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1 Introduction

To solve, even linear, multistage stochastic programs is difficult and in a generic sense could
be computationally intractable [12]. In some settings the considered multistage problems
have a periodical behavior. In such cases it was suggested in [11] to use a periodical variant
of the Wald-Bellman (WB) equations for the corresponding infinite horizon problem with a
discount factor γ ∈ (0, 1). Moreover a cutting plane - Stochastic Dual Dynamic Program-
ming (SDDP) type - algorithm can be applied to approximate the value functions defined by
these WB equations. The statistical upper bound of that algorithm is constructed by em-
ploying T -stage approximation of the considered infinite horizon problem. The error of that
approximation is of the order O

(
γT/(1− γ)

)
, which can be large when the discount factor

is close to one even for reasonably large T . This motivates to consider a different approach
to construction of a valid upper bound based on a dual formulation of the considered linear
multistage program. An idea of such upper bounds was coined in [7]. In this paper we follow
an approach to construction of the dual upper bound developed in [6].

2 Periodical multistage stochastic programs

Consider the multistage linear stochastic program

min
xt≥0

E

[
T∑
t=1

γt−1c>t xt

]
s.t. A1x1 = b1,

Btxt−1 + Atxt = bt, t = 2, ..., T.

(2.1)

Here vectors ct = ct(ξt) ∈ Rnt , bt = bt(ξt) ∈ Rmt and matrices Bt = Bt(ξt), At = At(ξt)
are functions of random process ξt ∈ Rdt , t = 1, ..., T , and γ ∈ (0, 1) is the discount factor.
We denote by ξ[t] = (ξ1, ..., ξt) the history of the data process up to time t and by E|ξ[t] the
corresponding conditional expectation. The optimization in (2.1) is performed over functions
(policies) xt = xt(ξ[t]) ∈ Rnt , t = 1, ..., T, of the data process satisfying the feasibility
constraints. Vector ξ1 and the first stage solution x1 are deterministic, i.e., the first stage
decision is made before knowing (observing) realizations of the data process ξ2, ..., ξT .

• We assume that the data process is stagewise independent, i.e., random vector ξt+1

is independent of ξ[t], and that each ξt has a discrete distribution with finite support
Ξt = {ξ1

t , . . . , ξ
Nt
t }, with respective probabilities ptj, j = 1, ..., Nt, t = 2, ..., T .

When the number T of stages is finite, it is possible to write the following dynamic
programming equations for problem (2.1) (cf., [10]). At stages t = T, ..., 2, the value function
Qt(xt−1, ξt) is given by the optimal value of the problem

min
xt≥0

c>t xt + γQt+1(xt)

s.t. Btxt−1 + Atxt = bt,
(2.2)

with
Qt+1(xt) = E

[
Qt+1(xt, ξt+1)

]
(2.3)
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and QT+1(·) ≡ 0. At the first stage the following problem should be solved

min
x1≥0

c>1 x1 + γQ2(x1)

s.t. A1x1 = b1.
(2.4)

Consider now the infinite horizon setting of T =∞. Following [11] we make the following
assumptions about periodical behavior, with period m ∈ N, of problem (2.1).

(A1) The random vectors ξt and ξt+m have the same distribution for t ≥ 2 (recall that ξ1 is
deterministic).

(A2) The sequence of functions bt(·), Bt(·), At(·) and ct(·) has period m, i.e., these functions
are the same for t = τ and t = τ + m, t ≥ 2.

We also make the following assumptions ensuring the relatively complete recourse and bound-
edness properties of problem (2.1).

(A3) For every xt−1 ≥ 0 the set {xt : Bt(ξt)xt−1 +At(ξt)xt = bt(ξt), xt ≥ 0} is nonempty for
all ξt ∈ Ξt and t ≥ 2.

(A4) There exist bounded sets Xt ⊂ Rnt such that adding the constraints xt ∈ Xt, t =
1, ..., T , to the problem (2.1) does not change its optimal value.

In applications the sets Xt typically are sufficiently large boxes containing the considered
decision variables. Under these assumptions the value functions Qt(·, ·) and Qt+m(·, ·), and
the expected value functions Qt(·) and Qt+m(·), are the same for all t ≥ 2, in particular
Qm+2(·) ≡ Q2(·). This leads to the following periodical variant of Wald-Bellman (WB)
equations for the value functions (cf., [1]):

Qτ (xτ−1) = E[Qτ (xτ−1, ξτ )], (2.5)

with
Qτ (xτ−1, ξτ ) = inf

xτ≥0

{
c>τ xτ + γQτ+1(xτ ) : Bτxτ−1 + Aτxτ = bτ

}
, (2.6)

for τ = 2, ...,m + 1, and Qm+2 replaced by Q2 for τ = m + 1. It is possible to show that
there exists a unique set of value functions Qτ (xτ−1, ξτ ), Qτ (xτ−1), τ = 2, ...,m+1, satisfying
these WB equations and that these value functions are convex in xτ−1 (cf., [11]). The first
stage solution is obtained by solving problem (2.4) with Q2(·) being the solution of these
WB equations.

In order to solve the WB equations (2.5) - (2.6) a cutting plane algorithm was suggested
in [11]. That algorithm can be viewed as a variant of the Stochastic Dual Dynamic Program-
ming (SDDP) method introduced in Pereira and Pinto [8] based on the nested cutting plane
method of Birge [2]. An upper bound for the optimal value in that algorithm is based on a
statistical estimate of the value of the current iterate approximation of the optimal policy.
When the discount factor γ is close to one, the convergence is slow and the computational
effort to reduce the optimality gap becomes prohibitive. This motivates development of dual
upper bounds which we discuss in the next section.
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3 Dual bounds

The Lagrangian of problem (2.1) is

L(x, π) = E

[
T∑
t=1

γt−1c>t xt + π>t (bt −Btxt−1 − Atxt)

]
(3.1)

in variables x = (x1(ξ[1]), . . . , xT (ξ[T ])) and π = (π1(ξ[1]), . . . , πT (ξ[T ])) with the convention
that x0 = 0. Dualization of the feasibility constraints leads to the following dual of problem
(2.1) (cf., [10, Section 3.2.3]):

max
π

E
[ T∑
t=1

b>t πt
]

s.t. A>T πT ≤ γT−1cT ,
A>t−1πt−1 + E|ξ[t−1]

[
B>t πt

]
≤ γt−2ct−1, t = 2, ..., T.

(3.2)

The optimization in (3.2) is over policies πt = πt(ξ[t]), t = 1, ..., T . Note that in the considered
framework of finite number of scenarios, problem (2.1) can be viewed as a large linear program
and problem (3.2) as its dual. By the theory of linear programming we have that the optimal
values of primal problem (2.1) and its dual (3.2) are equal to each other.

It is convenient for the subsequent analysis to make change of variables λt = γ−(t−1)πt,
t = 1, ..., T , in order to remove the powers of γ in the right hand sides of the feasibility
constraints. In terms of variables λt problem (3.2) can be written as

max
λ

{
E
[∑T

t=1 γ
t−1b>t λt

]
= b>1 λ1 + γE|ξ1

[
b>2 λ2 + ...+ γE|ξ[T−1]

[b>T λT ]
]}

s.t. A>T λT ≤ cT ,
A>t−1λt−1 + γE|ξ[t−1]

[
B>t λt

]
≤ ct−1, t = 2, ..., T.

(3.3)

Recall that the process ξ1, ..., ξT is assumed to be stagewise independent, and distribution
of ξt has a finite support, Ξt = {ξ1

t , . . . , ξ
Nt
t }, with respective probabilities ptj, j = 1, ..., Nt,

t = 2, ..., T . We denote by Ajt , B
j
t , c

j
t , b

j
t the respective scenarios corresponding to ξjt .

We can write the following dynamic programming equations for the dual problem (3.3)
(cf., [6]). At the last stage t = T , given λT−1 and ξ[T−1], we need to solve the following
problem with respect to λT :

max
λT

E[b>T λT ]

s.t. A>T λT ≤ cT ,
A>T−1λT−1 + γE

[
B>T λT

]
≤ cT−1.

(3.4)

In terms of scenarios the above problem can be written as

max
λT1,...,λTNT

NT∑
j=1

pTj(b
j
T )>λTj

s.t. A>TjλTj ≤ cTj, j = 1, ..., NT ,

A>T−1λT−1 + γ
NT∑
j=1

pTj(B
j
T )>λTj ≤ cT−1.

(3.5)
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The optimal value VT (λT−1, ξT−1) and an optimal solution (λ̄T1, . . . , λ̄TNT ) of problem
(3.5) are functions of vectors λT−1 and cT−1 and matrix AT−1. And so on going backward
in time, using the stagewise independence assumption, we can write the respective dynamic
programming equations for t = T − 1, ..., 2, as

max
λt1,...,λtNt

Nt∑
j=1

ptj
[
(bjt)

>λtj + γVt+1(λtj, ξtj)
]

s.t. A>t−1λt−1 + γ
Nt∑
j=1

ptj(B
j
t )
>λtj ≤ ct−1,

(3.6)

with Vt(λt−1, ξt−1) being the optimal value of problem (3.6). Note that unlike the primal
problem, the dual dynamic equations do not decompose into individual scenarios - the opti-
mization problem (3.6) is formulated jointly with respect to the dual variables λt1, . . . , λtNt .

Finally at the first stage the following problem should be solved

max
λ1

b>1 λ1 + γV2(λ1). (3.7)

Note that if At and ct are deterministic, then Vt+1(λt) does not depend on ξt.
Suppose now that the costs of the primal and dual problems are bounded and consider

the infinite horizon case T =∞. Suppose further that the problem is periodical with period
m, i.e., the assumptions (A1) - (A3) hold. Consider first the case of m = 1. In that case the
random process ξt is iid with the corresponding scenarios ξj = (Aj, Bj, cj, bj), j = 1, ..., N ,
which do not depend on t ≥ 2. The WB equations for the value function V (λj, ξ

j) of the
dual problem then become

V (λ, ξj) = sup
λ1,...,λN

{
N∑
k=1

pk
[
(bk)>λk + γV (λk, ξ

k)
]

: (Aj)>λ+ γ
N∑
k=1

pk(B
k)>λk ≤ cj

}
, (3.8)

j = 1, ..., N . Note that solution V (λ, ξj) of this equation is concave in λ, and if Aj ≡ A and
cj ≡ c are deterministic, then V (λ) does not depend on ξj and is given by the equation

V (λ) = sup
λ1,...,λN

{
N∑
k=1

pk
[
(bk)>λk + γV (λk)

]
: A>λ+ γ

N∑
k=1

pk(B
k)>λk ≤ c

}
. (3.9)

Consider the general case of m ≥ 1. Then the WB equations for the value functions of
the dual problem are

Vτ (λτ−1, ξ
j
τ−1) = sup

λτ1,...,λτNτ

{ Nτ∑
k=1

pτk
[
(bkτ )

>λτk + γVτ+1(λτk, ξ
k
τ )
]

:

(Ajτ−1)>λτ−1 + γ
Nτ∑
k=1

pτk(B
k
τ )>λτk ≤ cjτ−1

}
,

(3.10)

for τ = 2, ...,m + 1, and Vm+2 replaced by V2. If Ajτ ≡ Aτ and cjτ ≡ cτ , τ = 2, ...,m + 1, are
deterministic, then value functions do not depend on Aτ and cτ and are given by equations

Vτ (λτ−1) = sup
λτ1,...,λτNτ

{ Nτ∑
k=1

pτk
[
(bkτ )

>λτk + γVτ+1(λτk)
]

: A>τ−1λτ−1+γ
Nτ∑
k=1

pτk(B
k
τ )>λτk ≤ cτ−1

}
,

(3.11)
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for τ = 2, ...,m + 1, and Vm+2 replaced by V2.

Under the specified assumptions, there is no duality gap between the primal and dual
problems also in the case of the infinite number of stages. Indeed, the difference between
the optimal values of problem (2.1) for the infinite and finite number T of stages can be
bounded by κγT/(1 − γ), where κ > 0 is a constant ensured by assumption (A4). As T
tends to∞ this difference tends to zero, and also the optimal value of the dual problem (3.3)
tends to the optimal value of its counterpart for the infinite number of stages. By invoking
the no duality gap property of (finite dimensional) linear programs and going to the limit as
T →∞ completes the arguments.

4 Numerical experiments

In this section we report empirical results of applying variants of the periodical SDDP algo-
rithm to the inventory model and the Brazilian Inter-connected Power System problem, with
different discount factors. Details of implementation of the SDDP type algorithm to the pri-
mal problem are discussed in [11]. In a similar way, an SDDP type cutting plane algorithm
is applied to the dual problem, details are given in the Appendix. It could be mentioned
that although the Relatively Complete Recourse (RCR) property for the primal problem is
guaranteed by assumption (A3), RCR does not necessarily hold for the dual problem. As
suggested in [6], this is dealt with by introducing a certain penalty term in formulation of
the dual optimization problems, we discuss this further in section 5.1 of the Appendix.

In both models, convergence is measured by relative gap computed by deterministic upper
bound of the dual problem and deterministic lower bound of the primal problem (see (4.4)
below). Both implementations were written in Python 3 using Dual SDDP solver dualsddp,
https://github.com/starrycheng/dualsddp, which is developed from MSPPy described in
[3].

4.1 Inventory model

Consider the classical inventory model (cf., [14])

min
yt≥xt−1

E
[

T∑
t=1

γt−1
(
ct(yt − xt−1) + bt[Dt − yt]+ + ht[yt −Dt]+

)]
s.t. xt = yt −Dt, t = 1, ..., T,

(4.1)

where ct, bt, ht are ordering cost, backorder penalty cost and holding cost per unit, respec-
tively and [ · ]+ := max{·, 0}. Here xt denotes the current inventory level, in particular x0

denotes the initial level, yt − xt−1 represents the order quantity at stage t, and D1, ..., DT is
the demand process. We assume that the demand process is stagewise independent and has
periodical behavior specified in the respective assumptions (A1) - (A2).

In order to formulate model (4.1) as a linear programming problem and hence to construct
its dual, we proceed as follows. An equivalent formulation of (4.1) is to replace [Dt − yt]+
and [yt − Dt]+ with wt ≥ 0 and vt ≥ 0, respectively, and simultaneously to add feasibility
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constraints yt + wt ≥ Dt and yt − vt ≤ Dt. The Lagrangian of this problem then becomes

L(p, d) = E

[
T∑
t=1

γt−1
(
ct(yt − xt−1) + btwt + htbt + Ψt(p, d)

)]
, (4.2)

where

Ψt(p, d) := πt(Dt + xt − yt) + µt(yt − xt−1) + ut(yt + wt −Dt) + st(Dt + vt − yt),

p := (p1(ξ1), · · · , pT (ξT )), d := ( d1(ξ1), · · · , dT (ξT )) with pt(ξt) := (xt(ξt), yt(ξt), wt(ξt), vt(ξt))
and dt(ξt) := (πt(ξt), µt(ξt), ut(ξt), st(ξt)). Dualization of feasibility constraints and change
of variables dt ← γ−(t−1)dt result in the following periodical multistage linear stochastic
inventory dual model

max
π,µ,u,s

E
[
T∑
t=1

γt−1Dt(πt − ut + st)

]
− c1x0 − µ1x0

s.t. πt − µt − ut + st = ct,
−ut ≤ bt, −st ≤ ht, µt, ut, st ≤ 0, t = 1, · · · , T,
−γ−1πt−1 + E[µt] = −ct, t = 2, · · · , T.

(4.3)

Consider model (4.3) with infinite horizon T =∞ and period m = 12. At the first stage,
D1 is assumed to be deterministic with D1 = 5.5. At stages τ = 2, · · · ,m+1, we assume the
following setting. The demands are discrete random variables such that Dj

τ = α+βξjτ , where
α = 9.0, β = 0.6, and values ξjτ , j = 1, ..., 50, are generated by taking random samples of size
50 from the uniform distribution on the interval [0, 1] independently for each τ = 2, · · · ,m+1.
The assigned probabilities pτj = 0.02 are the same for all τ and j. The backlog costs and
holding costs are static for all stages with bτ = 2.8 and hτ = 0.2, τ = 1, 2, · · · ,m + 1, and
cτ = cos(π

6
τ) + 1.5 for τ = 2, · · · ,m + 1. For t ≥ m + 2 the above setting is repeated

periodically with period m = 12. Optimization of (4.3) is performed over the respective
policies satisfying the feasibility constraints.

We conduct experiments with the following values of the discount factor: γ = 0.8, γ =
0.9906, γ = 0.9990, γ = 0.9999. These settings aim at investigating rate of convergence
when discount factor approaches one. To solve the dual problem we apply the periodical
Dual SDDP algorithm with penalization (see Algorithm 1 in the Appendix), equipped with
penalty parameter sequence: rkt = 104, t = 1, 2, · · · , for every iteration k.

In Table 1, we use ‘Primal-PSDDP’ and ‘Dual-PSDDP’ to denote the periodical Primal
SDDP and Dual SDDP algorithms, respectively. Deterministic (upper) bounds of the dual
and deterministic (lower) bound of the primal problem are represented by (D.-UB.) and (D.-
LB), respectively. For example, Dual-PSDDP(D.-UB.) refers to the deterministic (upper)
bound output from periodical Dual SDDP. Gap(%) is computed by

Dual-PSDDP(D.-UB.)− Primal-PSDDP(D.-LB)

Dual-PSDDP(D.-UB.)
× 100%. (4.4)

Different rows of the table are associated with different discount factors. At each row, we
display deterministic bounds of the primal and dual problems when the algorithm stabilizes.
The results in the table suggest that as the discount factor approaches one, the convergence
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slows down. This is not surprising and such effect is well known. On the other hand, results
in Table 1 show that when the algorithm stabilizes, the optimality gap does not differ much
in scale even when the discount factor is close to one. It can also be seen that the optimal
value of the problem is almost proportional to (1 − γ)−1. This of course is in accordance
with the geometric series view of the considered problem (4.1).

γ Dual-PSDDP(D.-UB.) Primal-PSDDP(D.-LB.) Gap(%)

0.8 43.783186 43.782698 1.115×10−3

0.9906 1173.345945 1173.204425 1.206×10−2

0.9990 11059.03217 11051.86157 6.485×10−2

0.9999 110590.2919 110514.1413 6.886×10−2

Table 1: Inventory problem: evolution of bounds of primal and dual periodical programs.

When the discount factor γ approaches one (e.g., γ = 0.999, γ = 0.9999), our experiments
indicate that the convergence is much slower than for smaller discount factors. In order to
deal with this we apply the trust-bound strategy to the periodical Dual SDDP algorithm,
as it drastically saves CPU time and yields a faster convergence (see Remark 4.1 below and
section 5.1 of the Appendix).

Remark 4.1 (trust-bound strategy) The dual SDDP algorithm starts by setting an ini-
tial (constant) upper bound for the value functions, and proceeds by adding cuts during the
iterations. In order to make sure that this initial upper bound is bigger than the respective
optimal values, the corresponding constant is taken to be sufficiently large. After a signif-
icant number of cuts are generated, large linear programs should be solved at consecutive
iterations, and this slows down the progress of the numerical procedure. An idea is to restart
the algorithm after a certain number of iterations by removing all generated cuts and setting
the current upper bounds of the value functions at each stage of the optimization problem.
This strategy worked quite well especially when the discount factor was close to one (see
section 5.1 of the Appendix for a further discussion).

It could be mentioned that other cut selection strategies have been proposed in the
literature, e.g., [4],[5],[9].

Remark 4.2 When the discount factor is very close to one, it becomes very challenging
to compute the classical statistical upper bound for the optimal value especially of large-
scale problems. To illustrate this, consider for instance the inventory model (4.3) with
γ = 0.999 and period m = 12, and compute its statistical upper bound (with 95% confidence
level). When the algorithm for solving the primal model stabilizes, we evaluate value of the
constructed policy on the discretized model using Monte Carlo simulation with number of
simulations equal to 3000.

Note that when γ = 0.999, the error of a finite horizon approximation is of order
O
(
γT/(1− γ)

)
(cf., [11]), which is small enough (≈ 0.045) only when T ≥ 10000. The

CPU time to compute the statistical upper bound using T = 10000 exceeds 24 hours. If we
decrease T to 5000, the CPU time to compute the statistical bound is around 18.7 hours.
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However, the obtained statistical bound turns out to be smaller than the primal determinis-
tic bound, which indicates that such T is too small to provide a valid upper bound. On the
other hand, a valid (deterministic) upper bound obtained by solving the dual problem em-
ploying the periodical Dual SDDP method with trust bound strategy, only consumes CPU
time less than 1 hour with the corresponding gap less than 0.1%.

4.2 Hydro-thermal generation problem

In this section we consider the Brazilian Inter-connected Power System operation planning
problem discussed in [13]. This problem is much larger than the inventory problem con-
sidered in the previous section. The original problem has T = 120 stages corresponding
to 10 years of monthly planning with the discount factor γ = 0.9906 (this discount factor
corresponds to the annual discount rate of 12%), and 4 state variables representing energy
equivalent reservoirs of four interconnected main regions. The random data process is rep-
resented by the respective 4-dimensional vectors of monthly inflows. We assume that the
monthly inflows are stagewise independent and are sampled from 4-dimensional log-normal
distributions calibrated by the historical data. Here we follow the periodical variant of this
problem discussed in [11] with period m = 12 corresponding to the monthly cycle of one
year. The explicit formulations of the primal and dual model are presented in section 5.2 of
the Appendix.

We apply the periodical Dual SDDP (Algorithm 1 in the Appendix) to solve the SAA of
the dual problem, with 50 samples per stage. In order to approximate the infinite horizon
setting, we run T = 120 stages in the forward pass. The error of that finite horizon approx-
imation is of order O

(
γT/(1− γ)

)
(cf., [11]). By exploring the periodical behavior, we only

need to perform m stages in the backward pass to approximate the value functions. Objec-
tive coefficients of the penalty terms in the algorithm are chosen as {rkτ} = 1× 109 through
out all stages and all iterations. The initial upper bounds of value functions approximation
is set as 1× 109 for all stages.

Empirical results are reported for two cases: γ = 0.8 and γ = 0.9906. We solve the first
model without applying trust-bound strategy. It can be observed that the periodical Dual
SDDP method, with the trust-bound strategy, signifies fast convergence in the dual problem,
especially when the discount factor is close to one. As it was discussed in the previous
section, for γ = 0.9906 in order to employ the classical statistical upper bound procedure,
the corresponding time horizon T should be so large that makes it computationally infeasible.

Table 2 reports deterministic bounds and relative gaps of primal and dual problems with
γ = 0.8 for iterations 100, 200, 300, 400, 500, 800, 1000 and an extra iteration 3000 for the
primal problem. We use same notations here as in Table 1. In the last row of the table,
gap is computed by the dual bound at the 1500-th iteration and the primal lower bound at
3000-th iteration, as the dual bound stabilizes around iteration 1500.
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Iter. Dual-PSDDP Primal-PSDDP Gap(%)
(D.-UB.)(×106) (D.-LB.)(×106)

100 20.454 6.261 69.39
200 11.959 6.589 44.90
300 9.499 6.739 29.06
400 8.602 6.824 20.67
500 8.182 6.851 16.26
800 7.616 6.897 9.43
1000 7.477 6.915 7.51
1500 7.328 6.941 5.28
3000 - 6.964 <4.96

Table 2: Hydro-thermal problem with γ = 0.8: deterministic bounds of primal and dual
periodical programs.

In Figure 1 we demonstrate evolution of deterministic primal and dual bounds produced
by the algorithm in solving the hydro-thermal problem with discount factor γ = 0.9906. To
solve the dual problem, we utilize the trust-bound strategy by restarting the algorithm every
100 iterations and run the algorithm for 1900 iterations in total when it stabilizes.

In view of the evolution of the dual bounds displayed by the figure, we add a few remarks.
Firstly, it can be observed that the dual bounds are monotonically decreasing in each epoch
(between two consecutive restarts). Such property is not maintained by consecutive restarts,
that is, at the beginning of current restart, the dual bound may be larger than the one
at the end of the last restart. One reason for this is that initialized bounds of the value
functions are still larger than the potential tightest upper bounds of the problem. It should
be noticed that, the displayed dual bound is the optimal value of the value function at the
first stage while at each restart,only value functions from stage 2 and onwards are initialized
using the information from the last iteration. Therefore, at the beginning of each restart,
the multistage problem is re-optimized and a new optimal value of the first stage problem is
computed.

Secondly, it can be seen from the figure that the algorithm converges faster in the first
few restarts and becomes slower afterwards. In the last few restarts, the algorithm stabilizes
and precludes the dual bound from descending below the primal lower bound.

In Table 3, we present results of the values of both deterministic bounds and the rela-
tive gaps at iterations 100, 500, 1000, 1200, 1500, 1700, 1900 and an extra value of the primal
bound at iteration 3000. The gap corresponding to the last row with iteration 3000 is esti-
mated by the dual bound at iteration 1900 and the primal bound at iteration 3000. It could
be observed that the computed gaps are significantly better than the ones in Table 2, this is
due to the employed trust-bound strategy.
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Figure 1: Hydro-thermal problem with γ = 0.9906: evolution of deterministic bounds of
primal and dual periodical multistage stochastic programs. The orange line is obtained by
smoothing the dual bounds (in blue) to exhibit the descending trend.

Iter. Dual-PSDDP Primal-PSDDP Gap(%)
(D.-UB.)(×108) (D.-LB.)(×108)

100 8.7443 2.4405 72.09
500 6.5912 3.2941 52.61
1000 4.7428 3.3995 28.32
1200 4.2559 3.4213 19.61
1500 3.8719 3.448 10.95
1700 3.6315 3.4601 4.72
1900 3.5621 3.4698 2.59
3000 - 3.5052 <1.6

Table 3: Hydro-thermal problem with γ = 0.9906: deterministic bounds of primal and dual
periodical programs.
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5 Appendix

5.1 Periodical Dual SDDP

In this section we present a detail discussion of the periodical Dual SDDP method with
period m ≥ 1. In particular, we elaborate on the trial point selection in the forward step
and cutting plane method in the backward step of the algorithm.

5.1.1 Trial points selection

In the forward step, we fix a finite value for the time horizon T , and solve the corresponding T -
stage problems. The obtained feasible solutions of the dual problem are state variables {λtj}.
Notice that each optimization problem at stage t = 2, · · · , T , is not separable with respect
to solution corresponding to each (discretized) sample. For each stage t ≥ 2, by selecting
λ′t := λtĵ with probability pτ ĵ, ĵ ∈ {1, · · · , Nτ}, where τ = t (mod m), we construct a set of
solutions {λ′t : t = 2, · · · , T}. Next, consider T -stages divided into consecutive groups with
periods m, that is, {(`, `+1, · · · , `+m−1) : ` = 1,m+1, 2m+1, 3m+1, · · · , `+m−1 ≤ T}.
Randomly select ` from {1,m+ 1, 2m+ 1, · · · , `+m− 1 ≤ T}, then we construct a group of
trial points {λ̄`+τ−1 : τ = 1, · · · ,m}.

5.1.2 Cutting Plane Algorithm

To deal with the issue of possible violation of the Relatively Complete Recourse (RCR), a
penalty term ν is introduced for the dual problem with objective coefficient r. With the
penalty term, the value function at each stage τ is finite valued on a compact set formed by
linear constraints, thus maximum is attainable. The WB equations can be written as, for
τ = m + 1, · · · , 2,

Vτ (λτ−1) = max
λτ , ντ≥0

Nτ∑
j=1

pτj

(
bjτ
>
λτj + γVτ+1(λτj)

)
− rτ>ντ

s.t. Aτ−1
>λτ−1 + γ

Nτ∑
j=1

pτjB
j
τ
>
λτj − ντ ≤ cτ−1,

(5.1)

where Vm+2(·) is replaced by V2(·). For τ = 1, the problem is deterministic and can be
written as

V1 = max b>1 λ1 + γV2(λ1). (5.2)

For each stage τ ∈ {1, 2, · · · ,m+ 1}, given a current upper approximation Vτ+1(·) of the
value function Vτ+1(·) and a trial point λ̄τ−1, new cuts {ψτj(·)} are constructed by computing
the (sub)gradient gτ at λ̄τ−1 of the current estimate of the value function. That is,

ψτj(λτ−1j) := g>τ (λτ−1j − λ̄τ−1) + V τ (λ̄τ−1), j = 1, · · · , Nτ−1, (5.3)

and a new supporting plane for Vτ (·) at λ̄τ−1 is generated by {ψτj} as

lτ (λτ−1) :=

Nτ−1∑
j=1

pτ−1jψτj(λτ−1j), (5.4)
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where

V τ (λ̄τ−1) = max
λτ , ντ≥0

Nτ∑
j=1

pτjb
j
τ
>
λτj + γVτ+1(λτ )− rτ>ντ

s.t. Aτ−1
>λ̄τ−1 + γ

Nτ∑
j=1

pτjB
j
τ
>
λτj − ντ ≤ cτ−1,

(5.5)

with λτ = [λτ1, · · · , λτj, · · · , λτNτ ]. Then collection of supporting planes of Vτ (·) is updated
by Vτ (·) ← min{Vτ (·), lτ (·)}. Specifically, cutting plane approximation for value function
at stage m + 2 is equal to the approximation at stage 2 by periodic property.

5.1.3 Trust-bound strategy

Note that for each τ ∈ {2, · · · ,m + 1}, Vτ (·) is formed by the minimum of piecewise linear
functions, and hence problem (5.5) can be formulated as a linear programming problem.
Suppose at iteration k in the backward step, we are solving the following problem at stage
τ :

max
Nτ∑
j=1

pτjb
j
τ
>
λτj + γατ+1 − rτ>ντ

s.t. A>τ−1λ̄τ−1 + γ
Nτ∑
j=1

pτjB
j
τ
>
λτj − ντ ≤ cτ−1,

ατ+1 ≤ lsτ+1(λτ ), s = 1, · · · , k,

(5.6)

where lsτ+1(·) denotes the supporting plane generated at iteration s ≤ k. Consequently, we
obtain optimal value of ατ+1, denoted by α̃kτ+1, as the best upper approximation for value
function at stage τ + 1 for current iteration.

If the algorithm restarts after the k-th iteration, then all the generated cuts are eliminated
and for each stage τ, τ = 2, · · · ,m+1, value function V τ is set to α̃kτ . The algorithmic scheme
is the same after each restart.

Finally, we refer to Algorithm 1 for details of the Periodical Dual Stochastic Dynamic
Dual Programming.
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Algorithm 1 Periodical Dual SDDP with penalization

1: Given sample size Nτ and discretizations {ujτ , vjτ , bjτ , Ajτ , Bj
τ , C

j
τ}Nτj=1, for τ = 2, · · · ,m+1.

2: Initialization of cutting planes: V0
τ = LargeBound, τ = 2, · · · ,m + 1, V0

m+2 = V0
2.

3: for k = 1, 2, . . . do
4: for t = 1, · · · , T do . Forward Pass
5: if t = 1 then τ = 1
6: else τ ≡ (t mod m)
7: end if

8:

{λtj}Nτj=1 = arg max{
Nτ∑
j=1

pτjb
j
τ

>
λtj + γVk−1

τ+1(λt)− rkτ
>
ντ :

Aτ−1
>λ̄t−1 + γ

Nτ∑
j=1

pτjB
j
τ

>
λtj − ντ ≤ cτ−1,

ντ ≥ 0}
9: Select forward solutions λ′t ← λtĵ

10: end for
11: Trial points selection: (λ̄1, · · · λ̄m)← (λ′`, λ

′
`+1, · · · , λ′`+m−1)

12: for τ = m + 1, · · · , 2 do . Backward Pass

13:

(V τ (λ̄τ−1), gτ ) = max{
Nτ∑
j=1

pτjb
j
τ

>
λτj + γVk

τ+1(λτ )− rkτ
>
ντ :

Aτ−1
>λ̄τ−1 + γ

Nτ∑
j=1

pτjB
j
τ

>
λτj − ντ ≤ cτ−1,

ντ ≥ 0}

14:
Update cutting planes: Vk

τ ← {α ∈ Vk−1
τ : α ≤

Nτ−1∑
j=1

pτ−1jψτj(λτ−1j),

ψτj(λτ−1j) ≤ gτ (λτ−1j − λ̄τ−1) + V τ (λ̄τ−1)}

15: if τ = 2 then update cutting planes: Vk
m+2 ← {α ∈ Vk−1

m+2 : α ≤
Nm+1∑
j=1

pm+1jψ2j(λm+1j),

ψ2j(λm+1j) ≤ g2(λm+1j − λ̄1) + V 2(λ̄1)}
16: end if
17: end for
18: Deterministic bound V k

1 = max{b>1 λ1 + γVk
2(λ1)}

19: end for
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5.2 Hydro-thermal planning problem

The explicit primal model of the infinite-horizon problem with discount factor γ = 0.9906 is
the following:

min
T∑
t=1

γt−1

[
4∑
i=1

bisi,t +
4∑
i=1

4∑
j=1

ejdfi,j,t +
4∑
i=1

ui
∑
k∈Ωi

gi,k,t +
5∑
i=1

5∑
j=1

cj,iexj→i,t

]
s.t. for t = 1, 2, · · · , T,∑

k∈Ωi

gi,k,t + qi,t +
4∑
j=1

dfi,j,t −
5∑
j=1

exi→j,t +
5∑
j=1

exj→i,t = di,t, i = 1, · · · , 4,

5∑
j=1

exj→5,t −
5∑
j=1

ex5→j,t = 0,

qi,t + si,t + vi,t − vi,t−1 = ai,t i = 1, · · · , 4,
si,t ≥ 0, i = 1, · · · , 4,
0 ≤ vi,t ≤ v̄i, i = 1, · · · , 4,
0 ≤ qi,t ≤ q̄i, i = 1, · · · , 4,
0 ≤ dfi,j,t ≤ d̄fi,j, i, j = 1, · · · , 4,
0 ≤ exi→j,t ≤ ēxi,j, i, j = 1, · · · , 4,
g
i
≤ gi,k,t ≤ ḡi, i = 1, · · · , 4, k ∈ Ωi.

(5.7)

We refer to [13] and [11] for the details of the primal model and variables/parameters nota-
tions correspondingly.

By writing the Lagrangian of (5.7) and dualization of the feasibility constraints, the dual
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model can be written as

max
T∑
t=1

γt−1

[
4∑
i=1

(
di,tλi,t + v̄ixi,t + q̄ioi,t +

4∑
j=1

d̄fjhi,j,t +
∑
k∈Ωi

(ḡizi,k,t + g
i
ωi,k,t) + ai,tµi,t

)

+
5∑
i=1

5∑
j=1

ēxi,jfi,j,t

]
+

4∑
i=1

ai,1µi,1 +
4∑
i=1

vi,0yi,1

s.t. for t = 1, · · · , T,
µt,i ≤ bi, i = 1, · · · , 4,
λi,t + µi,t + oi,t ≤ 0, i = 1, · · · , 4,
λi,t + hi,j,t ≤ ej, i, j = 1, · · · , 4,
λi,t + zi,k,t + ωi,k,t = ui, i = 1, · · · , 4, k ∈ Ωi,

for i ∈ {1, · · · , 5}, j ∈ {1, · · · , 5},
if i = j : fi,j,t ≤ ci,j,

if i 6= j, (i, j) ≤ 4 : −λi,t + λj,t + fi,j,t ≤ ci,j,

if i 6= j, i = 5, j < 5 : λj,t − ηt + fi,j,t ≤ ci,j,

if i 6= j, i < 5, j = 5 : λi,t + ηt + fi,j,t ≤ ci,j,

xi,t ≤ 0, i = 1, · · · , 4,
oi,t ≤ 0, i = 1, · · · , 4,
hi,j,t ≤ 0 i, j = 1, · · · 4,
zi,k,t ≤ 0, i = 1, · · · 4, k ∈ Ωi,

ωi,k,t ≥ 0, i = 1, · · · 4, k ∈ Ωi,

fi,j,t ≤ 0, i, j = 1, · · · , 5,
for t = 2, · · · , T,
µi,t−1 + xi,t−1 − γE [µi,t] ≤ 0, i = 1, · · · , 4.

(5.8)

Here in (5.8), we denote the states as {xi,t, i = 1, · · · , 4} and {µi,t, i = 1, · · · , 4} for t =
1, 2 · · · , T . Control variables are denoted by {λi,t}, {oi,t}, {hi,j,t}, {zi,k,t}, {ωi,k,t}, {fi,j,t} and
{yi,1}. In both models, initial stored energy vi,0 and initial inflow ai,1, i = 1, · · · , 4 are
given and inflow at := (a1,t, · · · , a4,t), t = 2 · · · , T is periodical and modeled as stagewise
independent stochastic process, such that at ∼ lognormal(µτ ,Στ ) for each t if t mod m = τ ,
τ = 2, · · ·m+ 1, where µτ and Στ is the mean and covariance matrix of log of the historical
inflow data for each month, respectively.
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