
A Unified Analysis for Assortment Planning with
Marginal Distributions

Zeyu Sun
Institute of Operations Research and Analytics, National University of Singapore, sunzeyu@nus.edu.sg, orcid:

0000-0002-3016-6621

Selin Damla Ahipasaoglu
Mathematical Sciences and CORMSIS, University of Southampton, sda1u20@soton.ac.uk, orcid: 0000-0003-1371-315X

Xiaobo Li
Industrial Systems Engineering and Management, National University of Singapore, iselix@nus.edu.sg, orcid:

0000-0002-1909-628X

In this paper, we study assortment planning under the marginal distribution model (MDM), a semipara-

metric choice model that only requires information about the marginal noise in the utilities of alternatives and

does not assume independence of the noise terms. It is already known in the literature that the multinomial

logit (MNL) model belongs to the MDM framework. In this work, we demonstrate that some multi-purchase

choice models such as the multiple-discrete-choice (MDC) model and the threshold utility model (TUM)

also fall into the framework of MDM, even though MDM does not explicitly model multi-purchase behavior.

For assortment problems within the MDM framework, we identify a general condition under which a strictly

profit-nested assortment is optimal. While the problem is NP-hard, we show that the best strictly profit-

nested assortment is a 1/2-approximate solution for all MDMs. Additionally, we present a simple example

of an MDM for which the 1/2-approximate bound is tight. These results either extend or improve upon

previous findings on assortment optimization under MNL, MDC, and TUM. Additionally, we present an

arbitrary-close approximation algorithm for MDM, and an improved version for a class of choice models

that includes MDC as a special case. Finally, we conduct experiments on real-world data and compare the

predictive power of several choice models in the presence of multi-purchase behavior.

Key words : discrete choice models, assortment optimization, marginal distribution model, multiple

discrete-continuous extreme value model, approximation ratio, approximation algorithm

1. Introduction

Assortment optimization is a fundamental problem in revenue management. Given a set of potential

products, the firm must infer the customers’ preferences and decide on a subset of products to

offer to maximize its profit. Customers are expected to buy products from this subset according to

their preferences. If a company only offers high-profit products, it may lose customers who are not

interested in those products. On the other hand, if a company offers too many choices, customers

who may have bought higher-profit products may opt for lower-profit ones instead. Therefore, to

achieve high profit, the firm must carefully trade off the market share and the average profit of the
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products sold. Assortment optimization usually emerges as shelf-space optimization for brick-and-

mortar stores, or as the search result display or product recommendation for e-commerce. With

the recent growth of online retail, being able to offer customized and personalized assortments

that take into account past purchase history, brand loyalty, product choice propensities (organic,

premium, etc.) together with demographics is highly desired and expected to be the common

industry practice in the next decade. (See Insider 2019, Bernstein et al. 2019, Sauré and Zeevi

2013, El Housni and Topaloglu 2021).

The expected profit of a subset, which is a critical step in assortment optimization, is typi-

cally calculated as the sum of the product of unit profits of each item and its choice probabilities

given the subset. The choice probabilities are calculated via a discrete choice model built using the

attributes mentioned above. Traditional choice models belong to the random utility model (RUM)

framework, where product utilities are modeled as the addition of deterministic and stochastic

components. The deterministic components represent the utility that can be explained by observ-

able product and customer attributes, while the stochastic components capture the utility from

unobserved or unaccounted attributes and perception errors. The most well-known RUM is the

multinomial logit (MNL) model, where the stochastic utility components are assumed to follow

i.i.d. Gumbel distributions. The MNL model is attractive because it allows for the calculation of

choice probabilities in a simple, closed form. On the other hand, the substitution patterns under

MNL are restrictive, resulting in limitations in modeling real-world customer choices. For instance,

one well-known restriction of MNL is the Independence of Irrelevant Alternatives (IIA) property,

in which the ratio of the choice probabilities of two products remains the same as long as the

attributes of these two products do not change.

In this paper, we study assortment optimization under the marginal distribution model (MDM).

MDM is a flexible choice model that includes the well-known multinomial logit model (MNL) as

a special case. Unlike the random utility model (RUM), which requires a complete understanding

of the joint distribution of noise, MDM only requires knowledge of the marginal distributions of

noise. This allows for the calculation of choice probabilities using a simple bisection method for

any set of marginal distributions, even if they belong to different parametric families. The marginal

distributions can be chosen based on the specific data set and application.

We show that several multi-purchase choice models can be represented as special cases of MDM.

These multi-purchase models are more practical for real-world applications than the classical dis-

crete choice approach, which only allows customers to purchase one product at a time. Incorporat-

ing multiple-purchase behavior in choice modelling is relatively new, hence the related estimation,

pricing, and assortment problems have not been fully examined. Our results show that some of
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these open questions can be addressed with the MDM framework, providing additional insights

and tools into these models.

To the best of our knowledge, this is the first paper to comprehensively investigate assortment

optimization under MDM. By using MDM as the choice model, we thoroughly study a broad class

of assortment optimization problems through the following lens.

1. Generality. It is known that MDM includes MNL as a special case (Mishra et al. 2014). Are

there other important special cases of MDM?

We show in section 3 that several choice models that capture multi-purchase behavior are also

special cases of MDM. In particular, the multiple-discrete-choice (MDC) model, the determin-

istic variant of the well-studied Multiple Discrete Continuous Extreme Value (MDCEV) model

(Kim et al. 2002, Bhat 2005), is a special case of MDM with marginal distributions belonging

to the Pareto distribution family. Besides, the threshold utility model (TUM) recently proposed

by Gallego and Wang (2019) is equivalent to MDM if the outside option is treated as another

alternative. These results provide new insights into these multi-purchase choice models. More-

over, it allows us to study the operational and estimation problems for those choice models

under the umbrella of MDM. Also, given the relation between MDC, TUM and MDM, the

NP-hardness results in Zhang et al. (2021) (for MDC) and Gallego and Wang (2019) (for

TUM) imply that the assortment optimization problem under MDM is NP-Hard.

2. Optimality. It is well known that the product assortment optimization problem under the

MNL choice model has a profit-nested structure (van Ryzin and Mahajan 1999). Is it possible

to identify conditions under which the same result holds for MDM?

In Theorem 4, we identify a sufficient condition under which a (strictly) profit-nested assort-

ment is optimal. This result generalizes known results for the optimality of profit-nested assort-

ments under MNL and MDC. Building upon this condition, we derive simple conditions that

can be verified easily for some marginal distribution families.

3. Approximation Ratio. If we use profit-nested assortments to approximate the optimal solu-

tion of an assortment optimization problem under MDM, can we quantify how far away is the

best profit-nested assortment from the optimal assortment in the worst case?

In Theorem 5, we show that the best (strictly) profit-nested assortment provides a 1/2-

approximation for all MDMs. We further show that this bound is tight for the case in which

the marginals are exponential or Pareto. These results greatly broaden the understanding of

the profit-nested structure in assortment planning considering the generality of the MDM.

4. Approximation Algorithm. Is it possible to obtain a more precise solution when a more

accurate approximation is required?

In Section 4.3, inspired by Zhang et al. (2021), we present an approximation algorithm that
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provides a 1−η approximation guarantee for all marginal distribution models (MDMs) with a

run time that is polynomial in 1
η
. In addition, in Section 5, we propose an improved approx-

imation scheme under some special MDMs, such as the multiple-discrete customers choice

model (MDC) model. These algorithms complement the theoretical property of profit-nested

assortments for real applications.

The rest of the paper is structured as follows: in Section 2, we provide an extensive literature

review on related choice models and product assortment problems under these models; in Section

3, we discuss choice models in which customers are allowed to buy multiple products and show

that some models developed to capture this behavior belong to MDM; in Section 4, we formally

formulate the product assortment problem under MDM, discuss the properties of profit-nested

assortments, and provide an arbitrary-close approximation algorithm for all MDMs; in Section 5,

we present an improved approximation scheme under some conditions; in Section 6, we conduct

numerical experiments using a real-world data set to demonstrate the predictive performance of

different choice models in capturing multi-purchase choice behavior; finally conclusion is drawn in

Section 7. Most proofs are presented in the appendix.

2. Literature Review

In this section, we provide an extensive review of relevant discrete choice models with some technical

details. We then review the literature on assortment optimization under these models.

2.1. Random Utility Models

A discrete choice model describes how decision-makers make their choices among a set of products.

Denote this set by Q, where Q= {1,2, . . . ,Q} and the probability of choosing product j by xj,Q.

Customers may decide not to buy any of the products. This is modeled with the inclusion of a

dummy product, called the outside market option and indexed by 0.

One common approach to modeling the utilities of different products is the random utility model

(RUM), which assumes an additive noise structure. According to the RUM, the random utility for

product j is given by:

Ũj = vj + ϵ̃j, ∀j ∈Q∪{0}, (1)

where vj represents the deterministic utility component and ϵ̃j represents the random utility com-

ponent. The multivariate random vector ϵ̃ follows a known probability distribution θ. Without loss

of generality, v0 is usually assumed to be zero since only the difference between utilities matters.

Given an offered set S ⊆Q, the choice probability can be computed as:

xj,S = Pϵ̃∼θ

(
j = argmaxi∈S∪{0} Ũi

)
, ∀j ∈ S ∪{0}.



Author: A Unified Analysis for Assortment Planning with Marginal Distributions
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 5

It is important to note that the choice probability of a product depends on the set of products

being offered for sale1. However, to simplify the notation, in the remainder of the paper, we will

use xj directly without specifying S when the context makes it clear which set of products is being

considered.

Different assumptions on the distribution of ϵ̃ lead to different choice models. Among them, the

most popular choice model is the MNL model introduced in Luce (1959). In the MNL model, the

stochastic terms, ϵ̃j’s, are assumed to follow i.i.d. Gumbel distributions with parameter α and the

choice probability of each product can be expressed in closed form:

xj =
eαvj

1+
∑

i∈S e
αvi
, ∀j ∈ S ∪{0}.

Thanks to the convenience of calculating the choice probabilities, the MNL model has been pop-

ular. However, the noise term distribution assumptions lead to undesirable restrictions on choice

patterns, such as the well-known independence of irrelevant alternatives property. To capture more

flexible choice patterns, various other choice models have been proposed. For more information on

these models, we refer the reader to the textbook Train (2009).

2.2. Representative Agent Model and Additive Perturbed Utility Model

Another popular choice framework is the representative agent model (RAM), in which a represen-

tative agent chooses a choice probability vector on behalf of the entire population. To make her

choice, the agent aims to maximize the expected utility while also having some degree of diversi-

fication in the choice vector. More precisely, given an offered set S ⊆Q, the representative agent

solves an optimization problem as follows:

max

{ ∑
j∈Q∪{0}

vjxj −V (x) :
∑

j∈Q∪{0}

xj = 1, xj ≥ 0,∀j ∈ S ∪{0}, xj = 0,∀j /∈ S ∪{0}

}
, (P1)

where vj and xj are the deterministic utility and choice probability corresponding to product j,

and V (x) is a convex perturbation function that punishes diversification.

It is shown in Anderson et al. (1988) that when V (x) is the negative of the entropy function,

i.e. V (x) = η
∑n

i=0 xi logxi, the RAM recovers the MNL choice model. Hofbauer and Sandholm

(2002) further shows that for any given random utility model, there exists a V (x) such that the

corresponding RAM gives the same choice probability for any subset S.

1 Note that in RUM and most other parametric models, another way to express the absence of a product i in an
offered set is to let vi be negative infinity (see, e.g., Feng et al. 2018). In this paper, to make the relationship between
the choice probability and the offered set clear, we define choice probability as a function of the offered set and avoid
the discussion of negative infinite utility.
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Fudenberg et al. (2015) introduces the additive perturbed utility (APU) model, which is a special

case of RAM. Given an offered set S ⊆Q, the APU choice probabilities correspond to the optimal

solution of the following maximization problem:

max

{ ∑
j∈S∪{0}

(
vjxj − c(xj)

)
:
∑

j∈S∪{0}

xj = 1, xj ≥ 0,∀j ∈ S ∪{0}

}
, (P2)

where c(·) is a uni-variate convex perturbation cost function. More specifically, c(·) is strictly

convex, first-order differentiable on its domain [0,1] and limq→0c
′(q) =−∞. Fudenberg et al. (2015)

shows that APU has close relations with several choice axioms, such as ordinal IIA and acyclicity.

Harsanyi (1973), Machina (1985), Rosenthal (1989), Clark (1990), Mattsson and Weibull (2002)

and Swait and Marley (2013) also study such perturbed functions or their variants.

Essentially, APU is a special case of RAM by letting V (x) =
∑

j∈Q∪{0} c(xj). Note that since

V (x) is separable, the constraints xj = 0,∀j /∈ S ∪{0} is irrelevant. Clearly, MNL is a special case

of APU by letting c(x) = x log(x). Since V (x) is separable, a natural extension of APU is to allow

the perturbation function c(x) to be different for different products, i.e., V (x) =
∑

j∈Q∪{0} cj(xj).

It turns out that this extension is equivalent to the marginal distribution models proposed by

Natarajan et al. (2009) from a different angle, which will be illustrated in the next subsection.

2.3. Marginal Distribution Models

The marginal distribution model (MDM), introduced by Natarajan et al. (2009), has gained recent

attention in the literature. This model takes the marginal distributions of the noise terms as input

and assumes that the distribution of the noise terms belongs to a family of distributions Θ, which

includes all distributions with the given marginals. Rather than assuming a particular dependency

structure, such as independence, customers make choices under the extremal distribution θ∗, which

maximizes expected welfare among the distributions in Θ. Mathematically, given an offered set

S ⊆Q, the extremal distribution θ∗ solves the following optimization,

θ∗ = argmax
θ∈Θ

Eθ(Z(ϵ̃)),

where

Z(ϵ̃) =max

 ∑
j∈S∪{0}

(vj + ϵ̃j)xj :
∑

j∈S∪{0}

xj = 1, xj ∈ {0,1},∀j ∈ S ∪{0}

 ,

and ϵ̃= {ϵ̃j,∀j ∈ S∪{0}}. Let Fj(·) denote the jth marginal cumulative distribution function (c.d.f.)

of the multivariate noise term. Natarajan et al. (2009) shows that the MDM choice probabilities

correspond to the optimal solution to the concave maximization problem:

max

{ ∑
j∈S∪{0}

(
vjxj +

∫ 1

1−xj
F−1
j (t)dt

)
:
∑

j∈S∪{0}

xj = 1, xj ≥ 0,∀j ∈ S ∪{0}

}
, (P3)
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where vj is the deterministic utility corresponding to product j, xj is the choice probability of

product j, and F−1
j (t) is the inverse of the c.d.f. of ϵ̃j.

As can be seen from (P3), MDM is a special case of RAM with a separable perturbation function.

Here we show that the reverse is also true.

Lemma 1 For any RAM with a separable perturbation function, i.e., V (x) =
∑

j∈Q∪{0} cj(xj),

where cj(·) is strictly convex and first-order differentiable on its domain, there exist marginal dis-

tributions Fj(·), j ∈Q∪{0} such that the corresponding MDM gives the same choice probabilities.

The proof of Lemma 1 is provided in Appendix B.1. One immediate consequence of Lemma 1

is that MDM generalizes APU as a special case 2. This generalization grants the MDM more

flexibility than APU to model the stochastic choice, capture choice behavior of an agent who may

be ambiguous about her true utilities to certain products, and handle incomplete choice data sets

such as when data are only observed for a subset of possible menus (Fudenberg et al. 2015).

The theoretical and practical properties of MDM are studied in detail in Mishra et al. (2014). Here

we note that the formulation given in Mishra et al. (2014) allows the marginal distribution Fj(·)

be a function of v = {v0, v1, ..., vQ} implicitly, which significantly expands the scope of the MDM.

To clarify the distinction, in the following we call this model the generalized marginal distribution

model (GMDM), and refer to the one without this flexibility as the marginal distribution model

(MDM). To the best of our knowledge, Mishra et al. (2014) is the only paper that discusses GMDM,

and it shows that GMDM includes GEV as a special case. They also show that if only the taste

parameters are to be estimated, GMDM can be estimated efficiently, and the Fisher information

matrix can be calculated, which helps determine the statistical significance of parameters.

In recent years, there has been further research on the properties and applications of MDM.

Feng et al. (2018) shows that the MDM is always a regular choice model, which means that

introducing a new product into the assortment would always decrease the choice probability of

existing alternatives. Ahipaşaoğlu et al. (2019) applies the MDM to the traffic equilibrium problem.

Yan et al. (2022) studies the data-driven estimation of the marginal distribution in MDM. Ruan

et al. (2022) studies the problem of finding the best-fit MDM to the choice data without specifying

the structure of marginal distributions. They show that checking whether a given choice dataset is

consistent with MDM reduces to a linear program, while finding the best-fit MDM, in general, is

difficult and can be formulated as a mixed-integer convex program.

2 The relationship between MDM and APU has been mentioned in some papers (e.g. Ruan et al. 2022, Yan et al.
2022) without rigorous derivation. Lemma 1 provides a formal statement with proof to support this relationship.
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2.4. Product Assortment Problems

There are many works related to assortment problems under the MNLmodel. The first polynomially

solvable assortment problem was identified by van Ryzin and Mahajan (1999). They formulate

an assortment problem by using the newsvendor model to determine the optimal order quantities

and choose the MNL to capture the customers’ choice behavior. They impose that the unit prices

and costs are identical for all products; the demand for each product is normally distributed,

and the standard deviation of the demand is a power function of the mean demand. They define

assortments {1,2, ...,m} for some m ∈ Q to be utility-nested sets, where v1 ≥ v2 ≥ ... ≥ vQ, and
find that there exists an optimal assortment which is a utility-nested set. Allowing products to

be offered with different prices, denoted as pjs below and ignoring the inventory constraints, both

Gallego et al. (2004) and Liu and Van Ryzin (2008) show that there exists a profit-nested optimal

solution, which is a subset {1,2, ...,m} for some m ∈Q, where p1 ≥ p2 ≥ ...≥ pQ. Inspired by Liu

and Van Ryzin (2008), Rusmevichientong et al. (2010) studies a similar problem with additional

constraints. They show that Liu and Van Ryzin (2008)’s result does not hold for the constrained

version of the assortment problem, nevertheless, they provide a polynomial-time algorithm to solve

the constrained problem.

Beyond MNL, Davis et al. (2014) shows that the assortment problem under the nested logit

(NL) choice model with dissimilarity parameter in (0,1] and no no-buy options within nests is

polynomially solvable and breaking any of these conditions makes the problem NP-hard. Gallego

and Topaloglu (2014) studies the problem under the tractable NL model with a capacity constraint

in each nest and shows that the problem is equivalent to a linear problem if the additional con-

straint is a cardinality constraint. Feldman and Topaloglu (2015) shows that the problem is also

polynomially solvable if there is a capacity constraint on the entire assortment instead of within

each nest. Zhang et al. (2020) shows that assortment problems under the paired combinatorial

logit (PCL) model for both constrained and unconstrained versions are NP-hard. Cao et al. (2020)

studies product assortment problems under a mixture of two choice models. They assume that a

subset of customers make choices based on the MNL model and the rest of the customers follow

the independent choice model, where each customer arrives with an ideal product in mind and does

not purchase any product if her ideal product is unavailable. They show that the unconstrained

problem is polynomially solvable and the constrained version is NP-hard.

Table 1 summarizes the results of the assortment optimization problems in the literature and in

this paper. We can see that this paper fills most relevant gaps in the literature.

3. Relations to Multi-Purchase Choice Models

In this section, we examine the connection between the MDM and several multi-purchase choice

models. Unlike discrete choice models that explicitly assume that each customer can buy at most
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source choice model complexity profit-nested ratio approx. alg.

Gallego et al. (2004)
Liu and Van Ryzin (2008)

MNL model P 1 N.A.

Davis et al. (2014)
NL model
(0,1] dissimilarity para.
no no-buy within nests

P - N.A.

NL model
general cases NP-hard ? not

1− η approx.

Li et al. (2015) d-level NL model P - N.A.

Zhang et al. (2020) PCL model NP-hard - 0.6 approx.

Aouad et al. (2018) exponomial model ? - FPTAS

Feldman and Topaloglu (2017) markov chain model P ? N.A.

Berbeglia and Joret (2020) regular choice model - 3 tight bounds,
≤ 1/2 ?

Zhang et al. (2021) MDC model NP-hard - 1− η approx.

Gallego and Wang (2019)
Gallego and Topaloglu (2019)

TUM-κ NP-hard - -

This paper MDM - 1/2 1− η approx.

MEM - 1/2
1− η approx.
(improved)

MDC model - 1/2
1− η approx.
(improved)

TUM-κ - 1/2 1− η approx.

Table 1 The computational complexity, the profit-nested heuristic approximation guarantee, and the existence
of an approximation algorithm of unconstrained assortment problems under various popular choice models that
are either analyzed in this paper or in previous literature. We use ‘-’ and ‘?’ to denote that the corresponding

topic ’is not discussed in the paper but studied in others’ and ‘is not discussed in the paper and in the literature’.
We use ‘N.A.’ to denote ‘not applicable’. For example, if the problem is not NP-hard, then an approximation

algorithm is usually unnecessary.

one product, multi-purchase choice models allow customers to purchase multiple products or mul-

tiple units of the same products simultaneously.

There are many studies in the marketing literature that model multi-choice behavior. For exam-

ple, McCardle et al. (2007) works on the bundled-products problems; Seetharaman et al. (2005)

studies multi-choice behavior across various categories; Cox (1972) proposes the multivariate logit

model, which has been extended by many subsequent papers (see, e.g., Russell and Petersen 2000).

There has been a growing interest in studying multi-purchase behavior within the operations

management community. The bundle multivariate logit model, which can capture the complemen-

tary and substitution effects among different products, has been proposed and studied in Tulaband-
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hula et al. (2020). Assortment problems under the multivariate MNL model has been considered

in Lyu et al. (2021), in which the revenue-ordered assortment is shown not to be always optimal.

Huh and Li (2022) and Zhang et al. (2021) study the pricing and assortment problem under the

multiple-discrete choice model (MDC), which is a deterministic variant of the multiple discrete-

continuous extreme value (MDCEV) model first introduced in Bhat (2005). Gallego and Wang

(2019) recently proposes the threshold utility model (TUM), which captures the multi-purchase via

the purchase quantity. Feldman et al. (2021) proposes the multi-purchase multinomial logit model,

which extends the classic MNL model to a multi-purchase setting. Lin et al. (2022) studies the

estimation and assortment personalization problem under the multi-choice rank list model, which

is an extension of the classic rank list models (e.g., Block et al. 1959, Farias et al. 2013, van Ryzin

and Vulcano 2015).

In the following discussion, we will focus on the MDC model and the TUM. Interestingly and

surprisingly, these choice models are special cases of MDM, although MDM does not explicitly

model multi-purchase behavior.

3.1. Multiple-Discrete Customer Choice Model

The MDC choice model studied in Huh and Li (2022) and Zhang et al. (2021) assumes that

customers can choose any non-negative continuous quantity of products. For each product i ∈Q,
the utility associated with product i and the consumption quantity yi is given by

νi(yi) =ψi(yi+ γi)
σi ,

where ψi > 0 is the utility term which is dependent of product characteristics; γi ≥ 0 which allows

customers to have the option of not purchasing some of the products (namely, the consumption

quantity of that product can be 0); and σi ∈ (0,1) implies that all customers receive the decreasing

marginal utility from the additional quantity purchased. They use option 0 to denote the outside

market option and assume the purchase quantity of the outside market option is strictly positive

and γ0 = 0. Hence,

ν0(y0) =ψ0y
σ0
0 ,

where y0 > 0 denotes the purchase quantity associated to the outside market option; and σ0 ∈ (0,1).
Given an offered set S ⊆Q,the representative customer solves the following utility maximization

problem:
max

yi≥0,∀i∈S,y0>0
ψ0y

σ0
0 +

∑
i∈S

ψi(yi+ γi)
σi

s.t. y0 +
∑
i∈S

yi ≤ κ,

where the total consumption quantity is upper-bounded by κ > 0. It turns out that this model is

a special case of MDM.



Author: A Unified Analysis for Assortment Planning with Marginal Distributions
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 11

Theorem 1 In the assortment context3, MDC belongs to MDM in which the deterministic utilities

of all products are zeros and the marginals are truncated Pareto distributions. More specifically,

these marginals are defined as:
Fi(t) = 1+

γi
κ
−

(κψiσi
t

)1/(1−σi)

κ
, t∈

[
κψiσi(

1

γi+κ
)1−σi , κψiσi(

1

γi
)1−σi

]
,∀j ∈Q,

F0(t) = 1−
(
κψ0σ0
t

)1/(1−σ0)
κ

, t∈
[
κψ0σ0(

1

κ
)1−σ0 ,∞

)
.

The proof of Theorem 1 is provided in Appendix B.2. The main idea of the proof is to treat

yi/κ as the choice probability of product i and construct the corresponding marginal c.d.f. Fi(·)

such that ψi(yi + γi)
σi is equal to

∫ 1

1−yj/κ
F−1
j (t)dt. Therefore, the purchasing capacity κ appears

in the marginal distribution. Note that the marginal distribution corresponding to the outside

market option is the standard Pareto distribution with shape parameter 1
1−σ0

and scale parameter

κψ0σ0(
1
κ
)1−σ0 . The marginal distribution of any other product i is an upper-truncated Pareto

distribution with shape parameter 1
1−σi

, scale parameter κψiσi(
1

γi+κ
)1−σi and truncation point

κψiσi(
1
γi
)1−σi . It is clear that the purchase quantity κ does not affect the shape of the distribution.

This relationship has two important implications. First, MDM provides a natural framework to

reasonably perturb or extend the existing MDC models in modeling multiple-discrete choices and

diminishing return of consumption. Some other MDMs may also be capable of modeling customers’

multiple choices. Second, it opens the door for new estimation methods for multi-purchase choice

models. The parameter estimation of the MDC model has been studied in Bhat (2005, 2008, 2018).

However, these methods are usually complicated by nature and may suffer from identification

problems (Bhat 2008). On the other hand, the estimation of general MDM has been extensively

explored in Mishra et al. (2014), Yan et al. (2022), and Ruan et al. (2022) in the data-driven setting.

It is possible to apply these methods to estimate MDC by incorporating the marginal distribution

constraints. It is even possible to develop a data-driven MDC model by allowing slight deviation

from the MDC assumptions. Given the growing interest in models that allow for multiple-purchases,

we believe that these are promising areas for future research.

3 By the assortment context, we mean that the choice probabilities are defined for all different assortments. Specifically,
by Theorem 1, we mean that for any instance of MDC defined on the product set Q, we can find an instance of MDM
such that for all offered sets S ⊆ Q, the choice probabilities of these two models are the same. Such a relationship
perfectly fits the assortment optimization context and some other settings where the product features are fixed, but
the product availability varies. However, in the pricing context where the price parameterizes the mean utilities, the
MDC is not necessarily a special case of MDM. For instance, Huh and Li (2022) studies the optimal pricing problem
by parameterizing ψ with the product price. In this setting, MDC is not a special case of MDM because the marginal
distribution changes with the price. However, suppose the mean utility is a function of the price, e.g., vi = ai− bipi,
but other parameters of the MDC are constants, then this pricing problem falls under the umbrella of pricing under
MDM, which is recently studied in Yan et al. (2022).
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Since the MDC model can be derived from the MDM, it is natural to ask whether the MDC

model can also be derived from the RUM. It turns out that the answer is no. To see this, we first

introduce the following known conditions for a choice model that can be represented by RUM.

Lemma 2 (Block et al. 1959, Fiorini 2004) Let xj,T denote the choice probability of alterna-

tive j ∈ T given a set of alternatives T ̸= ∅. A complete system of choice probabilities arises from

the RUM if and only if the following inequalities hold:∑
U :T ⊆U⊆Q+

(−1)|U\T |xj,U ≥ 0, ∀ T ⊆Q+,∀ j ∈ T ,

∑
j∈T

xj,T = 1, ∀ T ⊆Q+,T ≠ ∅,

where |U \ T | denotes the cardinality of set U \ T and Q+ =Q∪{0} is a set of all alternatives.

The first set of inequalities is known as the Block-Marschak inequalities. We now consider a special

case of the MDC model, in which γj = 0,∀j ∈Q. We refer to this model as the positive-MDC model

(or p-MDC for short), since all products will have strictly positive choice probabilities4 Next, we

provide an example that contradicts the aforementioned condition.

Example 1 In this example, we consider the MDC model with 4 products (i.e., Q+ = {1,2,3,4,0}).

The MDC parameters of alternatives are given below: γ = [0,0,0,0,0], σ = [0.3,0.9,0.3,0.9,0.6],

ψ= [1.9,2.3,1.6,0.9,0.6] and κ= 1. Notice that all elements in γ are zero, thus the model is p-MDC.

We consider the case where j = 0 and T = {4,0}, then we have

x0,{4,0} = 0.1273, x0,{1,4,0} = 0.1028, x0,{2,4,0} = 0.0.0126, x0,{3,4,0} = 0.1088,

x0,{1,2,4,0} = 0.0121, x0,{1,3,4,0} = 0.0779, x0,{2,3,4,0} = 0.0122, x0,{1,2,3,4,0} = 0.0116.

Then
∑

U :T ⊆U⊆Q+(−1)|U\T |(xj,U) = (−1)0 × 0.1273 + (−1)1 × 0.1028 + (−1)1 × 0.0126 + (−1)1 ×

0.1088 + (−1)2 × 0.0121 + (−1)2 × 0.0779 + (−1)2 × 0.0122 + (−1)3 × 0.0116 =−0.0063< 0, which

violates Block-Marschak inequalities in Lemma 2.

This counterexample shows that although MDC falls under the umbrella of MDM, even p-MDC

does not belong to RUM. This result demonstrates that compared to the well-studied RUM frame-

work, MDM has its unique modeling advantage.

4 The original definition of MDC (see e.g. Zhang et al. 2021) requires γj > 0. However, the case where γj = 0 for
some j ∈Q does not conflict with any of the multi-purchase properties of the MDC model, except for the assumption
that all products can have zero choice probabilities. Here we slightly generalize MDC to include this case. If this
generalization is not allowed, p-MDC can still be obtained from MDC with a limiting argument, which is technically
cumbersome. Later in the numerical study, we can see that this case has some salient features in estimation compared
to the general MDC.
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Interestingly, we find that the p-MDC model itself is equivalent to a well-studied instance of the

MDM. The marginal exponential model (MEM) is an important special case of MDM in which

the marginal distributions of noise terms are exponential distributions, i.e., Fj(ϵ) = 1 − e−αjϵ,
∀j ∈Q∪{0} for some positive and not necessarily identical αjs. The MEM is introduced in Mishra

et al. (2014), establishing an interesting fact that when the scale parameters are identical, the

MEM reduces to the MNL model. To see this, given an offered set S ⊆Q, we observe that under

the MEM, (P3) becomes

max

{ ∑
j∈S∪{0}

(
vjxj +

−xj log(xj)+xj
αj

)
:
∑

j∈S∪{0}

xj = 1, xj ≥ 0,∀j ∈ S ∪{0}

}
.

The optimality conditions yield the following MEM choice probabilities:

xj = e−αjλ+αjvj , (2)

where the Lagrange multiplier λ is the solution of the following equation:∑
j∈S∪{0}

e−αjλ+αjvj = 1. (3)

Given the outside market choice probability x0, we can rewrite relations (2) and (3), respectively

as

xj(x0) = eαjvj (x0)
αj
α0 and

∑
j∈S

xj(x0)+x0 = 1.

When αj = α for all j, it is clear that

x0 =
1

1+
∑

j∈S e
αvj

and xj =
eαvj

1+
∑

i∈S e
αvi
, ∀j ∈ S,

which is exactly the MNL model. Mishra et al. (2014) demonstrates the superior predictive power

of the MEM versus the MNL model in a case study using data from General Motors. From the

modeling perspective, allowing different alternatives to have different scale parameters essentially

allows them to have different variances in the utility, since the difference in the average of different

exponential noise terms can be offset by shifting the mean utilities.

It turns out that MEM is equivalent to p-MDC model.

Theorem 2 In the assortment context5, the p-MDC model is equivalent to the MEM.

The proof of Theorem 2 can be found in Appendix B.3. Since the exponential distribution does

not belong to the Pareto family, it is somewhat surprising to see that MEM is a special case of

MDC in the assortment context. Theorem 2 also implies that the MDC model includes the MNL

model as a special case. This relationship was previously mentioned in Huh and Li (2022) under

the pricing setup with the condition γj→ 0, σj→ 0 for all j ∈Q∪{0}. In the assortment context,

this condition is less stringent and only requires γj→ 0, σj = σ for all j ∈Q∪{0}, with σ > 0.

5 It is not hard to find that in the pricing context, these two models are not necessarily equivalent.



Author: A Unified Analysis for Assortment Planning with Marginal Distributions
14 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

3.2. Threshold Utility Model

Gallego and Wang (2019)6 (see also chapter 4.12 in Gallego and Topaloglu 2019) recently develops

a multi-purchase choice model, named the threshold utility model (TUM), and study the corre-

sponding estimation, pricing and assortment optimization problems. Given an offered set S ⊆Q,
the mathematical representation of the TUM is as follows:

max
zi≥0,∀i∈S∪{0}

∑
i∈S∪{0}

E[Ui|Ui ≥ zi] ·Pr(Ui ≥ zi)

s.t.
∑

i∈S∪{0}

Pr(Ui ≥ zi)≤ κ,

 (P4)

where κ ≥ 1 is a parameter that controls customers’ purchase capacity, Ui is the utility that a

customer receives from product i and zi is the utility threshold for product i. One may also view

Pr(Ui ≥ zi) as the expected number of purchases of product i made by the customer. As a result,

we not only have an aggregate constraint on the expected total number of purchases, κ, but also

have a purchase limit equal to 1 for each product (since the Pr(Ui ≥ zi)≤ 1).

Note that in the original formulation of TUM, the outside market option is omitted. They provide

two ways to incorporate the outside market option. First, given the utility corresponding to the

outside market option U0, they make the following transformation Ui← Ui −U0. As a result, the

outside market option is chosen if the new Ui < zi,∀i ∈ S. Second, the outside market option can

be treated as an alternative. It can be checked that the choice probabilities from the first method

can be reproduced from the second. Hence, we treat the outside option as an alternative in TUM

to allow for maximum flexibility.

Moreover, when
∑

i∈S∪{0}Pr(Ui ≥ zi)< κ, the model reduces to independently choosing each zi

and brings limited insights. Therefore, we only consider the case when the constraint is an equality

constraint, which leads to the following model

max
zi≥0,∀i∈S∪{0}

∑
i∈S∪{0}

E[Ui|Ui ≥ zi] ·Pr(Ui ≥ zi)

s.t.
∑

i∈S∪{0}

Pr(Ui ≥ zi) = κ.

 (P5)

Although (P5) is TUM with an equality constraint, for simplicity, we will refer it as TUM-κ in the

rest of the paper.

Though the derivation of the TUM appears very different from the MDM, these two models are

closely related to each other. One key observation is that we can do the variable transformation

by letting xi =Pr(Ui ≥ zi), which is the choice probability of product i. This observation leads to

the following lemma.

6 Since this paper is a working paper (last revised on 30 Mar 2020), the models and results might be subject to
change.
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Figure 1 Relationship between RUM, MDM, TUM-κ and MDC, and their special cases.

Lemma 3 Suppose the c.d.f.’s of the utility functions, Uis, are invertible. For all v ∈RQ+1, given

assortment S, the optimal choice probability under the TUM-κ is the optimal solution to the fol-

lowing convex optimization problem:

max

{ ∑
j∈S∪{0}

(
vjxj +

∫ 1

1−xj
G−1
j (t)dt

)
:
∑

j∈S∪{0}

xj = κ,0≤ xj ≤ 1,∀j ∈ S ∪{0}

}
, (P6)

where G−1
j (·) is the inverse of the c.d.f. of Uj − vj7.

The derivation of Lemma 3 is provided in Appendix B.4. It is clear that when κ= 1, formulation

(P6) reduces to MDM. Therefore, MDM is equivalent to TUM-1, which is a special case of TUM-κ.

It turns out the reverse is also true, meaning that TUM-κ is also a special case of MDM.

Theorem 3 TUM-κ can be derived from MDM by letting the c.d.f. of ϵj be

Fj(x) = 1− 1

κ

(
1−Gj

(
1

κ
x

))
,∀j ∈Q∪{0}.

Therefore, TUM-κ and MDM are equivalent.

The proof of Theorem 3 is provided in Appendix B.5. One immediate consequence of Theorem

1 and 3 is that MDC is a special case of TUM in the context of assortment optimization. This

relation was not known in the literature.

The relationship between MDM, MEM, MDC and RUM, derived in Theorem 1, Theorem 2 and

demonstrated in Example 1, is depicted in Figure 1. In addition, Theorem 3 shows that TUM-1 is

equivalent to TUM-κ, and both are equivalent to MDM.

Above, we show that MDM can include both MDC and TUM as special cases. To the best of

our knowledge, this is the first result that establishes the relations between discrete choice models

7 Here Gj appears to be dependant on vj , which appears to violate the definition of MDM. However, it is not the
case. In the assortment optimization context, because Gj does not depend on the mean utility of other products, it is
not affected by the availability of other products. Based on the discussion in Section 3.1, v is redundant and can be
simply set to zero. In the context of pricing problem as is studied in Gallego and Wang (2019), one can parameterize
the mean utility v by the price, and let G remain unchanged.
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and these multi-purchase choice models. Based on this relation, the results regarding the MDM

can be applied to some multi-purchase choice models as well. In the following section, we study the

assortment optimization problem under MDM and obtain results that either generalize or improve

the known results for these choice models.

4. Product Assortment under MDM

In this section, we formulate the assortment problem under the MDM. Recall that the product

set is denoted by Q, where Q= {1,2, . . . ,Q}. Recall also that we assume v0 = 0 without loss of

generality. To avoid potential subtle technical issues in MDM, we make the following assumption

on the marginal distributions of noise terms in this section.

Assumption 1 For all i∈Q∪{0}, F−1
i (·) is a continuous function. Moreover, F0(·) is defined on

an infinite support (−∞,+∞) or a semi-infinite support [ϵ0,+∞).

Assumption 1 implies that for any finite v, the possibility that the outside option has the largest

utility is nonzero, i.e., the outside option always has a strictly positive market share8.

In the following proposition, we show that under Assumption 1, the optimal choice probability

can be computed in a semi-closed form.

Proposition 1 Under Assumption 1 in MDM, given any assortment S, the probability that con-

sumers choose product i ∈ S is xj(x0)≜ 1− Fj
(
F−1

0 (1− x0)− vj
)
, where x0 ∈ [0,1] is the market

share of outside option that satisfies: ∑
j∈S

xj(x0)+x0 = 1.

The proof of Proposition 1 is provided in Appendix B.6. Let pj > 0 represent the unit profit of

product j. We order the products such that p1 ≥ p2 ≥ · · · ≥ pQ. Then based on Proposition 1, the

product assortment problem under the MDM can be formulated as:

max
S⊆Q,x0∈(0,1]

∑
j∈S

pjxj(x0)

s.t.
∑
j∈S

xj(x0)+x0 = 1

 , (P7)

8 Note that most existing papers (e.g. Natarajan et al. 2009, Mishra et al. 2014, Yan et al. 2022, Ahipaşaoğlu et al.
2016, 2019) on MDM assume a stronger condition that Fi(·) is defined on an infinite support (−∞,+∞) or a
semi-finite support [ϵ0,+∞) for all i ∈ Q ∪ {0}, which implies that all options have strictly positive market share.
Such an assumption makes the optimization problem in (P3) slightly easier to solve since one can ignore the non-
negativity constraints when deriving the Karush–Kuhn–Tucker (KKT) conditions. It is not hard to find that the
c.d.f.s corresponding to the MDC model as in Theorem 1 does not satisfy that assumption, but satisfy Assumption
1.
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where xj = 1 − Fj
(
F−1

0 (1 − x0) − vj
)
,∀j ∈ Q. It is easy to see that xj(x0) is a non-decreasing

function.

Since Zhang et al. (2021) shows that the assortment optimization under the MDC model is NP-

hard, it is clear from Theorem 1 that the problem (P7) is also NP-hard. It is worth noting that

the proof of the NP-Hardness in Zhang et al. (2021) assumes that γi = 0 for all products, so the

hardness result is essentially for p-MDC and MEM 9.

4.1. Conditions for Optimality of the Profit-Nested Heuristic

An assortment S is a (strictly) profit-nested assortment if there exists a price threshold p̂ > 0 such

that i∈ S if and only if pi ≥ p̂. In other words, if product i is included in the profit-nested assortment

S, then all products j with pj ≥ pi are also included. It is easy to see that the number of strictly

profit-nested assortments is at most Q. A simple heuristic to solve the assortment optimization

problem is to try all the profit-nested assortments and pick the best. This heuristic, which needs

to check at most Q assortments, is referred to as the profit-nested heuristic below. Next, we first

show that the profit-nested heuristic is optimal under some conditions. Then we show in Section

4.2 that the profit-nested heuristic is guaranteed to achieve at least half of the optimal profit for

all MDM.

Now we provide a sufficient condition under which the profit-nested heuristic is optimal. Recall

that in the MDM, xj = 1−Fj(F−1
0 (1−x0)− vj),∀j ∈Q, which is a non-decreasing function of x0.

Assumption 2 For any i ∈ {2, ...,Q},
∑

j∈Q xj(x0) · (pj − pi)
+ is convex in x0 in the region

{x0|
∑

j xj(x0)+x0 ≤ 1}, where z+ =max{z,0}.

Note that the region {x0|
∑

j xj(x0) + x0 ≤ 1} is to make sure that we only consider relevant x0.

Other values of x0 are never optimal and thus are irrelevant. One simple sufficient condition that

implies Assumption 2 is that xj(x0) is a convex function for all j ∈Q.

Theorem 4 For assortment problems under MDM, if Assumption 2 holds, then the profit-nested

heuristic is optimal.

The proof of Theorem 4 is provided in Appendix B.7, which mainly relies on convexity and

duality. We essentially prove that strong duality holds for a special-structured nonlinear mixed-

integer program under some conditions. We can see that the profit-nested structure comes from

the dual linear integer program and once strong duality holds, the profit-nested structure naturally

holds. This proof technique has the potential to apply to other assortment optimization problems

and could be of independent interest on its own.

9 This result under MEM was independently shown in an earlier version of our work with a different title, which first
appeared online in Aug 2021. In that version, the relation between MEM, MDM, and MDC is not investigated.
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Indeed, with this proof technique, Theorem 4 generalizes the result in Zhang et al. (2021), which

shows that the profit-nested heuristic is optimal for the assortment optimization problem under

the assumption that for i= 1,2, ...,Q,
∑i

j=1 yj is increasing and convex in y0. It is not hard to see

that our condition is weaker than this assumption. Hence, Theorem 4 generalizes the result in

Zhang et al. (2021). The main reason for this improvement is attributed to the exploitation of the

Lagrangian duality and convexity, which naturally leads to Assumption 210.

If the marginal distributions belong to the Pareto family, we have the following simpler condi-

tions.

Proposition 2 In the MDM, let all marginals of all products follow truncated Pareto distribution

with scale parameter mj > 0, shape parameter βj > 0, truncation point Tj >mj and deterministic

utility corresponding to the product j is denoted as vj, for all j ∈Q. In addition, let the marginal

of the outside market option follow a standard Pareto distribution with scale parameter m0 > 0,

shape parameter β0 > 0, and deterministic utility is v0. Then, Assumption 2 holds if the following

condition holds:

βj ≥ β0−
min(vj,0)

m0

(β0 +1),∀j ∈Q.

The proof of Proposition 2 is provided in Appendix B.8. This result has an immediate consequence

for the MDC model.

Corollary 1 In the MDC model, Assumption 2 holds if σ0 ≤ σj,∀j ∈Q. Hence, a strictly profit-

nested assortment is optimal for the corresponding assortment problem.

The proof of corollary 1 is provided in Appendix B.9.

Recall that the MNL model is a special case of the p-MDC model when all σ’s are the same. Thus,

Corollary 1 generalizes the well-known result that the profit-nested heuristic is optimal for the MNL

model. Recall that σj,∀j ∈Q∪{0} plays an important role in reflecting the diminishing marginal

return of the additional quantity of product j purchased. The condition essentially requires that

the utility received by the customer from choosing the outside market option increases at the lowest

rate.

4.2. Half Approximation Guarantee of the Profit-Nested Heuristic

We have shown that the profit-nested heuristic is optimal for (P7) under some conditions. Next,

we study the approximation guarantee of the profit-nested heuristic when these conditions are not

satisfied.

10 However, it is still possible to prove the same result using the proof technique in Zhang et al. (2021) with some
modifications.
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Theorem 5 For assortment problems under the MDM, the (strictly) profit-nested heuristic finds

a solution which is no worse than 1/2 of the optimal solution.

The proof of Theorem 5 is provided in Appendix B.10. The idea of the proof is as follows: we first

solve the linear relaxation of the original problem and observe that there is an optimal solution with

a special structure (at most one set of variables that are associated with all products belonging to

the same profit level is fractional, and the nonzero variables correspond to a strictly profit-nested

assortment). Based on this, we construct two strictly profit-nested feasible solutions to the original

problem and show that the sum of the objective functions of these solutions is greater than or

equal to the optimal objective function value. Therefore, at least one of them must be greater than

or equal to the half of the optimal value.

Here, we discuss the connection between our results and existing bounds in the literature.

Berbeglia and Joret (2020) studies approximation guarantees provided by profit-nested assortments

under regular choice models. They provide three different types of bounds, which are all tight,

depending on different model parameters. These bounds in general decay fast when the number of

products increases.

In a more recent paper, building upon the prophet inequalities, Gallego and Berbeglia (2021)

shows that for the random utility models in which the differences of utilities of products and the

outside option are independent, profit-nested assortments provide a half-approximation bound.

They also show that if the condition is not satisfied, the bound can be as poor as 1/Q even among

random utility families. Our result in Theorem 5 complements these results and provides a half

approximation guarantee for a much broader class of choice models. It is worth noting that Gallego

and Berbeglia (2021) studies a more general assortment personalization problem, and their bounds

hold even against the clairvoyant. It is an important future research question to determine whether

the half approximation holds in the personalization setting under the MDM framework as well.

Under the MDC, Zhang et al. (2021) also provides a 1/2-approximation algorithm for assort-

ment problems. This algorithm examines all pseudo-profit-ordered sets, which requires O(Q3) profit

evaluations. Based on Theorem 1 and Theorem 5, 1/2-approximation ratio can be achieved by

simply applying the profit-nested heuristic. This only requires O(Q) profit evaluations, which is

significantly faster than the pseudo-profit-ordered heuristic.

We show via the following proposition that even for an extremely simple case of problem (P7),

the approximation ratio is tight. Based on (P7), the assortment problem under the MEM can be

written as:
max
S⊆Q,x0

∑
j∈S

pje
αjvj (x0)

αj
α0

s.t.
∑
j∈S

eαjvj (x0)
αj
α0 +x0 = 1

 . (P8)



Author: A Unified Analysis for Assortment Planning with Marginal Distributions
20 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

To show the tightness, we consider a special case of (P8) in which αj = α for all j ∈Q. This means

that the variability of the utility for available products are identical to each other, but is different

from the outside option. Let wj = eαvj , cj = wjpj for all j ∈ Q, τ = α0
α

and z = x
1/τ
0 , then (P8)

reduces to:
max

z∈(0,1),y
cTyz

s.t. wTyz+ zτ = 1,

y ∈ {0,1}Q.

(P9)

Problem (P9) has only one additional parameter than the MNL model and perhaps is the simplest

case of (P8).

Proposition 3 Consider an instance of Problem (P9) with three products. Let 0< ϵ< 1/2 and set

[p1, p2, p3] =
[
1, ϵ(1−2ϵ), ϵ(1−2ϵ)

]
, [w1,w2,w3] = [ϵ,10+ 2

ϵ
,1− ϵ], τ = log(ϵ)

log(1−ϵ) , the profit correspond-

ing to the best profit-nested assortment is half of the optimal profit when ϵ approaches 0.

The proof of Proposition 3 is provided in Appendix B.11. Based on Theorem 2, this 1/2-

approximation ratio is also tight for the profit-nested heuristic under the MDC model.

We have identified the conditions under which the profit-nested heuristic is optimal, demon-

strated that the heuristic has a 1
2
-approximation guarantee in general cases, and shown that this

bound is tight. In the following subsection, we present an algorithm with a 1− η approximation

guarantee for situations where a more accurate solution (or a solution with arbitrary accuracy) is

demanded.

4.3. Relative Approximation Algorithm

In Zhang et al. (2021), the Lipschitz continuity property is used to devise an absolute approximation

algorithm that produces an ε-optimal solution with a run time that is polynomial in 1
ε
for the

assortment problem under the MDC model, given certain technical conditions. In this subsection,

we modify and extend this algorithm to be applicable for all MDMs, convert it into a relative

approximation algorithm, and provide a more rigorous complexity analysis.

Recall that xj(x0) is non-decreasing for all j ∈Q in problem (P7). This means that problem (P7)

is equivalent to the following:

max
S⊆Q,x0∈(0,1]

∑
j∈S

pjxj(x0)

s.t.
∑
j∈S

xj(x0)+x0 ≤ 1

 . (P10)

Let fkp(S, x0) denote the objective function value of problem (P10), i.e., fkp(S,x0) =
∑

j∈S pjxj(x0),

where xj = 1−Fj
(
F−1

0 (1−x0)− vj
)
,∀j ∈ S ⊆Q. As a choice probability, it is clear that x0 ∈ [0,1].

Moreover, the following lemma allows us to further narrow down the search space for the optimal

outside market share:
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Lemma 4 For any assortment, the optimal outside market share lies in [x0, x0], where
x0 = 1−F0(λl− v0), where

∑
j∈Q∪{0}

(
1−Fj(λl− vj)

)
= 1,and

x0 =max
k∈Q
{1−F0(λk− v0)}, where

(
1−Fk(λk− vk)

)
+
(
1−F0(λk− v0)

)
= 1,∀k ∈Q.

This result follows as a corollary of Proposition 5 that is presented in Appendix B.12.

To calculate fkp(S, x0) for a given S and x0, we need to evaluate the function xj = 1−Fj
(
F−1

0 (1−

x0)− vj
)
for all j ∈Q. For the purposes of this analysis, we assume that the total computational

effort to calculate xj(x0) to the desired accuracy is upper bounded by C, and we express the time

complexity in terms of C.

To develop a relative approximation algorithm, we first define the following quantity. Let

M = max
x0≤y0<x0≤x0,j∈Q

(
xj(x0)−xj(y0)
xj(x0)(x0− y0)

)
.

Inspired by Zhang et al. (2021), we present the following algorithm which uses the FPTAS for

the knapsack problem (see Algorithm 3 in Appendix C.2) as a subroutine. Note that the FPTAS

requires O
(
Q2
⌊
Q
ϵ

⌋
+QC

)
time, where QC accounts for the calculation of the ‘weights’ and ‘profits’

in the corresponding knapsack problem.

Algorithm 1 MDM relative approximation algorithm

Input η, x0, x0, M

1: ϵ← η
2

2: ∆← η
2M

3: for L← x0, x0 +∆, x0 +2∆, ..., x0 +
⌊
x0−x0

∆

⌋
∆ do

4: Use knapsack FPTAS Algorithm 3 with parameter ϵ to approximate the inner problem of

(P10) with x0 =L.

5: Store the assortment and the corresponding objective function value to problem (P10).

6: return the assortment with the greatest objective function value

We now present our main theorem for this subsection.

Theorem 6 Algorithm 1 is a (1− η)-approximation algorithm with a run time O

((⌊
2M
η

⌋
+ 1
)
·(

Q2
⌊
Q
η

⌋
+QC

))
that is polynomial in 1

η
and M .

The proof of Theorem 6 is provided in Appendix C.3. This theorem extends the results in Zhang

et al. (2021) to all MDM cases. Although the proof appears different from Zhang et al. (2021), the

key idea is the same. The difference is mainly in the definition of M , because we aim to provide a
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relative performance guarantee, while the analysis in Zhang et al. (2021) is for absolute performance

guarantee.

It is worth noting that the runtime of Algorithm 1 is not necessarily polynomial in the problem

parameters. In particular, the constant M may depend on the problem parameters. We illustrate

this point using the MDC as an example.11 We show in Appendix A with a simple example that

for MDC, M could even be exponential of 1−σi
1−σ0

. This problem could be very serious since usually

σ could be very close to 1.

5. Improved Approximation Algorithm

As illustrated in the previous section, the runtime of Algorithm 1 linearly depends on M , which

may be exponential in model inputs. In this section, we develop a much faster algorithm that is

polynomial in 1
η
and logM for a general class of choice models that include MDC.

Recall our definition of M in Section 4.3:

M = max
x0≤y0<x0≤x0,j∈Q

(
xj(x0)−xj(y0)
xj(x0)(x0− y0)

)
.

Our improved algorithm is based on the following assumption.

Assumption 3 The reciprocal of the lower bound of the optimal outside market share 1
x0

is upper

bounded by a polynomial function of M .

We can verify that all MDC satisfy Assumption 3 (see the following theorem).

Theorem 7 The MDC model, and hence the MEM, satisfy Assumption 3.

The proof of Theorem 7 is presented in Appendix C.4. This result shows that Assumption 3 is not

restrictive, but holds for interesting models. Now we solve the assortment optimization problem

(P10) under Assumption 3.

Given x0, the inner problem of (P10) is a knapsack problem with non-integer parameters that can

be solved approximately using the FPTAS (Algorithm 3 in Appendix C.2). The FPTAS requires

O
(
Q2
⌊
Q
ϵ

⌋
+QC

)
time, where QC accounts for the calculation of the ‘weights’ and ‘profits’ in the

corresponding knapsack problem.

We now provide an approximation algorithm for (P10), which improves over Algorithm 1. Recall

that x∗
0 ∈ [x0, x0] (Lemma 4).

11 Due to our more rigorous analysis, the runtime of the algorithm in Zhang et al. (2021) is also not necessarily
polynomial in both 1

η
and the problem inputs unless with additional assumptions though they use a slightly different

definition of M .
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Algorithm 2 Improved Approximation Scheme under Assumption 3

Input η, x0, x0, M

1: ϵ← η
2

2: ψ← η
2M

3: for x0←{x0(1+ψ)
l|l ∈ {0,1, ...,m} such that x0(1+ψ)

m ≤ x0 and x0(1+ψ)
m+1 >x0 } do

4: Use knapsack FPTAS with algorithm parameter ϵ to approximate the inner problem in

Problem (P10)

5: Calculate and store the assortment and the corresponding objective function value of the

inner problem in Problem (P10).

6: Find the assortment with the greatest objective function value, denoted as S∗.

7: return S∗

Now we present the main theorem of this section.

Theorem 8 Algorithm 2 computes a (1 − η)-approximation solution with computational time

O
(

log( 1
x0

)

log(1+ η
2M )

(
Q2
⌊
Q
ϵ

⌋
+QC

))
. In addition, based on Assumption 3, it is polynomial in 1/η and

log(M).

The proof of Theorem 8 is presented in Appendix C.5 12.

The computational complexity of Algorithm 2 is significantly improved compared to Algorithm

1 (see Appendix C.6 for a more detailed analysis). This improvement is mainly due to the use of

non-even intervals in the search space of the optimal outside market share in Algorithm 2 (Step 3),

which takes advantage of Assumption 3 and enhances the efficiency of the algorithm. This result

provides important insights when designing similar algorithms.

6. Case Study with E-commerce Data

In this section, we work on an E-commerce event history data in cosmetics shops (eCommerce

Events History in Cosmetics Shop, REES46 for eCommerce) to examine the predictive performance

of different choice models in the presence of multi-purchase behavior.

6.1. Data Preparation and Summary

The data set consists of over 20 million customer transactions on products from a medium-sized

cosmetics online store, covering a period of 5 months from October 2019 to February 2020. The

products are organized into 12 different categories: ‘appliances environment vacuum’, ‘stationery

cartrige’, ‘apparel glove’, ‘accessories bag’, ‘furniture living room cabinet’, ‘furniture bathroom

12 Theorem 8 for the MEM case is included in the earlier version of our paper, appeared online in August, 2021.

https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://rees46.com


Author: A Unified Analysis for Assortment Planning with Marginal Distributions
24 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

bath’, ‘appliances personal hair cutter’, ‘accessories cosmetic bag’, ‘appliances environment air

conditioner’, ‘furniture living room chair’, ‘sport diving’ and ‘appliances personal massager’.

The purchasing process can be broken down into four stages: product browsing, adding products

to the shopping cart, removing products from the shopping cart, and completing the purchase.

Customers can view multiple products, and they may add and remove products multiple times

before completing the purchase. In one transaction, a customer may choose not to make a purchase,

buy a single product, or buy multiple products (including multiple units of the same product or

multiple products from different brands). It’s also possible for a customer to add, delete, and then

re-add the same product during the purchasing process.

We will apply the MNL model, the MDC model, and the p-MDC model (equivalently, MEM)

to this data set. Our focus will be on analyzing the behavior of customers within each category

separately, rather than cross-category purchases. In addition, we will apply several MDMs that are

not special cases of the MDC model: the Marginal Moment Model (MMM), MDMs with marginal

Gumbel distribution (MGM), marginal logistic distribution (MLM), marginal Cauchy distribution

(MCM) and marginal uniform distribution (MUM).

As an example, we will use the data set for the category ‘stationery cartridge’ for the month of

October, and present the procedure and results. The results corresponding to the rest of the other

categories are presented later. In the ‘stationery cartrige’ data set, there are 136 products and

3073 customers (also referred to as data points in subsequent discussion), where for each customer,

we see a set of products viewed by the customer, a set of products added into the shopping cart,

a set of products removed from the shopping cart and a set of products purchased eventually

(notice that if no product is purchased, we assume that the dummy product 0 is purchased).

Without loss of generality, we always assume that the dummy product 0 was viewed by every

customer. Out of the 3073 customers in the data set, 598 made a purchase (which may have included

multiple products). To capture the multiple choice behavior of these customers, we assume that

each customer purchases at most κ−1 products. In cases where the number of products purchased

by a customer is less than κ− 1, we assume that they fill the remaining purchase capacity with

the dummy product 0 (the outside market option). This allows us to model the multiple choice

behavior of customers who purchase more than one product. We observe that only 40 customers out

of the 3073 in the data set purchased more than 5 products at the same time, which represents a

small portion (only 1.3%) of all the data. As a result, we decide to remove these data points and set

κ= 6. We also find that the market share of the products are only 6.1%, which means that 93.9%

of the market share is on the outside market. In other words, the data is very imbalanced, which

is common for the real-world choice data, in particular for e-commerce data. Working with this

data set may not lead to meaningful or insightful results, as a simple model that always predicts
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that customers will choose the outside market option would likely outperform other models. To

address the issue of imbalanced data, we apply the ‘upsampling’ technique (see Nallamuthu 2020

for details), which involves duplicating the data points that belong to the minority (i.e., those in

which a customer made a purchase). Specifically, we make 19 additional copies of each data point

in the original data set in which a customer purchased at least one product. This results in a

modified data set with 14435 data points in total, of which 11960 customers made a purchase and

6840 of those purchased more than 1 product. There are 800 customers who purchased more than 5

products at the same time, which is still a small portion. As before, we set κ= 6 and remove these

800 data points. As a result, the 136 products in the ‘stationery cartrige’ data set now capture

26.94% of the market. Additionally, we discover that there are many products with very small

market shares (e.g., in the original data set, only one customer made a purchase of one unit of some

products). To make the data set more manageable, we ignore these products and only consider the

top 21 products that capture 23.72% of the market share. To ‘ignore’ these products, we simply

remove them from the data set. Customers that only view the dummy product 0 are also removed.

Additionally, we remove any data points with a view set containing more than 7 products, in order

to keep the estimation of the MDC model tractable. The details of this decision will be discussed

later.

6.2. Estimation on the Data

For each data point, we treat the ‘view set’ as the assortment of products available to the customer,

and the ‘purchase set’ as the choice made by the customer. To estimate the model parameters,

we use the ‘maximum likelihood’ (MLE) approach. The MLE estimation for a choice model is as

follows:
max
α

∑
i∈I

[∑
j∈Si

[
dj,Si log(xj,Si(α))

]]
s.t.

∑
j∈Si

xj,Si(α) = 1,∀i∈ I,

where α is the parameters involved in the corresponding choice model (e.g., linear-in-parameters

of the deterministic utilities and the scale parameters for the distributions of the error terms); I is

the set of customer indices; Si is the corresponding assortment provided in ith data point 13; dj,Si is

the realized market share (scaled by κ) of product j given assortment Si and xj,Si is the calculated

choice probability of product j given assortment Si based on the parameters of the choice model.

Recall that MNL, p-MDC and MDC are all special cases of the MDM. Note that the optimal

solution of the above MLE optimization program stays the same when the constraints are ‘=’ or

‘≤’, because at the optimal solution the constraints are always binding.

13 Remember that the dummy product 0 has been added into the set of products viewed by the customer, so Si
includes the outside market option.
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The MEM (or equivalently, p-MDC model) estimation was introduced in Mishra et al. (2014)

and the MNL model can be easily estimated within the MEM framework by setting all exponential

parameters to 1. In fact, the MMM, the MGM, the MLM and the MCM can all be estimated using

this approach with different marginal c.d.f.s. The estimation of the MDC model and the MUM are

more complicated. Recall that Theorem 1 and Proposition 1 imply that in the MDC model, the

choice probability of product j,∀j ∈Q is

xj =


0, if λ> κψiσi(

1
γi
)1−σi ,

1−Fj(λ), if λ∈
[
κψiσi(

1
γi+κ

)1−σi , κψiσi(
1
γi
)1−σi

]
,

1, if λ< κψiσi(
1

γi+κ
)1−σi ,

and the choice probability of the outside market option is

x0 =

{
1−Fj(λ), if λ≥ κψiσi( 1

κ
)1−σi ,

1, if λ< κψiσi(
1
κ
)1−σi ,

where 
Fi(t) = 1+

γi
κ
−

(κψiσi
t

)1/(1−σi)

κ
, t∈

[
κψiσi(

1

γi+κ
)1−σi , κψiσi(

1

γi
)1−σi

]
,∀j ∈Q,

F0(t) = 1−
(
κψ0σ0
t

)1/(1−σ0)
κ

, t∈
[
κψ0σ0(

1

κ
)1−σ0 ,∞

)
.

To solve the optimization problem, we may need to make some reformulations to eliminate the

‘if statement’ in the functions. First, it is worth noting that we can ignore situations where

xj = 1, if λ< κψiσi(
1

γj +κ
)1−σi ,∀j ∈Q, and

x0 = 1, if λ< κψiσi(
1

κ
)1−σi .

It is because in all of these MDMs, the constraints in the MDM-MLE estimation formulation implies

that for such λ, the corresponding xj or x0 can never be optimal. This is why the other models

(except for the MUM) are relatively simple to estimate. However, in the MDC model, we have an

additional situation, in which xj = 0 if λ > κψiσi(
1
γi
)1−σi . To address this issue, we first note that

in MLE approach, if the realized choice probability corresponding to a product is positive given

an assortment, its calculated choice probability from the MDC model must also be positive, since

otherwise the objective function is negative infinity. Second, notice that in the MLE formulation,

we have the following set of constraints:

∑
j∈Si

xj,Si(α) = 1,∀i∈ I.
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stationery cartrige (original)
data number product number outside market purchases

3073 136 2475

stationery cartrige (scale-up factor = 20, κ= 6, remove small-share products)
data number product number outside market share

11144 21 76.28%

Model in-sample loglklhd out-of-sample RMSE time/iteration number
the MNL model -6241.41 0.10820 1.25s / 6
the p-MDC model -6211.47 0.10609 3.30s / 85
the MDC model -6208.69 0.10605 267.38s / 1023

the MMM -6213.90 0.10623 62.25s / 1246
the MGM -6214.38 0.10627 5.69s / 71
the MLM -6217.20 0.10648 5.84s / 64
the MCM -6217.49 0.10645 6.31s / 82
the MUM -6210.59 0.10624 60.99s / 212

Table 2 Results for ‘stationery cartrige’ Data

For each i∈ I, we replace the constraint with a set of constraints as follows:

∑
j∈T

1−Fj(λSi,j)≤ 1,∀ T ∈Θ(Si),

where Θ(Si) denotes the set of all possible subsets of Si that contains the outside option. Clearly,

|Θ(Si)|= 2|Si|−1. With this set of inequalities, although 1−Fj(λSi,j) may be negative for some j ∈

T ∈Θ(Si), the constraint
∑

j∈Si
xj,Si ≤ 1,∀i∈ I is always obeyed. Clearly, the number of additional

constraints required in the optimization problem is exponential in the number of products in the

feasible assortments, which may cause the computational difficulty in the estimation procedure.

This is why we removed all data points with assortments containing more than 7 products, as this

helps to reduce the number of constraints and make the estimation less tractable. Our approach of

estimating the MDC model is not necessarily the best, but it is easy to interpret and implement.

On the other hand, alternative methods in Bhat (2008) are complicated and not immediately

applicable in the assortment context. A more efficient estimation of MDC would be valuable, and

therefore, this is an important future research direction. We apply the similar estimation technique

for the MUM.

6.3. Results

The result of ‘stationery cartrige’ data is provided in Table 2. Initially, the outside market held a

93.9% share of the market (as shown in Section 6.1), but after using the upsampling technique,

the outside market’s share decreased to 76.28%. As the model becomes more complex (the other

MDMs v.s., the MNL model), the in-sample log-likelihood and the out-of-sample RMSE both

improve, as can be seen in Table 2. The results for other categories shown in Table 4 and Table 5
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Average Ranking
MNL p-MDC MDC MMM MGM MLM MCM MUM

in-sample log-likelihood 8 6.2 1.8 3.4 3.8 4.6 5.6 2.6
out-of-sample RMSE 8 2.8 3.8 2.4 4.8 4.8 4.2 5.2

Table 3 Average Ranking of The Performance of Each Model in Both In-Sample Log-Likelihood Test and

Out-of-Sample RMSE Test

(found in Appendix D) show similar trends to the stationary cartridge data. As expected, the MNL

model always performs the worst. In Table 3, we illustrate the average ranking of the performance

of each model in all categories. It shows that although the MDC model aces in the in-sample

log-likelihood test, it is not the best when considering the out-of-sample root-mean-square error

(RMSE). This may be due to overfitting, as the dataset does not contain enough information to

justify the flexibility of MDC. To ensure that the issue of imbalanced data has been addressed, we

also tested a “naive model,” in which all customers only chose the outside market option. In this

model, the probability of choosing the outside market was 1, while the probability for the other

options was 0. The out-of-sample RMSE for this model was 0.2143, which is significantly worse

than the other models. In terms of estimation time, the MNL model is the fastest to converge,

followed by the other models. The MDC model and the MUM take the longest to converge and

may exceed the maximum number of iterations. Furthermore, it can be seen that although not

designed so, many MDMs that are not embedded by the MDC model (the MMM, the MGM, the

MLM, the MCM, and the MUM) have a good performance in capturing the multi-purchase choice

behaviour. Overall, the p-MDC model and the MMM strike a good balance between simplicity and

the ability to model multi-purchase behavior, resulting in fast and accurate parameter estimation.

7. Conclusion

In this study, we examine a single-period product assortment problem in which the choice model is

defined through the marginals of noise terms in utilities. We provide several theoretical results for

this assortment problem under the MDC model, the MEM, and all MDMs. Our findings include

sufficient conditions under which the profit-nested heuristic is optimal for these models, and the

profit-nested heuristic offers a half-approximation guarantee for all MDMs. In addition, we propose

an algorithm for approximating the solution to this problem for all MDMs, as well as an improved

version for MDC and MEM. This framework allows for the examination of various existing models,

including multi-purchase choice models, and we believe that it could be valuable to explore incor-

porating constraints in future research. Our technical results and proofs offer new insights into

the field of discrete choice theory and assortment optimization and may inspire future theoretical

developments.
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Appendix

A. An Example of the Assortment problem under the MDC model

We consider an assortment problem under the MDC model with the following parameters:

κ= 1,

σj = σ,∀i∈Q,
ψj =ψ,∀i∈Q∪{0},
γj→ 0,∀i∈Q,

θ :=

(
ψσ

ψ0σ0

) 1
1−σ

.

Then, the choice probability of product j is

xj = θ · (x0)
1−σ0
1−σ ,∀j ∈Q.

Let x′
j(x0) be the first derivative of xj(x0) with respect to x0. Then we have

M = max
x0≤y0<x0≤x0,j∈Q

(
xj(x0)−xj(y0)
xj(x0)(x0− y0)

)
≥
(
xj(x0)−xj(y0)
xj(x0)(x0− y0)

)∣∣∣∣y0→ x0, x0→ y0 + δ, δ→ 0

= lim
δ→0

(
xj(x0 + δ)−xj(x0)

xj(x0 + δ)(δ)

)
= lim
δ→0

x′
j(x0)

xj(x0 + δ)

=
x′
j(x0)

xj(x0)
,

for any j ∈Q. Hence,

M ≥
x′
j(x0)

xj(x0)

=
1−σ0
1−σ θ · (x0)

(
1−σ0
1−σ

−1)

θ · (x0)
1−σ0
1−σ

=
1−σ0

1−σ
(x0)

−1.

From Lemma 4, we know ∑
i∈Q

(
θ · (x0)

1−σ0
1−σ

)
+x0 = 1.

Now, we let z be the solution of equation ∑
i∈Q

(
θ · (z)

1−σ0
1−σ

)
= 1.

Then, clearly we have x0 < z. Rearrange the terms, we have z =
(

1
θQ

) 1−σ
1−σ0 . Hence, we obtain

M >
1−σ0

1−σ
(z)−1

=
1−σ0

1−σ

(( 1

θQ

) 1−σ
1−σ0

)−1

=
1−σ0

1−σ
·
(
θQ
) 1−σ

1−σ0

=
1−σ0

1−σ
·
( ψσ
ψ0σ0

) 1
1−σ0

(
Q
) 1−σ

1−σ0 .
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It can be seen that M is not polynomial in problem inputs, in particular, σ and σ0.

B. Proofs

B.1. Proof of Lemma 1.

Proof. Note that such c′j(·),∀j ∈Q∪{0} are invertible. We take the following derivatives

d

dxj

∫ 1

1−xj

F−1
j (t)dt= F−1

j (1−xj).

For any valid c′j(·) (the first-order derivative of a valid perturbed cost function for product j), we let F−1
j (y) =

−c′j(1− y) for y ∈ [0,1]. Hence, we have F−1
j (1− xj) =−c′j(xj) for xj ∈ [0,1],∀j ∈Q∪ {0}. It is easy to see

that by this construction, Fj(·),∀j ∈ Q∪ {0} is a valid MDM c.d.f.. Notice that if two functions with the

same domain [0,1] have the same derivative everywhere, then they differ by a constant. That is, we have

−cj(xj) +Mj =
∫ 1

1−xj
F−1
j (t)dt, where Mj is a constant. Now, consider a separable perturbation function

V (x) =
∑

j∈Q∪{0} cj(xj) and another function V ∗(x) =
∑

j∈Q∪{0} c
∗
j (xj), where c

∗
j (·) = cj(·)−Mj for some

constants Mj . It is easy to see that the following problem

max

{ ∑
j∈S∪{0}

vjxj −V ∗(x) :
∑

j∈S∪{0}

xj = 1, xj ≥ 0,∀j ∈ S ∪{0}, xj = 0,∀j /∈ S ∪{0}

}
,

is equivalent to problem (P1), which also turns out to be equivalent to problem (P3).

■

B.2. Proof of Theorem 1.

Proof. First, we show that F0(·) and Fi(·),∀i ∈ Q are valid c.d.f.’s for the MDM. Notice that Fi(t) is

a continuous and increasing function, Fi

(
κψiσi(

1
γi+κ

)1−σi
)
= 0 and Fi

(
κψiσi(

1
γi
)1−σi

)
= 1, for all i ∈ Q.

Similarly, F0(t) is a continuous and increasing function, F0

(
κψ0σ0(

1
κ
)1−σ0

)
= 0 and F0(∞)→ 1. Hence, we

have a valid MDM.

Next, we show that this MDM is equivalent to a MDC with corresponding parameters. To do so, let us first

calculate the inverse functions of the marginal distributions, F−1
i (t) = κψiσi

(
κ(1− t)+γi

)σi−1

,∀i∈Q∪{0}.

Then, we have ∫ 1

1−xi

F−1
i (t)dt=−ψi(κ−κt+ γi)

σi

∣∣∣t=1

t=1−xi

=−ψiγσii −
(
−ψi(κ−κ+κxi+ γi)

σi
)

=−ψiγσii +ψi(κxi+ γi)
σi .

Following the MDM formulation (P3), we have

max
xi∈[0,1],∀i∈S∪{0}

∑
i∈S∪{0}

(
ψi(κxi+ γi)

σi −ψiγσii
)

s.t.
∑

i∈S∪{0}

xi = 1.

Since F0(·) is supported on a semi-definite interval [κψ0σ0(
1
κ
)1−σ0 ,∞), it is easy to verify that x0 must be

strictly positive. What is more, notice that the second term in the objective function in each term in the
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summation is not a function of the decision variables, hence we can simply remove it. Moreover, since the

objective function is increasing in terms of xj ,∀j ∈ S ∪{0} , we have the following equivalent model,

max
xi∈[0,1],∀i∈S,x0∈(0,1]

∑
i∈S∪{0}

(
ψi(κxi+ γi)

σi
)

s.t.
∑

i∈S∪{0}

xi ≤ 1.

Now, we apply a change of variables. Let yj = κxj ,∀j ∈ S∪{0}. As a result, we obtain the following equivalent

model,
max

yi≥0,∀i∈S,y0>0
ψ0y

σ0
0 +

∑
j∈S

ψi(yi+ γi)
σi

s.t.
∑

i∈S∪{0}

yi ≤ κ,

which is indeed a MDC (recall that γ0 = 0).

■

B.3. Proof of Theorem 2.

Based on Theorem 1, Proposition 1 in Section 4 implies that the choice probability corresponding to product

j in the MDC model is xj(x0) =

[(
ψjσj

ψ0σ0

) 1
1−σj (κ)

1−σ0
1−σj

−1
(x0)

1−σ0
1−σj − γj

κ

]+
, where [a,0]+ = max{a,0}. In p-

MDC, where γj = 0,∀j ∈Q, we have xj(x0) =
(
ψjσj

ψ0σ0

) 1
1−σj (κ)

1−σ0
1−σj

−1
(x0)

1−σ0
1−σj . Recall from Section 3.1, under

the MEM, the choice probability corresponding to product j is xj(x0) = eαjvj (x0)
αj
α0 . It is easy to see that

when αj =
1

1−σj
,∀j ∈Q∪{0} and vj = log(

ψjσj

ψ0σ0
· (κ)σj−σ0),∀j ∈Q, the choice probabilities of product j from

the two models are identical. One may notice that in the MEM, αj > 0,∀j ∈ Q∪ {0}, however, the MDC

parameters σj ∈ (0,1),∀j ∈ Q ∪ {0} suggest that αj > 1,∀j ∈ Q ∪ {0}. Note that this does not break the

equivalence as for any MEM model with some αj ∈ (0,1), we can always find an equivalent MEM in which

all αj ≥ 1 because we may always specify a value for the minimum αj ,∀j ∈Q∪{0}.

Hence, for any p-MDC model, there always exists a MEM which recovers it and vice versa.

■

B.4. Proof of Lemma 3.

Proof. The threshold utility model (TUM) is proposed in Gallego and Wang (2019) to model the choice

behavior in retail applications. Recall the model (P5):

max
zi≥0,∀i∈S∪{0}

∑
i∈S∪{0}

E[Ui|Ui ≥ zi] ·Pr(Ui ≥ zi)

s.t.
∑

i∈S∪{0}

Pr(Ui ≥ zi) = κ,


where κ is a predetermined bound on the expected number of products the consumer is willing to buy in

a product category. Here we show that, if U = v + ϵ̃ and marginal distribution for ϵ̃i is Fi (assuming Fi

invertible), it is equivalent to formulation (P6). Start with the objective in (P5) and let xi = P (Ui ≥ zi) =

P (ϵi ≥ zi− vi). Then we have∑
i∈S∪{0}

E[ui|ui ≥ zi]P (ui ≥ zi) =
∑

i∈S∪{0}

vixi+
∑

i∈S∪{0}

E[ϵi|ϵi ≥ zi− vi]P (ϵi ≥ zi− vi)
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=
∑

i∈S∪{0}

vixi+
∑

i∈S∪{0}

∫ +∞

zi−vi

ϵdFi(ϵ)

=
∑

i∈S∪{0}

vixi+
∑

i∈S∪{0}

∫ 1

Fi(zi−vi)
F−1
i (t)dt (letting t= Fi(ϵ))

=
∑

i∈S∪{0}

vixi+
∑

i∈S∪{0}

∫ 1

1−xi

F−1
i (t)dt (because xi = P (ϵi ≥ zi− vi)),

which is the objective of (P6). The constraint in (P5) reduces to
∑|S|

i=0 xi = κ. From the definition of xi,

clearly we have 0≤ xi ≤ 1. Since the value of zi is free, we can get all possible values of xi ∈ [0,1]. Hence, the

model is equivalent to

max

{ ∑
j∈S∪{0}

(
vjxj +

∫ 1

1−xj

F−1
j (t)dt

)
:
∑

j∈S∪{0}

xj = κ,0≤ xj ≤ 1,∀j ∈ S ∪{0}

}
,

■

B.5. Proof of Theorem 3.

Proof. Throughout the proof, we assume that the c.d.f.’s of the utility noise terms are invertible. Based on

Lemma 3, when we let κ= 1, it is easy to see that TUM-1 and the MDM are equivalent.

Next, we will show that TUM-κ can be reproduced from the MDM. In TUM-κ, let the marginal distribution

for ϵ̃j be Gj , where U = v+ ϵ̃. Recall that TUM-κ can be expressed as (Lemma 3):

max
xj ,∀j∈S∪{0}

{ ∑
j∈S∪{0}

(
vjxj +

∫ 1

1−xj

G−1
j (t)dt

)
:
∑

j∈S∪{0}

xj = κ,0≤ xj ≤ 1,∀j ∈ S ∪{0}

}
.

Let us introduce yj =
1
κ
xj ,∀j ∈ S ∪{0}, then we obtain an equivalent model:

max
yj ,∀j∈S∪{0}

 ∑
j∈S∪{0}

(
κvjyj +

∫ 1

1−κyj

G−1
j (t)dt ·1{yj ≤

1

κ
}
)
:
∑

j∈S∪{0}

yj = 1, yj ≥ 0,∀j ∈ S ∪{0}

 , (P11)

where

1

{
yj ≤

1

κ

}
=

{
1, if yj ≤ 1

κ
,

−∞,otherwise.

Now, we consider a MDM where the marginal distributions, denoted as Fj , are defined as Fj(x) = 1−
1
κ
(1−Gj(

1
κ
x)), and the deterministic utility of alternative j is κvj , for all j ∈ Q∪ {0}. The corresponding

model is

max
xj ,∀j∈S∪{0}

{ ∑
j∈S∪{0}

(
κvjxj +

∫ 1

1−xj

F−1
j (t)dt

)
:
∑

j∈S∪{0}

xj = 1, xj ≥ 0,∀j ∈ S ∪{0}

}
. (P12)

Notice that F−1
j exists since G−1

j exits. Moreover, from the following argument, we can see that Fj is a valid

c.d.f.. Let Xj be the random variable that follows Fj . Then,

Xj =

{
Yj ∼G∗

j , with probability 1
κ
,

−∞, with probability 1− 1
κ
,

where G∗
j (x) =Gj(

1
κ
x). For 1−Fj(x) = 1

κ
(1−Gj(

1
κ
x)), taking the inverse of both sides, we obtain

F−1
j (1−x) = κG−1

j (1−κx).
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Notice that 
d

dx

∫ 1

1−κx
G−1
j (t)dt= κG−1

j (1−κx),

d

dx

∫ 1

1−x
F−1
j (t)dt= F−1

j (1−x).

Thus, we have
∫ 1

1−xF
−1
j (t)dt=

∫ 1

1−κxG
−1
j (t)dt+Cj ,∀j ∈ S ∪{0}, where Cj is independent of x. Hence, (P12)

can be written as

max
xj ,∀j∈S

{ ∑
j∈S∪{0}

(
κvjxj +

∫ 1

1−κxj

G−1
j (t)dt

)
:
∑

j∈S∪{0}

xj = 1, xj ≥ 0,∀j ∈ S ∪{0}

}
.

Since Gj(·) is a valid c.d.f., G−1
j is only valid in domain [0,1]. Therefore, (P12) is equivalent to (P11). That

is, for any given TUM-κ, we can always find an equivalent corresponding MDM.

Recall that we have shown that TUM-1 is equivalent to the MDM. Therefore, we conclude that TUM-κ,

TUM-1 and MDM are equivalent given the c.d.f.’s of the utility noise terms in TUM are invertible.

■

B.6. Proof of Proposition 1

Proof. Let λ and µj , for j ∈ S ∪{0}, be Lagrange multipliers. Then the optimality conditions for (P3) yield

the following equations:

F−1
j (1−xj) = λ− vj −µj ,∀j ∈ S ∪{0}

xj ≥ 0,∀j ∈ S ∪{0}

µj ≥ 0,∀j ∈ S ∪{0}

µjxj = 0,∀j ∈ S ∪{0}∑
j∈S∪{0}

xj = 1.

Since we assume v0 = 0 and x0 > 0 due to Assumption 1, we must have µ0 = 0, and therefore λ= F−1
0 (1−x0).

If µj = 0 for j ∈ S, we have xj(x0) = 1−Fj(λ−vj). Otherwise, if µj > 0, we have xj = 0, Fj(λ−vj−µj) = 1.

Then, Fj(λ− vj −µj) = Fj(λ− vj) = 1 and xj(x0) = 1−Fj(λ− vj −µj) = 1−Fj(λ− vj).

Thus, xj(x0) = 1−Fj(F−1
0 (1−x0)−vj),∀j ∈ S, where x0 is the market share of outside option that satisfies∑

j∈S xj(x0)+x0 = 1.

■

B.7. Proof of Theorem 4.

Proof. We first introduce the following proposition and present its proof.

Proposition 4 For assortment problems under regular choice models, there exists an optimal solution which

includes all of the most profitable products. Moreover, under strictly regular choice models, all the optimal

solutions include all of the most profitable products.
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We start with the proof of the first claim by contradiction. Suppose none of the optimal solutions assort all

of the most profitable products. Then we arbitrarily consider such an optimal solution, denoted as S and

we arbitrarily denote a most profitable product, which is not included in S, by i. We let S∗ := S ∪ {i}. We

denote the overall profit corresponding to S and S∗, by Π(S) and Π(S∗). We denote the choice probabilities

corresponding to products in S and S∗ by xj and x∗
j , respectively. The outside market shares in S and S∗

are denoted by x0 and x∗
0, respectively. Let x

∆
j := xj −x∗

j ,∀j ∈ S and x∆
0 = x0−x∗

0. The regularity condition

implies that x∆
j ≥ 0,∀j ∈ S, x∆

0 ≥ 0 and x∗
i =

∑
j∈S x

∆
j +x∆

0 ≥
∑

j∈S x
∆
j .

The overall profit corresponding to S∗ is

Π(S∗) =
∑
j∈S∗

pjx
∗
j

= pix
∗
i +
∑
j∈S

pjx
∗
j

= pix
∗
i +
∑
j∈S

pj(xj −x∆
j )

= pix
∗
i −
∑
j∈S

pjx
∆
j +

∑
j∈S

pjxj

≥
∑
j∈S

pjxj (4)

=Π(S),

where the inequality (4) is due to pi ≥ pj ,∀j ∈ S and x∗
i ≥

∑
j∈S x

∆
j . Hence, S∗ is also optimal. By keeping

adding the most profitable products, we would eventually obtain an assortment which includes all the most

profitable products being optimal, which contradicts our assumption.

If the choice model is strictly regular (e.g. MEM), we have x∗
i >

∑
j∈S x

∆
j , and thus Π(S∗)>Π(S) in the

above argument. This contradicts with the optimality of S and proves that the second claim is also correct.

Now, we prove Theorem 4. The problem (P7) can be written as

ω= max
x0∈[0,1]

max
y∈{0,1}Q

∑
j∈Q

pjxj(x0)yj

s.t.
∑
j∈Q

xj(x0)yj +x0 ≤ 1,

 (P13)

where xj = 1−Fj(F−1
0 (1−x0)− vj),∀j ∈Q. Notice that the constraint holds as equality at optimality since

the objective function is non-decreasing in x0. Introducing the Lagrange multiplier, we have

ω= max
x0∈[0,1]

max
y∈{0,1}Q

min
λ≥0

∑
j∈Q

pjxj(x0)yj +λ(1−
∑
j∈Q

xj(x0)yj −x0)

≤ max
x0∈[0,1]

min
λ≥0

max
y∈{0,1}Q

λ−λx0 +
∑
j∈Q

xj(x0)yj(pj −λ)

= max
x0∈[0,1]

min
λ≥0

λ−λx0 +
∑
j∈Q

xj(x0) · (pj −λ)+

:= max
x0∈[0,1]

min
λ≥0

L(λ,x0),

where the second inequality is due to the change from ‘max min’ to ‘min max’ and (pj−λ)+ :=max{pj−λ,0}.
It is easy to see that L(λ,x0) is convex and piecewise linear in λ. The first order derivative of L(λ,x0) is

given as

∂

∂λ
L(λ,x0) = 1−x0−

∑
j∈Q

xj(x0)1{pj ≥ λ}.
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Let i∗(x0) =min
{
i|1−x0−

∑i

j=1 xj(x0)≤ 0
}
for reasonable values of x0. Here by reasonable, we mean that

x0 takes the values where i∗(x0) exists. Notice that those x0, with which i∗(x0) does not exist, cannot be

optimal to Problem (P13). Hence we do not consider them. Then, given x0, one optimal λ can be computed

as λ(x0) = pi∗(x0).

Let Qk be strictly profit-nested, that is Qk = {S1, S2, ..., Sk}, where Sk is a subset of all products which

have the kth highest profit. Let tk be the outside market share corresponding to Qk, i.e.,

1− tk−
∑

j∈
⋃k

i=1 Si

xj(tk) = 0.

Then, it is clear that for x0 = tk−1, λ(x0) = pk−1 is optimal and for all x0 ∈ [tk, tk−1), λ(x0) = pk is optimal.

Next, we will show that when x0 = tk−1, λ(x0) = pk is also optimal.

L(pk, tk−1) = pk− pk(tk−1)+
∑
j∈Q

xj(tk−1) · (pj − pk)+

= pk− pk(tk−1)+
∑

j∈
⋃k−1

i=1
Si

xj(tk−1) · (pj − pk)

= pk(1− tk−1−
∑

j∈
⋃k−1

i=1
Si

xj(tk−1))+
∑

j∈
⋃k−1

i=1
Si

xj(tk−1)pj

= pk−1(1− tk−1−
∑

j∈
⋃k−1

i=1
Si

xj(tk−1))+
∑

j∈
⋃k−1

i=1
Si

xj(tk−1)pj (5)

= pk−1− pk−1(tk−1)+
∑

j∈
⋃k−1

i=1
Si

xj(tk−1) · (pj − pk−1)

= pk−1− pk−1(tk−1)+
∑
j∈Q

xj(tk−1) · (pj − pk−1)
+

=L(pk−1, tk−1),

where equality (5) is because (1− tk−1 −
∑

j∈
⋃k−1

i=1
Si
xj(tk−1)) = 0. Thus, λ(x0) = pk is also optimal when

x0 = tk−1. Therefore, for all x0 ∈ [tk, tk−1], λ(x0) = pk is optimal.

From Proposition 4, we know that there exits an optimal x0 which cannot exceed t1. Then, we have

max
x0∈[0,1]

min
λ≥0

L(λ,x0) = max
k=2,...,l

max
x0∈[tk,tk−1]

pk− pkx0 +
∑
j∈Q

xj(x0) · (pj − pk)+,

where l is the number of the profit levels. Assumption 2 implies that the objective function is convex in x0,

so the optimal solution of the inner maximization appears on the boundary, namely, given a k, the optimal

x0 is either tk or tk−1. First, if x0 = tk, then

max
x0∈[0,1]

min
λ≥0

L(λ,x0) = max
k=2,...,l

(
pk− pktk+

∑
j∈

⋃k
i=1 Si

xj(tk) · (pj − pk)
)

= max
k=2,...,l

(
pk(1− tk−

∑
j∈

⋃k
i=1 Si

xj(tk))+
∑

j∈
⋃k

i=1 Si

xj(tk)pj

)
= max
k=2,...,l

( ∑
j∈

⋃k
i=1 Si

xj(tk)pj

)
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Second, if x0 = tk−1, then

max
x0∈[0,1]

min
λ≥0

L(λ,x0) = max
k=2,...,l

(
pk− pktk−1 +

∑
j∈

⋃k−1
i=1

Si

xj(tk−1) · (pj − pk)
)

= max
k=2,...,l

(
pk(1− tk−1−

∑
j∈

⋃k−1
i=1

Si

xj(tk−1))+
∑

j∈
⋃k−1

i=1
Si

xj(tk−1)pj

)
= max
k=2,...,l

( ∑
j∈

⋃k−1
i=1

Si

xj(tk−1)pj

)
Thus, maxx0∈[0,1]minλ≥0L(λ,x0) leads to a profit corresponding to a strictly profit-nested assortment.

Recall that ω ≤ maxx0∈[0,1]minλ≥0L(λ,x0), hence, there exists a strictly profit-nested assortment that is

optimal.

■

B.8. Proof of Proposition 2.

Proof. Recall that showing xj(x0) is convex for all j ∈ Q is sufficient to show that Assumption 2 holds.

Recall also that in Assumption 2 we only consider reasonable x0 that lies in [0,1] such that xj(x0) ∈ [0,1)

because other values of x0 are never optimal and thus are irrelevant. As a result, for each xj(x0), there are

two possibilities.

First, xj(x0) = 0 for all x0 ∈ [0,1]. This trivial case may occur when Tj is too small or vj is too small.

Clearly, xj(x0) is convex in this case.

Second, for any j there exist a value x#
0 ∈ [0,1] such that xj(x0) = 0 for all x0 ∈ [0, x#

0 ] and xj(x0) >

0 for all x0 > x#
0 . We will first prove the convexity for reasonable x0 that is greater than x#

0 . Let Dj =

1

1−
(

mj
Tj

)βj
. Then, the c.d.f. of the truncated Pareto distribution with scale parametermj > 0, shape parameter

βj > 0, truncation point Tj >mj is

Fj(x) =Dj

(
1−

(mj

x

)βj)
, for x∈ [mj , Tj ],

where Dj is clearly greater than 1. We calculate xj(x0),

xj(x0) = 1−Fj(F−1
0 (1−x0)− vj)

= 1−Dj

(
1−

(
mj

m0

x
1/β0
0

− vj

)βj)

= (1−Dj)+Dj

( m0

x
1/β0
0

− vj

mj

)−βj

= (1−Dj)+Dj

(
m0

mj

x−1/β0
0 − vj

mj

)−βj

> 0. (6)

Then, we calculate its second derivative,

d2

dx2
0

xj(x0) =Dj

βjm0

(
m0(βj −β0)+ (β0 +1)vjx

1/β0
0

)
·
(
m0

mj
x−1/β0
0 − vj

mj

)
β2
0m

2
0(m0− vjx1/β0

0 )2
,

where it can be easily verified from (6) that the denominator and the second part of the numerator are both

positive. Since x0 ∈ [0,1], the proposed condition implies that βj ≥ β0−
vj

m0
(β0+1)x1/β0

0 . Rearranging terms,

we obtain

m0(βj −β0)+ (β0 +1)vjx
1/β0
0 ≥ 0,
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which implies that d2

dx20
xj(x0)≥ 0. It is easy to see that xj(x0) is continuous for reasonable x0 ∈ [0,1]. What

is more, since xj(x0) is increasing and convex for reasonable x0 that is greater than x#
0 and xj(x0) = 0 for

all x0 ∈ [0, x#
0 ], it can be easily verified that xj(x0) is convex for all reasonable x0 that lies in [0,1].

■

B.9. Proof of Corollary 1.

Proof. Recall from Theorem 1 that to obtain the choice probability of the MDC model from the MDM,

we use Pareto marginals and set deterministic utilities to zero. From Proposition 2, when vj = 0,∀j ∈ Q,

the condition is satisfied when β0 is smallest among β, which is equivalent to the condition that σ0 is the

smallest among σ in the MDC model (this property is discussed in Zhang et al. (2021) as well).

■

B.10. Proof of Theorem 5.

Proof. Recall that the assortment problems under the MDM can be formulated in the following way

Z1 = max
x0∈(0,1]

max
y∈{0,1}Q

∑
j∈Q

pjxj(x0)yj

s.t.
∑
j∈Q

xj(x0)yj +x0 = 1,

 (P14)

where xj(x0) calculates the choice probability of product j and is non-decreasing of x0.

Now, we consider a relaxation of (P14), where yj ,∀j ∈Q may take any value in [0,1]:

Z2 = max
x0∈(0,1]

max
y∈[0,1]Q

∑
j∈Q

pjxj(x0)yj

s.t.
∑
j∈Q

xj(x0)yj +x0 = 1.

 (P15)

Then, we have Z1 ≤ Z2. Let (x∗
0,y

∗) be the optimal solution to (P15), it can be easily shown that y∗ =

{1,1, ...,1, a, ..., a,0,0, ...,0}, for some a∈ [0,1], where all yi that receives value a are corresponding to products

in the same profit level (with identical unit profit). Suppose there are l profit levels. W.l.o.g., we let y∗
k =

[yi|for all i in profit level k] = a= [a, ..., a]. Hence, yi = 1 and yj = 0 for all pi > pk, pj < pk. We can always

view y∗ as a combination of three parts: y∗
1, y

∗
2, y

∗
3, where the first part y∗

1 = {y∗i , pi > pk}, the second part

y∗
2 = y

∗
k and the third part y∗

3 = {y∗j , pj < pk}. Notice that k may be 1 or l, hence, it is possible that part 1

or part 3 is an empty set. We can write Z2 as

Z2 =
∑
j∈Q

pjxj(x
∗
0)y

∗
j =

∑
pi>pk

pixi(x
∗
0)+

∑
j∈profit level k

pjxj(x
∗
0)a.

Now, we consider two other feasible solutions to (P15): (x0,y) and (x0,y), where y = [y∗
1,0,y

∗
3], and

y = [y∗
1,1,y

∗
3]. It is easy to see that both (x0,y) and (x0,y) are also feasible to (P14) and both y, y are

strictly profit-nested assortments. Since xj(x0) is non-decreasing, we have

0<x0 ≤ x∗
0 ≤ x0 ≤ 1.
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Let Π(x0,y) be the objective function value of (P14) given x0 and y if (x0,y) is feasible to (P14). That

is, Π(x0,y) calculates the profit corresponding to assortment y. First, we have

Π(x0,y) =
∑
pi>pk

pixi(x0)≥
∑
pi>pk

pixi(x
∗
0), (7)

where the last inequality is because xj(x0) is non-decreasing. Second,

Π(x0,y) =
∑
pi>pk

pixi(x0)+
∑

j∈profit level k

pjxj(x0).

Since x∗
0 ≥ x0 and xj(x0) is non-decreasing, we have

∑
pi>pk

xi(x0)+x0 ≤
∑
pi>pk

xi(x
∗
0)+x∗

0

1−
∑
pi>pk

xi(x0)−x0 ≥ 1−
∑
pi>pk

xi(x
∗
0)−x∗

0∑
j∈profit level k

xj(x0)≥
∑

j∈profit level k

xj(x
∗
0)a∑

j∈profit level k

pjxj(x0)≥
∑

j∈profit level k

pjxj(x
∗
0)a.

Since
∑

pi>pk
pixi(x0)≥ 0, we have

Π(x0,y)≥
∑

j∈profit level k

pjxj(x0)≥
∑

j∈profit level k

pjxj(x
∗
0)a. (8)

Based on inequalities (7) and (8), we have

Π(x0,y)+Π(x0,y)≥
∑
pi>pk

pixi(x
∗
0)+

∑
j∈profit level k

pjxj(x
∗
0)a=Z2.

Since both Π(x0,y) and Π(x0,y) are non-negative,

max
{
Π(x0,y),Π(x0,y)

}
≥ 1

2
Z2.

Hence,

max
{
Π(x0,y),Π(x0,y)

}
≥ 1

2
Z1.

Recall that Z1 is the profit of the optimal solution to (P14); Π(x0,y), and Π(x0,y) are the profits corre-

sponding to assortments y and y, respectively, and y and y are both strictly profit-nested assortments.

■

B.11. Proof of Proposition 3.

Proof. We use Π(S) to denote the expected profit of the assortment S. We first calculate the upper bounds

for expected profits of all profit-nested assortments. For assortment {1}, since c1 =w1p1 = ϵ and z ∈ (0,1), it

is easy to see that Π({1})< ϵ. For assortment {1,2,3}, first we calculate the upper bound for the optimal z∗123.

Notice that given assortment {1,2,3}, the constraint in Problem (P9) becomes w1z
∗
123 +w2z

∗
123 +w3z

∗
123 +
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(z∗123)
τ = 1. Since w1z

∗
123, w3z

∗
123 and (z∗123)

τ are positive, we have w2z
∗
123 < 1. Hence, we obtain an upper

bound of the optimal z∗123: z
∗
123 <

1
w2

= 1
10+ 2

ϵ

. Therefore,

Π({1,2,3}) = (c1 + c2 + c3)z
∗
123

<
(
ϵ+ ϵ(1− 2ϵ)(10+

2

ϵ
)+ ϵ(1− 2ϵ)(1− ϵ)

)( 1

10+ 2
ϵ

)
= ϵ(1− 2ϵ)+

(
ϵ+ ϵ(1− 2ϵ)(1− ϵ)

)( 1

10+ 2
ϵ

)
< ϵ(1− 2ϵ)+

(
ϵ+ ϵ(1− 2ϵ)(1− ϵ)

)( 1

2/ϵ

)
= ϵ(1− 2ϵ)+

ϵ2

2

(
1+ (1− 2ϵ)(1− ϵ)

)
< ϵ(1− 2ϵ)+ ϵ2

= ϵ(1− ϵ),

where in the first inequality we substitute ci =wipi,∀i∈ {1,2,3} and z∗123 < 1
10+ 2

ϵ

. In the last inequality, we

use the fact that 1+ (1− 2ϵ)(1− ϵ)< 2. Similarly, for assortment {1,2}, we can also find z∗12 <
1

10+ 2
ϵ

. Then,

Π({1,2}) = (c1 + c2)z
∗
12

< (c1 + c2 + c3)(
1

10+ 2
ϵ

)

< ϵ(1− ϵ).

Then, we have max
{
Π({1}),Π({1,2}),Π({1,2,3})

}
< ϵ.

Next, we calculate the lower bound of the expect profit of assortment {1,3}. First, we show that z∗13 = 1−ϵ.
Notice that given assortment {1,3}, the constraint in Problem (P9) becomes w1z

∗
13 + w3z

∗
13 + (z∗13)

τ = 1.

Substitute z∗13 = 1− ϵ into the equation, we obtain

LHS= ϵ(1− ϵ)+ (1− ϵ)(1− ϵ)+ (1− ϵ)τ

= (1− ϵ)+ ϵ= 1=RHS,

where the second equality is due to (1−ϵ)
log(ϵ)

log(1−ϵ) = ϵ. Then, Π({1,3}) = (c1+c3)z
∗
13 = (1−ϵ)

(
ϵ+ϵ(1−2ϵ)(1−

ϵ)
)
.

Let S∗ denote the optimal assortment. Now, we calculate the upper bound of the ratio between the

expected profits of the best profit-nested assortment and the optimal solution:

max
{
Π({1}),Π({1,2}),Π({1,2,3})

}
Π(S∗)

≤
max

{
Π({1}),Π({1,2}),Π({1,2,3})

}
Π({1,3})

<
ϵ

(1− ϵ)
(
ϵ+ ϵ(1− 2ϵ)(1− ϵ)

)
=

1

(1− ϵ)
(
1+ (1− 2ϵ)(1− ϵ)

) ,
where the first inequality is due to Π(S∗) ≥ Π({1,3}). Notice that the last function goes to 1/2 when ϵ

approaches to 0. Based on Theorem 5, we also know the ratio is at least 1/2. Hence, the ratio goes to 1/2

when ϵ approaches to 0.

■
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B.12. Proposition 5 and its Proof.

Proposition 5 Under the MDM, the choice probabilities of alternatives in the current assortment strictly

decrease if one more alternative is added.

Proof. From the definition in Section 2.3, we know that in MDM,

xj = 1−Fj(λ∗− vj),

it is clear that xj > 0 unless λ∗ =∞ or vj =−∞, which is excluded from the model.

Now we consider an empty assortment, in which the outside market option captures the entire market

share, which is 1. When an arbitrary product is added to this assortment, the outside market share is less

than 1 since all assorted products have strictly positive choice probabilities.

Then, we consider an non-empty assortment (not an full assortment), denoted by S. The choice probability

of an arbitrary product j in S is

xj,S = 1−Fj(λ− vj),

where vj is the deterministic utility of product j and∑
i∈S∪{0}

(1−Fi(λ− vi)) = 1.

Now, we consider another assortment S+ := S ∪{k}, where k is an arbitrary product that is not in S. Under

this assortment, the choice probability of product j is

xj,S+ = 1−Fj(λ+− vj),

where vj is the deterministic utility of product j and∑
i∈S∪{0}

(1−Fi(λ+− vi))+ (1−Fk(λ+− vk)) = 1.

Since by definition, Fi is a strictly increasing c.d.f., we have λ< λ+ and hence, xj,S >xj,S+ .

■

C. Technical Proofs for Approximation Algorithms for Assortment Problems under
the MDM

C.1. Knapsack Problem with Integer Parameters: Dynamic Programming

Suppose there are Q items, where item j has integer profit rj and (possibly non-integer) weight wj . The total

capacity of the knapsack is denoted by C > 0. The corresponding knapsack problem, denoted KP(r,w,C),

is formulated as
max
Ij

∑
j∈Q

rjIj

s.t.
∑
j∈Q

wjIj ≤C

Ij ∈ {0,1},∀j ∈Q,
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where r = (r1, r2, ..., rQ) and w = (w1,w2, ...,wQ). Define Rmax = maxj∈Q rj to be the profit of the most

profitable item. Thus, we know that the overall profit is upper bounded by QRmax. Define Si,r ⊆ {1,2, ..., i}

to be a set whose total profit is exactly r and has the least total weight among such subsets. Let Wi,r be the

total weight of Si,r and Wi,r =∞ if there is no such Si,r. Then, we can use the initial conditions:

W1,r =

{
w1, if r= r1,
∞, otherwise,

and the following recurrence to obtain a Dynamic Program (DP) for the knapsack problem:

Wi+1,r =

{
min{Wi,r,Wi,r−ri+1

+wi+1}, if ri+1 ≤ r,
Wi,r, otherwise.

The optimal solution is a set Sn,r with maximum r such that Wn,r ≤ C. The total run time of the DP is

O(Q2Rmax), so it is a pseudo-polynomial time algorithm. (See Andonov et al. 2000 for further details.)

C.2. FPTAS For Knapsack Problems

Recall that in DP, we assume all items are associated with integer profits. Here, we relax this assumption by

allowing non-integer unit profits. Let rj denote the profit of item j and let rmax =maxj∈Q rj . The FPTAS is

as follows (see Lai and Goemans 2006 for details):

Algorithm 3 Knapsack FPTAS

Input ϵ, Q, rmax

1: K← ϵ·rmax
Q

2: For each item j, define r′j =
⌊ rj
K

⌋
.

3: Using the DP (Section C.1), solve a new knapsack problem with new unit profit r′j for each

item to obtain an optimal assortment S′.

4: return S′

The algorithm has a run time O(Q2
⌊
Q

ϵ

⌋
) and produces an (1− ϵ)-approximate solution for the original

Knapsack problem.

C.3. Proof of Theorem 6.

Recall that fkp(S,x0) =
∑

j∈S pj ·xj(x0), where pj is the unit profit of product j, S is an assortment and x0

is the outside market share. We use Profit(S) to represent the profit of assortment S. We denote the optimal

solution by S∗ with the corresponding outside market share x∗
0. We denote the solution of Algorithm 1 by

SA with the corresponding outside market share xA0 . Notice that Algorithm 1 searches x0 from x0 to x0. Let

xγ0 denote a value searched by the algorithm which is no-greater than and closest to x∗
0 and Sγ denote the

corresponding approximate optimal assortment obtained from FPTAS for knapsack. Let Sγ∗ be the optimal

solution to the inner knapsack problem given xγ0. Then, there are two cases. In case 1: xγ0 ∈ (x∗
0−∆, x∗

0]. In

case 2: xγ0 = x0.
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Since Algorithm 1 eventually selects the one with greatest objective function value of the inner problem

in Problem (P10) among searched values of x0s,

fkp(S
A, xA0 )≥ fkp(Sγ , x

γ
0). (9)

Since Sγ is the solution of FPTAS of knapsack for inner problem in Problem (P10) given xγ0,

fkp(S
γ , xγ0)≥ fkp(Sγ∗, x

γ
0) · (1− ϵ). (10)

Since Sγ∗ is the optimal solution to the inner problem given xγ0,

fkp(S
γ∗, xγ0)≥ fkp(S∗, xγ0). (11)

We first discuss case 1 where xγ0 ∈ (x∗
0 −∆, x∗

0]. Notice that fkp(S,x0) is a non-decreasing function of x0,

given S. Hence, we have the following inequality

fkp(S
∗, xγ0)≥ fkp(S∗, x∗

0−∆). (12)

Combine inequalities (9), (10), (11) and (12), we have

fkp(S
A, xA0 )≥ fkp(S∗, x∗

0−∆) · (1− ϵ).

Notice that Profit(SA)≥ fkp(SA, xA0 ), and the equality occurs only if
∑

j∈S xj(x
A
0 ) = 1−xA0 . Therefore, we

have

Profit(SA)≥ fkp(SA, xA0 )

≥ fkp(S∗, x∗
0−∆) · (1− ϵ)

= fkp(S
∗, x∗

0−∆)− ϵfkp(S∗, x∗
0−∆)

≥ fkp(S∗, x∗
0−∆)− ϵProfit(S∗),

where the last inequality is because Profit(S∗) = fkp(S
∗, x∗

0)≥ fkp(S∗, x∗
0−∆). Hence,

Profit(SA)

Profit(S∗)
≥ fkp(S

∗, x∗
0−∆)

Profit(S∗)
− ϵ

=
fkp(S

∗, x∗
0−∆)

fkp(S∗, x∗
0)

− ϵ

=

∑
j∈S∗ pjxj(x

∗
0−∆)∑

j∈S∗ pjxj(x∗
0)

− ϵ

≥ min
j∈Q

{xj(x∗
0−∆)

xj(x∗
0)

}
− ϵ.

Since ∀j ∈Q, we have

xj(x
∗
0−∆)

xj(x∗
0)

= 1−
(xj(x∗

0)−xj(x∗
0−∆)

xj(x∗
0) ·∆

)
·∆≥ 1−M ·∆,

then we obtain

Profit(SA)

Profit(S∗)
≥ 1−M ·∆− ϵ.
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Next, for case 2 where xγ0 = x0, that is, x
∗
0 <x0 +∆, following similar arguments, we obtain:

Profit(SA)

Profit(S∗)
≥ min

j∈Q

{xj(x0)

xj(x∗
0)

}
− ϵ.

Note that
xj(x

∗
0)−xj(x0)

xj(x∗
0) ·∆

≤
xj(x0 +∆)−xj(x0)

xj(x0 +∆) ·∆
≤M.

Hence,
Profit(SA)

Profit(S∗)
≥min

j∈Q

{
1−

xj(x
∗
0)−xj(x0)

xj(x∗
0) ·∆

·∆
}
− ϵ≥ 1−M ·∆− ϵ.

Therefore, in both cases,

Profit(SA)

Profit(S∗)
≥ 1−M ·∆− ϵ.

Recall that in the algorithm, we let ∆= η

2·M and ϵ= η

2
. As a result,

Profit(SA)

Profit(S∗)
≥ 1−M ·∆− ϵ > 1−M · η

2 ·M
− η

2
= 1− η.

Notice that the FPTAS in Algorithm 1 is called at most
⌊
x0−x0

∆

⌋
+1≤

⌊
1
∆

⌋
+1 times. Hence, the total run

time of Algorithm 1 is O

((⌊
2M
η

⌋
+1
)
·
(
Q2
⌊
Q

η

⌋
+QC

))
, which is polynomial in both 1/η and M .

■

C.4. Proof of Theorem 7.

Let x′
j(x0) be the first derivative of xj(x0) with respect to x0. Then we have

M = max
x0≤y0<x0≤x0,j∈Q

(
xj(x0)−xj(y0)
xj(x0)(x0− y0)

)
≥
(
xj(x0)−xj(y0)
xj(x0)(x0− y0)

)∣∣∣∣y0→ x0, x0→ y0 + δ, δ→ 0

= lim
δ→0

(
xj(x0 + δ)−xj(x0)

xj(x0 + δ)(δ)

)
= lim
δ→0

x′
j(x0)

xj(x0 + δ)

=
x′
j(x0)

xj(x0)
,

for any j ∈Q.

Since MEM is a speical case of the MDC model (Theorem 2), we will only need to prove the result for the

MDC model. In this case, we have xj(x0) =
(
ψjσj

ψ0σ0

) 1
1−σj (κ)

1−σ0
1−σj

−1
(x0)

1−σ0
1−σj . Note that there are the following

two possible scenarios: in the first scenario, all xjs remain zeros when x0 = x0 = 1. That means in all feasible

assortments, no products will be chosen for sure. As a consequence, the profits of all feasible solutions are

the same and equal to zero. We will not focus on this trivial case. In the second scenario, there exists at least

one product, say k, such that xk(x0)> 0 for some x0 < 1. Then, we have

M ≥
x′
k(x0)

xk(x0)



Author: A Unified Analysis for Assortment Planning with Marginal Distributions
48 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

=

1−σ0
1−σk

(
ψkσk
ψ0σ0

) 1
1−σk (κ)

1−σ0
1−σj

−1
(x0)

(
1−σ0
1−σk

−1)(
ψkσk
ψ0σ0

) 1
1−σk (κ)

1−σ0
1−σj

−1
(x0)

1−σ0
1−σk

=
1−σ0

1−σk
(x0)

−1

=
1−σ0

1−σmin

(x0)
−1,

where σmin =minj∈Q σj . Hence,
1

x0

≤M · 1−σmin

1−σ0

.

■

C.5. Proof of Theorem 8.

Before we present the main proof in Section C.5.1, we first provide the following analysis.

Let us say Algorithm 2 calls the FPTAS m times. It is clear that m≤
log(

x0
x0

)

log(1+ψ)
and the total run time of

Algorithm 2 is O
(

log( 1
x0

)

log(1+ψ)

(
Q2
⌊
Q

ϵ

⌋
+QC

))
, since x0 ≤ 1.

C.5.1. Main proof. The first part of the proof is similar to the proof of Theorem 6 in C.3. Let

fkp(S,x0) =
∑

j∈S pj ·xj(x0), where pj is the unit profit of product j, S is an assortment and x0 is the outside

market share. We use Profit(S) to represent the profit of assortment S. We denote the optimal solution

by S∗ with the corresponding outside market share x∗
0. We denote the solution of Algorithm 2 by SA with

the corresponding outside market share xA0 . Notice that Algorithm 2 searches x0 from x0 to x0. Let x
γ
0

denote a value searched by the algorithm which is no-greater than and closest to x∗
0 and Sγ denote the

corresponding approximate optimal assortment obtained from FPTAS for knapsack. Let Sγ∗ be the optimal

solution to the inner knapsack problem given xγ0 Then, there are two cases. In case 1: xγ0 ∈ (x∗
0−∆, x∗

0], where

∆= x0(1+ψ)lψ, where x0(1+ψ)l <x∗
0 ≤ x0(1+ψ)l+1 for some l. In case 2: xγ0 = x0.

Since Algorithm 2 eventually selects the one with greatest objective function value of the inner problem

in Problem (P10) among searched values of x0s,

fkp(S
A, xA0 )≥ fkp(Sγ , x

γ
0). (13)

Since Sγ is the solution of FPTAS of knapsack for inner problem in Problem (P10) given xγ0,

fkp(S
γ , xγ0)≥ fkp(Sγ∗, x

γ
0) · (1− ϵ). (14)

Since Sγ∗ is the optimal solution to the inner problem given xγ0,

fkp(S
γ∗, xγ0)≥ fkp(S∗, xγ0). (15)

We first discuss case 1 where xγ0 ∈ (x∗
0 −∆, x∗

0]. Notice that fkp(S,x0) is a non-decreasing function of x0,

given S. Hence, we have the following inequality

fkp(S
∗, xγ0)≥ fkp(S∗, x∗

0−∆). (16)

Combine inequalities (13), (14), (15) and (16), we have

fkp(S
A, xA0 )≥ fkp(S∗, x∗

0−∆) · (1− ϵ).
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Notice that Profit(SA)≥ fkp(SA, xA0 ), and the equality occurs only if
∑

j∈S xj(x
A
0 ) = 1−xA0 . Therefore, we

have

Profit(SA)≥ fkp(SA, xA0 )

≥ fkp(S∗, x∗
0−∆) · (1− ϵ)

= fkp(S
∗, x∗

0−∆)− ϵfkp(S∗, x∗
0−∆)

≥ fkp(S∗, x∗
0−∆)− ϵProfit(S∗),

where the last inequality is because Profit(S∗) = fkp(S
∗, x∗

0)≥ fkp(S∗, x∗
0−∆). Hence,

Profit(SA)

Profit(S∗)
≥ fkp(S

∗, x∗
0−∆)

Profit(S∗)
− ϵ

=
fkp(S

∗, x∗
0−∆)

fkp(S∗, x∗
0)

− ϵ

=

∑
j∈S∗ pjxj(x

∗
0−∆)∑

j∈S∗ pjxj(x∗
0)

− ϵ

≥ min
j∈Q

{xj(x∗
0−∆)

xj(x∗
0)

}
− ϵ.

Since ∀j ∈Q, we have

xj(x
∗
0−∆)

xj(x∗
0)

= 1−
(xj(x∗

0)−xj(x∗
0−∆)

xj(x∗
0) ·∆

)
·∆≥ 1−M ·∆,

then we obtain

Profit(SA)

Profit(S∗)
≥ 1−M ·∆− ϵ.

Next, for case 2 where xγ0 = x0, that is, x
∗
0 <x0 +∆, following similar arguments, we obtain:

Profit(SA)

Profit(S∗)
≥ min

j∈Q

{xj(x0)

xj(x∗
0)

}
− ϵ.

Note that
xj(x

∗
0)−xj(x0)

xj(x∗
0) ·∆

≤
xj(x0 +∆)−xj(x0)

xj(x0 +∆) ·∆
≤M.

Hence,
Profit(SA)

Profit(S∗)
≥min

j∈Q

{
1−

xj(x
∗
0)−xj(x0)

xj(x∗
0) ·∆

·∆
}
− ϵ≥ 1−M ·∆− ϵ.

Therefore, in both cases,

Profit(SA)

Profit(S∗)
≥ 1−M ·∆− ϵ.

Notice that ∆ = x0(1 + ψ)lψ, where x0(1 + ψ)l < x∗
0 ≤ x0(1 + ψ)l+1. Hence, ∆ < x∗

0ψ ≤ ψ. Since we let

ψ= η

2·M , we have ∆< η

2·M . In addition, we let ϵ= η

2
. As a result,

Profit(SA)

Profit(S∗)
≥ 1−M ·∆− ϵ > 1−M · η

2 ·M
− η

2
= 1− η,

and the corresponding run time of Algorithm 2 is O
(

log( 1
x0

)

log(1+ η
2M

)

(
Q2
⌊
Q

ϵ

⌋
+QC

))
.

■
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C.6. A Detailed Analysis of Efficiency of Algorithm 2

It should be noted that Algorithm 2 is effective for all MDMs with the current parameter selection (e.g., the

selection for ψ value). However, for certain MDMs, adjusting the ψ value can further enhance the algorithm

efficiency. Here, we will demonstrate an example of the MDC model with strictly positive choice probabilities,

which is a generalization of the p-MDC model because γi = 0,∀i∈Q is a sufficient but not necessary condition

to achieve zero probabilities for all products. Prior to presenting the result (Lemma 7), we will first provide

two lemmas that will be useful in the proof.

Lemma 5 Given 0 < A− ≤ A+, 0 < B− ≤ B+, A−

B− ≥ A+

B+ , M
− = B−

B−−C , M
+ = B+

B+−C , B
− − C > 0 and

B+−C > 0, then A−

B−−C ≥
A+

B+−C .

Proof of Lemma 5. From the given condition, we haveM− = 1+ C
B−−C andM+ = 1+ C

B+−C , hence,M
− ≥

M+ > 0. Since A−

B− ≥ A+

B+ , we have A−

B− ·M− ≥ A+

B+ ·M+. Rearrange the terms then we have A−

B−−C ≥
A+

B+−C . ■

Lemma 6 Given aj > 0, bj ≥ 1, cj >= 0,∀j ∈Q, we have

bjaj(x
∗
0)
bj−1

aj(x∗
0)
bj−1− cj

≤
x0

x∗
0

·
bjaj(x0)

bj−1

aj(x0)bj−1− cj
.

Proof of Lemma 6. Since bj ≥ 1, we have aj(x0)
bj ≤ aj(x∗

0)
bj , where x∗

0 ≥ x0. Hence, we have

aj(x0)
bj − cj

aj(x∗
0)
bj − cj

≤
aj(x0)

bj

aj(x∗
0)
bj

=
(x0)

bj

(x∗
0)
bj
,

then, multiply the same term

[
x∗0
x0
· bjaj(x

∗
0)

bj−1

bjaj(x0)
bj−1

]
on both sides of the equality:[

x∗
0

x0

· bjaj(x
∗
0)
bj−1

bjaj(x0)bj−1

]
·
aj(x0)

bj − cj
aj(x∗

0)
bj − cj

≤
[
x∗
0

x0

· bjaj(x
∗
0)
bj−1

bjaj(x0)bj−1

]
·
(x0)

bj

(x∗
0)
bj

= 1.

Rearrange the terms and then we obtain:

bjaj(x
∗
0)
bj−1

aj(x∗
0)
bj−1− cj

≤
x0

x∗
0

·
bjaj(x0)

bj−1

aj(x0)bj−1− cj
.

■

Now, we present a better selection for ψ value under such a model.

Lemma 7 For the MDC model with strictly positive choice probabilities, Algorithm 2 with ψ= (1/x0)
1−σ0

1−σmin ·
η

2M
and ϵ= η

2
provides a (1− η) approximation guarantee.

Proof of Lemma 7. Since choice probabilities are strictly positive, we have

xj(x0) =

[(ψjσj
ψ0σ0

) 1
1−σj (κ)

1−σ0
1−σj

−1
(x0)

1−σ0
1−σj − γj

κ

]+
=
(ψjσj
ψ0σ0

) 1
1−σj (κ)

1−σ0
1−σj

−1
(x0)

1−σ0
1−σj − γj

κ
> 0,

where [a,0]+ =max{a,0}. For simplicity, let us denote xj(x0) = aj(x0)
bj − cj > 0. That is, x0 > (cj/aj)

1/bj .

Note that we only consider the problem where bmin := minj∈Q bj < 1 because otherwise, it is implied by

Corollary 1 that the problem has a profit-nested optimal solution. Now, Recall that

M =max
j∈Q

{
Mj

}
:= max

x0+∆≤x0≤x0,∆>0

(
xj(x0)−xj(x0−∆)

xj(x0)(∆)

)
:= max

x0+∆≤x0≤x0,∆>0
h(x0,∆).
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We first calculate Mj ,∀j ∈Q. Note that xj(x0) is increasing and can only be convex or concave. First, when

it is a convex function, we compute

∂

∂∆
h(x0,∆)=

−xj(x0)+xj(x0−∆)+x′
j(x0−∆) ·∆

xj(x0)∆2
≤ 0,

where x′
j(·) is the first order derivative and the inequality is because xj(x0) is convex, hence xj(x0) ≥

xj(x0−∆)+x′
j(x0−∆) ·∆. Therefore, h(x0,∆) is maximized when ∆→ 0. That is,

Mj = max
x0≤x0≤x0

x′
j(x0)

xj(x0)
= max
x0≤x0≤x0

bjaj(x0)
bj−1

aj(x0)bj − cj
=
bjaj(x0)

bj−1

aj(x0)bj − cj
,

where the last equality is based on Lemma 5 in which we let A− = bjaj(x0)
bj−1, B− = aj(x0)

bj , A+ =

bjaj(x0)
bj−1, B+ = aj(x0)

bj .

When xj(x0) is concave, it is easy to see that h(x0,∆) is maximized when x0→ x0, which also implies

that ∆→ 0. Hence,

Mj =
x′
j(x0)

xj(x0)
=
bjaj(x0)

bj−1

aj(x0)bj − cj
.

Therefore, in both cases, Mj =
bjaj(x0)

bj−1

aj(x0)
bj−cj

.

From the proof of Theorem 8, we know that Profit(SA)

Profit(S∗)
≥minj∈Q

{
xj(x

∗
0−∆)

xj(x
∗
0)

}
− ϵ and ∆< x∗

0ψ. Next, we

will show that in both ‘convex’ and ‘concave’ cases, we can achieve 1−η approximation guarantee. If xj(x0)

is convex, that is bj ≥ 1. Then, we have

xj(x
∗
0−∆)

xj(x∗
0)

= 1−
(
xj(x

∗
0)−xj(x∗

0−∆)

xj(x∗
0)∆

)
·∆≥ 1−

x0

x∗
0

·M ·∆,

where the last inequality is because

xj(x
∗
0)−xj(x∗

0−∆)

xj(x∗
0)∆

≤ xj(x
∗
0)−xj(x∗

0−∆)

xj(x∗
0)∆

∣∣∣∣∆→ 0 =
x′
j(x

∗
0)

xj(x∗
0)

=
bjaj(x

∗
0)
bj−1

aj(x∗
0)
bj−1− cj

,

and Lemma 6 implies that
bjaj(x

∗
0)
bj−1

aj(x∗
0)
bj−1− cj

≤
x0

x∗
0

·M.

Hence,
Profit(SA)

Profit(S∗)
≥ 1−

x0

x∗
0

·M ·∆− ϵ.

Recall that ψ= ( 1
x0
)bmin · η

2M
≤ ( 1

x0
) · η

2M
, ∆<ψx∗

0 and ϵ= η

2
, then, we have

Profit(SA)

Profit(S∗)
≥ 1−

x0

x∗
0

·M ·x∗
0 · (

1

x0

) · η

2M
− η

2
= 1− η.

When xj(x0) is concave, that is bj < 1, we have

xj(x
∗
0)−xj(x∗

0−∆)

xj(x∗
0)∆

=
1

xj(x∗
0)
·
(xj(x∗

0)−xj(x∗
0−∆)

∆

)
≤ 1

xj(x∗
0)
·x′

j(x0)

=
bjaj(x0)

bj−1

aj(x∗
0)
bj − cj

=
aj(x0)

bj − cj
aj(x∗

0)
bj − cj

·Mj
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≤
aj(x0)

bj

aj(x∗
0)
bj
·Mj

=
(x0

x∗
0

)bj ·Mj

≤
(x0

x∗
0

)bj ·M.

Recall that ∆<ψx∗
0, ϵ=

η

2
and

ψ=
( 1

x0

)bmin · η

2M

≤
( 1

x0

)bj · η

2M

=
(x∗

0

x0

)bj · ( 1

x∗
0

)bj · η

2M

≤
(x∗

0

x0

)bj · ( 1

x∗
0

)
· η

2M
,

Where the last inequality is due to bj < 1. Hence, we have

Profit(SA)

Profit(S∗)
≥ 1−

(x0

x∗
0

)bj
·M ·∆− ϵ≥ 1−

(x0

x∗
0

)bj
·M ·

((x∗
0

x0

)bj · ( 1

x∗
0

)
· η

2M
·x∗

0

)
− η

2
= 1− η.

Therefore, in both cases, we achieve a (1− η) approximation guarantee. ■

To see how efficient Algorithm 2 is, we can examine a simple p-MDC case where x0 → 1, x0 = 0.001,

bmax = 3, bmin = 0.7 and η= 0.1. To achieve the 1−η approximation guarantee, Algorithm 1 needs to conduct

39960 times knapsack approximations while Algorithm 2 only run the knapsack approximation for 2199

times, which is less than 1
18

of the runtime of Algorithm 1.

D. Additional Results for E-Commerce Data

Note that the data of the following 7 categories: ‘accessories bag’, ‘appliances personal hair cutter’, ‘acces-

sories cosmetic bag’, ‘appliances environment air conditioner’, ‘furniture living room chair’, ‘sport diving’,

and ‘appliances personal massager’, are not suitable for our analysis because, in these data sets, even the

most popular products have extremely low market shares. For example, in the ‘sport diving’ category, no

product was purchased during the month. Thus we did not conduct experiments on these datasets. Instead,

we only work on the other four categories. Results are displayed in Tables 4 and 5.
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apparel glove (original)
data number product number outside market purchases

2669 51 2012

apparel glove (scale-up factor = 20, κ= 2, remove small-share products)
data number product number outside market share

13326 24 57.68%

Model in-sample loglklhd out-of-sample RMSE time/iteration number
the MNL model -8617.50 0.21066 1.48s / 10
the p-MDC model -8265.84 0.19493 2.55s / 50
the MDC model -8132.12 0.19048 903.88s / > 4000

the MMM -8137.05 0.18977 19.74s / 405
the MGM -8162.48 0.19147 8.98s / 178
the MLM -8155.73 0.19124 6.28s / 78
the MCM -8196.25 0.19141 6.05s / 94
the MUM -8112.25 0.19004 897.13s / > 4000

appliances environment vacuum (original)
data number product number outside market purchases

7520 82 6863

appliances environment vacuum (scale-up factor = 20, κ= 3, remove small-share products)
data number product number outside market share

15370 21 75.62%

Model in-sample loglklhd out-of-sample RMSE time/iteration number
the MNL model -8253.02 0.16797 1.59s / 7
the p-MDC model -8113.48 0.16460 3.52s / 52
the MDC model -8084.10 0.16539 1465.45s / > 4000

the MMM -8104.12 0.16457 13.74s / 197
the MGM -8101.64 0.16494 14.15s / 266
the MLM -8101.52 0.16503 9.14s / 148
the MCM -8109.95 0.16433 6.04s / 91
the MUM -8089.92 0.16538 235.20s / 684

Table 4 Results for Data of Other Categories
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furniture living room cabinet (original)
data number product number outside market purchases

3266 5 3218

furniture living room cabinet (scale-up factor = 20, κ= 3, remove small-share products)
data number product number outside market share

3380 4 90.33%

Model in-sample loglklhd out-of-sample RMSE time/iteration number
the MNL model -919.50 0.14498 0.47s / 7
the p-MDC model -908.34 0.14456 0.48s / 59
the MDC model -906.46 0.14482 5.69s / 122

the MMM -905.55 0.14464 2.33s / 458
the MGM -906.22 0.14468 0.67s / 43
the MLM -906.54 0.14466 0.72s / 58
the MCM -906.37 0.14481 0.78s / 75
the MUM -906.91 0.14484 2.76s / 67

furniture bathroom bath (original)
data number product number outside market purchases

2145 48 1947

furniture bathroom bath (scale-up factor = 20, κ= 3, remove small-share products)
data number product number outside market share

5457 17 74.10%

Model in-sample loglklhd out-of-sample RMSE time/iteration number
the MNL model -2734.68 0.16611 0.65s / 6
the p-MDC model -2682.54 0.16046 1.07s / 72
the MDC model -2659.58 0.16085 258.78s / > 4000

the MMM -2668.41 0.16087 4.19s / 191
the MGM -2668.38 0.16110 3.90s / 224
the MLM -2668.70 0.16122 3.86s / 269
the MCM -2673.43 0.16089 5.56s / 468
the MUM -2660.02 0.16143 25.72s / 341

Table 5 Results for Data of Other Categories
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