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We study a robust auction design problem with a minimax regret objective, where a seller seeks a mechanism

for selling multiple items to multiple bidders with additive values. The seller knows that the bidders’ values

range over a box uncertainty set but has no information on their probability distribution. The robust auction

design model we study requires no distributional information except for upper bounds on the bidders’

values for each item. This model is relevant if there is no trust-worthy distributional information or if any

distributional information is costly or time-consuming to acquire. We propose a mechanism that sells each

item separately via a second price auction with a random reserve price and prove that this mechanism is

optimal using duality techniques from robust optimization. We then interpret the auction design problem as

a zero-sum game between the seller, who chooses a mechanism, and a fictitious adversary or ‘nature,’ who

chooses the bidders’ values from within the uncertainty set with the aim to maximize the seller’s regret.

We characterize the Nash equilibrium of this game analytically when the bidders are symmetric. The Nash

strategy of the seller coincides with the optimal separable second price auction, whereas the Nash strategy of

nature is mixed and constitutes a probability distribution on the uncertainty set under which each bidder’s

values for the items are comonotonic. We also study a restricted auction design problem over deterministic

mechanisms. In this setting, we characterize the suboptimality of a separable second price auction with

deterministic reserve prices and show that this auction becomes optimal if the bidders are symmetric. The

optimal mechanism is derived in closed form and can easily be implemented by the practitioners.
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1. Introduction

Consider the problem of designing an auction for selling J items to I bidders. The bidders assign

each item a private value, which captures the maximum amount of money they would be willing

to pay for this item. The set of values that a bidder assigns to all items is referred to as his value

profile. We assume that the bidders’ preferences are quasilinear and additively separable, that is,

the bidders assign any bundle of items a value equal to the sum of the values of its constituents.

In the standard Bayesian setting, the seller’s beliefs about the bidders’ value profiles are modeled

via a commonly known probability distribution, and it is assumed that the seller aims to maximize

her expected revenues. If there is only one item (J = 1), the optimal mechanism is well-understood

under relatively general conditions, see, e.g., Myerson (1981) and Cremer and McLean (1988). If

there are multiple items (J > 1), on the other hand, computing the optimal mechanism is #P-

hard even in unrealistically simple situations (Daskalakis et al. 2014). Even though Daskalakis

et al. (2017) and Cai et al. (2021) recently proposed duality schemes for solving multi-item auction

design problems, closed-form solutions remain limited to special probabilistic models and/or small

numbers of items, see, e.g., Daskalakis et al. (2013) or Giannakopoulos and Koutsoupias (2014).

Assuming that the probability distribution of the bidders’ values is commonly known not only

renders the mechanism design problem intractable, but it is also difficult to justify in practice.

Instead, it is natural to seek mechanisms that are optimal under limited distributional information.

When the probability distribution of the bidders’ values is ambiguous, the term ‘optimal’ becomes

ambiguous itself. The literature on (distributionally) robust mechanism design regards an auction

as optimal if it maximizes the worst-case expected revenues in view of all possible distributions

consistent with the information available. The bulk of this literature focuses on single-item auc-

tions, see, e.g., Bose et al. (2006), Bei et al. (2019), Koçyiğit et al. (2020) and Suzdaltsev (2020). As

a notable exception, Bandi and Bertsimas (2014) propose a numerical procedure to solve a robust

multi-item auction design problem with budget constraints. Chen et al. (2022) investigate robust

single-item and bundle pricing assuming that the seller only knows the marginal mean and vari-

ance of the value distribution. Carroll (2017) explicitly characterizes the optimal mechanism of a
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correlation-robust screening problem, where the marginal distributions of the agent’s multidimen-

sional type are precisely known to the principal, while their joint distribution remains unknown.

The multidimensional monopoly pricing problem, which is equivalent to the single-bidder multi-

item auction design problem, constitutes a special case of this screening problem. For this special

case, Carroll (2017) shows that it is optimal to sell the items separately. Gravin and Lu (2018) then

demonstrate that this separation result remains valid even if the bidder is subject to a budget con-

straint. Koçyiğit et al. (2022) consider a variant of the multidimensional monopoly pricing problem

with a minimax regret objective, where the seller has no knowledge of the value distribution apart

from its support, and they identify the best randomized as well as the best deterministic mecha-

nism. In both cases, the optimal mechanism sells the items separately via single-item mechanisms

that were first characterized by Bergemann and Schlag (2008).

The separation results reviewed above are not easily generalized to multi-bidder auctions. In

this paper, we consider the multi-bidder extension of the mechanism design problem studied by

Koçyiğit et al. (2022). Specifically, we assume that the seller perceives each bidder’s value profile

as an uncertain parameter that is only known to range over a rectangular uncertainty set spanned

by the origin and a vector of non-negative upper bounds. When aiming to maximize the worst-

case revenue, the seller faces a special case of the robust mechanism design problem studied by

Bandi and Bertsimas (2014). Under the box uncertainty set considered here, however, the set of

optimal mechanisms is very rich and contains näıve mechanisms that have little practical appeal.

For example, it is optimal for the seller to keep all items to herself. This prompts us to adopt a

minimax regret objective, that is, we assume in this paper that the seller seeks a mechanism that

minimizes her worst-case regret. The regret of a mechanism is defined as the difference between

the revenues that could have been achieved under full knowledge of the bidders’ value profiles and

the actual revenues generated by the mechanism. The worst-case regret is obtained by maximizing

the realized regret across all possible value profiles of the bidders. Caldentey et al. (2017) as well

as Poursoltani and Delage (2022) argue that, in a general robust optimization context, minimizing
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the worst-case regret results in less conservative decisions than maximizing the worst-case revenue.

The main contributions of this paper can be summarized as follows.

(i) We propose a mechanism under which each item is sold separately via a randomized second

price auction. Using duality and limiting arguments, we prove that this mechanism minimizes

the worst-case regret of the seller. If there is only one bidder, the separate single-item mecha-

nisms reduce to randomized posted-price mechanisms that were first described by Bergemann

and Schlag (2008) in the context of monopoly pricing.

(ii) We interpret the robust multi-bidder multi-item mechanism design problem as a zero sum

game between the seller, who chooses a mechanism to auction the items, and a fictitious

adversary or ‘nature,’ who chooses the bidders’ value profiles from within a box uncertainty

set. For symmetric bidders we characterize the Nash equilibrium of this game analytically,

i.e., we prove that the seller’s Nash strategy is the separable mechanism identified in (i),

whereas nature’s Nash strategy is mixed and thus represents a probability distribution on the

uncertainty set. Under this distribution, each bidder’s values for the items are comonotic, and

any bidder’s value profile can be non-zero only if all other bidders’ value profiles vanish.

(iii) We also study a restricted auction design problem over deterministic mechanisms. In this set-

ting, we characterize the suboptimality of a separable second price auction with deterministic

reserve prices and show that this auction becomes optimal if the bidders are symmetric.

The mechanism design model studied in this paper requires no distributional information except

for upper bounds on the bidders’ values for each item. This model is relevant if there is no trust-

worthy distributional information or if any distributional information is costly or time-consuming

to acquire. Such a situation could arise, for example, when firms use auctions for initial public

offerings. In this case, there is indeed no distributional information available about the bidders’

values for the offered shares. On the other hand, the model studied here may be overly conservative

when data is abundant, as is typically the case in online advertisement, where auctions for ad

placements are held in real time within fractions of seconds. To our best knowledge, this paper



5

establishes the first non-trivial robust optimality guarantee for a separable mechanism involving

multiple bidders as well as multiple items. We hope that the insights distilled in this paper will

pave the way towards more general separation results with a broader range of applications.

This paper also relates to the literature on approximately optimal mechanism design, see, e.g.,

Dhangwatnotai et al. (2015), Hart and Nisan (2017), Allouah and Besbes (2020) and the references

therein. Under this modeling paradigm, the seller aims to identify a mechanism for which some

objective function (e.g., the expected revenue) is guaranteed to be close to a full information bench-

mark value (e.g., the maximum expected revenue achievable) under every probability distribution

consistent with the assumptions made. The vast majority of the existing approximation results

critically rely on certain independence assumptions (e.g., the values must be independent across

bidders or items). In the context of a monopoly pricing problem with a single buyer it has been

shown, for example, that if the buyer’s values for the items are independent, then simple mech-

anisms (such as selling the goods separately or as a single grand bundle at deterministic posted

prices) provide constant-factor approximations to the expected revenue of the unknown optimal

mechanism (Hart and Nisan 2017). However, if the buyer’s values are correlated, these approxima-

tion guarantees cease to hold (Hart and Nisan 2019). The robust approach adopted in this paper

does not rely on any independence assumptions. Instead, it is able to provide optimality guarantees

for simple mechanisms even when the bidders’ values may be dependent.

Notation. For any closed set A⊆ Rn, we denote by ∆(A) the family of all probability distri-

butions on A, and for any P ∈∆(A), supp(P) represents the support of P. The set of all Borel-

measurable functions from a Borel set D ⊆ Rn to a Borel set R ⊆ Rm is denoted by L(D,R).

Random variables are designated by tildes (e.g., ṽ), and their realizations are denoted by the same

symbols without tildes (e.g., v). For a logical expression E , we define 1E = 1 if E is true and 1E = 0

otherwise. Throughout the paper, bidders are indexed by superscripts and items by subscripts.

2. Problem Formulation

We consider the problem of designing a mechanism for selling J ≥ 1 different items to I ≥ 1 bidders.

The sets of items and bidders are denoted by J = {1,2, . . . , J} and I = {1,2, . . . , I}, respectively.
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Each bidder i ∈ I assigns each item j ∈ J a value vij that reflects his willingness to pay. In the

following we denote by vi = (vi1, . . . , v
i
J) the row vector of the values that bidder i assigns to all

items and by vj = (v1j , . . . , v
I
j )

⊤ the column vector of all bidders’ values for item j. In addition,

we let v = (v1, . . . ,vJ) be the matrix of all bidders’ values for all items. While bidder i has full

knowledge of his value profile vi, the seller perceives the matrix v as uncertain. For each j ∈J , we

assume that the seller only knows an upper bound vij > 0 on the value vij for all i ∈ I. We denote

by v⋆j =maxi∈I v
i
j the largest upper bound across all bidders for item j ∈ J . We will say that the

bidders are symmetric if vij = v⋆j for all i∈ I and j ∈J . The seller has no other information about

the distribution of v or suspects that any available information is not trustworthy. For ease of

exposition, we assume that the seller incurs no costs for supplying any of the items to any of the

bidders. In the following, we denote by V i =×j∈J [0, v
i
j] the uncertainty set of the value profiles of

any fixed bidder i∈ I and by V =×i∈IV i the uncertainty set of the value profiles of all bidders. We

also let W i
j , i∈ I and j ∈J , be any partition of the set Vj =×i∈I [0, v

i
j] such that W i

j contains only

scenarios vj for which bidder i is among the highest bidders for item j. In other words, vj ∈W i
j

implies that i∈ argmaxk∈I v
k
j . If there are multiple highest bidders, an arbitrary tie-breaking rule

is used (e.g., the lexicographic tie-breaker sets W i
j = {vj ∈ Vj : i=minargmaxk∈I v

k
j }).

An auction mechanism (q,m) consists of an allocation rule q ∈L(V,RI×J
+ ) and a payment rule

m∈L(V,RI). Given a matrix v ∈ V of value profiles reported by all bidders, the mechanism (q,m)

outputs the allocation probabilities of the items to the bidders as well as the payments charged

to the bidders. Specifically, in scenario v, the seller allocates item j to bidder i with probabil-

ity qij(v) and charges this bidder the amount mi(v). As a result, the utility of bidder i evaluates

to
∑

j∈J qij(v)v
i
j −mi(v) and is therefore quasilinear and additively separable across the items.
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A (dominant strategy) incentive compatible and (ex-post) individually rational mecha-

nism (q,m) satisfies the following constraints.

∑
j∈J

qij(v)v
i
j −mi(v)≥

∑
j∈J

qij(w
i,v−i)vij −mi(wi,v−i) ∀i∈ I, ∀v ∈ V, ∀wi ∈ V i (IC)

∑
j∈J

qij(v)v
i
j −mi(v)≥ 0 ∀i∈ I, ∀v ∈ V (IR)

∑
i∈I

qij(v)≤ 1 ∀j ∈J , ∀v ∈ V (Inv)

The incentive compatibility constraint (IC) ensures that each bidder maximizes his utility by

reporting his true value profile irrespective of the values reported by the other bidders. The indi-

vidual rationality constraint (IR) ensures that the bidders earn non-negative utilities from partici-

pation under truthful reporting. Incentive compatibility and individual rationality constraints are

routinely used in mechanism design and may be imposed essentially without any loss of general-

ity thanks to the revelation principle (Krishna 2009, Chapter 5). The inventory constraint (Inv)

ensures that the seller allocates each item j ∈J with a probability of at most one. The inequality

expresses the possibility that the seller may keep any item j to herself with a positive probability.

The seller’s ex-post regret is defined as the difference between the maximum profit that could

have been realized under complete information about v and the profit earned with the mecha-

nism (q,m). If the seller was fully aware of the bidders’ values v, she would sell item j at the price

maxi∈I v
i
j to any bidder i∈ argmaxi∈I v

i
j. The maximum profit under complete information can thus

be expressed as
∑

j∈J (maxi∈I v
i
j). The profit earned with mechanism (q,m), on the other hand,

amounts to
∑

i∈I m
i(v). In summary, the ex-post regret thus equals

∑
j∈J (maxi∈I v

i
j)−

∑
i∈I m

i(v),

and the worst-case regret is obtained by maximizing the ex-post regret over all value profiles v ∈ V.

Throughout this paper we assume that the seller aims to design an incentive compatible and

individually rational mechanism that minimizes her worst-case regret. This mechanism design
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problem can be formalized as the following robust optimization problem.

z⋆ = inf
q,m

sup
v∈V

∑
j∈J

(max
i∈I

vij)−
∑
i∈I

mi(v)

s.t. q ∈L(V,RI×J
+ ), m∈L(V,RI)

(IC), (IR), (Inv)

(MDP)

From now on, we use the shorthand X to denote the set of all mechanisms feasible in (MDP). We

also denote by Reg(q,m) the worst-case regret of any fixed feasible mechanism (q,m).

Remark 1. One can show that problem (MDP) is equivalent to

inf
(q,m)∈X

sup
P∈∆(V)

sup
(q′,m′)∈X

EP

[∑
i∈I

(m′)i(ṽ)−
∑
i∈I

mi(ṽ)

]
, (1)

where ṽ constitutes a random vector of bidder values governed by an unknown distribution P ∈

∆(V). Thus, P is only known to be supported on V. Note that problem (1) minimizes an alternative

notion of worst-case regret, where the worst case is evaluated with respect to all distributions

P ∈∆(V). Here, the regret of a given mechanism (q,m) under a fixed distribution P is defined as

the difference between the maximum expected revenues achievable under perfect knowledge of P

and the expected revenues generated by (q,m), which is ignorant of P.

By interchanging the two supremum operators in (1) and noting that the regret of any fixed

mechanism (q,m) is linear in P, one readily verifies that the regret of (q,m) is actually maximized

by a Dirac distribution in ∆(V). Hence, problem (1) is equivalent to

inf
(q,m)∈X

sup
v∈V

sup
(q′,m′)∈X

∑
i∈I

(m′)i(v)−
∑
i∈I

mi(v)≤ inf
(q,m)∈X

sup
v∈V

∑
j∈J

(max
i∈I

vij)−
∑
i∈I

mi(v),

where the inequality holds because
∑

i∈I(m
′)i(v)≤

∑
j∈J (maxi∈I v

i
j) for any mechanism (q′,m′)

that satisfies the individual rationality constraint (IR) as well as the inventory constraint (Inv).

In fact, the inequality is tight. To see this, fix an arbitrary v ∈ V, and consider the posted-price

mechanism (q′,m′) that offers any item j ∈ J only to bidder ij =minargmaxi∈I v
i
j at the posted

price v
ij
j . This mechanism (which depends on v) satisfies (m′)i(v) = v

ij
j =maxi∈I v

i
j for every i∈ I.

This confirms that the mechanism design problems (MDP) and (1) are indeed equivalent. □
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In the remainder we will sometimes study a deterministic variant of problem (MDP), where the

allocation rule q must be chosen from L(V,{0,1}I×J) instead of L(V,RI×J
+ ). Thus, the allocation

probabilities must be set to 0 or 1 in each scenario. Deterministic mechanisms are easier to under-

stand and communicate and may therefore be preferred in practice. In addition, the absence of any

randomness in the allocation decisions may increase the acceptance of a mechanism.

One particularly simple policy for the seller would be to auction each of the J items individually.

Any such mechanism is separable in the sense of the following definition.

Definition 1 (Separability). A mechanism (q,m) is called separable if there exists an item-

wise allocation rule q̂j ∈ L(Vj,RI
+) and an item-wise payment rule m̂j ∈ L(Vj,RI) for all j ∈ J

such that q(v) = (q̂1(v1), . . . , q̂J(vJ)) and m(v) =
∑

j∈J m̂j(vj) for all v ∈ V.

In the remainder we will show that problem (MDP) admits an optimal separable mechanism that

is available in closed form.

3. Single-Bidder Pricing Problems

The mechanism design problem (MDP) has been studied by Bergemann and Schlag (2008) in the

special case when I = J = 1 (single-item pricing) and by Koçyiğit et al. (2022) in the special case

when I = 1 (multi-item pricing). This paper is the first to study problem (MDP) for general I, J ≥ 1.

As some of our results rely on a reduction of the multi-bidder auction design problem to a single-

bidder pricing problem, we review here the results for pricing problems by Koçyiğit et al. (2022).

Specifically, if I = 1, then a randomized separable posted-price mechanism is optimal in (MDP).

A separable posted-price mechanism assigns each item j a posted price rj. If the (single) bidder’s

value v1j exceeds rj, then he receives item j at price rj. Otherwise, there is no transaction. A

randomized separable posted-price mechanism assigns each item j a random posted price r̃j ∼Qj.

In the following we will focus on the randomized separable posted-price mechanism (q⋆,m⋆)

induced by the posted-price distributions Q⋆
j , j ∈J , defined through

Q⋆
j (r̃j ≤ x) =


1+ log( x

v1j
) if

v1j
e
≤ x≤ v1j ,

0 if 0≤ x<
v1j
e
.

(2a)
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The corresponding allocation and payment rules can be expressed as q(v) = (q̂1(v
1
1), . . . , q̂J(v

1
J))

and m(v) =
∑

j∈J m̂j(v
1
j ), respectively, where (q̂j, m̂j) is a single-item mechanism defined through

q̂j(v
1
j ) =Q⋆

j (r̃j ≤ v1j ) and m̂j(v
1
j ) =EQ⋆

j
[r̃j1(r̃j≤v1j )

] ∀v1j ∈ [0, v1j ]. (2b)

In this case, the single-item allocation rules q̂j(v
1
j ) are piece-wise logarithmic and the single-item

payment rules m̂j(v
1
j ) are piece-wise linear. Indeed, a direct calculation reveals that

m̂j(v
1
j ) =


v1j −

v1j
e

if
v1j
e
≤ v1j ≤ v1j ,

0 if 0≤ v1j <
v1j
e
.

One can show that if I = 1, then the separable mechanism (q⋆,m⋆) is optimal in problem (MDP).

Theorem 1 (Koçyiğit et al. 2022). If I = 1, then the minimum of (MDP) is
∑

j∈J
v1j
e
, and

the separable mechanism (q⋆,m⋆) corresponding to the single-item mechanisms (2) is optimal.

In addition, it is easy to see that for I = 1 problem (MDP) is equivalent to the zero-sum game

z⋆ = inf
(q,m)∈X

sup
P∈∆(V)

z(m,P),

where z(m,P) =EP[
∑

j∈J ṽ1j −m(ṽ)] represents the expected regret of the mechanism (q,m) if the

bidder’s values are governed by the probability distribution P. In the following, we will focus on a

distribution P⋆ under which the bidder’s values are comonotonic and which is defined through

P⋆(ṽ1 ≤ v1) =


minj∈J

(
1− 1

e

(
v1j

v1j

))+

if v1 ∈ V \ {(v11, . . . , v1J)},

1 if v1 = (v11, . . . , v
1
J).

(3)

One can show that if I = 1, then the separable mechanism (q⋆,m⋆) and the comonotonic probability

distribution P⋆ form a Nash equilibrium in the above zero-sum game equivalent to (MDP).

Theorem 2 (Koçyiğit et al. 2022). If I = 1, then the separable mechanism (q⋆,m⋆) corre-

sponding to the single-item mechanisms (2) and the distribution P⋆ defined in (3) satisfy the saddle

point condition maxP∈∆(V) z(m
⋆,P) ≤ z(m⋆,P⋆) ≤ min(q,m)∈X z(m,P⋆).
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Finally, we address the deterministic variant of problem (MDP) with I = 1, where the allocation

rule q must be chosen from L(V,{0,1}J). In this case, the deterministic separable posted-price

mechanism (q⋆,m⋆) that sells item j at price rj = v1j/2 for any j ∈ J is optimal. This separable

mechanism is induced by the single-item mechanisms (q̂j, m̂j), j ∈J , which are defined through

(q̂j(v
1
j ), m̂j(v

1
j )) =


(1, v1j/2) if v1j ≥ v1j/2,

(0,0) otherwise.

(4)

Theorem 3 (Koçyiğit et al. 2022). If I = 1, then the minimum of the deterministic ver-

sion of the mechanism design problem (MDP) amounts to
∑

j∈J
v1j
2
, and the separable mechanism

(q⋆,m⋆) corresponding to the single-item mechanisms (4) is optimal.

4. Optimality Results

We now return to the general auction design problem (MDP) corresponding to arbitrary I, J ≥ 1,

and we construct a mechanism (q′,m′), under which the seller implements a separate second price

auction for each item j ∈ J with a random reserve price r̃j governed by a probability distribu-

tion Q⋆
j ∈∆([0, v⋆j ]), where v⋆j =maxi∈I v

i
j. Specifically, Q⋆

j is defined through

Q⋆
j (r̃j ≤ x) =


1+ log( x

v⋆j
) if

v⋆j
e
≤ x≤ v⋆j

0 if 0≤ x<
v⋆j
e
.

Note that this definition of Q⋆
j naturally extends definition (2a) to an arbitrary number of bid-

ders I ≥ 1. For each item j ∈J , the respective second price auction proceeds as follows. First, the

reserve price rj is sampled from the distribution Q⋆
j . Note that the smallest possible value of rj

under this distribution is
v⋆j
e
. The seller then asks the bidders to report their bids for item j. After

collecting all bids, the seller allocates item j to the highest bidder provided that his bid exceeds

the reserve price rj, and the winner pays an amount equal to the maximum of the second highest

bid and rj. In the case of ties, item j is given to the unique bidder whose index i satisfies vj ∈W i
j .

By construction, the single-item mechanisms (q̂′
j,m̂

′
j), j ∈J , corresponding to (q′,m′) satisfy

(q̂′)ij(vj, rj) =


1 if vj ∈W i

j and vij ≥ rj

0 otherwise,

(5a)
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(m̂′)ij(vj, rj) =


max{maxk ̸=i v

k
j , rj} if vj ∈W i

j and vij ≥ rj

0 otherwise

(5b)

for all vj ∈ Vj. Note that (q′,m′) is manifestly randomized because it depends on the realizations

of the random reserve prices. Next, we introduce a new mechanism (q⋆,m⋆), which is constructed

by averaging (q′,m′) across the random reserve prices. This new mechanism inherits separability

from (q′,m′), and the corresponding single-item mechanisms (q̂j,m̂j), j ∈J , satisfy

q̂ij(vj) =EQ⋆
j
[(q̂′)ij(vj, r̃j)] and m̂i

j(vj) =EQ⋆
j
[(m̂′)ij(vj, r̃j)] (6)

for all i∈ I and vj ∈ Vj. For any j ∈J , the single-item mechanisms (q̂j,m̂j) and (q̂′
j,m̂

′
j) represent

two different implementations of the second price auction with a random reserve price, and they

are equivalent in terms of expected payoffs to all agents. The key difference is that the allocation

probabilities and payments are deterministic under (q̂j,m̂j), whereas they are random and rely on

r̃j under (q̂′
j,m̂

′
j). Figure 1 visualizes a single-item mechanism of the form (6) with I = 2 bidders,

v11 = 1 and v21 = 2. Note that bidder 2 is more likely to receive the item in a majority of all scenarios.

When the item is allocated to bidder 1, however, the seller may earn considerably less. These

phenomena arise whenever mini∈I v
i
1 ≪maxi∈I v

i
1. To gain a better understanding, it is instructive

to evaluate the expectations in (6) explicitly. A simple calculation yields

q̂ij(vj) =


1+ log(

vij
v⋆j
) if vj ∈W i

j and vij ≥
v⋆j
e

0 otherwise,

m̂i
j(vj) =



vij +(maxk ̸=i v
k
j ) log(maxk ̸=i

vkj
v⋆j
) if vj ∈W i

j and vij ≥maxk ̸=i v
k
j ≥

v⋆j
e

vij −
v⋆j
e

if vj ∈W i
j and vij ≥

v⋆j
e
>maxk ̸=i v

k
j

0 otherwise.

Remark 2. All second price auctions with deterministic reserve prices are (dominant strategy)

incentive compatible (Krishna 2009, Chapter 2). Thus, (q′,m′) is incentive compatible for any
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Figure 1 Visualization of the separable mechanism (q⋆,m⋆) for I = 2 bidders, J = 1 item, v11 = 1 and v21 = 2

fixed realizations of the random reserve prices. As incentive compatibility can be encoded through

(infinitely many) linear inequalities, it is preserved by averaging (q′,m′) across the random reserve

prices r̃j ∼Q⋆
j , j ∈ J . Hence, (q⋆,m⋆) is incentive compatible, and the bidders have a weak pref-

erence to report their true values under (q⋆,m⋆). All second price auctions with reserve prices are

also (ex-post) individually rational because the bidders’ utilities are always non-negative. Indeed,

under truthful bidding, a bidder pays at most his own bid. Using similar arguments as above, one

can thus show that (q⋆,m⋆) is also individually rational. As the mechanism (q⋆,m⋆) ostensibly

satisfies the inventory constraint (Inv), we thus conclude that it is feasible in (MDP). □

In the following, we investigate the optimality properties of the mechanism (q⋆,m⋆). Specifically,

we will show that (q⋆,m⋆) attains a worst-case regret of
∑

j∈J
v⋆j
e
=
∑

j∈J maxi∈I
vij
e
and that the

optimal value of (MDP) is bounded below by the same value
∑

j∈J
v⋆j
e
. This implies that (q⋆,m⋆)

is optimal in (MDP). We first quantify the worst-case regret of (q⋆,m⋆).

Proposition 1. The worst-case regret of the separable mechanism (q⋆,m⋆) corresponding to

the single-item mechanisms (6) is given by
∑

j∈J
v⋆j
e
.
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Proof. We will first show that the regret of (q⋆,m⋆) is bounded above by
∑

j∈J
v⋆j
e

in any

scenario v ∈ V and then identify a scenario for which this upper bound is attained.

To this end, we introduce an artificial bidder whose value profile va belongs to the box uncertainty

set Va = ×j∈J [0, v
⋆
j ]. For any j ∈ J , we denote by (fa

j , g
a
j ) a single-buyer mechanism for selling

item j to the artificial bidder, where fa
j (v

a
j ) = Q⋆

j (r̃j ≤ vaj ) and gaj (v
a
j ) = EQ⋆

j
[r̃j1(vaj ≥r̃j)] for all

values vaj ∈ [0, v⋆j ] of the artificial bidder. Note that fa
j and gaj can thus be interpreted as the

expected allocation and payment rules of the randomized posted-price mechanism with random

price r̃j ∼ Q⋆
j , respectively; see also (2b). In addition, by Theorem 1 the separable single-buyer

multi-item mechanism corresponding to the single-item single-buyer mechanisms {(fa
j , g

a
j )}j∈J is

optimal in problem (MDP) if there is only the artificial bidder.

Fix now any scenario v ∈ V, and define i⋆(j) as the unique i∈ I with vj ∈W i
j . By construction,

i⋆(j)∈ I identifies one of the highest bidders for item j in scenario v. As the mechanism (q⋆,m⋆)

sells each item j separately to bidder i⋆(j), its regret in scenario v can thus be expressed as

∑
j∈J

(max
i∈I

vij)−
∑
i∈I

m̂i(v) =
∑
j∈J

(vi
⋆(j) − m̂

i⋆(j)
j (vj))≤

∑
j∈J

(vi
⋆(j) − gaj (v

i⋆(j)
j ))≤

∑
j∈J

v⋆j
e
, (7)

where the first inequality holds because

m̂
i⋆(j)
j (vj) =EQ⋆

j

[
max{ max

i ̸=i⋆(j)
vkj , r̃j}1(v

i⋆(j)
j ≥r̃j)

]
≥EQ⋆

j

[
r̃j1(v

i⋆(j)
j ≥r̃j)

]
= gaj (v

i⋆(j)
j ).

Indeed, m̂
i⋆(j)
j (vj) is the expected payment of bidder i⋆(j) under the second price auction with ran-

dom reserve price r̃j ∼Q⋆
j , whereas g

a(v
i⋆(j)
j ) is the expected payment under the posted-price mech-

anism with random price r̃j ∼Q⋆
j . The second inequality in (7) holds because the separable mech-

anism corresponding to the single-item mechanisms {(fa
j , g

a
j )}j∈J is optimal in problem (MDP) if

there is only one bidder whose value for item j is bounded above by v⋆j for any j ∈J . In fact, we

know from Theorem 1 that the worst-case regret of this mechanism is given by
∑

j∈J
v⋆j
e
. As v ∈ V

was chosen arbitrarily, the regret of (q⋆,m⋆) is indeed bounded above by
∑

j∈J
v⋆j
e
.

Consider now the scenario v̂ defined through v̂ij =
vij
e
for all i∈ I and j ∈J . In this scenario, we

have
∑

j∈J maxi∈I v̂
i
j =
∑

j∈J
v⋆j
e
. Moreover, no bidder receives the good with a positive probability



15

and makes a non-zero payment because Q⋆
j (r̃j ≤

v⋆j
e
) = 0 for all j ∈J . In other words, the bidders’

values for any item j remain almost surely below the reserve price r̃j. The seller’s regret in this

scenario therefore attains the upper bound
∑

j∈J
v⋆j
e
. □

Next, we show that (q⋆,m⋆) is optimal in (MDP). The proof of this result establishes a lower

bound on the optimal value of (MDP) that matches the worst-case regret of (q⋆,m⋆).

Theorem 4. The separable mechanism (q⋆,m⋆) corresponding to the single-item mecha-

nisms (6) is optimal in (MDP). The optimal value z⋆ of problem (MDP) amounts to
∑

j∈J
v⋆j
e
.

In order to prove Theorem 4, we first introduce some useful notation, that is, we denote by

J i =

{
j ∈J : i=minargmax

i′∈I
vi

′

j

}
and Î = {i∈ I : J i ̸= ∅}

the set of items for which bidder i has the smallest index among those who have the highest upper

bound and the subset of bidders for whom J i is nonempty, respectively. By the construction of J i,

we have vij = v⋆j for all j ∈J i. Note that J i, i∈ Î, constitutes a partition of J . We also introduce

an extremal value profile v̂ ∈RI×J defined through

v̂ij =


vij if j ∈J i,

0 otherwise.

Consider now the following discrete approximation of the mechanism design problem (MDP).

z⋆n = inf
q,m

sup
v∈Vn

∑
j∈J

(max
i∈I

vij)−
∑
i∈I

mi(v)

s.t. q ∈L(Vn,RI×J
+ ), m∈L(Vn,RI)∑

j∈J

qij(v)v
i
j −mi(v)≥

∑
j∈J

qij(w
i,v−i)vij −mi(wi,v−i) ∀i∈ I, ∀v ∈ Vn, ∀wi ∈ V i

n (ICn)

∑
j∈J

qij(v)v
i
j −mi(v)≥ 0 ∀i∈ I, ∀v ∈ Vn (IRn)

∑
i∈I

qij(v)≤ 1 ∀j ∈J , ∀v ∈ Vn (Invn)

(8)
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Problem (8) is parametrized in n ∈ N and differs from (MDP) only in that it involves a discrete

uncertainty set Vn = ×i∈IV i
n, where V i

n = ×j∈JV i
n,j and V i

n,j =
{
0, 1

n
v̂ij,

2
n
v̂ij, . . . , v̂

i
j

}
. For each i ∈

I, j ∈ J and n ∈ N, V i
n,j represents a uniform one-dimensional grid within the interval [0, v̂ij].

Particularly, we have | V i
n,j |= n+1 if j ∈J i, whereas V i

n,j = {0} and | V i
n,j |= 1 if j ̸∈ J i. Note also

that any (scalar) function defined on Vn corresponds to an (n+1)J -dimensional vector.

Lemma 1. For any n∈N, we have z⋆n ≤ z⋆.

Proof. By construction we have that v̂ij ≤ vij, for all i ∈ I, j ∈ J , and as a result, Vn ⊆V. The

objective function of (8) is thus smaller than or equal to that of (MDP) uniformly across all q and

m, and the feasible set of (8) contains that of (MDP) as it relaxes all constraints associated with

value profiles v ∈ V \Vn. Thus, the optimal value of (8) cannot be larger than that of (MDP). □

As its objective function is convex and piecewise linear, problem (8) can be reformulated as the

following equivalent finite linear program, where r represents an auxiliary epigraphical variable.

z⋆n = inf
q,m,r

r

s.t. q ∈L(Vn,RI×J
+ ), m∈L(Vn,RI), r ∈R

r≥
∑
j∈J

(max
i∈I

vij)−
∑
i∈I

mi(v) ∀v ∈ Vn

(ICn), (IRn), (Invn)

(9)

The linear program dual to (9) is given by

z⋆n = sup
α,γ,β,λ

∑
j∈J

∑
v∈Vn

α(v)(max
i∈I

vij)−
∑
j∈J

∑
v∈Vn

λj(v)

s.t. α∈L(Vn,R+), γ
i ∈L(Vn ×V i

n,R+) ∀i∈ I, β ∈L(Vn,RI
+), λ∈L(Vn,RJ

+)∑
v∈Vn

α(v) = 1

βi(v)+
∑

wi∈Vi
n

γi(v,wi)−
∑

wi∈Vi
n

γi((wi,v−i),vi) = α(v) ∀i∈ I, ∀v ∈ Vn

λj(v) ≥ βi(v)vij +
∑

wi∈Vi
n

γi(v,wi)vij

−
∑

wi∈Vi
n

γi((wi,v−i),vi)wi
j ∀i∈ I, ∀j ∈J , ∀v ∈ Vn,

(10)
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where α represents the dual variable of the epigraphical constraint, γ and β are the dual variables

of the incentive compatibility and individual rationality constraints, respectively, and λ collects

the dual variables of the upper probability bounds in (9). Strong duality holds because the trivial

mechanism that sets q(v) = 0 and m(v) = 0 for all v ∈ Vn is feasible in (9) if r≥
∑

j∈J (maxi∈I v̂
i
j).

Since the linear program (10) seeks to make the decision variables λj(v) as small as possible

while ensuring that they remain non-negative and satisfy the last constraint of (10), it is clear that

λj(v) =max
i∈I

βi(v)vij +
∑

wi∈Vi
n

γi(v,wi)vij −
∑

wi∈Vi
n

γi((wi,v−i),vi)wi
j

+

=max
i∈I

α(v)vij +
∑

wi∈Vi
n

γi((wi,v−i),vi)(vij −wi
j)

+

∀j ∈J , ∀v ∈ Vn

at optimality, where the second equality exploits the second equality constraint in (10) to elimi-

nate βi(v). By substituting the above expression for λj(v) into the objective of problem (10), we

then obtain the following equivalent non-linear program in the decision variables α and γ.

z⋆n = sup
α,γ

∑
j∈J

∑
v∈Vn

α(v)(max
i∈I

vij)−
∑
j∈J

∑
v∈Vn

max
i∈I

α(v)vij + ∑
wi∈Vi

n

γi((wi,v−i),vi)(vij −wi
j)

+

s.t. α∈L(Vn,R+), γ
i ∈L(Vn ×V i

n,R+) ∀i∈ I∑
v∈Vn

α(v) = 1

α(v)+
∑

wi∈Vi
n

γi((wi,v−i),vi)−
∑

wi∈Vi
n

γi(v,wi) ≥ 0 ∀i∈ I ∀v ∈ Vn

(11)

The last constraint group in (11) is equivalent to the requirement that βi(v) ≥ 0 for all i ∈ I

and v ∈ Vn in (10). Note that, by construction, the optimal value of (11) is still equal to z⋆n.

Lemma 2. We have lim inf
n→∞

z⋆n ≥
∑

j∈J
v⋆j
e
.

Proof. To prove the claim, we will construct a feasible solution for problem (11), whose objective

function value necessarily provides a lower bound on z⋆n. We will then show that the objective

function value of this solution converges to
∑

j∈J
v⋆j
e

as n tends to infinity.
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For n> e(1+ e), our construction of a feasible (αn,γn) for problem (11) relies on bidder-specific

values α̂i
n ∈L(V i

n,R+) and γ̂i ∈L(V i
n ×V i

n,R+), i∈ Î, which are defined through

α̂i
n(v

i) =


n

ek(k+1)
if ∃k ∈

{
⌊n
e
⌋, . . . , n− 1

}
with vi = k

n
v̂i,

1−
∑n−1

k=⌊n
e ⌋

n

ek(k+1)
if vi = v̂i,

0 otherwise,

and

γ̂i
n(w

i,vi) =


(n−e−e2)n

e(n−e)(k+1)
if ∃k ∈

{
⌊n
e
⌋, . . . , n− 1

}
with vi = k

n
v̂i and wi = vi + 1

n
v̂i,

0 otherwise.

We will first derive some useful properties of (α̂i
n, γ̂

i
n){i∈Î}. Next, we will use (α̂i

n, γ̂
i
n){i∈Î} to con-

struct a feasible solution (αn,γn) for problem (11). To this end, note first that (α̂i
n, γ̂

i
n) is feasible in

sup
α̂i,γ̂i

∑
j∈J i

∑
vi∈Vi

n

α̂i(vi)vij −
∑
j∈J i

∑
vi∈Vi

n

α̂i(vi)vij +
∑

wi∈Vi
n

γ̂i(wi,vi)(vij −wi
j)

+

s.t. α̂i ∈L(V i
n,R+), γ̂

i ∈L(V i
n ×V i

n,R+)∑
vi∈Vi

n

α̂i(vi) = 1

α̂i(vi)+
∑

wi∈Vi
n

γ̂i(wi,vi)−
∑

wi∈Vi
n

γ̂i(vi,wi) ≥ 0 ∀vi ∈ V i
n.

(12)

Problem (12) is equivalent to problem (7) in Koçyiğit et al. (2022), that is, it is equivalent to

the dual of a single-buyer multi-item mechanism design problem for selling the items in J i to

bidder i ∈ Î. To see this, recall that vij = 0 for all j ̸∈ J i and vi ∈ V i
n. Thus, we can assume

without loss of generality that α̂i is only a function of (vij){j∈J i} and that γ̂i is only a function

of ((vij){j∈J i}, (w
i
j){j∈J i}). By (Koçyiğit et al. 2022, Lemma 3), we know that (α̂i

n, γ̂
i
n) is feasible

in (12) and that its objective function value converges to
∑

j∈J i

v̂⋆j
e
=
∑

j∈J i

v⋆j
e
as n tends to infinity.

We now construct a feasible solution (αn,γn) for problem (11), which is defined through

αn(v) =
∏
i∈Î

α̂i
n(v

i) ∀v ∈ Vn

γi
n((w

i,v−i),vi) =


∏

i′∈Î\{i} α̂
i′
n(v

i′)γ̂i
n(w

i,vi) ∀i∈ Î

0 ∀i∈ I \ Î
∀v ∈ Vn, ∀wi ∈ V i

n.
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Next, we will show that (αn,γn) is feasible in (11). Both αn and γn are non-negative because α̂i
n and

γ̂i
n are non-negative for all i∈ Î. Since

∑
vi∈Vi

n
α̂i

n(v
i) = 1 for all i∈ Î and V i

n = {0} for all i∈ I \ Î,

one can verify that
∑

v∈Vn
αn(v) = 1. It remains to be shown that αn(v)+

∑
wi∈Vi

n
γi
n((w

i,v−i),vi)−

∑
wi∈Vi

n
γi
n(v,w

i) ≥ 0 for all i ∈ I and v ∈ Vn. By the definitions of αn and γn, it suffices to

show that this inequality holds for any i ∈ Î when there exists an integer k ∈
{
⌊n
e
⌋, . . . , n

}
with

vi = k
n
v̂i. In fact, for any i∈ I \Î, the inequality trivially holds as αn(v)≥ 0 and γi

n((w
i,v−i),vi) =

γi
n(v,w

i) = 0 for all v ∈ Vn and wi ∈ V i
n. For any i∈ Î, on the other hand, if there does not exist a

k ∈
{
⌊n
e
⌋, . . . , n

}
with vi = k

n
v̂i, then the left-hand side of the inequality trivially evaluates to zero.

Consider now any i∈ Î, and assume that there exists such k. When k= ⌊n
e
⌋, we have γi

n(v,w
i) = 0

for all wi ∈ V i
n and v−i ∈ V−i

n , and the inequality holds because αn and γn are non-negative. On the

other hand, when k= n or, equivalently, when vi = v̂i we have γi
n((w

i,v−i), v̂i) = 0 for all wi ∈ V i
n

and v−i ∈ V−i
n and γi

n((v̂
i,v−i),wi) = 0 for all wi ∈ V i

n \ {v̂i − v̂i/n} and v−i ∈ V−i
n . Thus, we have

αn((v̂
i,v−i))+

∑
wi∈Vi

n

γi
n((w

i,v−i), v̂i)−
∑

wi∈Vi
n

γi
n((v̂

i,v−i),wi)

= αn((v̂
i,v−i))− γi

n((v̂
i,v−i), v̂i − v̂i/n)

= αn((v̂
i,v−i))−

∏
i′∈Î\{i}

α̂i′

n(v
i′)γ̂i

n(v̂
i, v̂i − v̂i/n)

=

 ∏
i′∈Î\{i}

α̂i′

n(v
i′)

(α̂i
n(v̂

i)− γ̂i
n(v̂

i, v̂i − v̂i/n)
)

=

 ∏
i′∈Î\{i}

α̂i′

n(v
i′)

α̂i
n(v̂

i)+
∑

wi∈Vi
n

γ̂i
n(w

i, v̂i)−
∑

wi∈Vi
n

γ̂i
n(v̂

i,wi)

≥ 0,

where the equalities follow from the definitions of αn, γ
i
n, and γ̂i

n, and the inequality holds because

α̂n is non-negative and because (α̂i
n, γ̂

i
n) satisfies the last constraint of (12) whenever i∈ Î. Finally,
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when ⌊n
e
⌋+1≤ k≤ n− 1, we have

αn(v)+
∑

wi∈Vi
n

γi
n((w

i,v−i),vi)−
∑

wi∈Vi
n

γi
n(v,w

i)

= αn(v)+
∑

wi∈Vi
n

 ∏
i′∈Î\{i}

α̂i′

n(v
i′)

 γ̂i
n(w

i,vi),vi)−
∑

wi∈Vi
n

 ∏
i′∈Î\{i}

α̂i′

n(v
i′)

 γ̂i
n(v

i,wi)

= αn(v)+
∏

i′∈Î\{i}

α̂i′

n(v
i′)γ̂i

n((v
i + v̂i/n,vi),vi)−

∏
i′∈Î\{i}

α̂i′

n(v
i′)γ̂i

n(v
i,vi − v̂i/n)

=

 ∏
i′∈Î\{i}

α̂i′

n(v
i′)

(α̂i
n(v

i)+ γ̂i
n(v

i + v̂i/n,vi),vi)− γ̂i
n(v

i,vi − v̂i/n)
)

=

 ∏
i′∈Î\{i}

α̂i′

n(v
i′)

α̂i(vi)+
∑

wi∈Vi
n

γ̂i(wi,vi)−
∑

wi∈Vi
n

γ̂i(vi,wi)

≥ 0,

where the equalities follow again from the definitions of αn, γ
i
n, and γ̂i

n, and the inequality holds

similarly because α̂n is non-negative and because (α̂i
n, γ̂

i
n) satisfies the last constraint of (12)

whenever i∈ Î. In summary, we have thus shown that (αn,γn) is feasible in (11).

We will now reformulate the objective function value of (αn,γn) in terms of (α̂i
n, γ̂

i
n){i∈Î}. This

value can be expressed as z+ − z−, where

z+ =
∑
j∈J

∑
v∈Vn

αn(v)(max
i∈I

vij), z− =
∑
j∈J

∑
v∈Vn

max
i∈I

αn(v)v
i
j +

∑
wi∈Vi

n

γi
n((w

i,v−i),vi)(vij −wi
j)

+

.

To reformulate z+ in terms of (α̂i
n, γ̂

i
n){i∈Î}, we observe that

z+ =
∑
i∈Î

∑
j∈J i

∑
v∈Vn

αn(v)v
i
j =
∑
i∈Î

∑
j∈J i

∑
vi∈Vi

n

 ∑
v−i∈V−i

n

∏
i′∈Î

α̂i′

n(v
i′)

vij =
∑
i∈Î

∑
j∈J i

∑
vi∈Vi

n

α̂i
n(v

i)vij,

where the first equality holds because J i, i∈ Î, is a partition of J and because vij = 0 for all i∈ I

such that j ̸∈ J i, and the second equality follows from the definition of αn.

To reformulate z− in terms of (α̂i
n, γ̂

i
n){i∈Î}, we first note that

αn(v)v
i
j +

∑
wi∈Vi

n

γi
n((w

i,v−i),vi)(vij −wi
j)

=



αn(v)v
i
j − γi

n((v
i + v̂i/n,v−i),vi)v̂ij/n if j ∈J i, ∃k ∈

{
⌊n
e
⌋, . . . , n− 1

}
with vi = k

n
v̂i,

αn(v)v
i
j if j ∈J i, vi = v̂i,

0 otherwise,

(13)
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for all i∈ Î, whereas αn(v)v
i
j +
∑

wi∈Vi
n
γi
n((w

i,v−i),vi)(vij −wi
j) evaluates to zero for all i∈ I \ Î,

j ∈ J and v ∈ Vn. We will next show that αn(v)v
i
j +

∑
wi∈Vi

n
γi
n((w

i,v−i),vi)(vij −wi
j) is always

non-negative. It suffices to show this for all i ∈ Î, j ∈ J i and v ∈ Vn such that there exists k ∈{
⌊n
e
⌋, . . . , n− 1

}
with vi = k

n
v̂i. In fact, in all other cases, αn(v)v

i
j +
∑

wi∈Vi
n
γi
n((w

i,v−i),vi)(vij −

wi
j) is non-negative because it is either equal to αn(v)v

i
j or to zero and because αn is non-negative.

For any i∈ Î, j ∈J i and v ∈ Vn such that there exists k ∈
{
⌊n
e
⌋, . . . , n− 1

}
with vi = k

n
v̂i, we have

αn(v)v
i
j +

∑
wi∈Vi

n

γi
n((w

i,v−i),vi)(vij −wi
j) =

∏
i′∈Î

α̂i′

n(v
i′)vij −

∏
i′∈Î\{i}

α̂i′

n(v
i′)γ̂i

n(v
i + v̂i/n,vi)v̂ij/n

=
∏

i′∈Î\{i}

α̂i′

n(v
i′)
(
α̂i

n(v
i)vij − γ̂i

n(v
i + v̂i/n,vi)v̂ij/n

)
,

where the first and second equalities exploit the definitions of αn, γ
i
n and γ̂i

n. It remains to be

shown that α̂i
n(v

i)− γ̂i
n(v

i + v̂i/n,vi)v̂i/n is non-negative, which will establish our claim. Using

the definitions of α̂i
n and γ̂i

n, we obtain

α̂i
n(v

i)vij − γ̂i
n(v

i + v̂i/n,vi)v̂ij/n=
n

ek(k+1)

k

n
v̂ij −

(n− e− e2)n

e(n− e)(k+1)

1

n
v̂ij

=
1

e(k+1)

(
1− (n− e− e2)

(n− e)

)
v̂ij =

e

(n− e)(k+1)
v̂ij.

As we selected n> e(1+ e)> e, α̂i
n(v

i)vij − γ̂i
n(v

i+ v̂i/n,vi)v̂ij/n is necessarily non-negative. Using

this observation and the fact that J i, i∈ Î, is a partition of J , we can now reformulate z− as

z− =
∑
i∈Î

∑
j∈J i

∑
v∈Vn

max
i′∈I

αn(v)v
i′

j +
∑

wi′∈Vi′
n

γi′

n ((w
i′ ,v−i′),vi′)(vi

′

j −wi′

j )


=
∑
i∈Î

∑
j∈J i

∑
vi∈Vi

n

∑
v−i∈V−i

n

αn(v)v
i
j +

∑
wi∈Vi

n

γi
n((w

i,v−i),vi)(vij −wi
j)

 ,

where the second equality holds because αn(v)v
i
j +

∑
wi∈Vi

n
γi
n((w

i,v−i),vi)(vij − wi
j) vanishes

unless j ∈J i. We next show that

∑
v−i∈V−i

n

αn(v)v
i
j +

∑
wi∈Vi

n

γi
n((w

i,v−i),vi)(vij −wi
j)

= α̂i(vi)vij +
∑

wi∈Vi
n

γ̂i(wi,vi)(vij −wi
j) (14)

for any i ∈ Î, j ∈ J i and vi ∈ V i
n. By definition of αn, it is clear that

∑
v−i∈V−i

n
αn(v) = α̂i(vi). If

there does not exist k ∈
{
⌊n
e
⌋, . . . , n− 1

}
with vi = k

n
v̂i, then γi

n((w
i,v−i),vi) = 0 for all wi ∈ V i

n
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and v−i ∈ V−i
n . Under the same condition, we similarly have that γ̂i(wi,vi) = 0 for all wi ∈ V i

n.

Thus, we find
∑

v−i∈V−i
n

∑
wi∈Vi

n
γi
n((w

i,v−i),vi)(vij −wi
j) =

∑
wi∈Vi

n
γ̂i(wi,vi)(vij −wi

j) = 0. If there

exists k ∈
{
⌊n
e
⌋, . . . , n− 1

}
with vi = k

n
v̂i, on the other hand, then

∑
v−i∈V−i

n

∑
wi∈Vi

n

γi
n((w

i,v−i),vi)(vij −wi
j) =

∑
v−i∈V−i

n

 ∏
i′∈Î\{i}

α̂i′

n(v
i′)

 γ̂i
n(v

i + v̂i/n,vi)(−v̂ij/n)

= γ̂i
n(v

i + v̂i/n,vi)(−v̂ij/n) =
∑

wi∈Vi
n

γ̂i
n(w

i,vi)(vij −wi
j),

where the first equality follows from the definitions of γi
n and γ̂i

n, the second equality holds because

α̂i′
n is non-negative and satisfies

∑
vi′∈Vi′

n
α̂i′

n(v
i′) = 1 for all i′ ∈ Î, and the last equality follows again

from the definition of γ̂i
n. Thus, (14) follows. In summary, we have shown that

z+ − z− =
∑
i∈Î

∑
j∈J i

∑
vi∈Vi

n

α̂i
n(v

i)vij −
∑
i∈Î

∑
j∈J i

∑
vi∈Vi

n

α̂i(vi)vij +
∑

wi∈Vi
n

γ̂i(wi,vi)(vij −wi
j)


=
∑
i∈Î

∑
j∈J i

∑
vi∈Vi

n

α̂i
n(v

i)vij −
∑
i∈Î

∑
j∈J i

∑
vi∈Vi

n

α̂i(vi)vij +
∑

wi∈Vi
n

γ̂i(wi,vi)(vij −wi
j)

+

,

where the last equality follows from our insight that α̂i(vi)vij+
∑

wi∈Vi
n
γ̂i(wi,vi)(vij −wi

j) is always

non-negative. Thus, the objective function value of (αn,γn) in (11) equals the sum of the objective

function values of (α̂i
n, γ̂

i
n){i∈Î} in (12) over all i ∈ Î. As the objective function value of (α̂i

n, γ̂
i
n)

in (12) converges to
∑

j∈J i

v̂⋆j
e
=
∑

j∈J i

v⋆j
e
, the objective function value of (αn,γn) in (11) converges

to
∑

i∈Î
∑

j∈J i

v̂⋆j
e
=
∑

j∈J
v̂⋆j
e
=
∑

j∈J
v⋆j
e

as n tends to infinity. □

Proof of Theorem 4. By Remark 2 and Proposition 1, the mechanism (q⋆,m⋆) is feasible

in (MDP), and its objective function value is given by
∑

j∈J
v⋆j
e
. By Lemma 2, the optimal value z⋆

of (MDP) is bounded below by
∑

j∈J
v⋆j
e
. As the objective function value

∑
j∈J

v⋆j
e

of (q⋆,m⋆) is

equal to this lower bound, we have z⋆ =
∑

j∈J
v⋆j
e
, and thus (q⋆,m⋆) is optimal in (MDP). □

Remark 3. When the bidders are symmetric in the sense that vij = v⋆j for all i ∈ I and j ∈ J ,

there is a simple way to establish the lower bound
∑

j∈J
v⋆j
e
, which matches the worst-case regret

of (q⋆,m⋆), for the optimal value of (MDP). Fix an arbitrary feasible mechanism (q,m)∈X and

an arbitrary bidder k ∈ I. In addition, define V(k) = {v ∈ V : vi = 0 ∀i ∈ I \ {k}} as the set of all
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value profiles under which the bidders i∈ I\{k} assign no value to any item. The worst-case regret

of (q,m) thus satisfies

sup
v∈V

∑
j∈J

(max
i∈I

vij)−
∑
i∈I

mi(v)≥ sup
v∈V(k)

∑
j∈J

vkj −
∑
i∈I

mi(v)≥ sup
vk∈Vk

∑
j∈J

vkj −mk(vk,0), (15)

where the first inequality holds because V(k) ⊆ V and maxi∈I v
i
j ≥ vkj for every j ∈ J , while the

second inequality holds due to (IR), which implies that mi(v)≤ 0 for all i ̸= k and v ∈ V(k). Note

that (qk(vk,0),mk(vk,0)) can be interpreted as an incentive compatible and individually rational

single-bidder mechanism for selling the items to bidder k. From Theorem 1, we know that the

worst-case regret of this single-buyer mechanism is bounded below by
∑

j∈J
vkj
e
. In view of (15),

the worst-case regret of (q,m) is therefore also bounded below by
∑

j∈J
vkj
e
. In fact, this is true

for every k ∈ I, and thus maxi∈I
∑

j∈J
vij
e

constitutes a lower bound on the worst-case regret of

any mechanism. By Proposition 1, (q⋆,m⋆) attains a worst-case regret of
∑

j∈J maxi∈I
vij
e
, which

matches the simple lower bound if the bidders are symmetric or if there is only J = 1 item. If the

bidders are asymmetric and there are J ≥ 2 items, however, the lower bound is loose. Hence, this

simple reasoning cannot be used to prove the optimality of (q⋆,m⋆) in general. The complexity

thus originates from the asymmetry of the bidders provided that there are multiple items. □

Note that problem (MDP) can be interpreted as a zero-sum game between the seller, who chooses

the mechanism (q,m), and some fictitious adversary or ‘nature,’ who chooses the bidders’ value

profiles v with the goal to inflict maximum damage to the seller. In the remainder of this section,

we assume that the bidders are symmetric and show that (MDP) admits a Nash equilibrium in

mixed strategies, which can be computed analytically. To this end, note first that the mechanisms

in the seller’s convex feasible set X can be seen as mixed strategies because the allocation rules

are probabilistic. Conversely, the value profiles in nature’s convex box uncertainty set V = (V1)I

with V1 = ×j∈J [0, v
⋆
j ] represent pure strategies. While the objective function of problem (MDP)

is affine and thus convex in the payment rule m for a fixed scenario v ∈ V, it is generically non-

concave in v for a fixed mechanism (q,m) ∈ X . Thus, nature’s decision problem is non-convex.

To convert the zero-sum game (MDP) to an equivalent convex-concave saddle point problem, we



24

allow nature to play mixed strategies corresponding to distributions P∈∆(V). With this standard

trick, problem (MDP) can be reformulated as

inf
(q,m)∈X

sup
P∈∆(V)

EP

[∑
j∈J

(max
i∈I

ṽij)−
∑
i∈I

mi(ṽ)

]
. (16)

Next, we prove that the seller’s Nash strategy is given by the separable mechanism (q⋆,m⋆) cor-

responding to the single-item mechanisms (6). In order to describe nature’s Nash strategy, we first

introduce a marginal distribution P̂∈∆(V1) of the value profile ṽ1, which we define through

P̂(ṽ1 ≤ v1) =


minj∈J

(
1− 1

e

(
v⋆j

v1j

))+

if v1 ∈ V1 \ {(v⋆1, . . . , v⋆J)}

1 if v1 = (v⋆1, . . . , v
⋆
J).

By Theorem 2, the distribution P̂ represents nature’s Nash strategy in problem (16) if there is

only I = 1 bidder, that is, in the special case where the auction design problem collapses to a

monopoly pricing problem. Note also that the values (ṽ11, . . . , ṽ
1
J) of bidder 1 for the different items

are comonotonic under P̂. In the following, we will use P̂ to construct an explicit Nash strategy for

nature when I > 1. To this end, we introduce for each i∈ I a probability distribution P̂i ∈∆(V) of

the random matrix ṽ, which is uniquely determined through the relations

P̂i(ṽi ≤w) = P̂(ṽ1 ≤w) ∀w ∈ V i and P̂i(ṽk = 0) = 1 ∀k ̸= i.

Note that under P̂i, the marginal distribution of the value profile ṽi coincides with P̂, while the

marginal distributions of the value profiles ṽk, k ̸= i, are all equal to the Dirac distribution that

concentrates unit mass at 0. As P̂ constitutes a comonotonic distribution, the values of bidder i

for the items are comonotonic under P̂i. The support of the distribution P̂i is given by

supp(P̂i) =
{
v ∈ V : vi = sv⋆ for some s∈ [ 1

e
,1] and vk = 0 ∀k ̸= i

}
,

where v⋆ = (v⋆1, . . . , v
⋆
J). Finally, define P⋆ ∈∆(V) as the average of P̂i, i∈ I, that is, set

P⋆ =
1

I

∑
i∈I

P̂i. (17)
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Note that this definition of P⋆ naturally extends definition (3) from I = 1 to I ≥ 1. By construction,

it is easy to verify that the support of P⋆ can be represented as supp(P⋆) = ∪i∈I supp(P̂i). In

addition, under P⋆ the highest bidder’s value profile exceeds the positive threshold 1
e
v⋆ almost

surely, while all other bidders’ value profiles are almost surely equal to 0. The following theorem

asserts that the separable mechanism (q⋆,m⋆) corresponding to the single-item mechanisms (6)

and the probability distribution P⋆ defined in (17) represent the Nash strategies of the seller and of

nature in the zero-sum game (16), respectively. To simplify the subsequent discussion, we denote by

z(m,P) =EP

[∑
j∈J

(max
i∈I

ṽij)−
∑
i∈I

mi(ṽ)

]
the expected regret of the feasible mechanism (q,m) under the probability distribution P∈∆(V).

Theorem 5 (Nash Equilibrium). If the bidders are symmetric, then the separable mechanism

(q⋆,m⋆) corresponding to the single-item mechanisms (6) and the distribution P⋆ defined in (17)

satisfy the saddle point condition

max
P∈∆(V)

z(m⋆,P)≤ z(m⋆,P⋆)≤ min
(q,m)∈X

z(m,P⋆). (18)

To prove Theorem 5, we first show that the maximization problem on the left-hand side of (18) is

solved by P⋆ and attains an optimal value of
∑

j∈J
v⋆j
e
. Next, we relax the minimization problem

on the right-hand side of (18) to a single-buyer multi-item pricing problem with the objective of

minimizing the regret under the distribution P̂. This relaxation is facilitated by the symmetric

construction of the distribution P⋆. We know from Theorem 2 that the optimal value of the resulting

pricing problem amounts to
∑

j∈J
v⋆j
e
. The observation that z(m⋆,P⋆) =

∑
j∈J

v⋆j
e

then completes

the proof. All technical details are relegated to the online appendix.

5. Deterministic Mechanisms

We now address the deterministic mechanism design problem obtained from (MDP) by restricting

attention to deterministic mechanisms with q ∈L(V,{0,1}I×J). To this end, we study the separable

mechanism (q⋆,m⋆) consisting of the single-item mechanisms (q̂j,m̂j), j ∈J , defined through

q̂ij(vj) =


1 if vj ∈W i

j and vij ≥
v⋆j
2

0 otherwise

(19a)
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and

m̂i
j(vj) =


max

{
maxk ̸=i v

k
j ,

v⋆j
2

}
if vj ∈W i

j and vij ≥
v⋆j
2

0 otherwise

(19b)

for all i ∈ I and vj ∈ Vj. Note that the single-item mechanism (q̂j,m̂j) represents a second price

auction with a deterministic reserve price
v⋆j
2

and is therefore both incentive compatible and indi-

vidually rational (Krishna 2009, Chapter 2). This readily implies that the separable mechanism

(q⋆,m⋆) is incentive compatible and individually rational. As (q⋆,m⋆) trivially satisfies the inven-

tory constraint, it is thus feasible in the deterministic mechanism design problem at hand.

Proposition 2. The worst-case regret of the separable mechanism (q⋆,m⋆) corresponding to

the single-item mechanisms (19) is given by
∑

j∈J
v⋆j
2
.

Proof. As in the proof of Proposition 1, we will first show that the regret of (q⋆,m⋆) is bounded

above by
∑

j∈J
v⋆j
2

in any scenario v ∈ V and then identify a scenario that attains this bound.

To this end, we introduce again an artificial bidder with value profile va ∈ Va =×j∈J [0, v
⋆
j ], and

for any j ∈J , we denote by (fa
j , g

a
j ) the posted-price mechanism with deterministic posted price

v⋆j
2

for selling item j to the artificial bidder. By Theorem 3, the separable single-buyer multi-item

mechanism corresponding to the single-item single-buyer mechanisms {(fa
j , g

a
j )}j∈J is known to be

optimal in the deterministic version of problem (MDP) if there is only the artificial bidder.

Fix now any scenario v ∈ V, and define i⋆(j) as the unique i∈ I with vj ∈W i
j . By construction,

i⋆(j)∈ I identifies one of the highest bidders for item j in scenario v. As the mechanism (q⋆,m⋆)

sells each item j separately to bidder i⋆(j), its regret in scenario v can thus be expressed as

∑
j∈J

(max
i∈I

vij)−
∑
i∈I

m̂i(v) =
∑
j∈J

(vi
⋆(j) − m̂

i⋆(j)
j (vj))≤

∑
j∈J

(vi
⋆(j) − gaj (v

i⋆(j)
j ))≤

∑
j∈J

v⋆j
2
,

where the second inequality exploits Theorem 3. Further details are omitted because the arguments

used here widely parallel those used in the proof of Proposition 1.

For any sufficiently small ϵ > 0 we now define a scenario v̂(ϵ) through v̂ij(ϵ) =
vij
2
− ϵ for all i∈ I

and j ∈J . In this scenario, we have
∑

j∈J maxi∈I v̂
i
j(ϵ) =

∑
j∈J (

v⋆j
2
− ϵ). Moreover, in this scenario
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the seller keeps all items to herself, and no bidder makes a payment because the reserve price
v⋆j
2
for

item j exceeds all bidders’ values for item j irrespective of j ∈J . The seller’s regret in scenario v̂(ϵ)

thus evaluates to
∑

j∈J (
v⋆j
2
−ϵ). Note that all of these arguments hold for all sufficiently small ϵ > 0.

The seller’s regret thus attains the upper bound
∑

j∈J
v⋆j
2

asymptotically as ϵ tends to 0. □

Proposition 3. The optimal value z⋆ of the deterministic version of the mechanism design

problem (MDP) is bounded below by maxi∈I
∑

j∈J
vij
2
.

Proof. The proof widely parallels to the arguments in Remark 3. Specifically, one can show that

the worst-case regret of any mechanism for auctioning the items to I bidders is bounded below

by the worst-case regret of the best mechanism for selling the items to only one bidder. The claim

then follows from Theorem 3. Details are omitted for brevity. □

Propositions 2 and 3 imply that (q⋆,m⋆) attains a worst-case regret of
∑

j∈J
v⋆j
2

=∑
j∈J maxi∈I

vij
2
and that no mechanism can attain a worst-case regret lower than maxi∈I

∑
j∈J

vij
2
,

which implies that

Reg(q⋆,m⋆)− z⋆d ≤
∑
j∈J

max
i∈I

vij
2
−max

i∈I

∑
j∈J

vij
2
, (20)

where z⋆d denotes the optimal value of the deterministic version of the mechanism design prob-

lem (MDP). The right-hand side of the inequality (20) can be evaluated ex ante and provides an

upper bound on the suboptimality of (q⋆,m⋆). Note that this upper bound (as well as the sub-

optimality gap it majorizes) collapse to zero if the bidders are symmetric, in which case the sums

and the maxima in (20) can be interchanged. Propositions 2 and 3 thus imply the following main

result.

Corollary 1. If the bidders are symmetric, then the minimum of the deterministic version of

the mechanism design problem (MDP) amounts to
∑

j∈J
v⋆j
2
, and the separable mechanism (q⋆,m⋆)

corresponding to the single-item mechanisms (19) is optimal.
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6. Numerical Results

We now design numerical experiments to compare the separable mechanism (q⋆,m⋆) correspond-

ing to the single-item mechanisms (6) against several popular benchmark mechanisms. We know

from Theorem 4 that (q⋆,m⋆) is optimal in terms of worst-case regret. Throughout this section

we assume, however, that the bidders’ values constitute a random vector ṽ that follows some

(unknown) distribution in ∆(V). Under this assumption, both the revenue as well as the regret gen-

erated by any mechanism constitute random variables. We can thus compare different mechanisms

in terms of their expected revenues and their regret quantiles, for example.

Throughout this section we assume that the bidders are symmetric and that there is only one

item. This allows us to (approximately) compute the expected revenue-maximizing mechanism if I

is small. Indeed, recall that computing the expected revenue-maximizing mechanism for multiple

items is #P-hard even under unrealistically simple value distributions (Daskalakis et al. 2014). We

also assume that the distribution of ṽ is representable as Pϵ = (1− ϵ)PN + ϵP⋆, where PN ∈∆(V)

represents a nominal distribution that can be thought of as the seller’s best guess for Pϵ, while P⋆

is defined as in (17), and ϵ∈ [0,1]. Recall from Theorem 5 that since the bidders are symmetric, P⋆

represents nature’s Nash strategy. It is useful to interpret Pϵ as an ϵ-contamination of PN. Hence,

the larger ϵ, the more the data-generating distribution Pϵ differs from the seller’s best guess PN.

We assume that the bidders’ values are independent and identically distributed (i.i.d.) under PN.

We compare the mechanism (q⋆,m⋆) against the following benchmarks: (1) the nominal mech-

anism, which maximizes the expected revenue under PN, (2) the single-sample mechanism by

Dhangwatnotai et al. (2015), and (3) the classical second price auction without reserve price. The

single-sample mechanism is a second price auction with a random reserve price sampled from the

true value distribution of any bidder (note that these distributions are identical because the bid-

ders are symmetric). If the bidders’ values are i.i.d. and a mild regularity condition holds, then

the single-sample mechanism is known to generate at least half of the maximum expected rev-

enue that can be generated by any feasible mechanism (Dhangwatnotai et al. 2015). The second
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price auction without reserve price is also a competitive benchmark if the number I of bidders is

large and the bidders’ values are i.i.d. because it is known to extract at least as much revenue as

the expected revenue-maximizing mechanism for I − 1 bidders (Bulow and Klemperer 1996). As

the bidders’ values are i.i.d. under PN, the single-sample mechanism and the second price auction

without reserve price are thus at an advantage for small contamination levels ϵ.

In all experiments we assume that PN represents a truncated normal distribution on V = [0,1]I .

As normal distributions are uniquely determined by their first two moments, they are relatively easy

to estimate from data. We emphasize, however, that our mechanism design problem (MDP) targets

situations in which there is limited distributional information. Consequently, the seller may not

have access to any statistical data and may thus be unable to evaluate the first two moments of PN

altogether. In such situations, the nominal mechanism is fundamentally unavailable. In addition,

even if PN is known, the nominal mechanism cannot be computed exactly. To compute the nominal

mechanism approximately, we approximate the set V of all value profiles by an equidistant grid V̂ ⊆

V and approximate PN by a discrete distribution P̂N supported on V̂. The nominal mechanism is

then approximated by the solution of the linear program that maximizes the expected revenues

under P̂N across all mechanisms that satisfy (IC), (IR) and (Inv) only on V̂ instead of V. Thus, the

approximate nominal mechanism is at an advantage vis-à-vis (q⋆,m⋆), which satisfies (IC), (IR)

and (Inv) throughout the entire set V of value profiles. More details on the setup of our experiments

and the construction of the nominal mechanism are provided in the online appendix.

The first experiment focuses on I = 2 bidders. Under PN the bidders’ values follow independent

normal distributions with mean 0.5 and variance 0.1, truncated on the interval [0,1]. In this case,

the worst-case regrets of the three benchmark mechanisms (approximately computed with respect

to the grid V̂) amount to 0.65, 0.65, and 1, respectively. As expected, they exceed the worst-case

regret of (q⋆,m⋆), which amounts to 0.37 (for consistency also computed with respect to V̂). The

left plot of Figure 2 shows the 75th percentile of the random regret of all mechanisms under P̂ϵ for

different contamination levels ϵ. Here, P̂ϵ represents a discrete approximation of Pϵ supported on V̂.
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We observe that (q⋆,m⋆) dominates all benchmarks across all ϵ≥ 0.25. Furthermore, the 75th regret

percentile of (q⋆,m⋆) is immune to contaminations of the nominal distribution, while those of the

three benchmark mechanisms quickly deteriorate as ϵ increases. The right plot of Figure 2 shows

the expected revenues of all mechanisms relative to the maximum expected revenues achievable

under P̂ϵ for different contamination levels ϵ. Although maximizing expected revenues is not the

objective of problem (MDP), the optimal mechanism (q⋆,m⋆) compares favorably against the three

benchmark mechanisms in terms of expected revenues. It is even competitive with the expected

revenue-maximizing mechanism under the unknown data-generating distribution P̂ϵ. Specifically,

(q⋆,m⋆) extracts more than 70% of the optimal expected revenues when ϵ= 0, and this percentage

further grows as ϵ increases. Most importantly, (q⋆,m⋆) dominates the single-sample mechanism

as well as the second price auction without reserve price for all ϵ≥ 0.25, which are the only two

benchmark mechanisms that are realistically implementable.

Figure 3 shows how the results of the above experiment change if the means of the bidder

values are set to 0.1 instead of 0.5, while all other parameters are kept unchanged. The left plot

reveals that (q⋆,m⋆) dominates the three benchmarks in terms of the 75th regret percentile across

all contamination levels ϵ ≥ 0.3. The outperformance becomes more pronounced for large values

of ϵ. The right plot shows that (q⋆,m⋆) dominates the practically implementable single-sample

mechanism and the second price auction without reserve price for all ϵ≥ 0.3 and that it surpasses

the nominal mechanism for all ϵ ≥ 0.55 in terms of expected revenues. Results for an analogous

third experiment, where the bidders’ values have means 0.9, are relegated to the online appendix.

The last experiment focuses on I = 10 and I = 100 bidders. We use the same procedure as in

the experiment underlying Figure 2 to construct the nominal distribution PN, the data-generating

distribution Pϵ as well as the respective grid-based approximations P̂N and P̂ϵ. In this case the

nominal mechanisms with respect to P̂N and P̂ϵ can no longer be computed because the underlying

linear programs suffer from a curse of dimensionality. Figure 4 shows that (q⋆,m⋆) dominates all

computable benchmarks in terms of expected revenues for virtually every contamination level ϵ.
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Figure 2 Comparison of the minimax regret mechanism (q⋆,m⋆) against the three benchmarks for I = 2 bidders,

where PN is constructed from independent normal distributions with mean values 0.5 and variances 0.1.

Figure 3 Comparison of the minimax regret mechanism (q⋆,m⋆) against the three benchmarks for I = 2 bidders,

where PN is constructed from independent normal distributions with mean values 0.1 and variances 0.1.

In summary, our numerical results demonstrate that the minimax regret mechanism (q⋆,m⋆) not

only attains the least worst-case regret but also compares favorably against practical benchmark

mechanisms in terms of regret percentiles and expected revenues. The online appendix reports on

additional experiments without the assumption that the bidders’ values are independent under PN.

7. Concluding Remarks

We studied a robust auction design problem with minimax regret objective involving multiple items

as well as multiple bidders, where the seller only knows that the values of the bidders range over a



32

Figure 4 Comparison of the minimax regret mechanism (q⋆,m⋆) against the two computable benchmarks for

I = 10 bidders (left) and I = 100 bidders (right), where PN is constructed from independent normal

distributions with mean values 0.5 and variances 0.1.

box uncertainty set. By using duality techniques, we show that a separable mechanism, which sells

the items through separate second price auctions with random reserve prices, is optimal. Reinter-

preting the auction design problem as a zero-sum game between the seller and nature allows us to

prove the existence of a Nash equilibrium in mixed strategies, which we can characterize in close

form when the bidders are symmetric. When restricting attention to deterministic mechanisms, we

further prove that a separable posted-price mechanism is optimal provided that the bidders are

symmetric. We conjecture, however, that separation remains optimal in much more general situ-

ations, and we hope that this paper will spur further research on robust auction design problems

under different informational assumptions.
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Appendix

A. Proofs

Proof of Theorem 5. We first show that P⋆ solves the problem on the left-hand side of (17) (Step 1), and

then we prove that (q⋆,m⋆) solves the problem on the right-hand side of (17) (Step 2).
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Step 1. By Proposition 1, the worst-case regret of the mechanism (q⋆,m⋆) is given by

sup
v∈V

∑
j∈J

(max
i∈I

vi
j)−

∑
i∈I

(m⋆)i(v) =
∑
j∈J

v⋆
j

e
. (A1)

We will strengthen this equality by showing that the worst-case regret
∑

j∈J
v⋆
j

e
is in fact attained by any

v ∈ supp(P⋆). This will allow us to solve the minimization problem in (17) analytically.

By the construction of P⋆, for any fixed value profile v ∈ supp(P⋆), there exists a unique bidder i⋆ who

assigns a higher value to each item than all other bidders, that is, vi⋆

j ≥ v⋆
j

e
≥ vi

j = 0 for all i ∈ I \ {i⋆} and

j ∈J . This insight implies that∑
j∈J

(max
i∈I

vi
j)−

∑
i∈I

(m⋆)i(v) =
∑
j∈J

(
vi⋆

j − m̂i⋆

j (vj)
)
=
∑
j∈J

(
vi⋆

j −EQ⋆
j

[
(m̂′)i

⋆

j (vj , r̃j)
])

=
∑
j∈J

(
vi⋆

j −
∫ vi⋆

j

v⋆
j
e

xQ⋆
j (dx)

)
=
∑
j∈J

(
vi⋆

j −
∫ vi⋆

j

v⋆
j
e

dx

)
=
∑
j∈J

v⋆
j

e
,

(A2)

where the first equality holds because i⋆ represents the highest bidder for any item j ∈J and because only

the highest bidders for any of the items are charged under the mechanism (q⋆,m⋆). The third equality

follows from the observation that the (random) reserve price r̃j almost surely exceeds the second-highest bid

maxi̸=i⋆ v
i
j = 0 with respect to the distribution Q⋆

j of r̃j .

Fix now an arbitrary distribution P∈∆(V). Then, the expected regret of m⋆ under P satisfies

z(m⋆,P) =EP

[∑
j∈J

(max
i∈I

ṽi
j)−

∑
i∈I

(m⋆)i(ṽ)

]
≤
∑
j∈J

v⋆
j

e
,

where the inequality follows from (A1). By (A2), the inequality is tight for P = P⋆. Hence, P⋆ solves the

maximization problem on the left-hand side of (17).

Step 2. Consider now the expected regret minimization problem on the right-hand side of (17), which can

be expressed more explicitly as

inf
q,m

EP⋆

[∑
j∈J

(max
i∈I

ṽi
j)−

∑
i∈I

mi(ṽ)

]

s.t. q ∈L(V,RI×J
+ ), m∈L(V,RI)

(IC), (IR), (Inv).

(A3)

To prove that (q⋆,m⋆) solves problem (A3), we first relax this problem by replacing its objective function

with a lower bound and by reducing the uncertainty sets of its robust constraints (Step 2.a). We then

aggregate the constraints of the resulting problem across the bidders to obtain an even looser relaxation of

(A3), which turns out to be equivalent to a multi-item pricing problem involving a single bidder (Step 2.b).
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By leveraging Theorem 2, we then show that this problem’s optimal value matches the objective value of

(q⋆,m⋆) in (A3).

Step 2.a. To construct a relaxation of problem (A3), we first establish a lower bound on its objective

function. Indeed, for any fixed mechanism (q,m) we have

EP⋆

[∑
j∈J

(max
i∈I

ṽi
j)−

∑
i∈I

mi(ṽ)

]
=

1

I

∑
k∈I

EP̂k

[∑
j∈J

(max
i∈I

ṽi
j)−

∑
i∈I

mi(ṽ)

]

=
1

I

∑
k∈I

EP̂k

[∑
j∈J

ṽk
j −

∑
i∈I

mi(ṽ)

]
≥ 1

I

∑
k∈I

EP̂k

[∑
j∈J

ṽk
j −mk(ṽ)

]
,

where the first equality follows from the definition of P⋆, while the second equality holds because ṽi = 0

for all i ̸= k and ṽk ≥ 1
e
v⋆ > 0 almost surely under P̂k. The inequality exploits the individual rationality

constraint (IR), which implies that mi(ṽ)≤ 0 almost surely under P̂k for all i ̸= k.

For each bidder i ∈ I, define Si = {v ∈ V : vk = 0 ∀k ̸= i}. Next, we relax the incentive compatibility

constraint (IC) and the individual rationality constraint (IR) for any bidder i∈ I by enforcing them only for

scenarios v ∈ Si ⊆V. The resulting relaxations are thus representable as

∑
j∈J

qij(v
i,v−i)vi

j −mi(vi,v−i)≥
∑
j∈J

qij(w
i,v−i)vi

j −mi(wi,v−i) ∀i∈ I, ∀v ∈ Si, ∀wi ∈ V i (ÎC)

and

∑
j∈J

qij(v
i,v−i)vi

j −mi(vi,v−i)≥ 0 ∀i∈ I, ∀v ∈ Si. (ÎR)

Similarly, we note that the original inventory constraint (Inv) implies the relaxation

∑
i∈I

qij(v)≤ 1 ∀j ∈J , ∀k ∈ I, ∀v ∈ Sk

=⇒ qkj (v)≤ 1 ∀j ∈J , ∀k ∈ I, ∀v ∈ Sk, (Înv)

where the second implication holds because the allocation probabilities are non-negative on V.

In summary, we obtain the following relaxation of problem (A3).

inf
q,m

1

I

∑
k∈I

EP̂k

[∑
j∈J

ṽk
j −mk(ṽ)

]

s.t. q ∈L(V,RI×J
+ ), m∈L(V,RI)

(ÎC), (ÎR), (Înv)

(A4)
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Step 2.b. We now use constraint aggregation to construct a relaxation of problem (A4), which constitutes

another—even looser—relaxation of problem (A3). To this end, define for any i ∈ I the linear embedding

Ei ∈L(V i,V)(=L(V1,V)) via

Ei(v) = (0, . . . ,0︸ ︷︷ ︸
i−1

,v⊤,0, . . . ,0︸ ︷︷ ︸
I−i

)⊤,

where, by slight abuse of notation, v ∈ V1 denotes any value profile of a fixed bidder (recall also that the

elements of V1 constitute row vectors). The proposed aggregation averages all constraints of (A4) across

the bidders and expresses the resulting optimization problem in terms of the new auxiliary variables f ∈

L(V1,RJ
+) and g ∈L(V1,R) defined via

fj(v) =
1

I

∑
i∈I

qij(E
i(v)) ∀j ∈J and g(v) =

1

I

∑
i∈I

mi(Ei(v)),

respectively, where v ∈ V1 again denotes any value profile of a fixed bidder.

Thanks to the definition of the set Si introduced in Step 2.a, the relaxed incentive compatibility constraint

(ÎC) can be expressed as

∑
j∈J

qij(E
i(v))vj −mi(Ei(v))≥

∑
j∈J

qij(E
i(w))vj −mi(Ei(w)) ∀i∈ I, ∀v,w ∈ V1,

where we use again v and w to denote arbitrary value profiles of a fixed bidder. By averaging the above

inequality across all bidders i ∈ I, we obtain the following aggregate constraint, which can be reformulated

in terms of the new decision variables f and g.

1

I

∑
i∈I

∑
j∈J

qij(E
i(v))vj −

1

I

∑
i∈I

mi(Ei(v))≥ 1

I

∑
i∈I

∑
j∈J

qij(E
i(w))vj −

1

I

∑
i∈I

mi(Ei(w)) ∀v,w ∈ V1

⇐⇒
∑
j∈J

fj(v)vj − g(v)≥
∑
j∈J

fj(w)vj − g(w) ∀v,w ∈ V1 (ÎC
′
)

Similarly, we can reformulate the relaxed individual rationality constraint (ÎR) as

∑
j∈J

qij(E
i(v))vj −mi(Ei(v))≥ 0 ∀i∈ I, ∀v ∈ V1.

By averaging the resulting inequality across all bidders i ∈ I, we obtain the following aggregate constraint

and its reformulation in terms of f and g.

1

I

∑
i∈I

∑
j∈J

qij(E
i(v))vj −

1

I

∑
i∈I

mi(Ei(v))≥ 0 ∀v ∈ V1

⇐⇒
∑
j∈J

fj(v)vj − g(v)≥ 0 ∀v ∈ V1 (ÎR
′
)
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Finally, the relaxed inventory constraint (Înv) can be formulated as

qij(E
i(v))≤ 1 ∀j ∈J , ∀i∈ I, ∀v ∈ V1.

Averaging the above inequality across all bidders i∈ I, we obtain

1

I

∑
i∈I

qij(E
i(v))≤ 1 ∀j ∈J , ∀v ∈ V1

⇐⇒ fj(v)≤ 1 ∀j ∈J , ∀v ∈ V1. (Înv
′
)

We can also re-express the decision-dependent part of the objective function of problem (A4) in terms of

the new variables as

1

I

∑
k∈I

EP̂k

[
mk(ṽ)

]
=

1

I

∑
k∈I

EP̂k

[
mk(Ek(ṽk))

]
=

1

I

∑
k∈I

EP̂
[
mk(Ek(ṽ1))

]
=EP̂

[
g(ṽ1)

]
,

where the first equality holds because ṽi = 0 for all i ̸= k almost surely under P̂k, while the second equality

holds because the marginal distribution of ṽk under P̂k is given by P̂.

The resulting aggregation of problem (A4) can now be represented as

inf
f ,g

EP̂

[∑
j∈J

ṽ1j − g(ṽ1)

]

s.t. f ∈L(V1,RJ
+), g ∈L(V1,R)

(ÎC
′
), (ÎR

′
), (Înv

′
).

(A5)

By construction, the problems (A4) and (A5) constitute two increasingly loose relaxations of problem (A3).

Moreover, problem (A5) constitutes a multi-item pricing problem involving a single bidder (I = 1) that

minimizes the expected regret under the distribution P̂. The decision variables f and g can be interpreted

as the allocation and payment rules of the sales mechanism, respectively. By Theorem 2, the optimal value

of this problem amounts to
∑

j∈J
v⋆
j

e
. As problem (A5) constitutes a relaxation of problem (A3) and as

z(m⋆,P⋆) =
∑

j∈J
v⋆
j

e
by Step 1, we can conclude that the mechanism (q⋆,m⋆) solves problem (A3). This

observation completes the proof. □

B. Background Information on the Numerical Experiments

Section B.1 first provides additional details on the numerical experiments omitted from the main text.

Section B.2 then reports on the results of additional experiments.
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Figure 5 Comparison of the minimax regret mechanism (q⋆,m⋆) against the three benchmarks for I = 2 bidders,

where PN is constructed from independent normal distributions with mean values 0.9 and variances 0.1.

B.1. Implementation Details

We define V̂ = V ∩ δ · ZI as the discrete grid approximating V, and we set the grid spacing constant δ to

0.05 in all experiments with I = 2 bidders and to 0.001 in all experiments with I = 10 or I = 100 bidders.

The discrete approximation P̂N of the nominal distribution PN assigns each point in V̂ a probability that

is proportional to the probability density function of PN at that point. The discrete approximation P̂ϵ of

the data-generating distribution Pϵ is constructed analogously. Computing an expected revenue-maximizing

mechanism requires solving a linear program whose numbers of variables and constraints scales with the

cardinality of V̂. Any such linear program is implemented in MATLAB R2022a via the YALMIP interface

and solved using GUROBI.

B.2. Additional Results

Figure 5 shows the 75th regret quantile and the (normalized) expected revenues of the different mechanisms

under P̂ϵ as a function of the contamination level ϵ. Here, the nominal distribution PN is calibrated as in the

main text, but the means of the bidder values are set to 0.9. The results are consistent with Figures 2 and 3

in the main text. Indeed, the minimax regret mechanism (q⋆,m⋆) outperforms the two practically relevant

benchmarks in terms of the 75th regret percentile as well as the expected revenues even for small values of ϵ,

and it generates more than 80% of the highest achievable expected revenues for every contamination level ϵ.

Figure 6 visualizes the performance of the different mechanisms in view of an alternative nominal dis-

tribution PN, under which the bidders’ values are positively correlated. Specifically, we assume here that,
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Figure 6 Comparison of the minimax regret mechanism (q⋆,m⋆) against the three benchmarks for I = 2 bidders,

where PN is constructed from correlated normal distributions with mean values 0.5, variances 0.1 and

covariances 0.05.

Figure 7 Comparison of the minimax regret mechanism (q⋆,m⋆) against the three benchmarks for I = 2 bidders,

where PN is constructed from correlated normal distributions with mean values 0.5, variances 0.1 and

covariances −0.05.

under PN, the bidders’ values follow a joint normal distributions with means 0.5, variances 0.1 and covari-

ances 0.05, truncated on the unit square V = [0,1]2. Analogously, Figure 7 shows the results of the same

experiment with the only difference that the nominal covariances are set to −0.05. We observe that the

presence of correlations between the bidders’ values does not fundamentally change our main conclusions.

In particular, the minimax regret mechanism (q⋆,m⋆) outperforms the two practically relevant benchmarks

even for small contamination levels ϵ. In addition, it displays a comparable or better performance than the

nominal mechanism.
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