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Abstract

In this paper, we consider the rate of convergence of the sample average ap-
proximation (SAA) under heavy tailed distributions and quantify it under both
independent identically distributed (iid) sampling and non-iid sampling. We first
develop the uniform polynomial rates of convergence for both random functions and
random set-valued mappings under iid sampling. Further, we extend them to the
non-iid sampling case by using a Gärtner–Ellis type theorem. Finally, we apply the
obtained theoretical results to the SAA analysis of several kinds of stochastic opti-
mization problems, which show the applicability of our results in the discretization
of stochastic optimization. This study is motivated by the fact that data distri-
butions in many real applications are significantly heavy tailed, which cause many
existing results obtained under light tailed distribution assumption not applicable.

Keywords: polynomial rate SAA heavy tailed distributions uniform con-
vergence non-iid sampling stochastic optimization

1 Introduction

Stochastic optimization is usually intractable numerically in a straightforward way. For
instance, it may involve expectations (multidimensional integrals), which cannot be cal-
culated explicitly or even with high accuracy, the wait-and-see constraints in stochastic
optimization usually mean there are semi-infinite constraints. Different sampling meth-
ods have thus been proposed to pretreat and numerically solve stochastic optimization
problems. Through sampling, expectations are replaced by finite summations and the
semi-infinite wait-and-see constraints are reduced to finite constraints, which, therefore,
ease numerical difficulty.

When the sampling approach is adopted to derive the discretization problem, a
subsequent and important question is: whether the discretization problem approximates
the true counterpart well or not? Plenty of literature focused on this topic, see e.g.
monographs [1, 2] and papers [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], to name a few. In
general, these results can be roughly divided into two classes: the qualitative ones and
the quantitative ones. The former ones usually use the uniform law of large numbers
(LLN for short) (see e.g. [2]), central limit theorem (see e.g. [14]) or epi-convergence
(see e.g. [16, 17]) to obtain asymptotic convergence assertions. Nevertheless, they fail to
tell how fast the convergence could be or how large the sample size should be to achieve
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a certain accuracy. The latter ones aim to give an estimation of the necessary sample
size for fixed accuracy and confidence level. The quantitative estimation can provide
more practical guidance in numerical solution process. Here the commonly-used tool∗

is the large deviation theory, which has been proved to be a crucial tool to handle
many problems in statistics, engineering, statistical mechanics and applied probability
[18]. Through large deviation theory, the uniform exponential rate of convergence with
increase of the sample size can be derived, see [1, 3, 2] for more details.

In view of the tremendous literature in this respect, we review here some typical
researches. As for qualitative convergence analysis, early works on the asymptotic be-
haviour of stochastic programs are mainly based on the M-estimators ([19]), see e.g.
[16, 20, 21]. Based on Monte Carlo (i.e., iid sampling) method, Kleywegt et al. con-
sidered in [14] the convergence of the optimal value and optimal solution set of the
SAA problem. The uniform LLN is often needed to derive convergence for the optimal
value and optimal solution set. The uniform LLN for real-valued random functions has
been discussed by Rubinstein and Shapiro in [22] and a uniform version of LLN for ran-
dom set-valued mappings was studied by Shapiro and Xu in [4]. By uniform LLN, the
convergence assertions for different kinds of stochastic optimization models have been
investigated in papers, like [6, 17, 23, 24, 1, 10].

As for quantitative convergence analysis, Kaniovski et al. first adopted in [25] the
large derivation theory to derive the exponential rate of convergence. Shapiro and
Homem-de-Mello [12], Kleywegt et al. [14] and Shapiro and Xu [3] employed the Monte
Carlo simulation technique (iid sampling) to derive the SAA problem, and established
the exponential rate of convergence by large derivation. On the basis of the relationship
between support function and deviation distance, Xu considered in [9] the exponen-
tial rate of convergence for random set-valued mappings. Ralph and Xu studied in [6]
the SAA of general two-stage stochastic minimization problems and obtained the expo-
nential convergence assertions of stationary points by utilizing the uniform exponential
convergence of random set-valued mappings. For the non-iid sampling, the well-known
Gärtner–Ellis theorem (see e.g. [18, Theorem 2.3.6]) is usually employed to derive the
exponential rate of convergence. Dai et al. considered in [7] the empirical two-stage
stochastic programming problem under non-iid sampling, and established the exponen-
tial convergence for the probability of deviation of the empirical optimum from the true
optimum by using large deviation techniques. Homem-de-Mello investigated in [8] the
rates of convergence of estimators of the optimal solution set and optimal value with
respect to the sample size under general sampling, which contains Latin hypercube sam-
pling and quasi-Monte Carlo as special cases. Xu [9] considered the uniform exponential
rate of convergence under H-calmness and general sampling. Further, Sun and Xu [13]
extended the results in [9] to a more general setting than H-calmness.

To establish the exponential rate of convergence, some strong assumptions are im-
posed. One of the most restricted assumptions is the light tailed distribution assumption.
We say that a probability distribution is a light tailed distribution if its tails damp ex-
ponentially [26, Chapter 7]; otherwise, we call the probability distribution heavy tailed.
Therefore, if the underlying probability distribution is heavy tailed, the existing results,
such as [3, 6, 4, 12, 14], cannot quantify the rate of convergence. However, in many prac-
tical applications, such as financial risk management ([27]), insurance policy selection
and analysis of resident income, the relevant data distributions are significantly skewed
with high leptokurtosis. For these problems, the heavy tailed distribution becomes quite
important for properly describing the underlying probability distribution.

Considering the above issues, we investigate in this paper the rate of convergence

∗The Hoeffding’s inequality can also be used to give the exponential rate of convergence. However,
it requires the boundedness of the support set
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under heavy tailed distributions, for both iid and non-iid sampling cases. The main
contributions of this paper can be summarized as follows.

• We study the SAAs of random functions and random set-valued mappings, re-
spectively, and establish their uniform polynomial rates of convergence under iid
sampling and heavy tailed distributions.

• We extend the above results to the general (non-iid) sampling case by establishing
a Gärtner–Ellis type theorem. To the best of our knowledge, there are not such
results in the current literature.

• Finally, we apply our quantitative results about rates of convergence under heavy
tailed distributions to several kinds of stochastic optimization problems. By this
way, we obtain many novel results of these models compared with the existing
works.

The rest of this paper is organized as follows. In Section 2, under iid sampling, some
preliminaries from Chebyshev’s inequality are discussed. Then the pointwise polynomial
rate of convergence under heavy tailed distributions is presented. In Section 3, we
develop the uniform polynomial rates of convergence for both random functions and
random set-valued mappings under iid sampling and heavy tailed distributions. In
Section 4, we reestablish the rates of convergence in Section 3 under general sampling
framework. In Section 5, the obtained theoretical results are applied to several types
of stochastic optimization problems to illustrate their applicability and effectiveness.
Finally, we conclude the whole paper in Section 6.

We use the following notations and terminologies throughout the paper. Denote by
Rn+ the collection of all nonnegative elements in Rn; ‖·‖ denotes the Euclidean norm
in the corresponding space; For A,B ⊆ Rn, ‖A‖ := supa∈A ‖a‖; The distance from a
point a ∈ A to B is denoted by d(a,B) = infb∈B ‖a− b‖; D(A,B) denotes the deviation
distance between A and B, i.e., D(A,B) := supa∈A d(a,B); H(A,B) denotes the Haus-
dorff distance between A and B, i.e., H(A,B) = max{D(A,B),D(B,A)}; We use ‘>’ to
denote the transposition of vectors or matrices; A + B := {a + b : a ∈ A, b ∈ B} and
λA := {λa : a ∈ A} for λ ∈ R; Denote by B the unit closed ball in the corresponding
space according to the context; We use ‘⇒’ to denote set-valued mappings.

2 Preliminaries from Chebyshev’s inequality

In this section, we will present some preliminary results from Chebyshev’s inequality,
which are important for our later discussion. Chebyshev’s inequality (see e.g. [28,
Theorem 1.6.4] and [29, Lemma 3.1]) is a well-known and powerful tool in probability
theory. We first give a trivial variant of the classical Chebyshev’s inequality, which can
also be found in [26, Section 6.1].

Lemma 2.1 ([26]). Let X be a nonnegative random variable defined on probability space
(Ω,F ,P) and g : R+ → R+ be a nondecreasing function. Then

P {X ≥ ε} ≤ E[g(X)]

g(ε)
(1)

holds for any ε ≥ 0 with g(ε) > 0.
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Proof. Note that

P{X ≥ ε} ≤
∫
g(X)≥g(ε)

1dP
(a)

≤
∫
g(X)≥g(ε)

g(X)

g(ε)
dP

=

∫
Ω

g(X(ω))1{g(X)≥g(ε)}(ω)

g(ε)
dP

(b)

≤ E[g(X)]

g(ε)
,

where (a) follows from g(X) ≥ g(ε) and g(ε) > 0; 1{g(X)≥g(ε)}(ω) denotes the indicator
function, that is

1{g(X)≥g(ε)}(ω) =

{
1, g(X(ω)) ≥ g(ε),

0, otherwise;

(b) follows from the nonnegativeness of X and g.

It is easy to see that Lemma 2.1 reduces to the classical Markov’s inequality when
g(x) = x. Moreover, the random variable X can take values over R, that is, X : Ω→ R.
In that case, g : R → R+ is nondecreasing. Moreover, we can choose ε ∈ R as long as
g(ε) > 0. Then (1) holds by using a similar proof.

Let X1, · · · , XN be N iid random samples of X over probability space (Ω,F ,P).
Denote by µ = E[X] and

X̄ =
1

N

N∑
i=1

Xi.

It is known from the strong LLN that X̄ → µ as N →∞ with probability 1. However,
it fails to tell us how fast this convergence could be. This is very important in practical
calculation for specified accuracy and confidence level. In view of this, the rate of con-
vergence has been widely discussed. In the relevant works, the Cramér’s large deviation
theorem is used to develop the exponential rate of convergence. In fact, the Cramér’s
large deviation theorem can be derived from Lemma 2.1 by letting g be an exponential
function; see e.g. [2, Chapter 7] for more details. The Cramér’s large deviation theorem
asserts that

P
{∣∣X̄ − µ∣∣ ≥ ε} ≤ exp(−N min{I(ε), I(−ε)}), (2)

where I(ε) := supt∈R{εt − lnM(t)} is the large deviation rate function of X and
M(t) = E[exp(tX)] is the moment generating function of X. Under certain light tailed
distributions assumption, both I(ε) and I(−ε) can be positive and bounded. Then the
exponential rate of convergence with sample size N follows directly from (2).

Surely, the exponential rate of convergence is a quite fast convergence rate. To
derive the exponential rate of convergence, a light tailed distribution (the tail parts
of the distribution should damp exponentially) assumption is usually necessary, which
is restrictive sometimes in practical applications. Are there relatively weak conditions
imposed on the underlying distributions, such that the rate of convergence under more
general distributions can be derived? In what follows, we try to settle this problem. To
this end, we give the following vital lemma.

Lemma 2.2 ([30]). Suppose that: (i) Y1, · · · , YN are N iid random samples of the
random variable Y defining on probability space (Ω,F ,P); (ii) E[Y ] = 0 and the first p
moments of Y are finite for some p ≥ 2. Then

E

[(
N∑
i=1

Yi

)p]
≤ CN

p
2
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for sufficiently large N , where C is a positive constant depending only on p and the first
p moments of Y .

Based on Lemma 2.2, we immediately have the following conclusion.

Theorem 2.3 ([30]). Let E[X] = µ and the first p moments of X be finite with some
p ≥ 2. Then,

P
{∣∣X̄ − µ∣∣ ≥ ε} ≤ C

N
p
2 εp

holds for any ε > 0 and sufficiently large N , where C is a positive constant depending
on p and the first p moments of X − µ.

In this section, we have presented the pointwise polynomial rate of convergence (The-
orem 2.3) under iid sampling. Compared with the existing results about the exponential
rate of convergence, our polynomial rate of convergence does not require the light tailed
assumption. Instead, it only needs some finite moment information, which can be easily
satisfied in many applications. All these lay the foundation for the discussion in the
sequel.

3 Uniform polynomial rate of convergence under iid sam-
pling

In this section, we will derive the uniform polynomial rate of convergence under iid
sampling. The uniform convergence is quite important in the SAA convergence analysis
of stochastic optimization problems [2]. Specifically, we examine two cases in this sec-
tion. The first case is for random functions. The second case is for random set-valued
mappings.

3.1 Uniform polynomial rate of convergence for random functions

Consider a random vector ξ defined on probability space (Ω,F ,P) with the support set
being Ξ ⊆ Rs. Let X ⊆ Rn and ξ1, · · · , ξN be N iid samples for ξ. For a random
function F : X × Ξ→ R, let f(x) := E[F (x, ξ)] and f̂N (x) := 1

N

∑N
i=1 F (x, ξi).

For fixed x ∈ X , if F (x, ξ) has the finite first p moments, we know from Theorem
2.3 that

P
{∣∣∣f̂N (x)− f(x)

∣∣∣ ≥ ε} ≤ Cx

N
p
2 εp

for sufficiently large N . However, this estimation depends on x. For some applications,
we need a uniform rate of convergence with respect to x ∈ X , especially for the SAA
convergence of stochastic optimization problems. To this end, we first introduce the
concept of H-calmness introduced in [9, Definition 2.3].

Definition 3.1 (H-calmness, [9]). Let F : X × Ξ→ R. Then

(i) F is H-calm at x from above with modulus κ(ξ) and order γ if F (x, ξ) is finite and
there exist κ : Ξ→ R+, γ > 0 and δ > 0 such that

F (x′, ξ)− F (x, ξ) ≤ κ(ξ)
∥∥x′ − x∥∥γ

for all x′ ∈ X with ‖x′ − x‖ ≤ δ and ξ ∈ Ξ;

(ii) F is H-calm at x from below with modulus κ(ξ) and order γ if F (x, ξ) is finite and
there exist κ : Ξ→ R+, γ > 0 and δ > 0 such that

F (x′, ξ)− F (x, ξ) ≥ −κ(ξ)
∥∥x′ − x∥∥γ

for all x′ ∈ X with ‖x′ − x‖ ≤ δ and ξ ∈ Ξ;
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(iii) F is H-calm at x with modulus κ(ξ) and order γ if F (x, ξ) is finite and there exist
κ : Ξ→ R+, γ > 0 and δ > 0 such that∣∣F (x′, ξ)− F (x, ξ)

∣∣ ≤ κ(ξ)
∥∥x′ − x∥∥γ

for all x′ ∈ X with ‖x′ − x‖ ≤ δ and ξ ∈ Ξ.

F is said to be H-calm from above, H-calm from below, H-calm over X if the correspond-
ing properties stated above hold at every point of X .

If F is H-calm from above, H-calm from below and H-calm at x with modulus κ(ξ)
and order 1, F is also called calm from above, calm from below and calm, respectively
(see [32, Chapter 8]). From the above definition, we know that: if F is locally Lipschitz
continuous at x with Lipschitz modulus κ(ξ), then it must be H-calm at x with modulus
κ(ξ) and order 1 (i.e., F is calm at x with modulus κ(ξ)), but not vise versa. From that
point of view, the concept of H-calmness is somehow an extension of calmness and locally
Lipschitz continuity. One can refer to [9, Example 2.1] for an example of H-calmness.

In the light of Theorem 2.3 and H-calmness, we have the following uniform polyno-
mial rate of convergence.

Theorem 3.2. Suppose that: (i) X is compact; (ii) E[F (x, ξ)p] < +∞ for each x ∈ X
and some p ≥ 2; (iii) f(x) is continuous on X ; (iv) ξ1, · · · , ξN are iid samples. Let
κ : Ξ→ R+ be a measurable function with E[κp(ξ)] < +∞ and γ be a positive scalar.

(a) If F (·, ξ) is H-calm from above over X with modulus κ(ξ) and order γ, for arbitrary
ε > 0, there exists a positive scalar C1, independent of N , such that

P
{

sup
x∈X

(
f̂N (x)− f(x)

)
≥ ε
}
≤ C1

N
p
2 εp

for sufficiently large N ;

(b) If F (·, ξ) is H-calm from below over X with modulus κ(ξ) and order γ, for arbitrary
ε > 0, there exists a positive scalar C2, independent of N , such that

P
{

inf
x∈X

(
f̂N (x)− f(x)

)
≤ −ε

}
≤ C2

N
p
2 εp

for sufficiently large N ;

(c) If F (·, ξ) is H-calm over X with modulus κ(ξ) and order γ, for arbitrary ε > 0, there
exists a positive scalar C3, independent of N , such that

P
{

sup
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ ≥ ε} ≤ C3

N
p
2 εp

for sufficiently large N .

Proof. This proof is similar to that of [2, Theorem 7.73] and [9, Theorem 3.1]. For
completeness, we give a simple proof. Since (a) and (b) can be verified in a similar
way, and (c) holds automatically from (a) and (b), we just give the proof of (a) in what
follows.

Since F is H-calm from above on X with modulus κ(ξ) and order γ, we have from
Definition 3.1 that: for any x ∈ X , there exists a positive scalar δx depending on x such
that

F (x′, ξ)− F (x, ξ) ≤ κ(ξ)
∥∥x′ − x∥∥γ (3)
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holds for all x′ ∈ X with ‖x′ − x‖ ≤ δx and ξ ∈ Ξ.
Let ε be an arbitrary positive scalar. Since X is compact and f is continuous on X ,

we have a finite η-net of X , denoted by {x̄1, · · · , x̄ν}, such that for any x ∈ X , there
exists an i(x) ∈ {1, · · · , ν} such that∥∥x− x̄i(x)

∥∥ ≤ η ≤ δx̄i(x) , (4)

ε

3ηγ
− κ̄ ≥ ε (5)

and ∣∣f(x̄i(x))− f(x)
∣∣ ≤ ε

3
, (6)

where κ̄ = E[κ(ξ)]. (3) together with (4) imply that

F (x, ξ)− F (x̄i(x), ξ) ≤ κ(ξ)
∥∥x− x̄i(x)

∥∥γ . (7)

Note that

f̂N (x)− f(x) ≤ f̂N (x)− f̂N (x̄i(x)) +
∣∣∣f̂N (x̄i(x))− f(x̄i(x))

∣∣∣+
∣∣f(x̄i(x))− f(x)

∣∣
≤ 1

N

N∑
i=1

κ(ξi)ηγ +
∣∣∣f̂N (x̄i(x))− f(x̄i(x))

∣∣∣+
ε

3
,

where the last inequality follows from (6) and (7). Therefore,

P
{
f̂N (x)− f(x) ≥ ε

}
≤ P

{
1

N

N∑
i=1

κ(ξi)ηγ +
∣∣∣f̂N (x̄i(x))− f(x̄i(x))

∣∣∣+
ε

3
≥ ε

}

= P

{
1

N

N∑
i=1

κ(ξi)ηγ +
∣∣∣f̂N (x̄i(x))− f(x̄i(x))

∣∣∣ ≥ 2

3
ε

}

≤ P

{
1

N

N∑
i=1

κ(ξi) ≥ ε

3ηγ

}
+ P

{∣∣∣f̂N (x̄i(x))− f(x̄i(x))
∣∣∣ ≥ ε

3

}
.

As for P
{

1
N

∑N
i=1 κ(ξi) ≥ ε

3ηγ

}
, we have

P

{
1

N

N∑
i=1

κ(ξi) ≥ ε

3ηγ

}
= P

{
1

N

N∑
i=1

κ(ξi)− κ̄ ≥ ε

3ηγ
− κ̄

}

≤ P

{∣∣∣∣∣ 1

N

N∑
i=1

κ(ξi)− κ̄

∣∣∣∣∣ ≥ ε

3ηγ
− κ̄

}

≤ P

{∣∣∣∣∣ 1

N

N∑
i=1

κ(ξi)− κ̄

∣∣∣∣∣ ≥ ε
}
.

Theorem 2.3 concludes that

P

{∣∣∣∣∣ 1

N

N∑
i=1

κ(ξi)− κ̄

∣∣∣∣∣ ≥ ε
}
≤ C̄1

N
p
2 εp

(8)

for sufficiently large N , where C̄1 is a positive constant depending on p and the first p
moments of κ(ξ)− κ̄.

7



As for P
{∣∣∣f̂N (x̄i(x))− f(x̄i(x))

∣∣∣ ≥ ε
3

}
, we have directly from Theorem 2.3 that

P
{∣∣∣f̂N (x̄i(x))− f(x̄i(x))

∣∣∣ ≥ ε

3

}
≤
Cx̄i(x)

N
p
2 εp

holds for sufficiently large N , where Cx̄i(x) is a positive constant depending on p and the
first p moments of F (x̄i(x), ξ)− f(x̄i(x)). Because there are finite points in the η-net, we

can select a uniform positive scalar Ĉ1, such that

P
{∣∣∣f̂N (x̄i)− f(x̄i)

∣∣∣ ≥ ε

3

}
≤ Ĉ1

N
p
2 εp

(9)

for sufficiently large N and all i ∈ {1, · · · , ν}.
Finally, (8) together with (9) conclude that

P
{
f̂N (x)− f(x) ≥ ε

}
≤ C1

N
p
2 εp

for sufficiently large N , where C1 := C̄1 + Ĉ1.

Theorem 3.2 gives the polynomial rate of convergence under mild conditions. We
have some comments as follows.

Remark 3.3. It knows from the proof that C1, C2 and C3 (independent of the sample
size N) depends on the η-net we choose. The net is dependent on the accuracy parameter
ε. Thus, C1, C2 and C3 are also dependent on ε.

The assumptions in Theorem 3.2 is much weaker than those in [2, 9, 3]. In general,
to ensure the exponential rate of convergence, F (x, ξ) for each x ∈ X should have a light
tailed distribution and κ(ξ) also needs to obey a light tailed distribution. That is, both
E [exp{t(F (x, ξ)− f(x))}] for every x ∈ X and E [exp{t(κ(ξ)− κ̄)}] are finitely valued
for all t in a neighbourhood of zero (see e.g. [3, Section 5, C1-C3] and [2, Theorem 7.73]
for more details). We know from [26, Chapter 7] that these conditions stand for light
tailed assumptions, which are difficult to verify to some extent. Compared with those
limited conditions, Theorem 3.2 might be more friendly to provide some quantification
assertions for the rate of convergence, because it just requires certain finite moment
information.

For arbitrarily fixed accuracy parameter ε, Theorem 3.2 can help us to estimate how
large the sample size N should be to ensure the confidence level ρ ∈ (0, 1). Take (c) in
Theorem 3.2 as an example. To ensure

P
{

sup
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ ≥ ε} ≤ ρ,

a sufficient condition is C3/N
p
2 εp ≤ ρ, which is equivalent to N ≥ (C3)

2
p /(ρ

2
p ε2).

Generally, our estimation of the sample size N will be larger than those in [2, 9, 3]
which estimate the sample size by the exponential rate of convergence. However, as what
we stated, our assumptions are much weaker than theirs. Thus, our results are expected
to give some quantification assertions under certain harsh conditions, like heavy tailed
distributions.

3.2 Uniform polynomial rate of convergence for random set-valued
mappings

In this subsection, we consider the uniform polynomial rate of convergence for random
set-valued mappings. For this purpose, denote by Φ : X ×Ξ ⇒ Rn a set-valued mapping
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where X and Ξ are defined in Section 3.1. Let ξ1, · · · , ξN be N iid random samples.
Then its SAA approximation is 1

N

∑N
i=1 Φ(x, ξi). For the simplicity of notation, we

denote

Φ̂N (x) =
1

N

N∑
i=1

Φ(x, ξi)

and
Φ̂(x) = E[conv{Φ(x, ξ)}],

where ‘conv’ stands for the convex hull and the expectation of a set-valued mapping is
defined by the Aumann integral [33]. Then we consider the rate of convergence between
Φ̂N (x) and Φ̂(x) in what follows.

Recall that Φ(x, ξ) is called (convex-)compact-valued if Φ(x, ξ) is a (convex)compact
set for every x ∈ X and ξ ∈ Ξ. The strong LLN for set-valued mappings (see [34]) tells
us: if Φ(x, ξ) is compact-valued and E[‖Φ(x, ξ)‖] <∞, we have

H(Φ̂N (x), Φ̂(x))→ 0

as N → ∞, where E[‖Φ(x, ξ)‖] := supφ(x,ξ)∈Φ(x,ξ) E[‖φ(x, ξ)‖] and H(·, ·) denotes the
Hausdorff distance between two sets. Recall that for probability space (Ω,F ,P), a set
A ∈ F with P(A) > 0 is an atom of P if for all B ∈ F and B ⊆ A, either P(B) = 0 or
P(B) = P(A). (Ω,F ,P) or P is called nonatomic if it has no atoms. It follows from the
definition of Aumann integral [33] that: if the probability space (Ω,F ,P) is nonatomic,
we have

E[conv{Φ(x, ξ)}] = E[Φ(x, ξ)].

Thus, if probability space (Ω,F ,P) is nonatomic, we have the following consistent esti-
mation in the sense of Hausdorff distance

H(Φ̂N (x),E[Φ(x, ξ)])→ 0

as N →∞. For more discussions in this aspect, one can refer to [9, Proposition 4.1].
Since the above convergence is in pointwise sense, which fails to analyze convergence

of stochastic optimization problems, the uniform LLN for random set-valued mappings
was investigated in [4]. However, note that this convergence analysis does not quantify
the rate of convergence as N → ∞. The uniform exponential rate of convergence with
respect to x has been conducted under light tailed distributions [9, 6]. Here, we extend
them to heavy tailed distributions. For this purpose, we first address that the deviation
of a set A ⊆ Rn from a set B ⊆ Rn, denoted by D(A,B), has a close relationship with
the support function of A, denoted by σ(u,A) := supa∈A u

>a, and the support function
of B, denoted by σ(u,B) := supb∈B u

>b. We summarize it as the following lemma (see
also [35, Theorem II-18] and [6, Lemma 3.1]).

Lemma 3.4 ([35]). Let A,B be two nonempty and compact subsets of Rn. Then

D(A,B) ≥ max
‖u‖≤1

(σ(u,A)− σ(u,B)) (10)

and
H(A,B) ≥ max

‖u‖≤1
|σ(u,A)− σ(u,B)| . (11)

If, moreover, A and B are convex, the equalities in (10) and (11) hold.

Lemma 3.4 is a commonly-used tool for the analysis of the rate of convergence
for random set-valued mappings, see [9, (4.31)] and [6]. For Φ(x, ξ) being nonempty,
compact and convex, we have
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D(Φ̂N (x), Φ̂(x)) = max
‖u‖≤1

(
σ
(
u, Φ̂N (x)

)
− σ

(
u, Φ̂(x)

))
= max
‖u‖≤1

(
σ

(
u,

1

N

N∑
i=1

Φ(x, ξi)

)
− σ

(
u, Φ̂(x)

))

= max
‖u‖≤1

(
1

N

N∑
i=1

σ
(
u,Φ(x, ξi)

)
− σ (u,E[Φ(x, ξ)])

)

= max
‖u‖≤1

(
1

N

N∑
i=1

σ
(
u,Φ(x, ξi)

)
− E [σ (u,Φ(x, ξ))]

)
.

Then for any positive scalar ε, we have

P
{
D(Φ̂N (x), Φ̂(x)) ≥ ε

}
= P

{
max
‖u‖≤1

(
1

N

N∑
i=1

σ
(
u,Φ(x, ξi)

)
− E [σ (u,Φ(x, ξ))]

)
≥ ε

}
.

Analogously, we have

P
{
D(Φ̂(x), Φ̂N (x)) ≥ ε

}
= P

{
max
‖u‖≤1

(
E [σ (u,Φ(x, ξ))]− 1

N

N∑
i=1

σ
(
u,Φ(x, ξi)

))
≥ ε

}

and

P
{
H(Φ̂N (x), Φ̂(x)) ≥ ε

}
= P

{
max
‖u‖≤1

∣∣∣∣∣ 1

N

N∑
i=1

σ
(
u,Φ(x, ξi)

)
− E [σ (u,Φ(x, ξ))]

∣∣∣∣∣ ≥ ε
}
.

The above equalities mean that: investigating the rate of convergence for random set-
valued mappings can be transformed into the corresponding random functions. Denote

G(x, u, ξ) := σ (u,Φ(x, ξ)) .

We are now ready to present the main results of this subsection.

Theorem 3.5. Suppose that: (i) X is compact; (ii) Φ(x, ξ) is nonempty, compact and
convex for each pair (x, ξ) ∈ X×Ξ; (iii) E[G(x, u, ξ)p] < +∞ for each pair (x, u) ∈ X×B
and some p ≥ 2; (iv) E[G(·, ·, ξ)] is continuous on X ×B; (v) ξ1, · · · , ξN are iid samples.
Let κ : Ξ→ R+ be a measurable function with E[κp(ξ)] < +∞ and γ be a positive scalar.

(a) If G(·, ·, ξ) is H-calm from above over X × B with modulus κ(ξ) and order γ, for
arbitrary ε > 0, there exists an L1 > 0, independent of N , such that

P
{

sup
x∈X

D(Φ̂N (x), Φ̂(x)) ≥ ε
}
≤ L1

N
p
2 εp

for sufficiently large N ;

(b) If G(·, ·, ξ) is H-calm from below over X × B with modulus κ(ξ) and order γ, for
arbitrary ε > 0, there exists an L2 > 0, independent of N , such that

P
{

sup
x∈X

D(Φ̂(x), Φ̂N (x)) ≥ ε
}
≤ L2

N
p
2 εp

for sufficiently large N ;
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(c) If G(·, ·, ξ) is H-calm over X ×B with modulus κ(ξ) and order γ, for arbitrary ε > 0,
there exists an L3 > 0, independent of N , such that

P
{

sup
x∈X

H(Φ̂N (x), Φ̂(x)) ≥ ε
}
≤ L3

N
p
2 εp

for sufficiently large N .

This theorem can be similarly proved as that of Theorem 3.2, and thus we omit
it here. Now we give sufficient conditions for G(x, u, ξ) to be H-calm from above and
H-calm over X × B, respectively.

Proposition 3.6. Let κ1 : Ξ → R+, κ2 : Ξ → R+ and γ > 0. Suppose that Φ(x, ξ) is
nonempty, compact and convex for each pair (x, ξ) ∈ X × Ξ, and ‖Φ(x, ξ)‖ ≤ κ1(ξ).

(i) If for every x ∈ X , there exists a δx > 0 such that D(Φ(x′, ξ),Φ(x, ξ)) ≤ κ2(ξ) ‖x′ − x‖γ

for all x′ ∈ X with ‖x′ − x‖ ≤ δx, then

G(x′, u′, ξ)−G(x, u, ξ) ≤ κ1(ξ)
∥∥u′ − u∥∥+ κ2(ξ)

∥∥x′ − x∥∥γ
for all x′ ∈ X with ‖x′ − x‖ ≤ δx, u′, u ∈ B and ξ ∈ Ξ;

(ii) If for every x ∈ X , there exists a δx > 0 such that H(Φ(x′, ξ),Φ(x, ξ)) ≤ κ2(ξ) ‖x′ − x‖γ

for all x′ ∈ X with ‖x′ − x‖ ≤ δx, then∣∣G(x′, u, ξ)−G(x, u, ξ)
∣∣ ≤ κ1(ξ)

∥∥u′ − u∥∥+ κ2(ξ)
∥∥x′ − x∥∥γ

for all x′ ∈ X with ‖x′ − x‖ ≤ δx, u′, u ∈ B and ξ ∈ Ξ.

Proof. We only give the proof of (i), and (ii) can be proved similarly. For any x ∈ X ,
considering x′ ∈ X with ‖x′ − x‖ ≤ δx, u′, u ∈ B and ξ ∈ Ξ, we have

G(x′, u′, ξ)−G(x, u, ξ) = σ
(
u′,Φ(x′, ξ)

)
− σ (u,Φ(x, ξ))

= sup
φ(x′,ξ)∈Φ(x′,ξ)

(u′)>φ(x′, ξ)− sup
φ(x,ξ)∈Φ(x,ξ)

u>φ(x, ξ)

= sup
φ(x′,ξ)∈Φ(x′,ξ)

(u′)>φ(x′, ξ)− sup
φ(x′,ξ)∈Φ(x′,ξ)

u>φ(x′, ξ)

+ sup
φ(x′,ξ)∈Φ(x′,ξ)

u>φ(x′, ξ)− sup
φ(x,ξ)∈Φ(x,ξ)

u>φ(x, ξ).

Since

sup
φ(x′,ξ)∈Φ(x′,ξ)

(u′)>φ(x′, ξ)− sup
φ(x′,ξ)∈Φ(x′,ξ)

u>φ(x′, ξ)

≤ sup
φ(x′,ξ)∈Φ(x′,ξ)

(u′ − u)>φ(x′, ξ)

≤
∥∥u′ − u∥∥∥∥Φ(x′, ξ)

∥∥
≤ κ1(ξ)

∥∥u′ − u∥∥
and

sup
φ(x′,ξ)∈Φ(x′,ξ)

u>φ(x′, ξ)− sup
φ(x,ξ)∈Φ(x,ξ)

u>φ(x, ξ)

= sup
φ(x′,ξ)∈Φ(x′,ξ)

inf
φ(x,ξ)∈Φ(x,ξ)

u>(φ(x′, ξ)− φ(x, ξ))

≤ sup
φ(x′,ξ)∈Φ(x′,ξ)

inf
φ(x,ξ)∈Φ(x,ξ)

∥∥φ(x′, ξ)− φ(x, ξ)
∥∥

=D(Φ(x′, ξ),Φ(x, ξ))

≤κ2(ξ)
∥∥x′ − x∥∥γ ,

11



we have

G(x′, u′, ξ)−G(x, u, ξ) ≤ κ1(ξ)
∥∥u′ − u∥∥+ κ2(ξ)

∥∥x′ − x∥∥γ
for x′ ∈ X with ‖x′ − x‖ ≤ δx, u′, u ∈ B and ξ ∈ Ξ.

Obviously, part (i) of Proposition 3.6 implies that G(·, ·, ξ) is H-calm from above
over X ×B, and part (ii) of Proposition 3.6 implies that G(·, ·, ξ) is H-calm over X ×B.
They provide some sufficient conditions for the assumptions in Theorem 3.5.

In this section, we have considered the uniform polynomial rate of convergence under
iid sampling. With the concept of H-calmness, we first establish the uniform polynomial
rate of convergence for random functions in Theorem 3.2. Based on Theorem 3.2 and
Lemma 3.4, we establish the uniform polynomial rate of convergence for random set-
valued mappings in Theorem 3.5.

4 Uniform rate of convergence under non-iid sampling

Besides usually iid sampling techniques, e.g., Monte Carlo sampling method [25, 12, 14],
there exist many non-iid sampling approaches, like Latin Hypercube sampling [11, 8],
quasi-Monte Carlo sampling [36] etc. Some discrete approximation schemes through
probability metrics [37] are also corresponding to non-iid sampling. Therefore, it is
worthy studying the rate of convergence under non-iid sampling for heavy tailed distri-
butions.

Gärtner–Ellis theorem is usually adopted to establish the rate of convergence under
non-iid sampling, see, e.g. [7, 8, 9, 18, 13]. In that case, the Gärtner–Ellis theorem
replaces Cramér’s large deviation theorem, and is used to establish the exponential
convergence of the SAA. Considering this, we first establish a Gärtner–Ellis type theorem
under heavy tailed distributions. To this end, we need the following assumption.

Suppose that Y1, · · · , YN are N general random samples (probably non-iid) generated
according to some random variable Y with E[Y ] = 0.

Assumption 1. There exist two mappings α : R→ R+ being non-decreasing, β : N→
R+ with β(N)→∞ as N →∞ and a scalar C > 0, independent of N , such that

lim sup
N→∞

E

[
β(N)α

(
1

N

N∑
i=1

Yi

)]
≤ C

and

lim sup
N→∞

E

[
β(N)α

(
− 1

N

N∑
i=1

Yi

)]
≤ C.

For convenience, we simply call Y1, · · · , YN satisfy Assumption 1 in what follows if
Assumption 1 holds.

Remark 4.1. Assumption 1 has a close relationship with Theorem 2.3. It means that
the following terms

E

[
α

(
1

N

N∑
i=1

Yi

)]
and E

[
α

(
− 1

N

N∑
i=1

Yi

)]

converge to zero at least as fast as 1
β(N) converges to zero for sufficiently large sample size

N . However, Gärtner–Ellis theorem assumes that these convergence are at exponential
rates, see e.g. [9, Assumption 3.1], [7, Theorem 3.7] and [8]. In Assumption 1, β
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controls the rate of convergence. It allows us to examine the rate of convergence under
heavy tailed distributions, which is the focus of this paper. Especially, when Y1, · · · , YN
are iid random samples, we know from Lemma 2.2 that: if Y has the first p moments
for some positive number p ≥ 2, Assumption 1 holds with β(N) = N

p
2 and α(ε) = εp.

Theorem 4.2 (Gärtner–Ellis type theorem). Let Assumption 1 hold and ε > 0 with
α(ε) > 0. Then we have

lim sup
N→∞

β(N)P

{
1

N

N∑
i=1

Yi ≥ ε

}
≤ C

α(ε)
(12)

and

lim sup
N→∞

β(N)P

{
1

N

N∑
i=1

Yi ≤ −ε

}
≤ C

α(ε)
, (13)

where C, α and β are defined in Assumption 1.

Proof. By Chebyshev’s inequality (Lemma 2.1), we have

P

{
1

N

N∑
i=1

Yi ≥ ε

}
≤

E
[
α
(

1
N

∑N
i=1 Yi

)]
α(ε)

=
E
[
β(N)α

(
1
N

∑N
i=1 Yi

)]
β(N)α(ε)

.

Then we obtain

β(N)P

{
1

N

N∑
i=1

Yi ≥ ε

}
≤

E
[
β(N)α

(
1
N

∑N
i=1 Yi

)]
α(ε)

.

Taking the upper limit with respect to N on both sides, we obtain

lim sup
N→∞

β(N)P

{
1

N

N∑
i=1

Yi ≥ ε

}
≤

lim sup
N→∞

E
[
β(N)α

(
1
N

∑N
i=1 Yi

)]
α(ε)

≤ C

α(ε)
,

which verify (12).
For (13), we have

P

{
1

N

N∑
i=1

Yi ≤ −ε

}
= P

{
− 1

N

N∑
i=1

Yi ≥ ε

}
.

Then similar procedures can be conducted.

The following theorem can be viewed as an extension of Theorem 2.3 from iid sam-
pling to non-iid sampling.

Theorem 4.3. Let X1, · · · , XN be N general (probably non-iid) samples of random
variable X with E[X] = µ, and X̄ := 1

N

∑N
i=1Xi. Denote Yi = Xi − µ for i = 1, · · · , N .

Suppose that Assumption 1 holds. Then for any ε > 0 and ∆ > 0,

P
{∣∣X̄ − µ∣∣ ≥ ε} ≤ C + ∆

β(N)α(ε)

holds for sufficiently large N , where C, α and β are defined in Assumption 1.
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Proof. Since Yi = Xi − µ, for i = 1, · · · , N , satisfies Assumption 1, we have from (12)
and (13) that

lim sup
N→∞

β(N)P

{
1

N

N∑
i=1

(Xi − µ) ≥ ε

}
≤ C

α(ε)

and

lim sup
N→∞

β(N)P

{
1

N

N∑
i=1

(Xi − µ) ≤ −ε

}
≤ C

α(ε)
.

Thus,

lim sup
N→∞

β(N)P
{∣∣X̄ − µ∣∣ ≥ ε} ≤ C

α(ε)
.

According to the definition of superior limit, for any ∆ > 0 we have

β(N)P
{∣∣X̄ − µ∣∣ ≥ ε} ≤ C + ∆

α(ε)

for sufficiently large N .

With similar processes, we can prove the following theorem about the uniform rate of
convergence for random functions. All the notations, such as ξ,Ξ,X , F (x, ξ), f(x), f̂N (x)
etc., are defined in Section 3.1. ξ1, · · · , ξN are general samples of the random vector ξ.

Theorem 4.4. Suppose that: (i) X is compact; (ii) F (x, ξi) − f(x) for i = 1, · · · , N
satisfy Assumption 1 for each x ∈ X ; (iii) f(x) is continuous on X . Let κ : Ξ → R+

be a measurable function with κ(ξi)− E[κ(ξ)] for i = 1, · · · , N satisfying Assumption 1
and γ be a positive scalar.

(a) If F (·, ξ) is H-calm from above over X with modulus κ(ξ) and order γ, for arbitrary
ε > 0, there exists a C1 > 0, independent of N , such that

P
{

sup
x∈X

(
f̂N (x)− f(x)

)
≥ ε
}
≤ C1

β(N)α(ε)

for sufficiently large N ;

(b) If F (·, ξ) is H-calm from below over X with modulus κ(ξ) and order γ, for arbitrary
ε > 0, there exists a C2 > 0, independent of N , such that

P
{

inf
x∈X

(
f̂N (x)− f(x)

)
≤ −ε

}
≤ C2

β(N)α(ε)

for sufficiently large N ;

(c) If F (·, ξ) is H-calm over X with modulus κ(ξ) and order γ, for arbitrary ε > 0, there
exists a C3 > 0, independent of N , such that

P
{

sup
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ ≥ ε} ≤ C3

β(N)α(ε)

for sufficiently large N .

We skip the proof, which can be similarly given as that of Theorem 3.2 based on
Theorem 4.3.

Based on Theorem 3.5 and Theorem 4.4, we immediately have the following theorem
about the uniform rate of convergence for the random set-valued mapping case. We
adopt the same notation, such as G(x, u, ξ),B, Φ̂N (x), Φ̂(x), as those in Section 3.2.
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Theorem 4.5. Suppose that: (i) X is compact; (ii) Φ(x, ξ) is nonempty, compact and
convex for all (x, ξ) ∈ X × Ξ; (iii) G(x, u, ξi) − E[G(x, u, ξ)] for i = 1, · · · , N satisfy
Assumption 1 for each (x, u) ∈ X × B; (iv) E[G(·, ·, ξ)] is continuous on X × B. Let
κ : Ξ → R+ be a measurable function with κ(ξi) − E[κ(ξ)] for i = 1, · · · , N satisfying
Assumption 1 and γ be a positive scalar.

(a) If G(·, ·, ξ) is H-calm from above over X × B with modulus κ(ξ) and order γ, for
arbitrary ε > 0, independent of N , there exists an L1 > 0 such that

P
{

sup
x∈X

D(Φ̂N (x), Φ̂(x)) ≥ ε
}
≤ L1

β(N)α(ε)

for sufficiently large N ;

(b) If G(·, ·, ξ) is H-calm from below over X × B with modulus κ(ξ) and order γ, for
arbitrary ε > 0, there exists an L2 > 0, independent of N , such that

P
{

sup
x∈X

D(Φ̂(x), Φ̂N (x)) ≥ ε
}
≤ L2

β(N)α(ε)

for sufficiently large N ;

(c) If G(·, ·, ξ) is H-calm over X ×B with modulus κ(ξ) and order γ, for arbitrary ε > 0,
there exists an L3 > 0, independent of N , such that

P
{

sup
x∈X

H(Φ̂N (x), Φ̂(x)) ≥ ε
}
≤ L3

β(N)α(ε)

for sufficiently large N .

In this section, we have investigated the convergence rate under general sampling.
We first establish a Gärtner–Ellis type theorem (Theorem 4.2), from which we derive
the rate of convergence in the pointwise sense (Theorem 4.3). Finally, by analogous
procedures as those in Theorems 3.2 and 3.5, we obtain the uniform rates of convergence
for random functions (Theorem 4.4) and random set-valued mappings (Theorem 4.5),
respectively.

5 SAA of stochastic optimization

Discretization is quite important because it concerns numerical solvability of stochastic
optimization problems. It can help to avoid high dimensional integrations and infinite
constraints. The crucial question is how large the sample size should be to ensure
certain approximation accuracy. The general methodology is to employ the Cramér’s
large deviation theorem, so that the exponential rate of convergence with respect to
the sample size can be derived. However, this relies on the light tailed distribution
assumption, which limits the scope of application. In this section, we will show how
the results got in previous sections can be applied to establish the convergence rate
conclusions of SAA for several kinds of stochastic optimization problems with iid or
non-iid samplings under heavy tailed distributions.

5.1 Stochastic convex optimization problems

Consider F : X × Ξ → R, here F (·, ξ) is convex for almost everywhere (a.e. for short)
ξ ∈ Ξ. Assume that X ⊆ Rn is compact. Then we consider the following stochastic
optimization problem (see [2, 38, 39]):

min
x∈X

E[F (x, ξ)]. (14)
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Problem (14) is a generic form which includes many specific stochastic optimization
models, such as two-stage stochastic linear programming problems. In that case, we
have

F (x, ξ) = c>x+Q(x, ξ) (15)

and
Q(x, ξ) := inf{〈q(ξ), y(ξ)〉 : W (ξ)y(ξ) + T (ξ)x = h(ξ), y(ξ) ≥ 0}, (16)

where c ∈ Rn, q : Ξ → Rm, W : Ξ → Rr×m, T : Ξ → Rr×n and h : Ξ → Rr. Problem
(14)-(16) is called the full random two-stage stochastic linear programming problem
because the recourse matrix W (ξ) is also random, see [40, 41] for more details. When
W (ξ) = W is fixed, the resulting two-stage stochastic linear programming problem has
been widely discussed, see e.g. [42, 2]. For both the deterministic recourse matrix W
and the random recourse matrix W (ξ), it is easy to verify that F (·, ξ) is convex with
respect to x. That is, problem (14) covers both the fixed recourse case and the random
recourse case.

Assume that we have random samples ξ1, · · · , ξN . Then we obtain the SAA problem
of problem (14):

min
x∈X

1

N

N∑
i=1

F (x, ξi). (17)

Due to the convexity of F (·, ξ), both the objective functions in problems (14) and (17)
are convex.

We denote by S∗ and SN the optimal solution sets of problems (14) and (17), and v∗

and vN the optimal values of problems (14) and (17), respectively. In order to quantify
the upper semicontinuity property, we define the general growth function ψ : R+ → R+

as follows:
ψ(τ) := inf{E[F (x, ξ)]− v∗ : d(x, S∗) ≥ τ, x ∈ X}.

Its inverse function is defined as

ψ−1(η) := sup{τ ∈ R+ : ψ(τ) ≤ η}.

Then we define the conditioning function Ψ : R+ → R+ as

Ψ(η) := η + ψ−1(2η).

Obviously, ψ is lower semicontinuous on R+, nondecreasing and vanish at 0. Ψ is lower
semicontinuous on R+, increasing and vanish at 0. For more details, one can refer to
[43].

Theorem 5.1. Suppose that: (i) X is compact; (ii) F (·, ξ) is H-calm over X with
modulus κ(ξ) and order γ > 0 where E[κ(ξ)] <∞.

(a) If ξ1, · · · , ξN are iid, E[F (x, ξ)p] <∞ for each x ∈ X and E[κ(ξ)p] <∞ with some
p ≥ 2, then for any ε > 0, there exists a positive C, independent of N , such that

P {|vN − v∗| ≥ ε} ≤
C

N
p
2 εp

,

P {D(SN , S
∗) ≥ Ψ(ε)} ≤ C

N
p
2 εp

for sufficiently large N ;
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(b) If ξ1, · · · , ξN are non-iid, F (x, ξi) − E[F (x, ξ)], i = 1, · · · , N , for each x ∈ X and
κ(ξi) − E[κ(ξ)] for i = 1, · · · , N satisfy Assumption 1, then for any ε > 0, there
exists a positive constant C, independent of N , such that

P {|vN − v∗| ≥ ε} ≤
C

β(N)α(ε)
,

P {D(SN , S
∗) ≥ Ψ(ε)} ≤ C

β(N)α(ε)

for sufficiently large N , where α(·) and β(·) are defined in Assumption 1.

Proof. We only give the proof of part (a) since part (b) can be similarly verified by
Theorem 4.4. Notice that

|vN − v∗| =

∣∣∣∣∣min
x∈X

1

N

N∑
i=1

F (x, ξi)−min
x∈X

E[F (x, ξ)]

∣∣∣∣∣
≤ max

x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ .
It is known from (c) of Theorem 3.2 that

P

{
max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ ε
}
≤ C

N
p
2 εp

(18)

for some constant C independent of N and sufficiently large N . Noticing that

P {|vN − v∗| ≥ ε} ≤ P

{
max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ ε
}
,

we have

P {|vN − v∗| ≥ ε} ≤
C

N
p
2 εp

.

For any x̃ ∈ SN , we have

2 max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣+ vN − v∗

≥ E[F (x̃, ξ)]− 1

N

N∑
i=1

F (x̃, ξi) + vN − v∗

= E[F (x̃, ξ)]− v∗ ≥ ψ(d(x̃, S∗)).

We obtain

d(x̃, S∗) ≤ ψ−1

(
2 max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣
)

≤ Ψ

(
max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣
)
.

Due to the arbitrariness of x̃ ∈ SN , we actually have

D(SN , S
∗) ≤ Ψ

(
max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣
)
.
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Then

P {D(SN , S
∗) ≥ Ψ(ε)}

≤ P

{
Ψ

(
max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣
)
≥ Ψ(ε)

}

= P

{
max
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ ε
}

≤ C

N
p
2 εp

,

where the last inequality follows from (18).

Different from the existing results, such as [9, 6, 3, 15], where the exponential rates
of convergence are derived, Theorem 5.1 establishes the polynomial rate of convergence.
The main advantage is that our results do not require the light tailed distribution as-
sumption.

5.2 Stochastic nonconvex optimization problems

Quite often, the stochastic optimization problem (14) may be a nonconvex optimization
problem in practice. In that case, we can hardly find a global optimal solution, or even
a local optimal solution. Instead, only some stationary points can be derived through
the first order optimality condition. Stationary points may not be the optimal solution.
However, under some constraint qualifications, the optimal solution must be a stationary
point. Therefore, in the nonconvex case, stationary points stand for the optima to some
extent. In view of these, we consider the nonconvex case and study the limiting behavior
of stationary points of the corresponding SAA problem in this section.

For convenience, we assume in this section that F (·, ξ) is locally Lipschitz continuous
(probably nonconvex) for a.e. ξ ∈ Ξ, and the feasible set X is closed and convex. Thus,
E[F (·, ξ)] is also locally Lipschitz, and the normal cone of X with respect to x ∈ X is
unique, denoted by NX (x) := {v : v>(y − x) ≤ 0, ∀y ∈ X}. Then, according to [32,
Theorem 10.1], we have the following first order optimality condition for problem (14):

0 ∈ ∂E[F (x, ξ)] +NX (x), (19)

where ∂E[F (x, ξ)] stands for the Clarke subdifferential [44]. Without any confusion, we
write ∂ in short of ∂x hereinafter. We call x a stationary point of problem (14) if it
satisfies (19). Obviously, when x∗ ∈ X is an optimal solution of problem (14), it must
be a stationary point of problem (14), but not vice versa. It knows from [9, Theorem
2.1] that

∂E[F (x, ξ)] ⊆ E[∂F (x, ξ)].

The equality holds when F (x, ξ) is Clarke regular [44, Definition 2.3.4] at x. In that
case, E[F (x, ξ)] is also Clarke regular at x.

Generally, it is more interesting for us to consider the following weaker optimality
condition:

0 ∈ E[∂F (x, ξ)] +NX (x). (20)

We say an x satisfying (20) is a weak stationary point of problem (14). Obviously, a
stationary point of problem (14) is a weak stationary point of problem (14), but not
vice versa. If a weak stationary point of problem (14) satisfies the Clarke regularity, it
is a stationary point of problem (14).

18



Then SAA problem of (20) can be written as follows:

0 ∈ 1

N

N∑
i=1

∂F (x, ξi) +NX (x). (21)

In what follows, we consider the convergence rate of the solution set to (21) to that
of (20) by employing our results in last sections. To this end, we first investigate the
convergence relationship between 1

N

∑N
i=1 ∂F (x, ξi) and E[∂F (x, ξ)] based on Theorems

3.5 and 4.5.

Proposition 5.2. Suppose that: (i) X is convex and compact; (ii) F (·, ξ) is Lipschitz
continuous over X with modulus κ1(ξ) and E[κ1(ξ)] < ∞; (iii) for each given u ∈ B,
E[σ(u, ∂F (·, ξ))] is continuous with respect to x; (iv) for each given u ∈ B, σ(u, ∂F (·, ξ))
is H-calm from above over X with modulus κ2(ξ) and order γ > 0. Let κ(ξ) := κ1(ξ) +
κ2(ξ).

(a) If ξ1, · · · , ξN are iid, E[σ(u, ∂F (x, ξ))p] <∞ for each x ∈ X and E[κ(ξ)p] <∞ for
some p ≥ 2, then for any ε > 0, there exists a positive C, independent of N , such
that

P

{
sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

)
≥ ε

}
≤ C

N
p
2 εp

for sufficiently large N ;

(b) If ξ1, · · · , ξN are non-iid, both F (x, ξi)−E[F (x, ξ)], i = 1, · · · , N , for all x ∈ X and
κ(ξi)− E[κ(ξ)], i = 1, · · · , N satisfy Assumption 1, then for any ε > 0, there exists
a positive C, independent of N , such that

P

{
sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

)
≥ ε

}
≤ C

β(N)α(ε)

for sufficiently large N , where α(·) and β(·) are defined in Assumption 1.

Proof. Part (a): Since ∂F (x, ξ) is nonempty, convex and compact ([44, Proposition
2.1.2]), we know from Section 3.2 that

P

{
D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

)
≥ ε

}

= P

{
max
‖u‖≤1

(
1

N

N∑
i=1

σ
(
u, ∂F (x, ξi)

)
− E [σ (u, ∂F (x, ξ))]

)
≥ ε

}
.

Note that
σ
(
u′, ∂F (x′, ξ)

)
− σ (u, ∂F (x, ξ))

= sup
φ(x′,ξ)∈∂F (x′,ξ)

(u′)>φ(x′, ξ)− sup
φ(x,ξ)∈∂F (x,ξ)

u>φ(x, ξ)

= sup
φ(x′,ξ)∈∂F (x′,ξ)

(u′)>φ(x′, ξ)− sup
φ(x′,ξ)∈∂F (x′,ξ)

u>φ(x′, ξ)

+ sup
φ(x′,ξ)∈∂F (x′,ξ)

u>φ(x′, ξ)− sup
φ(x,ξ)∈∂F (x,ξ)

u>φ(x, ξ).

(22)

Then, we obtain from (22) that∣∣E [σ (u′, ∂F (x′, ξ)
)]
− E [σ (u, ∂F (x, ξ))]

∣∣
≤ E[κ1(ξ)]

∥∥u′ − u∥∥+
∣∣E [σ (u, ∂F (x′, ξ)

)]
− E [σ (u, ∂F (x, ξ))]

∣∣ .
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Since E[σ(u, ∂F (·, ξ))] is continuous with respect to x for each u ∈ B, E[σ(·, ∂F (·, ξ))] is
continuous with respect to (u, x).

Moreover, we can also know from (22) that

σ
(
u′, ∂F (x′, ξ)

)
− σ (u, ∂F (x, ξ))

≤ κ1(ξ)
∥∥u′ − u∥∥+ σ

(
u, ∂F (x′, ξ)

)
− σ (u, ∂F (x, ξ)) ,

which implies that σ(u, ∂F (·, ξ)) is H-calm from above over X with modulus κ1(ξ)+κ2(ξ)
and order min{1, γ}. Then the assertion directly follows from Theorem 3.5.

Part (b): Since the continuity of E[σ(·, ∂F (·, ξ))] with respect to (u, x) and the
H-calmness of σ(u, ∂F (·, ξ)) from above over X , we can conclude the assertion from
Theorem 4.5.

Denote the solution sets of problems (20) and (21) by S∗ and SN , respectively. To
establish the relationships between S∗, SN and E[∂F (x, ξ)], 1

N

∑N
i=1 ∂F (x, ξi), we need

the following general growth function of (20), denoted by G : R+ → R+. Specifically,

G(τ) := inf {d (0,E[∂F (x, ξ)] +NX (x)) : x ∈ X , d(x, S∗) ≥ τ} .

Its inverse function is
G−1(η) := sup {τ : G(τ) ≤ η} .

Then we denote
θ(η) = η + G−1(η).

Thus, θ(η) ≥ G−1(η) and θ(η) is increasing. Both θ(η) and G−1(η) vanish at 0.
We have for any x̃ ∈ SN the following key inequality:

sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

)

≥ sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi) +NX (x),E[∂F (x, ξ)] +NX (x)

)

≥ D

(
1

N

N∑
i=1

∂F (x̃, ξi) +NX (x̃),E[∂F (x̃, ξ)] +NX (x̃)

)
.

Consider two closed sets A,B ⊆ Rn and ā ∈ A such that d(0, ā) = d(0, A). There
exists b̄ ∈ B such that d(ā, B) = d(ā, b̄). Then we have

D(A,B) ≥ d(ā, B) = d(ā, b̄)

≥ d(0, b̄)− d(0, ā)

= d(0, b̄)− d(0, A)

≥ d(0, B)− d(0, A).

With the aid of the above fact, we have

D

(
1

N

N∑
i=1

∂F (x̃, ξi) +NX (x̃),E[∂F (x̃, ξ)] +NX (x̃)

)

≥ d (0,E[∂F (x̃, ξ)] +NX (x̃))− d

(
0,

1

N

N∑
i=1

∂F (x̃, ξi) +NX (x̃)

)
= d (0,E[∂F (x̃, ξ)] +NX (x̃))

≥ G (d(x̃, S∗)) .
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Due the arbitrariness of x̃ ∈ SN , we obtain

D(SN , S
∗) ≤ G−1

(
sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

))

≤ θ

(
sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

))
.

Then, for any ε > 0,

P {D(SN , S
∗) ≥ θ(ε)} ≤ P

{
θ

(
sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

))
≥ θ(ε)

}

= P

{
sup
x∈X

D

(
1

N

N∑
i=1

∂F (x, ξi),E[∂F (x, ξ)]

)
≥ ε

}
. (23)

With the quantitative relationship (23) and Proposition 5.2, we have the following
theorem.

Theorem 5.3. Let assumptions in Proposition 5.2 hold.

(i) If ξ1, · · · , ξN are iid, E[σ(u, ∂F (x, ξ))p] < ∞ for each x ∈ X and E[κ(ξ)p] < ∞
with some p ≥ 2, then for any ε > 0, there exists a positive C, independent of N ,
such that

P {D(SN , S
∗) ≥ θ(ε)} ≤ C

N
p
2 εp

for sufficiently large N ;

(ii) If ξ1, · · · , ξN are non-iid, both F (x, ξi) − E[F (x, ξ)], i = 1, · · · , N , for all x ∈ X
and κ(ξi)− E[κ(ξ)], i = 1, · · · , N , satisfy Assumption 1, then for any ε > 0, there
exists a positive C, independent of N , such that

P {D(SN , S
∗) ≥ θ(ε)} ≤ C

β(N)α(ε)

for sufficiently large N , where α(·) and β(·) are defined in Assumption 1.

5.3 Two-stage stochastic variational inequalities

Two-stage stochastic variational inequalities can be reformulated as (see e.g. [15, 45,
46]):

0 ∈ E[Φ1(x, y(ξ), ξ)] +NX (x),

0 ∈ Φ2(x, y(ξ), ξ) +NY(ξ)(y(ξ)), for a.e. ξ ∈ Ξ,
(24)

where X ⊆ Rn is convex; Y : Ξ ⇒ Rm is a convex set-valued mapping; Φ1 : Rn × Rm ×
Ξ→ Rn, Φ2 : Rn × Rm × Ξ→ Rm.

Problem (24) is a quite general form, which includes many applications, such as
game theory, optimality condition for two-stage stochastic programming, Cournot-Nash
equilibrium [15, 47, 48, 49, 50]. Especially, when X = Rn+ and Y(ξ) = Rm+ , the resulting
problem is the two-stage stochastic complementarity problem (see [47] for the linear
case):

0 ≤ x⊥E[Φ1(x, y(ξ), ξ)] ≥ 0,

0 ≤ y(ξ)⊥Φ2(x, y(ξ), ξ) ≥ 0, for a.e. ξ ∈ Ξ.
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Based on samples ξ1, · · · , ξN , the SAA approximation problem of (24) can be written
as

0 ∈ 1

N

N∑
i=1

Φ1(x, y(ξi), ξi) +NX (x), x ∈ X

0 ∈ Φ2(x, y(ξi), ξi) +NY(ξi)(y(ξi)), for i = 1, · · · , N.

(25)

In what follows we focus on the convergence analysis between problems (24) and
(25). By convention, we make the following strong monotonicity assumption for the
second stage problem (see [51, Definition 2.3.1]).

Assumption 2 (strong monotonicity). For each fixed x ∈ X and a.e. ξ ∈ Ξ, Φ2(x, ·, ξ)
is strongly monotone, that is, there exists a positive measurable function κy(ξ) such that
for all y1, y2 ∈ Rm

〈y1 − y2,Φ2(x, y1, ξ)− Φ2(x, y2, ξ)〉 ≥ κy(ξ) ‖y1 − y2‖2 .

It is noteworthy that: although the second stage problem is strongly monotone under
Assumption 2, the two-stage stochastic variational inequalities (24) could be nonmono-
tone.

Immediately, we have from [51, Theorem 2.3.3] the following lemma.

Lemma 5.4. Let Assumption 2 hold and Φ2(x, ·, ξ) be continuous. For x ∈ X and a.e.
ξ ∈ Ξ, the second stage problem

0 ∈ Φ2(x, y(ξ), ξ) +NY(ξ)(y(ξ)) (26)

has a unique solution.

To derive the Lipschitz continuity property, for any fixed x ∈ X and ξ ∈ Ξ, we intro-
duce the several concepts of regularity. The first one is the strong regularity proposed
by Robinson [52].

Definition 5.5 (strong regularity, [52]). For any fixed x ∈ X and ξ ∈ Ξ, the second stage
problem (26) is said to be strongly regular at a solution ȳ if Φ2(x, ·, ξ) is differentiable
at ȳ and there exist neighborhoods U of ȳ and V of 0 such that for every δ ∈ V, the
perturbed (partially) linearized problem

δ ∈ Φ2(x, ȳ, ξ) +∇yΦ2(x, ȳ, ξ)(y − ȳ) +NY(ξ)(y)

has in U a unique solution y(δ), and the mapping δ → y(δ) : V → U is Lipschitz
continuous.

Izmailov extended the strong regularity from the smooth case to the locally Lipschitz
continuous case in [53], which is called the CD-regularity.

Definition 5.6 (CD-regularity, [53]). For any fixed x ∈ X and ξ ∈ Ξ, a solution ȳ of
the second stage problem (26) is said to be CD-regular if Φ2(x, ·, ξ) is locally Lipschitz
continuous at a neighborhood of ȳ and for each J ∈ ∂yΦ2(x, ȳ, ξ) where ∂y denotes the
Clarke subdifferential with respect to y, the following linear variational inequality

0 ∈ Φ2(x, ȳ, ξ) + J(y − ȳ) +NY(ξ)(y)

is strongly regular at the solution ȳ.

We use the notation Πy to denote the projection onto y-space and ∂(x,y) to denote
the Clarke subdifferential with respect to (x, y).
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Definition 5.7 (parametrically CD-regularity, [53]). For any fixed ξ ∈ Ξ, a solution ȳ
of the second stage problem

0 ∈ Φ2(x, y, ξ) +NY(ξ)(y)

for x = x̄ is said to be parametrically CD-regular if Φ2(·, ·, ξ) is locally Lipschitz con-
tinuous at a neighborhood of (x̄, ȳ) and for each J ∈ Πy∂(x,y)Φ2(x̄, ȳ, ξ) the solution ȳ
of

0 ∈ Φ2(x̄, ȳ, ξ) + J(y − ȳ) +NY(ξ)(y)

is strongly regular.

Proposition 5.8. Suppose that: (i) Φ2(·, ·, ξ) is Lipschitz continuous on Rn ×Rm; (ii)
Assumption 2 holds; (iii) Y(ξ) is nonempty and polyhedral for a.e. ξ ∈ Ξ. Then the
unique solution of problem (26), denoted by ŷ(x, ξ), is parametrically CD-regular for
x ∈ X and a.e. ξ ∈ Ξ. Further, ŷ(·, ξ) is Lipschitz continuous on X ∩ C for a.e. ξ ∈ Ξ
where C ⊆ Rn is an arbitrary compact set such that X ∩ C 6= ∅.

Proof. We know from Lemma 5.4 that for any fixed x ∈ X and a.e. ξ ∈ Ξ, there exists
a unique solution for (26). Due to the Lipschitz continuity of Φ2(·, ·, ξ) over Rn × Rm,
Φ2(·, ·, ξ) is differentiable densely over Rn × Rm. We denote by D ⊆ Rn × Rm the
collection of all differentiable points. For any fixed ξ ∈ Ξ, x̄ ∈ X and ȳ = ŷ(x̄, ξ), we
consider the following linear variational inequality:

0 ∈ Φ2(x̄, ȳ, ξ) + J(y − ȳ) +NY(ξ)(y), (27)

where J ∈ Πy∂(x,y)Φ2(x̄, ȳ, ξ). According to the definition of Clarke subdifferential,
there exists a sequence {(xk, yk)}k ⊆ D with (xk, yk)→ (x̄, ȳ) as k →∞ such that

J = lim
k→∞

Πy∇(x,y)Φ2(xk, yk, ξ).

Since Φ2(x, ·, ξ) is strongly monotone with constant κy(ξ) for each x ∈ X and a.e. ξ ∈ Ξ
due to Assumption 2, we know from [51, Proposition 2.3.2] that Πy∇(x,y)Φ2(xk, yk, ξ) is
strongly positive definite with constant κy(ξ). This implies that any J ∈ Πy∂(x,y)Φ2(x̄, ȳ, ξ)
is strongly positive definite with constant κy(ξ).

The positive definiteness of J together with [54, Theorem 1 and Corollary 1] mean
that (27) is strongly regular at ȳ. Then we obtain that (26) is parametrically CD-regular
at ȳ with x = x̄. The locally Lipschitz continuity of ŷ(·, ξ) at a neighborhood of x̄ follows
from [53, Theorem 4]. Finally, due to the arbitrariness of x̄ and the compactness of X∩C,
ŷ(·, ξ) is Lipschitz continuous over X ∩ C.

Although a similar result can be found in [15, Theorem 3.6], Proposition 5.8 differs
from [15, Theorem 3.6] in two aspects. First, [15, Theorem 3.6] considers a nonlinear
complementarity problem, and here we consider a nonlinear variational inequality, which
of course is more general. Second, we do not assume the continuous differentiability of
Φ2(·, ·, ξ) over Rn × Rm, which was employed in [15, Theorem 3.6].

Now, under Assumption 2 and Lemma 5.4, we can equivalently rewrite problems
(24) and (25) as

0 ∈ E[Φ1(x, ŷ(x, ξ), ξ)] +NX (x), (28)

and

0 ∈ 1

N

N∑
i=1

Φ1(x, ŷ(x, ξi), ξi) +NX (x), (29)

respectively. Therefore, the convergence analysis between problems (24) and (25) is
equivalent to the convergence analysis between problems (28) and (29). We use S∗ and
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SN to denote the solution sets of problems (28) and (29), respectively. To quantify
the rate of convergence between S∗ and SN , we first consider the rate of convergence
between 1

N

∑N
i=1 Φ1(x, ŷ(x, ξi), ξi) and E[Φ1(x, ŷ(x, ξ), ξ)].

We know from Proposition 5.8 that if X is a compact and convex set, and Φ1(·, ·, ξ)
is Lipschitz continuous over Rn×Rm, Φ1(·, ŷ(·, ξ), ξ) is Lipschitz continuous with respect
to x over X . Denote by κ(ξ) the Lipschitz modulus in what follows.

Proposition 5.9. Let assumptions in Proposition 5.8 hold, and X be a compact and
convex set.

(a) Suppose that: (i) E[Φ1(x, ŷ(x, ξ), ξ)p] < +∞ for each x ∈ X and some p ≥ 2; (ii)
E[κp(ξ)] < +∞. Then for arbitrary ε > 0, there exists a C > 0, independent of N ,
such that

P

{
sup
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

Φ1(x, ŷ(x, ξi), ξi)− E[Φ1(x, ŷ(x, ξ), ξ)]

∣∣∣∣∣ ≥ ε
}
≤ C

N
p
2 εp

for sufficiently large N ;

(b) Suppose that: (i) Φ1(x, ŷ(x, ξi), ξi) − E[Φ1(x, ŷ(x, ξ), ξ)], i = 1, · · · , N satisfy As-
sumption 1 for each x ∈ X ; (ii) E[κ(ξ)] < +∞; (iii) κ(ξi) − E[κ(ξ)], i = 1, · · · , N
satisfy Assumption 1. Then for arbitrary ε > 0, there exists a C > 0, independent
of N , such that

P

{
sup
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

Φ1(x, ŷ(x, ξi), ξi)− E[Φ1(x, ŷ(x, ξ), ξ)]

∣∣∣∣∣ ≥ ε
}
≤ C

β(N)α(ε)

for sufficiently large N , where α(·) and β(·) are defined in Assumption 1.

Due to the Lipschitz continuity of Φ1(·, ŷ(·, ξ), ξ) with respect to x over X , which
of course implies the H-calmness of Φ1(·, ŷ(·, ξ), ξ) over X with κ(ξ) and order 1, the
assertions directly follow from Theorems 3.2 and 4.4. Thus we neglect the proof here.

To derive the relationship between E[Φ1(x, ŷ(x, ξ), ξ)] and its solution set, we intro-
duce the growth function of (28), denoted by R : R+ → R+. Specifically,

R(τ) := inf {d (0,E[Φ1(x, ŷ(x, ξ), ξ)] +NX (x)) : x ∈ X , d(x, S∗) ≥ τ} .

Its inverse function is
R−1(η) := sup {τ : R(τ) ≤ η} .

Then we denote
ς(η) = η +R−1(η).

Obviously, ς(η) ≥ R−1(η); both ς(η) and R−1(η) vanish at 0; R and R−1 are nonde-
creasing and ς is strictly increasing.

We have for any x̃ ∈ SN that the following key result:

sup
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

Φ1(x, ŷ(x, ξi), ξi)− E[Φ1(x, ŷ(x, ξ), ξ)]

∣∣∣∣∣
≥

∣∣∣∣∣ 1

N

N∑
i=1

Φ1(x̃, ŷ(x̃, ξi), ξi)− E[Φ1(x̃, ŷ(x̃, ξ), ξ)]

∣∣∣∣∣
≥ d (0,E[Φ1(x̃, ŷ(x̃, ξ), ξ)] +NX (x̃))− d

(
0,

1

N

N∑
i=1

Φ1(x̃, ŷ(x̃, ξi), ξi) +NX (x̃)

)
= d (0,E[Φ1(x̃, ŷ(x̃, ξ), ξ)] +NX (x̃))

≥ R (d(x̃, S∗)) .
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Thus we have

d(x̃, S∗) ≤ R−1

(
sup
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

Φ1(x, ŷ(x, ξi), ξi)− E[Φ1(x, ŷ(x, ξ), ξ)]

∣∣∣∣∣
)

≤ ς

(
sup
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

Φ1(x, ŷ(x, ξi), ξi)− E[Φ1(x, ŷ(x, ξ), ξ)]

∣∣∣∣∣
)

for any x̃ ∈ SN . Finally, we obtain

P (D(SN , S
∗) ≥ ς(ε)) ≤ P

{
sup
x∈X

∣∣∣∣∣ 1

N

N∑
i=1

Φ1(x, ŷ(x, ξi), ξi)− E[Φ1(x, ŷ(x, ξ), ξ)]

∣∣∣∣∣ ≥ ε
}
.

(30)

According to (30) and Proposition 5.9, we can easily obtain the following assertions.

Theorem 5.10. Let assumptions in Proposition 5.8 hold, and X be a compact and
convex set.

(a) Suppose that: (i) E[Φ1(x, ŷ(x, ξ), ξ)p] < +∞ for each x ∈ X and some p ≥ 2; (ii)
E[κp(ξ)] < +∞. Then for arbitrary ε > 0, there exists a C > 0, independent of N ,
such that

P {D(SN , S
∗) ≥ ς(ε)} ≤ C

N
p
2 εp

for sufficiently large N ;

(b) Suppose that: (i) Φ1(x, ŷ(x, ξi), ξi) − E[Φ1(x, ŷ(x, ξ), ξ)], i = 1, · · · , N satisfy As-
sumption 1 for each x ∈ X ; (ii) E[κ(ξ)] < +∞; (iii) κ(ξi) − E[κ(ξ)], i = 1, · · · , N
satisfy Assumption 1. Then for arbitrary ε > 0, there exists a C > 0, independent
of N , such that

P {D(SN , S
∗) ≥ ς(ε)} ≤ C

β(N)α(ε)

for sufficiently large N , where α(·) and β(·) are defined in Assumption 1.

We have a few comments on Theorem 5.10. To the best of our knowledge, there is no
SAA convergence analysis for two-stage nonlinear stochastic variational inequalities un-
der nonmonotonicity or non-iid sampling situations. Although the second stage problem
is assumed to be strongly monotone, the whole two-stage problem can be nonmonotone.
[15] considered a mixed two-stage nonlinear stochastic variational inequality where the
first stage problem is a nonlinear variational inequality and the second stage problem is
a nonlinear complementarity problem. However, they assume that the whole two-stage
problem is strongly monotone (see [15, Assumption 3.2]). Our model (24) is thus more
general. Furthermore, we consider the rate of convergence under heavy tailed distribu-
tions and non-iid sampling which are obviously different from those in [15]. Our results
also extend some other related works. For example, [47] considered a two-stage stochas-
tic linear complementarity problem under strong monotonicity, and [49] investigated a
mixed two-stage linear stochastic variational inequality under nonmonotonicity.

6 Conclusions

In this paper, we investigate the rate of convergence of the SAA scheme under heavy
tailed distributions. Based on the pointwise convergence, we extend it to uniform cases
under random functions and random set-valued mappings, respectively. Further, by
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establishing a Gärtner–Ellis type theorem, we extend the above results to the general
(possibly non-iid) sampling. Finally, as an application of our results, we consider several
stochastic optimization models and derive the rates of convergence of SAA approxima-
tions to these problems.

Different from the existing results in convergence rate estimation, our results can
be applied to more general situations, especially to heavy tailed distributions. Thus, it
is expected to have wider applications, which will be examined in details in our future
work.
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