
A Branch-and-Check Approach for the Tourist Trip
Design Problem with Rich Constraints

Duc Minh Vua, Yannick Kergosienb, Jorge E. Mendozac,∗, Pierre Desportb

aCardiff Business School, Cardiff University, Aberconwy Building, Colum Drive, Cardiff,
CF10 3EU

bUniversité de Tours, LIFAT EA 6300, CNRS, ROOT ERL CNRS 7002. 64 avenue Jean
Portalis, 37200 Tours, France

cHEC Montréal. 3000 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7,
Canada

Abstract

The tourist trip design problem is an extension of the orienteering problem ap-
plied to tourism. The problem consists in selecting a subset of locations to visit
from among a larger set while maximizing the benefit for the tourist. The ben-
efit is given by the sum of the rewards collected at each location visited. We
consider a variant of the problem that deals not only with “typical” constraints
such as budget, opening-time hours (i.e., time windows at the locations), and
maximum trip duration but also with other practical tourism constraints such
as mandatory visits, limits on the number of locations of each type, and the
order at which selected locations are visited. To solve this problem, we propose
a branch-and-check approach in which the master problem selects a subset of
locations, verifying all except time-related constraints, and these locations de-
fine candidate solutions to the master problem. For each candidate solution,
the slave problem checks whether a feasible trip can be built using the given
locations. To accelerate the branch-and-check approach, we propose and test im-
provements, including preprocessing to tighten the master-slave problem, valid
inequalities generated dynamically to strengthen the master problem, and a lo-
cal branching and variable neighborhood search to find new feasible solutions.
Finally, we report the experimental results and compare the performance of the
proposed exact algorithm with that of a mathematical solver.

Keywords: tourist trip design, branch-and-check , exact method

∗Corresponding author
Email addresses: vudm@cardiff.ac.uk (Duc Minh Vu),

yannick.kergosien@univ-tours.fr (Yannick Kergosien), jorge.mendoza@hec.ca (Jorge E.
Mendoza), pierre.desport@univ-tours.fr (Pierre Desport)

Preprint submitted to Elsevier July 8, 2020

*Manuscript
Click here to view linked References

1. Introduction

When visiting a city, tourists often ask what places they should visit and
what the corresponding schedule should be. This is a challenging problem be-
cause large cities such as Paris, London, New York, or even medium-size cities
such as Tours or Nice, offer numerous attractive locations to visit. Many cities
now offer software and websites that help tourists plan their visits. References
to such systems are given by Souffriau and Vansteenwegen (2010); Gavalas et al.
(2014).

The present study stems from the “Smart Loire” project funded by the region
of Tours (Centre Val de Loire) in an effort to aid tourists in planning their
trip. The region has many attractive points of interest (POIs), such as castles,
museums, and wine caves. Each specific location, for example, a castle, offers
numerous possible activities for tourists, such as visiting the gardens, running
through a maze, and eating at the castle restaurant. Therefore, deciding which
locations to visit and which activities to undertake is not a simple question.

This problem can be seen as a tourist trip design problem, which is usually
an extension of the orienteering problem (Vansteenwegen et al., 2011; Gunawan
et al., 2016) with rich constraints. Most POIs require entrance fees and have
opening times that constrain the times at which tourists can visit the sites.
Given many POIs with different entrance fees, opening times, and other features
to be detailed later, a tourist may want to plan a feasible schedule or trip that
starts from a specific location (e.g., his hotel), visit a sequence of attractive
locations, and finish his trip at a predefined location (e.g., his hotel or a new
location). In this context, a tourist may envision partaking in many activities at
each location. For example, when visiting a castle, he can either (1) visit only the
castle, (2) visit the castle and its garden, (3) visit the castle and eat in a castle
restaurant, or (4) simply visit the garden and eat in a restaurant. Therefore,
each POI in this problem can be seen as a site and a set of activities associated
with the site. To reflect the interest to tourists of a given POI, each POI is
assigned a score, which can be adjusted based on the user profile to indicate
the level of interest for each user in the given POI. A high score is indicative of
an attractive location for the given user. The first step in solving this problem
is to estimate the score of each POI, which may be done through surveys or
by extracting historical travel patterns of visitors and historical tourism data of
POIs (e.g., the annual number of visitors). We also divide POIs into categories
(e.g., castle, museum, cathedral), where POIs can belong to several categories.

Besides common constraints such as the budget for entrance fees and the
maximum duration of the trip, we consider additional aspects that reflect prac-
tical situations that tourists consider when designing their tour. The first such
aspect is a short list of mandatory locations that the tourist must visit during
his trip. Next, although the tourist is interested in visiting as many POIs as
possible, he wants to avoid visiting too many POIs that have similar character-
istics (e.g., modern art galleries). To implement this aspect, we enforce limits on
the number of POIs that the tourist can visit in each category (e.g., gardens).
For instance, a tourist can stipulate that he wants to visit at least one garden

2

and at most two. This type of constraint is called a category constraint. Next,
a tourist region may have many historical sites (as is the case in the region of
Tours), and the order in which they are visited can be important for tourists.
Tourists usually prefer to visit such locations based on a timeline. For example,
if we consider Honoré de Balzac, tourists want to visit first where he was born,
then where he studied, where he lived after marriage, etc. The option of visiting
according to a timeline is embodied in precedence rules. Also, some POIs may
have more than shared stories or common features: they may have a logical
order that would imply visiting a sequence of POIs in a certain order. This con-
straint is embodied in implication rules. Finally, the set of POIs corresponding
to a single given site is expressed in an exclusion constraint, which means that
at most one POI can be selected among the POIs corresponding to the given
site.

Given a list of attractive locations with opening times, entrance fees, and
a list of the tourist’s personal preferences, it is not an easy task to devise, in
a reasonable time, a trip that matches his expectations. Therefore, the Smart
Loire project is striving to develop a system that offers hand-held devices to
tourists to facilitate this step and help them enjoy their days in the Loire valley.

In this paper, we model this problem as an extension of the Orienteering
Problem with rich constraints. To date, the few groups that have studied this
problem include Souffriau et al. (2013), who consider time-window constraints
and duration, budget, and category constraints, and Lin and Yu (2017), who
consider mandatory visits and exclusion constraints. In our approach to this
problem, we consider not only these constraints but also the practical constraints
presented above. The goal of this work is to provide a method to solve this
problem exactly because this will serve as a tool to evaluate the meta-heuristic
methods to be proposed later in the Smart Loire project.

The paper is organized as follows: First, Section 2 summarizes the main
articles related to the present research. Section 3 then presents the mathemat-
ical formulation, following which Section 4 presents the basic idea of branch-
and-check and then details its customized algorithmic components. Section 5
presents the extensive experiments done to test and assess the proposed method
and, finally, Section 6 concludes and gives directions for future research.

2. Literature review

The tourist trip design problem (TTDP) is a special variant of the orienteer-
ing problem (OP) and has recently attracted research attention because it has
practical applications in logistics, tourism, scheduling, etc. For an exhaustive
list of references to recent works on the OP and TTDP, please see the excellent
reviews by Vansteenwegen et al. (2011); Gavalas et al. (2014); Gunawan et al.
(2016). However, despite the numerous works that address these problems, few
consider the question studied herein. To get an overview of such works, we now
briefly review these papers.

First, note that most existing papers consider duration-related constraints
and time-window constraints. Since 2010, mandatory constraints and exclu-

3

sion constraints have entered the discussion (see, e.g., Tricoire et al. (2010);
Palomo-Mart́ınez et al. (2017)). Tricoire et al. (2010) consider the problem in
the context of planning individual routes for a software distribution company.
The sales department needs to visit customers, and each customer may have
at most two different time windows per day. The company has a list of impor-
tant customers or mandatory customers that they visit on a regular basis; the
remaining customers are considered optional. In addition to mandatory con-
straints, Tricoire et al. (2010) consider the duration constraint for each period
and the total duration constraint for all periods. They finish by proposing a
heuristic-based variable neighborhood search method for the problem.

Palomo-Mart́ınez et al. (2017) proposed a greedy randomized adaptive search
procedure (GRASP) and a variable neighborhood search (VNS) procedure to
solve an orienteering problem with mandatory visits and exclusionary con-
straints. The problem emerges from the context of road maintenance: given
a planning horizon, maintenance activities must be done, with some activities
being mandatory to ensure traffic while other activities can wait for the next
planning horizon. Some activities cannot be done on the same day because doing
so could interrupt the traffic flow. The GRASP component is used to generate
initial solutions. The route construction first includes mandatory vertices into
a route and then tries to add optional vertices into a route. A VNS algorithm
then explores the search space and identifies new solutions. The insert neigh-
borhood operator tries to increase total profit, and the exchange neighborhood
operator has the same goal by iteratively swapping the visited node with the
lowest score with the unvisited node with the highest score. If the problem be-
comes unfeasible, a repair procedure is applied. Finally, the swap neighborhood
operator changes the order of nodes in a route, with the goal being to reduce
the length of the route. Within only a few seconds, the proposed algorithm
can find better or equal solutions vis à vis CPLEX running up to 1 hour. In
addition, the algorithm produces solutions within a 2% improvement for classic
OP instances. In other work, Lu et al. (2018) proposed a memetic algorithm to
solve the same problem. The proposed algorithm, which consists of tabu search
and memetic operators (crossover, mutation), finds 104 new best solutions and
obtains the best results for 236 instances.

Souffriau et al. (2013) studied a personal routing problem in the context of
tourism by considering multiple constraints and multiple time windows. The so-
called multi-constraint team orienteering problem with multiple time windows
(MCTOPMTW) involves not only the regular duration constraint and time
windows but also the budget constraint and max-n-type constraints. The max-
n-type constraints impose the maximum number of locations of each type that
can be visited (e.g., the maximum number of museums that can be visited on
the first day). The authors present a hybrid greedy randomized adaptive search
procedure and iterated local search to address the problem. First, they introduce
the definition of neighborhood consistency, which helps accelerate the insertion
and removal of a vertex. In addition, the authors define heuristic values that
allow them to determine where to insert a new vertex. These components are
used in a GRASP heuristic to generate solutions. The whole algorithm is an

4

iterated local search where the GRASP component is called each time a new
solution needs to be generated. New (partial) candidate solutions are obtained
by removing nodes from the current solution.

Lin and Vincent (2015) present a simulated annealing approach with restart
strategy for the MCTOPMTW [Souffriau et al. (2013)]. Classic operators such
as swap, insertion, and inversion are used to define neighbors given a candidate
solution. The proposed algorithm obtains best solutions to 61 of the 148 bench-
mark instances and finds six new best solutions. Lin and Yu (2017) optimize a
team orienteering problem with multiple time windows (TOPTW) with manda-
tory visits and total travel time and service time constraints. The algorithm is
similar to the one mentioned by Lin and Vincent (2015).

To the best of our knowledge, whereas a few exact methods for the OP
are mentioned in the above works, none of them studied the TTDP. As stated
in the introduction, this paper not only considers existing constraints but also
considers a new set of practical constraints in the domain of tourism. The exact
algorithm presented herein is based on the branch-and-check approach, which
was introduced by Thorsteinsson (2001).

3. Problem formulation

The problem is modeled as follows: A tourist starts his trip from a predefined
initial location, visits selected POIs exactly once over predefined time windows,
and then returns to a predefined final location. Let V = {0, . . . , N} be the set
of POIs, where 0 and N are two special POIs denoting the starting and ending
locations. With each POI we associate the following information: (1) opening
time window [ei, li]; (2) entrance fee bi for the visit, (3) average duration ti, and
(4) the score pi for POI i. Each POI may belong to several categories, and,
given a set of categories C and a category υ ∈ C, we define Vυ ⊆ V as the set
of POIs that belongs to this category.

Let A ⊆ V × V be the set of travel arcs, and τij for (i, j) ∈ A be the
travel time between POIs i and j. A feasible solution is a tour π = (u0 =
0, u1, . . . , um = N) that starts from 0, visits some POIs in V , terminates at N ,
and meets the following constraints:

1. Each selected POI is visited within its time window.

2. Neither the duration nor the budget of the tour exceeds D (units of time)
or B (units of distance), respectively.

3. All POIs listed in the mandatory set M are visited.

4. The number of visited POIs of category υ ∈ C is between the lower bound
lbυ and the upper bound ubυ.

5. The precedence rules P ⊆ V × V , implication rules I ⊆ V × V , exclusion
rules E ⊆ V × V are satisfied. For each pair (u, v) ∈ P , u must be visited
before v if both are visited. For each pair (u, v) ∈ I, v must be visited if
u is visited. For each pair (u, v) ∈ E, either u or v can be visited, but not
both.

5

To model the problem as a mixed integer linear program model, we use three
sets of variables. The first type of binary variable {yi}i∈V takes the value 1 (0)
if POI i is (not) selected to be in the tour. The second type of binary variable,
xij ∀ (i, j) ∈ A, is 1 if a visit to site i is followed by a visit to site j, and 0
otherwise. The third type of variable, si, i ∈ V , gives the arrival time at location
i.

Given the set V of POIs, TTDP(V) can be formulated as follows (where the
constant Tij = li + ti + τij serves as a big-M value):

TTDP(V) : max
∑
i∈V

piyi, (1)

subject to ∑
i∈V

x0i =
∑
i∈V

xiN = 1, (2)

∑
(i,k)∈A

xik =
∑

(k,j)∈A

xkj = yk ∀ k ∈ V \{0, N}, (3)

si + ti + τij − sj ≤ Tij(1− xij) ∀ (i, j) ∈ A, (4)

yiei ≤ si ≤ yili ∀ i ∈ V, (5)

∑
i∈V

biyi ≤ B, (6)

sN − s0 ≤ D, (7)

si + (ti + τij)yi ≤ sj + Tij(1− yj) ∀ (i, j) ∈ P, (8)

lbυ ≤
∑
i∈Vυ

yi ≤ ubυ ∀ υ ∈ C, (9)

yi + yj ≤ 1 ∀ (i, j) ∈ E, (10)

yi = 1 ∀ i ∈M, (11)

yi ≤ yj ∀ (i, j) ∈ Z, (12)

si ≥ 0 ∀ i ∈ V, (13)

yi ∈ {0, 1} ∀ i ∈ V, (14)

6

xij ∈ {0, 1} ∀ (i, j) ∈ A. (15)

The objective function (1) maximizes the total profit of the tour. Con-
straint (2) ensures that the starting and ending locations are at site 0 and N ,
respectively. Constraint (3) ensures the connectivity of the tour. Constraint (4)
enforces the arrival time relation between POIs i and j if they are visited consec-
utively. Constraint (5) means the visit can only happen when the site is open.
Constraints (6) and (7) limit the total entrance fees and the duration of the visit.
Constraints (8)–(12) are precedence constraints, category constraints, exclusion
constraints, mandatory constraints, and implication constraints, respectively.
Finally, constraints (13)–(15) define the domain of decision variables.

4. Solution method

To solve the TTDP, we propose a method that provides an exact solution
and that is based on the branch-and-check framework (Thorsteinsson, 2001).
The underlying idea of branch-and-check is to decompose the original problem
into two smaller problems, called the master problem and the slave problem,
both of which are easier to solve than the original problem. Given a solution to
the master problem obtained while exploring its search tree, we check whether
this solution is feasible to the slave problem. The design of the master and
slave problems must ensure that a solution that is feasible for both the master
and slave problems is also feasible for the original problem. This method has
been used to solve several optimization problems such as the single machine
scheduling problem (Sadykov, 2008), vehicle routing with time windows (Lam
and Van Hentenryck, 2017), and wind-turbine maintenance scheduling (Froger
et al., 2017).

Algorithm 1 explains the main steps of the basic version of the branch-and-
check method. The master problem, which is denoted TTDP-M(V), aims to
find the best subset of POIs that respects a subset of the constraints of the
TTDP. When a solution s to the master problem is found while exploring the
search tree, the method checks whether a feasible trip exists that visits all POIs
selected in s. Generally, s corresponds to a leaf node of the search tree, but
obtaining an integral solution s is possible while solving the relaxation at an
internal node. The checking consists of solving a slave problem denoted TTDP-
S(Vs). In any case, if a feasible trip exists [TTDP-S(Vs) is feasible], the method
updates the best solution and adds an optimality to the master problem TTDP-
M(V) to eliminate all but the best candidates. Otherwise, no feasible trip exists,
and the method adds a cut to TTDP-M(V) to exclude all potential candidates
trying to visit all POIs in s.

7

Algorithm 1: Basic Branch-and-Check Approach

Input: An instance of TTDP with rich constraints
Output: A feasible solution

1 while not finished exploring the search tree of the master problem
TTDP-M(V) do

2 if an integral solution s to the master problem is found then
3 Check whether the slave problem TTDP-S(Vs) is feasible
4 Update the best solution if a new, improved solution is found
5 Tighten the master problem by using information while solving

the slave problem.

6 Return the best solution found.

In addition to the branch-and-check, we propose a variant in which, instead
of checking (line 3), we solve a small-size restricted TTDP problem defined on
a subset Vs ⊆ V and called TTDP-R(Vs), where Vs denotes the set of POIs
belonging to solution s. The main idea is that, although it may be impossible
to visit all POIs in s, a feasible and improved trip may be found by using a
subset of those POIs. Thus, the TTDP-R(Vs) problem consists in solving the
same TTDP problem (1)–(15) considering a small subset of POI. We name this
variant branch-and-solve. Note that, if the optimal value returned by TTDP-
R(Vs) is less than the value of s, then TTDP-S(Vs) is infeasible, and vice versa.

Since the number of candidates to check is exponential in the number of
POIs, the basic framework cannot guarantee an acceptable performance for
medium- and large-size instances. To improve the performance of the frame-
work, we propose the following techniques:

• preprocessing to simplify input and tighten master and the slave formula-
tions;

• cuts that are useful to tighten the master and the slave formulation;

• applying a method to generate a good initial solution and to find improved
solutions;

• devising a strategy to identify feasible solutions and to stop branching on
infeasible nodes while exploring the search tree of the master problem.

4.1. Formulations of master and slave problems

To solve the TTDP with branch-and-check, we define the formulations for
the master and slave problems. Let TTDP-M(V) be the master formulation
associated with the set V of POIs. Let TTDP-S(Vs) be the slave formulation,
where s is a solution to TTDP-M(V). Here, Vs denotes a subset of V that only
includes POIs belonging to the solution s.

Our master and slave formulations are the following:
Master problem

TTDP-M(V) : max
∑
i∈V

piyi, (16)

8

subject to ∑
i∈V

biyi ≤ B, (17)

lbυ ≤
∑
i∈Vυ

yi ≤ ubυ ∀ υ ∈ C, (18)

yi + yj ≤ 1 ∀ (i, j) ∈ E, (19)

yi = 1 ∀ i ∈M, (20)

yi ≤ yj ∀ (i, j) ∈ I, (21)

yi ∈ {0, 1} ∀ i ∈ V. (22)

Slave problem
Given a solution s to the master problem TTDP-M(V), we need to determine

whether the slave problem has a feasible solution. We also denote as As, Ps the
subsets of A, P considering only POIs belonging to the solution s. The slave
problem TTDP-S(Vs) for a given s is defined as

TTDP-S(Vs) : min 0, (23)

subject to ∑
i∈Vs

x0i =
∑
i∈Vs

xiN = 1, (24)

∑
(i,k)∈As

xik =
∑

(k,j)∈As

xkj = 1 ∀ k ∈ Vs\{0, N}, (25)

si + ti + τij − sj ≤ Tij(1− xij) ∀ (i, j) ∈ As, (26)

ei ≤ si ≤ li ∀ i ∈ Vs, (27)

sN − s0 ≤ D, (28)

si + τij + ti ≤ sj ∀ (i, j) ∈ Ps, (29)

xij ∈ {0, 1} ∀ (i, j) ∈ As. (30)

When using the branch-and-solve approach, recall that, instead of solv-
ing TTDP-S(Vs) as above, we solve TTDP-R(Vs), which is defined by the
same model of TTDP(Vs) without the upper-bound category constraint (9),

9

∑
i∈Vυ yi ≤ ubυ ∀ υ ∈ C, and the exclusion constraint (10) because s is a

solution to the master problem.

4.2. Branch-and-check algorithm

Algorithm 2 highlights the main steps of the proposed approach. The al-
gorithm starts with a preprocessing procedure that tightens time windows and
eliminates unnecessary travel arcs. We also add valid inequalities to strengthen
the master-slave formulations and other formulations used in the proposed algo-
rithm (see Sections 4.2.1 and 4.2.2). Let best be the best integer solution found
so far to the original problem; it initially takes the value 0 since no feasible
solution is available. To examine potential candidate solutions to the master
problem, we start with the set ℵ, which consists of unexplored nodes n. Each
node n consists of fixed variables and unfixed variables. Fixed variables corre-
spond to the variables yi and take a value of either 1 (the tourist visits POI i
in the current trip) or 0 (the tourist does not visit POI i in the current trip).
Unfixed variables correspond to variables yi that are not yet assigned a value.

Initially, ℵ consists of a single node where all variables are unfixed. When
a node n is selected to explore, we remove this node from ℵ, process it, and
then decide whether we need to continue branching on this node if it contains
unfixed variables. When branching, we branch on an unfixed variable yi of n
and we add at most two new nodes n1 (corresponding to yi fixed at 0) and
n2 (corresponding to yi fixed at 1) to ℵ while holding the other variables in n
unchanged. We add n1 (n2) to ℵ only if its relaxation value is better than the
value of best. Since the number of unfixed variables is bounded, the algorithm
should eventually terminate. When best is updated, we also remove from ℵ all
nodes whose optimal relaxation value is not greater than best.

Lines 4–28 of Algorithm 2 show how our branch-and-check algorithm works.
While exploring the search tree, two main cases are considered when exploring
node n. The first case is when a candidate solution is found at the current node
n. This situation occurs when either (1) all variables are fixed (a leaf node) or
(2) the solution to the continuous relaxation of TTDP-M(V) is actually integer
[e.g., unfixed variables of this node take integer values in an optimal solution to
the linear relaxation of TTDP-M(V)]. The second case happens when n is an
internal node, we check whether we should continue branching at this node or
stop branching due to the violations of the time-window constraints. We now
explain both cases.

Processing an integer candidate solution to the master problem.
Lines 6–12 of Algorithm 2 show the steps corresponding to the first case. Given a
feasible solution s to TTDP-M(V) found at node n, we check whether s depicts
a feasible solution to the original problem. Before solving TTDP-S(Vs), we
apply TSPTW preprocessing steps (tighten time windows, eliminate redundant
arcs, see Dumas et al. (1995); Vu et al. (2019) for the details) since the slave
problem is a variant of TSPTW. If TTDP-S(Vs) is feasible, then we obtain a
feasible solution to the original problem TTDP(V). In this case, we call a local
branching and a variable neighborhood search algorithm called LB + VNS(s)
(see Section 4.2.3) to find new, improved solutions. Since a feasible solution is

10

Algorithm 2: Branch-and-Check framework

Input: An instance of TTDP with rich constraints
Output: The best solution found

1 Call preprocessing procedure
2 Let best← ∅ be the current best feasible solution
3 Let ℵ be a set of unexplored nodes that is initialized with a node where

all variables are unfixed
4 while ℵ 6= ∅ do
5 Select a node n ∈ ℵ to process:
6 if the optimal solution to the relaxation problem associated to n is

integer then
7 if [TTDP-S(Vs) is feasible] then
8 Call LB + VNS(s) procedure to find new, improved solutions
9 Add cut (31) to the master problem

10 Stop branching on this node

11 else
12 Add cuts (33) to the the master problem: Algorithm 3;

13 if n is an internal node then
14 Get the partial solution s̄ - set of POIs that are planned to visit
15 if (best = ∅) then
16 Call LB + VNS(s̄) procedure to find feasible solutions

17 if [v(s̄) ≤ v(best) and |Vs̄| ≤ lfeasible] or (lower-bound category
constraint is violated) then

18 Branch on an unfixed variable of n and update ℵ
19 else
20 if [TTDP-S(Vs̄) is infeasible] then
21 Add cuts (33) to the master problem
22 Stop branching on this node

23 else
24 if [v(s̄) ≥ v(best)] then
25 Call LB + VNS(s̄) procedure to find new, improved

solutions
26 Add cut (31) to the master problem

27 Branch on an unfixed variable of n and update ℵ

28 return best

11

found at this node, we stop branching at this node and add the cut (31) to the
master problem to prune all nodes and candidate solutions which are not better
than the current best solution. This cut is implemented whenever a new best
solution is found. Here, v(s) gives the value of solution s, so v(best) is the best
lower-bound value found: ∑

i∈V
piyi ≥ v(best) + 1. (31)

If no feasible solution is found (line 12), it means that those POIs cannot
be visited together. The candidates that visit all POIs in Vs are then removed
by using the valid inequality (32) or its strengthened form (33). The notation
|Vs| in the following valid inequality denotes the number of POIs belonging to
solution s: ∑

i∈Vs

yi ≤ |Vs| − 1. (32)

The cut (32) means that the tourist can visit at most |Vs| − 1 POIs in s.
Note that, since the time-window constraints are not considered in the master
formulation, the number of POIs that can be visited together in Vs is generally
much smaller than |Vs| − 1. Therefore, we determine an upper bound of this
number, which is denoted TTDP-MAX-VISIT(Vs), and we propose a stronger
valid inequality (33): ∑

i∈Vs

yi ≤ TTDP-MAX-VISIT(Vs). (33)

The value TTDP-MAX-VISIT(Vs) is obtained by solving

TTDP-MAX-VISIT(Vs) : max
∑
i∈Vs

yi,

with respect to all TTDP constraints (2)–(15) except category constraint (9)
and exclusion constraint (10). We ignore the exclusion constraint (10) since
s is a solution to TTDP-M(V), which is also a reason why we ignore upper-
bound category constraints. We ignore lower-bound category constraints be-
cause, given a solution to TTDP-MAX-VISIT(Vs), we may possibly add POIs
belonging to V and Vs to obtain a feasible solution to TTDP-M(V). This valid
inequality is proven experimentally to be effective because the value of TTDP-
MAX-VISIT(Vs) is much less than |Vs| − 1.

Note that the master formulation is a weak relaxation of the original for-
mulation (no time-window constraints), so the number of POIs in a candidate
solution s may be much larger than the number of POIs in the feasible so-
lutions. In this case, solving TTDP-MAX-VISIT(Vs) is time consuming, and
TTDP-MAX-VISIT(Vs) and Vs can be reduced to make constraint (33) more ef-
fective. Algorithm 3 identifies a small subset of Vs that violates the time-window
constraints and provides another opportunity to find new feasible solutions. Al-

12

gorithm 3 orders the POIs in s by placing mandatory POIs at the beginning
and then sorting the remaining POIs decreasingly by their score. Scores are
sorted in decreasing order because this approach matches our branching strat-
egy. Next, we select a subset of POIs such that the total score is better than
the current best solution. If we cannot visit all POIs of this subset, we add a
cut to the master model and stop the procedure. Otherwise, we seek improved
solutions by calling the local branching and variable neighborhood search pro-
cedure and then continue our steps until a violated subset is found. Algorithm
3 terminates because we know that the input of the algorithm is a solution s in
which TTDP-S(Vs) is infeasible.

Algorithm 3: Determination of violated sets

Input: A set of POIs {u1, u2, . . . , um} which constitutes an infeasible
solution s to TTDP-M(V)

Output: A subset of POIs that violates time-window constraints
1 Order the POIs in s such that
2 - Mandatory POIs are placed at the beginning in the resulting list
3 - Other POIs are sorted decreasingly by score
4 Determine the smallest value of k so that

∑
1≤i≤k pu′

i
≥ v(best)

5 Solve TTDP-MAX-VISIT({u′1, . . . , u′k})
6 if TTDP-MAX-VISIT({u′1, . . . , u′k}) ≤ k − 1 then
7 Add the corresponding cut (33) to TTDP-M(V) considering that

Vs = {u′1, . . . , u′k}
8 else
9 Call LB + VNS({u′1, . . . , u′k}) to find improved solutions

10 Let k ← k + 1 and return to Line 4 of this algorithm

Processing an internal node. When n is an internal node (i.e., the second
case, lines 14–27), we want to determine whether branching on unfixed variables
of n is interesting. We start by identifying POIs that are assumed to be visited
(line 14, denoted s̄). These POIs actually correspond to the variables yi, which
are fixed to be 1 in the current node n. First, if no feasible initial solution is
found, a call to LB + VNS(s̄) is made to obtain, as soon as possible, an initial
solution (line 16). The main idea of lines 17–27 is to prune the search tree as
soon as possible. When it is impossible to visit all POIs in s̄ (lines 20–22),
we add a cut (33) to the master problem and stop branching on this node.
Otherwise, if all POIs in s̄ can be visited, we call LB+VNS(s̄) to find improved
solutions only if s̄ is at least as large as the current best solution. Since all these
steps (lines 20–27) can be time consuming, we check the feasibility of the slave
problem only when the total score of POIs that are planned to visit is at least
as large as the current best [v(s̄) > v(best)] or when the number of POIs in s̄ is
sufficient (|Vs̄| > lfeasible). Candidate solutions also need to satisfy lower-bound
category constraints. The quantity lfeasible estimates an upper bound for the
number of POIs in any feasible trip, and this value is updated dynamically as
follows:

13

• Initially, α = 0 and β = 0, where α, β denote the total of the length of
feasible trips and the number of trips that we have checked, respectively.

• After each call to TTDP-MAX-VISIT(Vs) (or when the best solution best
is updated):

– α← α+ TTDP-MAX-VISIT(Vs) (or +|Vbest|),
– β ← β + 1.

• lfeasible ← dαβ e.

Although TTDP-MAX-VISIT(Vs) can be solved efficiently in most cases
(e.g., from milliseconds up to a few seconds during the experimentation), it
does not need to be solved optimally. If the resolution time exceeds 15 s,
we replace TTDP-MAX-VISIT(Vs) by its upper bound, which is min(|Vs| −
1, bUB(TTDP-MAX-VISIT(Vs))c), where UB(TTDP-MAX-VISIT(Vs)) returns
an upper bound while solving TTDP-MAX-VISIT(Vs).

While exploring the search tree, many options may be available from which
to select the node n ∈ ℵ to be processed. In the proposed algorithm, we process
node n with the largest relaxation value, and we branch on an unfixed variable
that is active in the current node (e.g., yi > 0) and that has the largest score
pi. Experimentation shows that such a strategy is effective and helps to reduce
the upper bound more than other strategies.

Finally, the branch-and-solve variant of the proposed branch-and-check men-
tioned in Algorithm 2 is obtained by replacing the condition “TTDP-S(Vs)
is feasible” in line 7 by “v(TTDP-R(Vs)) = v(s),” because we know that, if
TTDP-S(Vs) is feasible, then TTDP-R(Vs) = v(s). We also add constraint (31)
to TTDP-R(Vs) before solving this problem because we are only interested in
solutions that are better than the current best solution while solving the re-
stricted problem. This valid inequality also helps to accelerate the resolution of
TTDP-R(Vs) because it tightens the search space of TTDP-R(Vs).

In the following sections, we discuss in more detail the preprocessing, valid
inequalities, and local branching and variable neighborhood search components
of our algorithm.

4.2.1. Preprocessing

As mentioned previously, preprocessing should be done to tighten the mas-
ter and the slave formulation. In our problem, a series of steps is considered,
including (1) TSPTW-like preprocessing to eliminate infeasible arcs and tighten
time windows [see, e.g., Dumas et al. (1995)], (2) deduction from the implication
set, and (3) deduction from the exclusion set.

If x→ y is an implication, the following rules are used to refine the implica-
tion set:

• If x is a mandatory POI, then y may be considered a mandatory POI.

• If y is a mandatory POI, we remove this rule from the implication set.

14

After applying these rules, the implication set includes only rules where all
associated POIs are optional POIs.

Let imp(x) ⊆ V be the set of POIs that the tourist visits when he visits POI
x. For example, if the implication set includes rules {x → y, x → z, y → r},
then imp(x) = {x, y, z, r}. Actually, imp(x) can be built by using a traversal
method in graph theory. The following observations are used to refine the
exclusion set E:

• If (u, v) ∈ E and u, v ∈M , then E is an invalid instance.

• If (u, v) ∈ E and u ∈M , we remove v from the set of POIs.

• If the visit of all POIs in imp(x) ∪ imp(y) violates budget or category
constraints, then (x, y) is an exclusion pair.

• If ∃ u ∈ imp(x) and ∃ v ∈ imp(y) where (u, v) ∈ E, then (x, y) is also an
exclusion pair.

4.2.2. Valid inequalities to strengthen master and slave problem

We exploit time-window constraints and duration constraints to establish
several valid inequalities to tighten the master problem. First, if we cannot
visit both POIs i and j in the same trip because the time-window constraint is
violated (i.e., ei + τij + ti > lj and ej + τji + tj > li), we have

yi + yj ≤ 1 ∀ i, j ∈ V, ei + τij + ti > lj , ej + τji + tj > li. (34)

Next, we develop valid inequalities related to the duration constraint. If we
cannot visit both POIs i and j because of the duration constraint, li +D < ej
or lj +D < ei, then we have

yi + yj ≤ 1 ∀ i, j ∈ V, min(li, lj) +D < max(ei, ej). (35)

The duration constraint also ensures that the total travel time and visit
duration must be less than D. Therefore, we have∑

i∈V \N

(
τout
i + ti

)
yi ≤ D, (36)

∑
i∈V \0

(
τ in
i + ti

)
yi ≤ D, (37)

where τout
i = min(i,j)∈A τij and τ in

i = min(j,i)∈A τji denote the minimum out-
bound travel time and minimum inbound travel time for a given POI i, respec-
tively.

To tighten the slave formulation TTDP-S(Vs), we rely on another relaxation
of the duration constraint. These constraints state that the total travel time

15

and visiting time should not exceed the duration of the visit:∑
(i,j)∈A

xij(τij + ti) ≤ D, (38)

∑
(i,j)∈A

xij(τij + tj) ≤ D. (39)

We exploit the valid inequality (33) by solving exactly a variant of TTDP-
MAX-VISIT(V) but with all TTDP constraints in a maximum of 60 s and
adding a cut of the form

∑
i∈V yi ≤ TTDP-MAX-VISIT(V) to TTDP-M(V)

to limit the maximum number of POIs in any candidate solution of the mas-
ter problem. This approach also helps tighten the search space of the master
problem and improve overall performance.

4.2.3. Local branching and variable neighborhood search

The LB + VNS(Vs) procedure is based on the ideas of local branching
(Fischetti and Lodi, 2003) and variable neighborhood search (Mladenovic and
Hansen, 1997), which are two well-known heuristic approaches to search for
new, improved solutions. Given a solution s and a parameter d, we define a
neighborhood Ns = {v ∈ V | ∃ u ∈ Vs such that τuv ≤ d} of s, which consists
of POIs in V that either belong to s or are close to at least one POI in s. Here,
τuv ≤ d indicates that the distance between u and v does not exceed d. Since
Ns consists of POIs close to Vs, it is possible to insert some POIs from Ns\Vs
into the current solution or swap POIs between Ns\Vs and Vs to obtain new
solutions. We solve TTDP-LB(Ns, k, d), which is the model of TTDP(Ns) plus
the local branching constraint (40). This constraint forces the total number of
POIs that we can either remove from s and/or insert into s to be at most k:∑

i∈Vs

(1− yi) +
∑

i∈Ns\Vs

yi ≤ k. (40)

The algorithm maintains a data structure named m in which m(s) gives how
many times TTDP-LB(Ns, k, d) has been solved for a particular solution s. If
TTDP-LB(Ns, k, d) has yet to be solved for any pair (k, d), m(s) returns 0.

16

Algorithm 4: Local Branching and Variable Neighborhood Search:
LB + VNS(s)

Input: A (feasible) solution s to TTDP(V)
Output: A (possible) new, improved solution

1 m(s)← m(s) + 1;
2 if m(s) > |Ω|, stop;
3 (k, d)← the m(s)th (k, d) pair in Ω—the set of all (k, d) pairs;
4 while i ≤ |Ω| do
5 Define the neighborhood Ns of s based on the value d;
6 Solve TTDP-LB(Ns, k, d) with the cut (40) for the parameter k;
7 if a new, improved solution s′ is found then
8 Update s← s′;
9 m(s)← 1;

10 (k, d)← the 1st (k, d) pair in Ω;

11 else
12 m(s)← m(s) + 1;
13 (k, d)← the m(s)th (k, d) pair in Ω;

14 return s;

In our implementation detailed in Algorithm 4, we maintain a list of (k, d)
pairs in an ordered list Ω, and each element in Ω is used at most once. For each
input s, we determine the number of times we call TTDP-LB(Ns, k, d) for some
pairs of (k, d) (line 1). This can be done by using a hashing technique. We
hash the POIs in s into an integer number, and we store the number of times
TTDP-LB(Ns, k, d) has been called for each s. If all pairs in Ω are used, we stop
(line 2). Otherwise, we define the neighborhood Ns and solve the corresponding
TTDP-LB(Ns, k, d). If a new, improved solution s′ is found, we reset (k, d) to
the first pair in Ω. Otherwise, we adjust (k, d) to the next pair in Ω.

5. Experiments

This section assesses the performance of the proposed algorithm when solving
TTDP. The algorithm was implemented in C++, and all experiments were run
on a workstation with an Intel(R) Xeon (R) CPU E5-4610 v2 2.30 GHz processor
running the Ubutu Linux 14.04.3 Operating System. We used CPLEX Concert
12.8 API to formulate and solve all MIP formulations. We relied on CPLEX’s
callback library to access integer solutions and internal nodes.

All parameter values for CPLEX are left at their default values except for
(1) the number of threads, Threads, which is set to 1 and (2) the heuristic strat-
egy, HeuristicFreq, which is disabled when solving TTDP-M(V). The stopping
conditions are (1) a one hour time limit or (2) when an optimal solution is
found. In our case, since the profits pi are integers, the sum

∑
i∈V yipi is also

an integer. Therefore, optimality is reached when the difference between the
upper and lower bounds is less than 1. We implemented the checking steps,
valid inequalities (31)–(33), node selection, and branching strategy as callbacks.

17

When we do not activate the proposed node selection and own branching strat-
egy (e.g., in our basic branch-and-check version—Algorithm 1), we let CPLEX
decide which nodes to process. Regarding the local branching and variable
neighborhood search procedure, Ω includes three pairs in our implementation,
{(10, 15), (15, 10), (20, 5)}. We solve TTDP-LB(Ns, k, d) for at most 60 s for
each pair.

We tested our algorithms on the instances extended from the MCTOPMTW
(called SC-O; see Table 1), proposed by Souffriau et al. (2013). Briefly, the orig-
inal set consists of 37 instances, of which 29 are extended from the well-known
Solomon dataset (Solomon, 1987), and the remaining 8 extended from instances
proposed by Cordeau et al. (1997). The initial and destination locations are
assumed to be the same. The duration constraint is assumed to be the dura-
tion of the time window at the departure location. The authors extend existing
instance sets to include the budget constraint and ten upper-bound category
constraints. To model the budget constraint, each POI is given a random en-
trance fee between 0 and 99. To model the category constraint, each POI i has
a 0.2 probability of belonging to category c for each c ∈ C. Therefore, each POI
may belong to several or zero categories. Each category has an average of 22
POIs and 12 POIs belong to no category. We consider the category constraints
in that paper Souffriau et al. (2013) as our upper-bound constraints. The lower
bound constraints are generated by using the rules presented below. Since Souf-
friau et al. (2013) consider multiple time windows whereas our problem assumes
a single time window, the time window for each POI in the benchmark instance
is defined by the time interval [opening of the first time window, closing of the
last time window] of the corresponding POI of Souffriau et al. (2013).

No. Instances No. POIs No. Categories
Solomon et al. 29 100 10
Cordeau et al. 8 48–233 10

Table 1: Characteristics of original benchmark instances (Souffriau et al., 2013).

We now explain how to generate new constraints. Let s = (u0, u1, u2,
. . . , um) and its associated POI set Vs = {u0, u1, u2, . . . , um} depict a solution
to the MCTOPMTW obtained after solving the problem by applying CPLEX
for 10 hours. The idea is to ensure that s remains a feasible solution to the
new instances corresponding to the problem being studied. First, the manda-
tory POIs are POIs randomly selected in Vs. In our experiment, the number of
mandatory POIs is a random integer in the interval [2, 5]. Second, to generate
lower-bound constraint, we first compute nbc, which is the number of POIs of
type c that is in s. Next, lbc is set to a random number in the interval [0,nbc].
To generate precedence constraints, implication constraints, and exclusion con-
straints, we follow the rules given below. The number of constraints of each

18

type is set to 1% of the number of possible constraints of each type. Given a
random ordered pair (p, q) of V × V POIs, we apply the following constraints:

• Implication constraint: (p, q) can be in I if either (1) p, q ∈ Vs, or (2)
p ∈ V \Vs, q ∈ V .

• Exclusion constraint: (p, q) can be in E if at least p or q is in V \Vs.

• Precedence constraint: (p, q) can be in P if (1) p = ui ∈ Vs, q = uj ∈ Vs
with i < j, or (2) p ∈ V \Vs, q ∈ V .

This strategy ensures that s remains a feasible solution to the new bench-
mark instances. Table 2 presents the notation of the benchmark instances.
SC-M means that mandatory constraints are considered (or M 6= ∅), SC-MLB
means that mandatory constraints and lower-bound category constraints are
considered, etc. Instances called SC-MLBICP are instances of the TTDP with
all constraints applied.

Legend Constraints
M Mandatory constraints
LB Lower-bound category constraints
I Implication constraints
C Exclusion constraints
P Precedence constraints

Table 2: Notation for benchmark instances.

We report in Section 5.1 the results returned by the MIP solver, CPLEX
1h (i.e., within the time limit of 1 hour) and CPLEX 5h (i.e., within the time
limit of 5 hours), as well as results returned by the basic branch-and-check
and basic branch-and-solve, and those returned by the proposed branch-and-
check and branch-and-solve. We report in Section 5.2 the contributions of each
component of the proposed branch-and-check and branch-and-solve.

5.1. Overall performance

Table 3 explains the notation used in the following tables. We report the
number of instances for which optimal solutions are found (No. Optimal), the
number of instances where feasible solutions are found (No. Fea. Sol.), the
number of times candidate solutions s are checked (No. Check), and the number
of times an internal node is pruned while branching (No. Reject).

First, we report in Table 4 the results obtained by CPLEX after 1 hour and
5 hours of execution. The results show that, in general, the TTDP with rich
constraints is hard to solve optimally. Although CPLEX optimally solves all
of the original instances of Solomon when we only consider the first 50 POIs,
CPLEX fails to solve most of them when all POIs are considered. In addition,
CPLEX fails to find feasible solutions to several instances when lower-bound

19

Legend Meaning
No. Optimal No. of instances that are optimally solved
No. Fea. Sol. No. of instances where at least one feasible solution is found
No. Reject No. of nodes pruned while branching
No. Check No. of slave or restricted problems solved
LB Lower bound
UB Upper bound
Improvement (%) Average improvement: 100%× (UB− LB)/UB of unsolved instances
B-BaC or P-BaC Basic or proposed branch-and-check algorithm
B-BaS or P-BaS Basic or proposed branch-and-solve algorithm
A vs B (%) Improvement is calculated as 100%× (B −A)/B

Table 3: Notation.

constraints are considered. We report in the last two rows of Table 4 the per-
cent improvement in the lower and the upper bounds obtained between 1 hour
and 5 hours, respectively. These results show that, although CPLEX obtained
improved lower bounds, it has difficulty reducing the upper bounds. As a result,
only a few more instances are optimally solved.

SC-O SC-M SC-MLB SC-MLBI SC-MLBIC SC-MLBICP

1h
No. Optimal 5 7 9 11 11 11
No. Fea. Sol 37 37 28 33 31 34

Improvement (%) 40.25 41.47 58.65 44.38 47.65 39.74

5h
No. Optimal 7 8 9 11 12 11
No. Fea.Sol 37 37 28 33 32 34

Improvement (%) 37.77 38.81 54.65 42.92 45.00 37.90

1h vs 5h
LB improvement (%) 5.19 3.52 2.22 1.00 3.26 1.11
UB improvement (%) −1.06 −1.70 −0.70 −0.50 −1.09 −0.76

Table 4: Statistics for results returned by CPLEX after execution for 1 hour and 5 hours.

Table 5 reports the results obtained by the basic branch-and-check and
branch-and-solve approach (Algorithm 4.2.1), where the valid inequalities (38)
and (39) have been added to the slave formulations TTDP-S(Vs) and TTDP-
R(Vs), respectively. The results obtained by the basic approach are inferior to
those returned by CPLEX. Note also that, although numerous candidate so-
lutions are checked, the basic branch-and-check approach fails to find feasible
solutions to many instances. One reason for this result is that the master for-
mulation is a weak relaxation of the original problem, so the candidate solutions
usually violate time-related constraints. This indicates the need for a feasible
method to generate solutions to improve the performance of the approaches
studied. A possible way to solve the feasibility issue is to apply the branch-and-
solve approach. By doing so, we obtain feasible solutions for all 37 instances of
each set. However, this does not suffice to improve the performance of the basic

20

approach in terms of the number of optimal solutions. We need more time to
solve an instance of TTDP-R(Vs) than an instance of TTDP-S(Vs). Therefore,
fewer candidates are checked when applying the branch-and-solve method, so
the upper bound returned by branch-and-solve is inferior to the upper bound
returned by branch-and-check.

SC-O SC-M SC-MLB SC-MLBI SC-MLBIC SC-MLBICP

B-BaC

No. Optimal 0 4 5 9 10 10
No. Fea. Sol. 6 8 9 17 21 21

Improvement (%) 88.36 90.04 90.01 75.72 66.58 66.65
No. Check 61 918 68 957 63 200 62 329 60 785 60 856

B-BaS
No. Optimal 0 4 6 8 9 9
No. Fea.Sol 37 37 37 37 37 37

Improvement (%) 41.12 41.10 42.08 33.90 32.56 32.61
No. Check 18 260 14 131 12 632 18 140 18 372 18 950

Table 5: Results of basic branch-and-check and branch-and-solve approach.

Table 6 gives the percent improvement between the upper bound obtained
by CPLEX and those obtained by the basic branch-and-check and branch-and-
solve methods. Since the master TTDP-M(V) is easy to solve, many candi-
date solutions are checked and many simple cuts (32) are added to the master
formulation. Except for the set SC-O, the upper bound returned by the ba-
sic branch-and-check is better on average than the upper bound returned by
CPLEX (this is indicated by a negative percent “improvement”). Recall that
the improvement is calculated as 100%×(UB B-BaC−UB CPLEX)/UB B-BaC
or 100%× (UB B-BaS−UB CPLEX)/UB B-BaS for the branch-and-check and
branch-and-solve methods, respectively. The basic branch-and-solve method
produces inferior upper bounds because much fewer solutions are checked than
with the branch-and-check method. In any case, improving the performance of
the basic branch-and-check and branch-and-solve methods by using customized
components should significantly help to improve the performance of the basic
approaches.

SC-O SC-M SC-MLB SC-MLBI SC-MLBIC SC-MLBICP
UB CPLEX vs UB B-BaC (%) 2.15 −0.66 −0.37 −4.31 −4.85 −4.34
UB CPLEX vs UB B-BaS (%) 3.52 1.85 1.72 −0.48 −1.28 −0.79

Table 6: Percent difference between upper-bound values returned by CPLEX 1h and those return by the basic branch-and-
check (BaC) and branch-and-solve (BaS) approaches.

Table 7 shows the results of the proposed branch-and-check and branch-and-
solve approach (Algorithm 2) with a time limit of 1 hour. When the problem is
more constrained, the number of solved instances increases, as seen in the row
“No. Optimal.” This result is attributed to the solution space of the master
problem being much smaller when the problem is more constrained. We solve

21

30 of the 37 instances of the SC-MLBICP benchmark set (which is our TTDP),
whereas we solve only 20 of the 37 instances of the original set SC-O. The more
constraints a problem has, the more effective the approach is because the search
space of the master problem is much more strongly bounded, resulting in sig-
nificantly fewer candidate solutions to check. These results indicate that the
proposed approach thoroughly outperforms CPLEX. Also, the values of “No.
Check” and “No. Reject” show that much fewer TTDP-S(Vs) or TTDP-R(Vs)
need to be solved than for the basic branch-and-check and branch-and-solve,
which indicates the strength of the proposed cuts and branching strategy in
terms of eliminating invalid candidate solutions and invalid partial solutions.
The average improvement between unsolved instances remains large mainly be-
cause of unsolved instances of the Cordeau class. The rows “LB vs LB CPLEX
5h” and “UB vs UB CPLEX 5h” show the improvement in our lower and upper
bounds compared with those obtained by CPLEX 5h. The percent improve-
ment is calculated as by 100%× (LB P-BaC− LB CPLEX 5h)/LB P-BaC and
100% × (UB P-BaC − UB CPLEX 5h)/UB P-BaC, for the P-BaC, and simi-
larly for P-BaS. Positive (negative) improvements for the lower (upper) bound
indicate that P-BaC returns a better lower (upper) bound than CPLEX. The
improved lower and upper bounds returned by the proposed algorithm versus
CPLEX indicates the effectiveness of the proposed components, including lo-
cal branching, branching strategies, and valid inequalities. Finally, note that
branch-and-check performs slightly better than branch-and-solve, which we at-
tribute to the longer time required to solve TTDP-R(Vs) than to solve TTDP-
R(Vs), so fewer candidate solutions and nodes are explored by branch-and-solve
than by branch-and-check.

SC-O SC-M SC-MLB SC-MLBI SC-MLBIC SC-MLBICP

P-BaC

No. Optimal 17 23 22 28 30 30
No. Fea. Sol. 37 37 37 37 37 37

Improvement (%) 22.48 25.91 24.81 29.31 33.13 33.12
No. Check 441 369 396 226 212 193
No. Reject 4458 1727 1562 724 897 760

LB vs LB CPLEX 5h (%) 3.09 2.14 25.46 12.07 14.95 9.31
UB vs UB CPLEX 5h (%) −25.32 −31.92 −28.61 −24.81 −23.39 −23.05

P-BaS

No. Optimal 17 22 22 28 29 30
No. Fea. Sol. 37 37 37 37 37 37

Improvement (%) 23.65 23.04 26.69 29.84 31.14 37.44
No. Check 263 240 229 150 122 115
No. Reject 4596 1613 1053 520 400 395

LB vs LB CPLEX 5h (%) 3.16 1.93 25.42 12.38 15.07 8.99
UB vs UB CPLEX 5h (%) −23.61 −30.41 −27.34 −23.71 −22.45 −21.95

Table 7: Performance of proposed branch-and-check and branch-and-solve approaches.

22

5.2. Contribution of proposed components

This section examines the contribution of the proposed components. All
results were obtained by using the basic branch-and-check algorithm and addi-
tional components. Table 8 details the contributions of the cuts (38) and (39).
The evaluation was done by using the basic branch-and-check algorithm since
it gives a clear view of how the cuts work. Recall that TTDP-S(Vs) is actu-
ally a variant of the traveling salesman problem with time windows (TSPTW),
which is an NP-hard problem even in the sense of finding feasible solutions
(Savelsbergh (1985)). We obtain candidate solutions with checking steps that
are very costly in terms of execution time when cuts (38) and (39) are not used.
Applying these two cuts significantly accelerates the checks, resulting in more
candidate solutions to be checked and thereby improving the performance of the
proposed algorithm. This approach also raises the question of how to efficiently
solve small-size traveling salesman problems with time windows (e.g., constraint
programming could be a useful approach).

SC-M SC-MLB SC-MLBI SC-MLBIC

Without (38) & (39)
No. Fea. Sol. 5 5 8 11

No. Check 25 403 25 446 20 247 19 044

With (38) & (39)
No. Fea. Sol 8 9 17 21
No. Check 68 957 63 200 62 329 60 785

UB improvement (%) −2.80 −5.40 −5.62 −5.89

Table 8: Contribution of valid inequalities (38) and (39) to strengthening the upper bound.

Next, Table 9 examines the contributions of each algorithmic component
proposed. The basic BaC algorithm (Algorithm 1) is denoted “BASIC.” The
cut (33), preprocessing (Section 4.2.1), node selection and branching strategy
(processing an internal node in Section 4.2), greedy checking (Algorithm 3),
and the local branching and variable neighborhood search (Section 4.2.3) are
denoted “NC,” “P,” “NSOB,” “GC,” and “LB,” respectively. The configuration
“+NC” thus means that we implement the basic branch-and-check plus the new
cut component, the configuration “+NC.P” means that we implement the basic
branch-and-check plus the new cut component and the preprocessing compo-
nents, etc. The configuration “+NC.P.NSOB.GC.LB” is actually the proposed
branch-and-check and is denoted “BaC.”

Table 9A describes how each algorithmic component contributes to the num-
ber of solved instances. The four left-most columns present the number of op-
timal solutions in which the basic BaC is proven for each set. Each of the
next four columns presents the number of optimal solutions returned by a con-
figuration consisting of the BaC and new algorithmic components. Table 9B
compares the upper bound obtained by using the new algorithmic components
with that obtained by using the basic approach. The numbers show the im-
portant contribution of each algorithmic idea in terms of improving the up-
per bounds, especially valid inequalities, preprocessing, and the branching- and
node-selection strategy. Table 9C shows that the feasibility issue can be solved

23

either by a local branching and variable neighborhood search or by a node selec-
tion and branching strategy (the configuration + NC.P.NSOB—where we also
check the feasibility for partial solutions; see line 17). However, note that the
local branching and variable neighborhood search procedure generates solutions
with, on average, 2.90% improvement for lower bounds compared with solutions
generated by the +NC.P.NSOB configuration, as indicated in Table 10. Also,
this approach helps reduce overall execution time because finding good solu-
tions earlier helps exclude poor candidates from consideration. Finally, Table
9D reports the average execution time in seconds for both solved and unsolved
instances. The results show that the average running time is reduced when a
new component is added and that all algorithmic components contribute to the
improved performance of the basic branch-and-check approach.

(A) (B)

(C) (D)

Table 9: Summary of contributions of each algorithmic component.

24

SC-M SC-MLB SC-MLBI SC-MLBIC
Improvement of LB (%) 3.02 2.42 3.19 2.97

Table 10: Average improvement of lower bounds upon using local branching and variable
neighborhood component.

6. Conclusion

As part of the Smart Loire Project, this paper studies an orienteering prob-
lem called the tourist-trip design problem with rich constraints. The TTDP
consists in delivering a route plan to tourists according to their preferences,
budget, time constraints, and tourism constraints. Unlike most studies in this
field, we consider not only the most common characteristics such as duration,
budget, and category constraint but also practical constraints, including impli-
cation rules, precedence rules, and exclusion rules.

We propose an exact method based on the branch-and-check approach to
solve the problem. The experiment with 37 new instances shows that the pro-
posed approach with customized algorithmic components thoroughly outper-
forms CPLEX.

A possible direction for future research is to extend the method to solve the
multiple-period tourist trip design problem where, instead of generating a single
tour, multiple tours are generated for several days. We also plan to develop an
efficient meta-heuristic approach to rapidly provide good feasible solutions for
tourists. The algorithm proposed in this paper can then be used to evaluate the
performance of this heuristic approach.

Acknowledgments

This research was partially funded by the Région Centre - Val de Loire
(France) through the project SmartLoire.

References

Cordeau, J., Gendreau, M., Laporte, G., 1997. A tabu search heuristic for peri-
odic and multi-depot vehicle routing problems. Networks 30 (2), 105–119.

Dumas, Y., Desrosiers, J., Gélinas, É., Solomon, M. M., 1995. An optimal
algorithm for the traveling salesman problem with time windows. Operations
Research 43 (2), 367–371.

Fischetti, M., Lodi, A., 2003. Local branching. Mathematical Programming
98 (1), 23–47.

Froger, A., Gendreau, M., Mendoza, J. E., Pinson, E., Rousseau, L.-M., 2017. A
branch-and-check approach for a wind turbine maintenance scheduling prob-
lem. Computers & Operations Research 88, 117–136.

25

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., 2014. A survey
on algorithmic approaches for solving tourist trip design problems. Journal of
Heuristics 20 (3), 291–328.

Gunawan, A., Lau, H. C., Vansteenwegen, P., 2016. Orienteering problem: A
survey of recent variants, solution approaches and applications. European
Journal of Operational Research 255 (2), 315–332.

Lam, E., Van Hentenryck, P., 2017. Branch-and-check with explanations for the
vehicle routing problem with time windows. In: International Conference on
Principles and Practice of Constraint Programming. CP 2017. Lecture Notes
in Computer Science, vol 10416. Springer, Cham. Springer, pp. 579–595.

Lin, S., Yu, V. F., 2017. Solving the team orienteering problem with time win-
dows and mandatory visits by multi-start simulated annealing. Computers &
Industrial Engineering 114, 195–205.

Lin, S.-W., Vincent, F. Y., 2015. A simulated annealing heuristic for the mul-
ticonstraint team orienteering problem with multiple time windows. Applied
Soft Computing 37, 632–642.

Lu, Y., Benlic, U., Wu, Q., 2018. A memetic algorithm for the orienteering prob-
lem with mandatory visits and exclusionary constraints. European Journal of
Operational Research 268 (1), 54–69.

Mladenovic, N., Hansen, P., 1997. Variable neighborhood search. Computers &
Operation Research 24 (11), 1097–1100.

Palomo-Mart́ınez, P. J., Salazar-Aguilar, M. A., Laporte, G., Langevin, A.,
2017. A hybrid variable neighborhood search for the orienteering problem
with mandatory visits and exclusionary constraints. Computers & Operations
Research 78, 408–419.

Sadykov, R., 2008. A branch-and-check algorithm for minimizing the weighted
number of late jobs on a single machine with release dates. European Journal
of Operational Research 189 (3), 1284–1304.

Savelsbergh, M. W. P., 1985. Local search in routing problems with time win-
dows. Annals of Operations Research 4 (1), 285–305.

Solomon, M. M., 1987. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations research 35 (2), 254–265.

Souffriau, W., Vansteenwegen, P., 2010. Tourist trip planning functionalities:
State–of–the–art and future. In: Daniel, F., Facca, F. M. (Eds.), Current
Trends in Web Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 474–485.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.,
2013. The multiconstraint team orienteering problem with multiple time win-
dows. Transportation Science 47 (1), 53–63.

26

Thorsteinsson, E. S., 2001. Branch-and-check: A hybrid framework integrating
mixed integer programming and constraint logic programming. In: Interna-
tional Conference on Principles and Practice of Constraint Programming. CP
2001. Lecture Notes in Computer Science, vol 2239. Springer, pp. 16–30.

Tricoire, F., Romauch, M., Doerner, K. F., Hartl, R. F., 2010. Heuristics for the
multi-period orienteering problem with multiple time windows. Computers &
Operations Research 37 (2), 351–367.

Vansteenwegen, P., Souffriau, W., Oudheusden, D. V., 2011. The orienteering
problem: A survey. European Journal of Operational Research 209 (1), 1–10.

Vu, D. M., Hewitt, M., Boland, N., Savelsbergh, M., 2019. Dynamic discretiza-
tion discovery for solving the time dependent traveling salesman problem with
time windows. Transportation Science. In press.

27

