38] Li Y, Xie W (2023) Best principal submatrix selection for the maximum entropy sampling problem:

scalable algorithms and performance guarantees. Operations Research .

[39] Luss R, d’Aspremont A (2010) Clustering and feature selection using sparse principal component anal-

ysis. Optimization and Engineering 11(1):145–157.

[40] Madan V, Singh M, Tantipongpipat U, Xie W (2019) Combinatorial algorithms for optimal design.

Conference on Learning Theory, 2210–2258.

[41] Magdon-Ismail M (2017) NP-hardness and inapproximability of sparse PCA. Information Processing

Letters 126:35–38.

[42] Moghaddam B, Weiss Y, Avidan S (2005) Spectral bounds for sparse PCA: Exact and greedy algorithms.

Advances in neural information processing systems 18.

[43] Naeem M, Asghar S (2011) KEGG Metabolic Relation Network (Directed). UCI Machine Learning

Repository, DOI: https://doi.org/10.24432/C5CK52.

[44] Naikal N, Yang AY, Sastry SS (2011) Informative feature selection for object recognition via sparse

PCA. 2011 International Conference on Computer Vision, 818–825 (IEEE).

https://www.kaggle.com/datasets/heptapod/uci-ml-datasets/data
https://www.kaggle.com/datasets/heptapod/uci-ml-datasets/data
https://doi.org/10.24432/C53G6X
https://doi.org/10.24432/C5FK5P
https://doi.org/10.24432/C5FK5P
https://doi.org/10.24432/C5CK52

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
31

[45] Nedić A, Ozdaglar A (2009) Subgradient methods for saddle-point problems. Journal of optimization

theory and applications 142(1):205–228.

[46] Newman D, Hettich S, Blake C, Merz C (1998) UCI repository of machine learning databases. URL

http://www.ics.uci.edu/~mlearn/MLRepository.html.

[47] Ompad DC, Ikeda RM, Shah N, Fuller CM, Bailey S, Morse E, Kerndt P, Maslow C, Wu Y, Vlahov D,

et al. (2005) Childhood sexual abuse and age at initiation of injection drug use. American journal of

public health 95(4):703–709.

[48] Overdose O (2018) Understanding the epidemic. Atlanta, Centers for Disease Control and Prevention .

[49] Owen JH, Mehrotra S (2002) On the value of binary expansions for general mixed-integer linear pro-

grams. Operations Research 50(5):810–819.

[50] Thomas DL, Vlahov D, Solomon L, Cohn S, Taylor E, Garfein R, Nelson KE (1995) Correlates of

hepatitis c virus infections among injection drug users. Medicine 74(4):212–220.

[51] Vergara A (2012) Gas Sensor Array Drift Dataset. UCI Machine Learning Repository, DOI: https:

//doi.org/10.24432/C5RP6W.

[52] Vielma JP, Ahmed S, Nemhauser G (2010) A note on “a superior representation method for piecewise

linear functions”. INFORMS Journal on Computing 22(3):493–497.

[53] Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F (2007) Dopamine in drug abuse and addiction:

results of imaging studies and treatment implications. Archives of neurology 64(11):1575–1579.

[54] Wolberg W, Mangasarian O, Street N, Street W (1995) Breast Cancer Wisconsin (Diagnostic). UCI

Machine Learning Repository, DOI: https://doi.org/10.24432/C5DW2B.

[55] Yuan XT, Zhang T (2013) Truncated power method for sparse eigenvalue problems. Journal of Machine

Learning Research 14(4).

[56] Zhang Y, d’Aspremont A, El Ghaoui L (2012) Sparse PCA: Convex relaxations, algorithms and appli-

cations. Handbook on Semidefinite, Conic and Polynomial Optimization, 915–940 (Springer).

[57] Zhang Y, Ghaoui LE (2011) Large-scale sparse principal component analysis with application to text

data. Advances in Neural Information Processing Systems, 532–539.

http://www.ics.uci.edu/~mlearn/MLRepository.html
https://doi.org/10.24432/C5RP6W
https://doi.org/10.24432/C5RP6W
https://doi.org/10.24432/C5DW2B

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
32

Appendix A. Proofs
A.1 Proof of Proposition 2

Proposition 2 For the function H1(z) defined in SPCA (9), we have that

(i) For any z ∈Z, function H1(z) is equivalent to

H1(z) = min
µ,Q1,··· ,Qn∈Sd

+

{
λmax

(∑
i∈[n]

Qi

)
+

∑
i∈[n]

µizi : cic
⊤
i ⪯Qi +µiId,0≤ µi ≤ ∥ci∥22,∀i∈ [n]

}
,

(10)

which is concave in z.

(ii) For any binary z ∈ Z, an optimal solution to the problem (10) is µ∗
i = 0 if zi = 1 and ∥ci∥22

otherwise, and Q∗
i := (1−µ∗

i /∥ci∥22)cic⊤i for each i∈ [n].

Proof. Part (i). We split the proof of strong duality into two cases depending on whether z is a

relative interior of set Z or not.

Case a. Suppose that z is in the relative interior of set Z, i.e., 0< zi < 1 for each i ∈ [n]. For the

inner maximization problem in (9), we dualize the constraint X ⪰Wi, tr(Wi) = zi with

Lagrangian multiplier Qi ∈ Sd
+ and µi for each i ∈ [n]. Note that the constraints X ⪰

Wi, tr(Wi) = zi for each i ∈ [n] and X,W1, · · · ,Wn ∈ Sd
+ can be always strictly satisfied

since 0< zi < 1. Thus, according to the strong duality of the conic optimization problem

(see, e.g., Theorem 1.4.4 in [7]), function H1(z) can be rewrite as

min
µ,Q1,··· ,Qn∈Sd

+

max
X,W1,··· ,Wn∈Sd

+

{∑
i∈[n]

c⊤i Wici +
∑
i∈[n]

tr (Qi(X −Wi))+
∑
i∈[n]

µi (zi − tr(Wi)) :

tr(X) = 1

}
. (26)

Then the inner maximization problem (26) over Wi for each i∈ [n] and X yields

max
Wi∈Sd

+

tr
(
(cic

⊤
i −Qi −µiId)Wi

)
=

{
0, cic

⊤
i ⪯Qi +µiId,

∞, otherwise.

max
X∈Sd

+

{
tr

((∑
i∈[n]

Qi

)
X

)
: tr(X) = 1

}
= λmax

(∑
i∈[n]

Qi

)
,

where the second identity is due to Part(ii) of Lemma 1.

Thus, problem (26) can be simplified as

H1(z) = min
µ,Q1,··· ,Qn∈Sd

+

{
λmax

(∑
i∈[n]

Qi

)
+

∑
i∈[n]

µizi : cic
⊤
i ⪯Qi +µiId,∀i∈ [n]

}
. (27)

We show that for the minimization problem (27), any optimal solution (µ,Q1, · · · ,Qn)

must satisfy 0 ≤ µi ≤ ∥ci∥22 for each i ∈ [n]. We prove it by contradiction. Suppose that

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
33

there exits an optimal solution (µ,Q1, · · · ,Qn) to the problem (27) such that µj < 0 for

some j ∈ [n]. Then, we can construct a new feasible solution (µ,Q1, · · · ,Qn), which is

exactly equal to (µ,Q1, · · · ,Qn) except

µj = 0,Qj =Qj +µjId.

The new solution yields the objective value

H1(z)+µj −µjzj =H1(z)+µj(1− zj)<H1(z),

which is a contradiction to the optimality of (µ,Q1, · · · ,Qn). Similarly, suppose that there

exits an optimal solution (µ,Q1, · · · ,Qn) to the problem (27) such that µj > ∥ci∥22 for

some j ∈ [n]. Similarly, we can arrive at a contradiction by defining a new feasible solution

(µ,Q1, · · · ,Qn), which is exactly equal to (µ,Q1, · · · ,Qn) except µj = ∥ci∥22.
Therefore, (27) can be reduced to (10).

Case b. Now we consider the case that z is not in the relative interior of Z and define two sets

T0 := {i ∈ [n] : zi = 0} and T1 := {i ∈ [n] : zi = 1}. Thus, at least one of the two sets is not

empty. In this case, we first observe that H1(z) in (9) is equivalent to

H1(z) := max
X,W1,··· ,Wd∈Sd

+

{ ∑
i∈[n]\(T0∪T1)

c⊤i Wici +
∑
i∈T1

c⊤i Xci : tr(X) = 1,

X ⪰Wi, tr(Wi) = zi,∀i∈ [n] \ (T0 ∪T1)

}
. (28)

Next, applying the same procedure as Case a., we have

H1(z) = min
µ,{Qi}i∈[n]\(T0∪T1)

⊆Sd
+

{
λmax

(∑
i∈[n]\(T0∪T1)

Qi +
∑
i∈T1

cic
⊤
i

)
+

∑
i∈[n]\(T0∪T1)

µizi :

cic
⊤
i ⪯Qi +µiId,0≤ µi ≤ ∥ci∥22,∀i∈ [n] \ (T0 ∪T1)

}
. (29)

To show the equivalence between (29) and (10), it remains to prove that

Ĥ1(z) = min
µ,{Qi}i∈[n]⊆Sd

+

{
λmax

(∑
i∈[n]

Qi

)
+

∑
i∈[n]

µizi : cic
⊤
i ⪯Qi +µiId,0≤ µi ≤ ∥ci∥22,∀i∈ [n]

}
.

(30)

First, given any feasible solution (µ,{Qi}i∈[n]\(T0∪T1)) to the problem (29), let us augment

it by setting Qi = 0, µi = ∥ci∥22 for each i ∈ T0 and Qi = cic
⊤
i , µi = 0 for each i ∈ T1. Then

(µ,{Qi}i∈[n]) is feasible to the problem (30) with the same objective value. Thus, we have

Ĥ1(z)≤H1(z).

On the other hand, given any feasible solution (µ,{Qi}i∈[n]) to the problem (30), then

(µ,{Qi}i∈[n]\(T0∪T1)) is feasible to the problem (29) a smaller objective value since cic
⊤
i ⪯

Qi +µi for each i∈ T1. Thus, we have Ĥ1(z)≥H1(z). This completes the proof.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
34

Part (ii). For any z ∈Z, let set S denote its support. We then construct a pair of the primal and

dual solutions to the maximization problem in (9) and its dual (10) as

X∗ = q1q
⊤
1 ,W

∗
i =X∗,∀i∈ S,W ∗

i = 0,∀i∈ [n] \S,

Q∗
i = cic

⊤
i , µi = 0,∀i∈ S,Q∗

i = 0, µi = ∥ci∥22,∀i∈ [n] \S,

where q1 denote the eigenvector for the largest eigenvalue of matrix
∑

i∈S cic
⊤
i .

According to the results in Lemma 1, the above solutions return the same objective value for

primal and dual problems, which is λmax(
∑

i∈S cic
⊤
i). This proves the optimality of the proposed

dual solution. □

A.2 Proof of Theorem 2

Theorem 2 The following hold for the relaxed function H1(z):

(i) For any z ∈Z, function H1(z) is upper bounded by

H1(z) := min
µ∈Rn

{
λmax

(∑
i∈[n]

(
1− µi

∥ci∥22

)
cic

⊤
i

)
+

∑
i∈[n]

µizi : 0≤ µi ≤ ∥ci∥22,∀i∈ [n]

}
; (12)

(ii) If z ∈Z, then H1(z) =H1(z) = λmax(
∑

i∈[n] zicic
⊤
i); and

(iii) The continuous relaxation of SPCA

w2 :=max
z∈Z

H1(z) (13)

achieves a min{k,n/k} optimality gap, i.e., w∗ ≤ w1 ≤ w2 ≤ min{k,n/k}w∗, where w1 is

defined in (8).

Proof.

(i) The conclusion follows by choosing a feasible Qi := (1−µi/∥ci∥22)cic⊤i for each i ∈ [n] in the

representation (10).

(ii) For any z ∈ Z, we derive from Part (ii) in Proposition 2 that H1(z) ≥ λmax(
∑

i∈[n] zicic
⊤
i).

Thus, it is sufficient to show thatH1(z)≤ λmax(
∑

i∈[n] zicic
⊤
i). Indeed, this can be done simply

by letting µi = 0 if zi = 0, and ∥ci∥22, otherwise in (12).

(iii) By the proof of Proposition 1, to obtain the same optimality gap for w̄2 in (13) as SDP (8),

we need to show that H1(z)≤
∑

i∈[n] zic
⊤
i ci and H1(z)≤ λmax(A) = λmax(

∑
i∈[n] cic

⊤
i) for any

z ∈Z.

We must have H1(z)≤
∑

i∈[n] zic
⊤
i ci by by letting µi = c⊤i ci for all i∈ [n] in (12).

We also have H1(z)≤ λmax(A) = λmax(
∑

i∈[n] cic
⊤
i) by letting µi = 0 for all i ∈ [n] in (12).

Then the rest of the proof follows directly from that of Proposition 1 and is thus omitted. □

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
35

A.3 Proof of Proposition 3

Proposition 3 SPCA (2) admits the following MISDP formulation:

(SPCA) w∗ := max
z∈Z,X∈Sn

+

{
tr(AX) : tr(X) = 1,Xii ≤ zi,∀i∈ [n]

}
. (14)

and its continuous relaxation value is equal to λmax(A).

Proof.

(i) To show the equivalence of problem (14) and SPCA (2), we only need to show that for any

feasible z ∈Z with its cardinality k and support S = {i : zi = 1}, we must have

max
X∈Sn

+

{
tr(AX) : tr(X) = 1,Xii ≤ zi,∀i∈ [n]

}
= λmax(AS,S). (31)

Indeed, since X is a positive semidefinite matrix, thus Xii = 0 for each i∈ [n] \S implies

Xij = 0,∀(i, j) /∈ S×S.

The left-hand side of the equation (31) is equivalent to

max
X∈Sn

+

{
tr(AX) : tr(X) = 1,Xii ≤ zi,∀i∈ [n]

}
= max

X∈Sk
+

{tr(AS,SX) : tr(X) = 1}= λmax(AS,S),

where the second equality is due to Part (ii) in Lemma 1.

(ii) The continuous relaxation value of problem (14) is

w3 = max
z∈Z,X∈Sn

+

{
tr(AX) : tr(X) = 1,Xii ≤ zi,∀i∈ [n]

}
.

Since tr(X) = 1, thus the linking constraint Xii ≤ zi is redundant for each i∈ [n]. Hence,

w3 = max
X∈Sn

+

{
tr(AX) : tr(X) = 1

}
= λmax(A),

where the equality is due to Part (ii) in Lemma 1. □

A.4 Proof of Lemma 2

Lemma 2 The following two inequalities are valid to SPCA (14)

(i)
∑

j∈[n]X
2
ij ≤Xiizi for all i∈ [n]; and

(ii)
(∑

j∈[n] |Xij|
)2

≤ kXiizi for all i∈ [n].

Proof. From the proof of Proposition 3, there must exists an optimal solution (z∗,X∗) of SPCA

(14) such that X∗ must be rank-one. Thus, without loss of generality, for any feasible solution

(z,X) of SPCA (14), we can assume that X =xx⊤, where (x,z) is also feasible to SPCA (2).

Next, we split the proof into two parts.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
36

(i) Since X =xx⊤, thus ∑
j∈[n]

X2
ij =

∑
j∈[n]

x2
ix

2
j = x2

i ≤ ziXii,∀i∈ [n],

where the last inequality follows from the facts that Xii = x2
i ≤ zi and zi is binary for each

i∈ [n].

(ii) It is known (see, e.g., [23]) that ∥x∥1 ≤
√
k. Thus,

∑
j∈[n]

|Xij|=
∑
j∈[n]

|xi||xj| ≤
√
k|xi| ≤

√
k
√
Xiizi,

where the second inequality is because Xii = x2
i ≤ zi and zi is binary for each i∈ [n]. □

A.5 Proof of Proposition 4

Proposition 4 For the SDP relaxations of SPCA defined in (16) and (17), we have that w3 ≤w4.

Proof. To show that w4 ≥ w3, it is sufficient to prove that any feasible solution (z,X) of the

continuous relaxation problem (16), must satisfy the constraints in the SDP formulation (17).

Clearly, we have X ∈ Sn
+ and tr(X) = 1. It remains that

∑
i∈[n]

∑
j∈[n] |Xij| ≤ k. Indeed, we have

∑
i∈[n]

∑
j∈[n]

|Xij| ≤
∑
i∈[n]

√
k
√

Xiizi ≤
√
k

√∑
i∈[n]

Xii

√∑
i∈[n]

zi ≤ k,

where the first inequality results from type (ii) inequalities in Lemma 2, the second one is due to

Cauchy–Schwartz inequality, and the last one is due to tr(X) = 1 and
∑

i∈[n] zi ≤ k. □

A.6 Proof of Proposition 5

Proposition 5 The continuous relaxation (16) of the MISDP (15) yields a min{k,n/k} optimality

gap for SPCA, i.e.,

w∗ ≤w3 ≤min
{
k,

n

k

}
w∗.

Proof. The proof is separated into two parts: (i) w3 ≤ kw∗ and (ii) w3 ≤ n/kw∗.

(i) w3 ≤ kw∗. For any feasible solution X to problem (16), we have

tr(AX) =
∑
i∈[n]

∑
j∈[n]

AijXij ≤
∑
i∈[n]

∑
j∈[n]

|Aij∥Xij| ≤w∗
∑
i∈[n]

∑
j∈[n]

|Xij| ≤ kw∗,

where the first inequality is due to taking the absolute values, the second one is based on the

fact that maxi∈[n]{Ai,i} ≤w∗ and |Ai,j| ≤
√

Ai,iAj,j ≤w∗ for each pair i, j ∈ [n], and the third

one can be obtained from the proof of Proposition 4.

(ii) w3 ≤ n/kw∗. The proof is similar to the one of Proposition 1 since w3 ≤ λmax(A)≤ n/kw∗. □

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
37

A.7 Proof of Theorem 4

Theorem 4 Given a threshold ϵ > 0, the following MILP is O(ϵ)-close to SPCA (2), i.e., ϵ ≤

ŵ(ϵ)−w∗ ≤ ϵ
√
d, where ŵ(ϵ) is defined by

ŵ(ϵ) := max
w,z∈Z,y,α,x,,δ,µ,σ

w

s.t. x= δi1 + δi2,∥δi1∥∞ ≤ zi,∥δi2∥∞ ≤ 1− zi,∀i∈ [n],

x=
∑
j∈[d]

σj,∥σj∥∞ ≤ yj, σjj = yj,∀j ∈ [d],
∑
j∈[d]

yj = 1,

x=µℓ1 +µℓ2,∥µℓ1∥∞ ≤ αℓ,∥µℓ2∥∞ ≤ 1−αℓ,∀ℓ∈ [m],

w=wU − (wU −wL)

(∑
i∈[m]

2−iαi

)
,∣∣∣∣∣∣∣∣∑

i∈[n]

cic
⊤
i δi1 −wUx+(wU −wL)

∑
ℓ∈[m]

2−ℓµℓ1

∣∣∣∣∣∣∣∣
∞
≤ ϵ,

α∈ {0,1}m,y ∈ {0,1}d,

(22)

where wL and wU denote the lower and upper bounds of SPCA, respectively and m := ⌈log2((wU −

wL)ϵ
−1)⌉.

Proof. Throughout the proof, we use indices i∈ [n], j ∈ [d], and ℓ∈ [m] to denote the elements of

three different dimensional vectors, respectively. To construct the MILP by SPCA (21) and show

the approximation accuracy, we split the proof into four steps.

Step 1. Linearize the bilinear terms {zix}i∈[n] in (21). This can be done by introducing two copies

δi1,δi2 of vector x for each i∈ [n] such that

x= δi1 + δi2,∥δi1∥∞ ≤ zi,∥δi2∥∞ ≤ 1− zi,∀i∈ [n],
∑
i∈[n]

zicic
⊤
i x=

∑
i∈[n]

cic
⊤
i δi1.

Step 2. Linearize the nonconvex constraint ∥x∥∞ = 1. We first observe that due to symmetry,

∥x∥∞ = 1 can be equivalently written as a disjunction with d sets as below

∪j∈[d]

{
x∈Rd : xj = 1,∥x∥∞ ≤ 1

}
.

Next, for each j ∈ d, we introduce a binary variable yj = 1 indicating the j-th set is active

and 0, otherwise, and then create a copy σj ∈Rd of variable x such that

x=
∑
j∈[d]

σj,∥σj∥∞ ≤ yj, σjj = yj,∀j ∈ [d],
∑
j∈[d]

yj = 1,y ∈ {0,1}d.

Step 3. Approximate and linearize bilinear term wx. We first approximate variable w using m

binary variables α∈Rm with m := ⌈log2((wU −wL)/ϵ)⌉. Thus, we have

w≈wU − (wU −wL)

(∑
ℓ∈[m]

2−ℓαℓ

)

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
38

with approximation accuracy at most (wU − wL)/2
m ≤ ϵ. The bilinear term wx is now

approximated by

wx≈wUx− (wU −wL)

(∑
ℓ∈[m]

2−ℓαℓx

)
. (32)

With binary variables α, the resulting bilinear terms {αℓx}ℓ∈[m] can be further linearized

following the same arguments as Step 2, i.e.,

x=µℓ1 +µℓ2,∥µℓ1∥∞ ≤ αℓ,∥µℓ2∥∞ ≤ 1−αℓ,∀ℓ∈ [m],

wUx− (wU −wL)

(∑
ℓ∈[m]

2−ℓαℓx

)
=wUx− (wU −wL)

∑
ℓ∈[m]

2−ℓµℓ1.

Step 4. Finally, following the approximation and linearization results in Step 3, the equality con-

straint
∑

i∈[n] cic
⊤
i σi1 =wx in (21) might not hold exactly. Thus, we replace the equality

by the following inequality∣∣∣∣∣∣∣∣∑
i∈[n]

cic
⊤
i δi1 −wUx+(wU −wL)

∑
i∈[m]

2−iµi1

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣∑
i∈[n]

cic
⊤
i zix−wUx+(wU −wL)

∑
i∈[m]

2−iαix

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣wx−wUx+(wU −wL)
∑
i∈[m]

2−iαix

∣∣∣∣∣∣∣∣
∞
≤ (wU −wL)/2

m ≤ ϵ,

which holds for any feasible solution of formulation (21).

First, we have ŵ(ϵ)≥w∗ − ϵ since w :=w∗ − ϵ is feasible to the MILP (22).

Moreover, given an optimal solution (x̂, ẑ, ŵ(ϵ)) to the MILP (22), we must have∣∣∣∣∣∣∣∣∑
i∈[n]

ẑicic
⊤
i x̂− ŵ(ϵ)x̂

∣∣∣∣∣∣∣∣
∞
≤ ϵ

(⇒) min
x:∥x∥∞=1

∣∣∣∣∣∣∣∣∑
i∈[n]

ẑicic
⊤
i x− ŵ(ϵ)x

∣∣∣∣∣∣∣∣
∞
≤ ϵ

(⇒) d−1/2 min
x:∥x∥∞=1

∣∣∣∣∣∣∣∣∑
i∈[n]

ẑicic
⊤
i x− ŵ(ϵ)x

∣∣∣∣∣∣∣∣
2

≤ ϵ

(⇒) d−1/2 min
x:∥x∥2≥1

∣∣∣∣∣∣∣∣∑
i∈[n]

ẑicic
⊤
i x− ŵ(ϵ)x

∣∣∣∣∣∣∣∣
2

≤ ϵ

(⇔) d−1/2 min
x:∥x∥2=1

∣∣∣∣∣∣∣∣∑
i∈[n]

ẑicic
⊤
i x− ŵ(ϵ)x

∣∣∣∣∣∣∣∣
2

≤ ϵ

where the first implication is due to ∥x̂∥∞ = 1, the second one is due to ∥x∥∞ ≥ d−1/2∥x∥2
since x ∈Rd, the third one is because ∥x∥∞ = 1 implies ∥x∥2 ≥ 1, and the equivalence is

because of monotonicity and positive homogeneity of the objective function. According to

the last inequality, there exists an eigenvalue w of matrix
∑

i∈[n] ẑicic
⊤
i such that |ŵ(ϵ)−

w| ≤ ϵ
√
d, which further implies that ŵ(ϵ)−w∗ ≤ ϵ

√
d since w≤w∗. □

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
39

A.8 Proof of Proposition 7

Proposition 7 Given a threshold ϵ > 0, by relaxing the binary variables z to be continuous, let

w5(ϵ) denote the optimal value of the relaxed MILP formulation (22). Then we have

w5(ϵ)≤min
{
k(
√
d/2+1/2), n/k

√
d+(n− k)(

√
d/2+1/2)

}
w∗ + ϵ

√
d.

Proof. From the proof of Theorem 4, we know that w5(ϵ)≤ w5(0) + ϵ
√
d. Thus, it is sufficient to

show that

w5(0)≤ k(
√
d/2+1/2)w∗.

We observe that when ϵ = 0, the resulting formulation by relaxing binary variables z to be

continuous becomes:

w5(0) = max
w,z∈Z,x,

{δi1}i∈[n],{δi2}i∈[n]

{
w :

∑
i∈[n]

cic
⊤
i δi1 =wx,∥x∥∞ = 1,

x= δi1 + δi2,∥δi1∥∞ ≤ zi,∥δi2∥∞ ≤ 1− zi,∀i∈ [n]

}
, (33)

Next, we split the proof into three steps.

Step 1. For any feasible solution to problem (33), we have

w=
∥
∑

i∈[n] cic
⊤
i δi1∥∞

∥x∥∞
= ∥

∑
i∈[n]

cic
⊤
i δi1∥∞ ≤

∑
i∈[n]

∥cic⊤i δi1∥∞ =
∑
i∈[n]

∥ci∥∞|c⊤i δi1|

≤
∑
i∈[n]

∥ci∥∞∥ci∥1∥δi1∥∞ ≤
∑
i∈[n]

∥ci∥∞∥ci∥1zi ≤ kmax
i∈[n]

∥ci∥∞∥ci∥1,

where the first inequality is due to triangle inequality, the second one is because of Holder’s

inequality, the third one is because ∥δi1∥∞ ≤ zi, and the last one is due to ∥ci∥∞∥ci∥1 ≤

maxj∈[n] ∥cj∥∞∥cj∥1 for each i∈ [n] and
∑

i∈[n] zi ≤ k.

Step 2. Now it remains to show that for each i∈ [n]

∥ci∥∞∥ci∥1 ≤
√
d+1

2
w∗.

Let ς be a permutation of index set [d] such that ci,ς(1), · · · , ci,ς(d) are sorted in an

ascending order. Then we have

c2i,ς(1) +
1

d− 1

(∑
j∈[2,d]

|ci,ς(j)|
)2

≤ c2i,ς(1) + · · ·+ c2i,ς(d) = ∥ci∥22 ≤w∗,

where the first inequality is from the arithmetic and quadratic mean inequality and the

second inequality follows from ∥ci∥22 = λmax(cic
⊤
i)≤w∗.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
40

For ease of exposition, let us introduce v1 = |ci,ς(1)| and v2 =
∑

j∈[2,d] |ci,ς(j)|. Next, let

us consider an optimization problem

ν =max
v∈R2

+

{
v1(v1 + v2) : v

2
1 +1/(d− 1)v22 ≤w∗

}
, (34)

whose optimal value clearly provides an upper bound of ∥ci∥∞∥ci∥1.

To solve (34), we first rewrite v1, v2 as

v1 = r sin(θ)r, v2 = r
√
d− 1cos(θ), θ ∈ [0, π/2], r≤

√
w∗.

In this way, the objective function (34) is equal to

v1(v1 + v2) = v21 + v1v2 = r2 sin2(θ)+ r2
√
d− 1 sin(θ) cos(θ) = r2

1− cos(2θ)

2
+ r2

√
d− 1

sin(2θ)

2

=
r2

2
− r2

2
cos(2θ)+

1

2
r2
√
d− 1 sin(2θ)≤ 1

2
r2 +

√
d

2
r2 ≤

√
d+1

2
w∗,

where the first inequality is due to Cauchy-Schwartz inequality and the second one is

because r2 ≤ w∗. Thus, we must have ∥ci∥∞∥ci∥1 ≤
√
d+1
2

w∗. This proves the first bound

k(
√
d/2+1/2) together with Step 1.

Step 3. We now prove the second bound. Plugging the equations δi1 = x− δi2 for all i ∈ [n], we

rewrite the continuous relaxation value as

w=
∥
∑

i∈[n] cic
⊤
i (x− δi2)∥∞

∥x∥∞
≤

∥
∑

i∈[n] cic
⊤
i x∥∞

∥x∥∞
+

∥
∑

i∈[n] cic
⊤
i δi2∥∞

∥x∥∞

≤
∥
∑

i∈[n] cic
⊤
i x∥∞

∥x∥∞
+(n− k)

√
d+1

2
w∗ ≤max

i∈[d]

∑
j∈[d]

|Cij|+(n− k)

√
d+1

2
w∗,

where C :=CC⊤ =
∑

i∈[n] cic
⊤
i and the first inequality is from the triangle inequality, the

second one follows from the derivations in Steps 1 and 2, and the third one is due to xi ≤ 1

for each i∈ [d].

Next, the first term of the right-hand side above can be upper bounded by

max
i∈[d]

∑
j∈[d]

|Cij|= ∥C∥1 ≤
√
d∥C∥2 =

√
dλmax(C)≤ n

k

√
dw∗,

where the equations are from the definition of ℓ1-norm and ℓ2-norm of a matrix and the

second inequality is due to λmax(C) = λmax(A)≤ n/kw∗. □

A.9 Proof of Corollary 2

Corollary 2 The approximation ratio of the s-swap local search is s/k for any s ∈ [k]. The ratio

is tight when k≤ n/2.

Yongchun Li and Weijun Xie: Exact and Approximation Algorithms for Sparse PCA
41

Proof. First, let set ŜL denote the indices of selected vectors by s-swap local search algorithm.

Then following the same proof as that in Theorem 6, for any size-s set T ⊆ [n], we have

λmax

(∑
i∈ŜL

cic
⊤
i

)
≥ λmax

(∑
i∈T

cic
⊤
i

)
. (35)

Let S∗ denote an optimal solution to SPCA (4). Using the result in (35), the optimal value of

SPCA w∗ is upper bounded by

w∗ = λmax

(∑
i∈S∗

cic
⊤
i

)
= λmax

(
1(

k−1
s−1

) ∑
T⊆S∗,|T |=s

∑
i∈T

cic
⊤
i

)
≤

(
k
s

)(
k−1
s−1

)λmax

(∑
i∈ŜL

cic
⊤
i

)
=

k

s

(∑
i∈ŜL

cic
⊤
i

)
.

Second, to show the tightness, let us consider the following example.

Example 2 For any integer k ∈ [d], let d= k+1, n= (s+1)k, and the vectors {ci}i∈[n] ⊆Rd be

ci =


ei, if i∈ [k],
...

ei−(s−1)k, if i∈ [(s− 1)k+1, sk],

ek+1, if i∈ [sk+1, n],

∀i∈ [n].

In Example 2, we show that the subset ŜL = [k− s+1]∪ {ℓk+1}ℓ∈[s−1] satisfies the s-swap local

optimality condition.

Indeed, for each pair (T1, T2) such that T1 ⊆ ŜL, T2 ⊆ ([n] \ ŜL) with |T1|= |T2|= s, we have

λmax

(∑
ℓ∈ŜL∪T2\T1

cℓc
⊤
ℓ

)
≤ s.

Therefore, the set ŜL achieves s-swap local optimum with largest eigenvalue of s. Since the optimal

value of SPCA is w∗ = k, the approximation ratio of set ŜL is equal to sk−1 for SPCA. □

	1 Introduction
	1.1 Summary of Main Contributions and Organization
	1.2 Relevant Literature

	2 Exact MISDP Formulation (I)
	2.1 An Equivalent MISDP Reformulation of SPCA
	2.2 Solving SPCA (6) by the Benders Decomposition Method

	3 Exact MISDP Formulation (II)
	3.1 A Naive Exact MISDP Formulation
	3.2 A Stronger MISDP Reformulation with Valid Inequalities
	3.3 Solving SPCA (15) by the Benders Decomposition Method

	4 An MILP Formulation for SPCA with Arbitrary Accuracy
	4.1 An MILP Formulation for SPCA
	4.2 Theoretical Optimality Gap

	5 Approximation Algorithms
	5.1 Greedy Algorithm
	5.2 Local Search Algorithm

	6 Numerical Study
	6.1 A comparison of exact methods for SPCA
	6.2 A comparison of continuous relaxations for SPCA
	6.3 A comparison of approximation algorithms for SPCA
	6.4 Drugabuse Dataset

	7 Conclusion
	Appendices
	Appendix A Proofs
	A.1 Proof of thmH1
	A.2 Proof of corhatH1
	A.3 Proof of themeqpca
	A.4 Proof of lemineq
	A.5 Proof of propboundcomparisonmodel1
	A.6 Proof of themcontsdponegap
	A.7 Proof of themmilp
	A.8 Proof of thmapproxmilp
	A.9 Proof of corsls

