
A Decision Space Algorithm for Multiobjective

Convex Quadratic Integer Optimization

Marianna De Santis∗ Gabriele Eichfelder∗∗

Abstract

We present a branch-and-bound algorithm for minimizing multiple convex
quadratic objective functions over integer variables. Our method looks for
efficient points by fixing subsets of variables to integer values and by using
lower bounds in the form of hyperplanes in the image space derived from the
continuous relaxations of the restricted objective functions. We show that the
algorithm stops after finitely many fixings of variables with detecting both
the full efficient and the nondominated set of multiobjective strictly convex
quadratic integer problems. A major advantage of the approach is that the
expensive calculations are done in a preprocessing phase so that the nodes
in the branch-and-bound tree can be enumerated fast. We show numerical
experiments on biobjective instances and on instances with three and four
objectives.

Key Words: Multiobjective Optimization, Convex Quadratic Optimization, In-
teger Quadratic Programming, Branch-and-Bound Algorithm.

Mathematics subject classifications (MSC 2010): 90C10, 90C25, 90C29, 90C57.

1 Introduction

We study the minimization of m strictly convex quadratic objective functions over
integer variables. It is known, see [7, 8], that already minimizing one of such func-
tions w.r.t. integer variables is NP-hard. In this paper, we devise a method able to
exactly detect both the efficient and the nondominated set of multiobjective strictly
convex quadratic integer problems.

Focusing on this specific class of problems allows us to set some theoretical
basis for the definition of algorithms for multiobjective quadratic integer problems.

∗Dipartimento di Ingegneria Informatica Automatica e Gestionale, Sapienza Università di
Roma, Via Ariosto, 25, 00185 Roma, Italy, (marianna.desantis@uniroma1.it)

∗∗Institute for Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau,
Germany (gabriele.eichfelder@tu-ilmenau.de)

1



While multiobjective linear integer optimization has been deeply studied in the last
two decades, literature on multiobjective nonlinear integer optimization is still very
limited. Addressing convex quadratic objective functions can be seen as the next
step after studying linear objective functions, thus, in the multiobjective integer
context, the next step to address nonlinear problems. Therefore, this paper gives
a contribution to the study of multiobjective nonlinear integer optimization and to
the definition of algorithms able to address this class of problems. The theoretical
results provided in this paper can be used for further developments in the context of
multiobjective quadratic integer optimization, as non-convex quadratic or linearly
constrained problems. In particular, they can be combined with the approaches
proposed in [4, 5, 6] for computing lower bounds of single-objective quadratic integer
minimization problems.

There is a multitude of applications that are modeled as convex quadratic in-
teger programs. We refer here for instance to [27, p. 61] and a (single-objective)
application in electronics known as filtered approximation. For a short description
of this problem see [3]. The closest vector problem [29] is another such example,
in the literature also known as the Integer Least Squares Problem, which has again
several applications, cf. [27, p. 62], and as soon as a lattice point is searched with
closest distance to several targets one ends up with a multiobjective formulation as
treated in this paper. Quadratic multidimensional knapsack problems are another
example for convex quadratic integer programs, see [23], and as soon as multiple
gain vectors exist this also results in a multiobjective quadratic integer problem.

For multiobjective linear integer optimization, enormous progress can be seen.
The algorithms devised for this class of problems often belong to one of the following
main groups: decision space search algorithms, i.e., approaches that work in the
space of feasible points, and criterion space search algorithms, i.e., methods that
work in the space of objective function values. For a recent paper on this topic
which includes a good literature review, we mention [17]. Our algorithm will be
based on the decision space where the branching will be done by fixing subsets of
variables. This will guarantee to find all efficient solutions for the multiobjective
optimization problem.

In the literature, decision space based multiobjective integer optimization al-
gorithms are further differentiated in branch-and-bound and branch-and-cut algo-
rithms. Branch-and-bound is a well-known method in various fields of optimization.
In the context of integer optimization branch-and-bound methods are based on a
potentially full enumeration of all feasible integer solutions, which can be viewed
as a tree search, combined with criteria based on bounds which allow to cut some
of the branches. Good bounding criteria allow for an efficient algorithm. A survey
on branch-and-bound methods for multiobjective linear integer problems is given
in [22]. The proposed algorithm is a branch-and-bound method that uses the ideal
point for bounding. We also examine more general lower bound sets where cuts in
the criterion space allow for tighter lower bound sets.

Branch-and-cut algorithms work with relaxations of the feasible set. Typically,

2



the integrality assumption is relaxed, as we also do it for obtaining our lower bounds
in the nodes of the branch-and-bound tree. As these relaxations are typically not
tight, one can improve them by adding cuts in the decision space, as done for biob-
jective linear binary optimization problems in [14]. We do not follow this approach
here, as we are exploring unconstrained problems only.

With this paper we want to contribute to further developments in multiobjective
integer optimization by now studying convex quadratic instead of linear objective
functions, i.e., we approach multiobjective nonlinear integer optimization. For mul-
tiobjective nonlinear integer optimization, only a few algorithms have been proposed
so far. Most of them are for binary problems only, see [20, 25, 30] or deal with only
two objective functions. Blanco and Puerto examine in [2] multiobjective polyno-
mial integer optimization problems and present an algebraic approach for solving
these problems. They first rewrite the problem as a binary problem by introducing
additional variables and constraints. In this way, they are able to deal with the op-
timization problem by solving one or more systems of polynomial equations. Tests
on multiobjective knapsack and biobjective portfolio selection problems as well as
on random instances have been performed.

Another paper for biobjective integer, but not necessarily linear, problems is
given by Dogan, Karsu and Ulus [11]. However, they assume integer-valued objec-
tive functions. The algorithm considers boxes in the image space which are iter-
atively refined by solving single-objective integer subproblems, thus the algorithm
is a criterion space approach. A somehow related idea was proposed by De Santis,
Grani and Palagi [10]. That method can handle nonlinear problems too, as long as
some assumptions on the values of the objective functions are satisfied. Both algo-
rithms make use of the clear structure of a two-dimensional image-space while our
algorithm can also be applied to more than two objective functions. A disadvantage
of algorithms that work in the criterion space is that they do not easily scale with
the number of objective functions. Attempts to overcome this issue have recently
been made (see, e.g., [16, 26, 28]).

A key tool used in the solution approaches mentioned above is scalarization. This
means the replacement of the multiobjective problem by a parameter-dependent
single-objective optimization problem. The single-objective subproblems are inte-
ger optimization problems and have to be solved by appropriate solvers. In order
to find several nondominated solutions, this has to be done repeatedly considering
different values of the parameters. Typical issues of these methods are the choice
of the parameters for problems with more than two or three objective functions, as
well as to steer the parameters in such a way that it can be guaranteed that all
efficient points can be found. Moreover, the choice of the scalarization is important.
Without a specific strategy to remove dominated parts of the feasible region, the
weighted-sum method will fail to find all efficient points of a multiobjective integer
optimization problem as the problem is non-convex due to the integrality constraint.
Other scalarizations, such as the ε-constraint method, produce single-objective sub-
problems adding further constraints to the original feasible set. Our approach does

3



not make use of scalarization of the original problem.
We finally mention solvers developed for multiobjective convex mixed integer

optimization problems, see for instance [9] and the references therein. These solvers
can clearly also be applied to deal with multiobjective convex quadratic integer
programs. In our numerical experiments, we compare our method with the solver
MOMIX devised in [9]. For that reason, we shortly recall its basic ingredients. MOMIX is
a decision space branch-and-bound method. In case one applies it to purely integer
problems, the branching corresponds to adding integer lower and upper bounds on
the values of the variables. Hence, the branching rule is not based on the fixing of
the integer variables as we will do it here. The bounding is done by comparing lower
bounds with upper bounds, which are obtained as the images of feasible points.

In MOMIX, lower bounds are first calculated as ideal points of the relaxed problems,
where relaxed means that the integrality constraints are ignored. The evaluation
whether the lower bounds are ’above’ the upper bounds is then performed by solving
single-objective convex continuous optimization problems. In case this test fails,
refined lower bounds are built by solving single-objective convex (mixed integer)
subproblems. Ideal points are considered as lower bounds in the algorithm proposed
here as well. Possible improvements and alternative lower bounds are discussed in
Section 3.2. As fast enumeration of the nodes is essential in the branch-and-bound
method we devise, the alternative lower bounds are defined in order to exploit a
preprocessing phase as much as possible.

In contrast to the method proposed here, the method devised in [9] requires
a starting box in which the feasible set is contained. For this reason, in order to
apply MOMIX to unconstrained instances, we have to artificially set lower and upper
bounds for the integer variables. Moreover, MOMIX does not exploit the structure of
the quadratic objectives. So neither convexity is used for pruning branches nor any
preprocessing speeds up the iteration steps.

The preprocessing phase which we use to speed up the calculations along the
iterations follows ideas developed by Buchheim, Caprara and Lodi in [3], where
single-objective unconstrained convex quadratic integer optimization problems are
addressed. As in [3], we branch in the pre-image space by fixing subsets of integer
variables and we do a preprocessing which allows fast computations within the nodes.

The key to deal with more than one objective function is in the definition of a
pruning criterion which guarantees the finiteness of our algorithm. In other words,
we are able to guarantee that the enumeration of the nodes is finite despite the
problem is unconstrained. While the optimal value of a single-objective problem is
unique (if it exists) it is in general non-unique in the case of multiple objectives.
A multiobjective problem has many optimal solutions in general, called efficient
solutions. Hence, multiobjective problems are often numerically more challenging
compared to single-objective ones, as branch-and-bound methods need to explore
a higher number of nodes. The fact that we look for a set of optimal solutions
influences also the theoretical analysis of the algorithms and in particular the proofs
of their finiteness.

4



Another difference to the single-objective case is that the continuous relaxations
of the problem, namely the subproblems obtained by relaxing the integrality con-
straint, do not have a unique minimizer. In fact, each of the continuous relaxations
is a multiobjective continuous problem having its own set of efficient solutions. We
handle this issue by considering the ideal point of the multiobjective continuous re-
laxation, that is a lower bound. As detailed in the paper, the use of a preprocessing
phase allows its fast computation along the nodes. We also suggest alternative lower
bounds to the ideal point as already mentioned above. The non-uniqueness of the
optimal solutions of the subproblems also influences the bounds for the fixing of the
variables, which are now determined by intervals that are derived from the unique
minimizers of all functions.

The paper is structured as follows. In Section 2 we state the multiobjective
convex quadratic integer optimization problem under examination as well as some
basic definitions and observations. Section 3 contains the new algorithm together
with the underlying theoretical results about the correctness of the pruning steps and
the finiteness of the enumeration (Section 3.1). As already mentioned, in Section 3.2
we present and discuss several alternatives for the computation of the lower bounds
which are used within the algorithm. In Section 3.3 we comment on the inclusion of
bounds in the optimization problem. We illustrate the algorithm on a toy example
in Section 4, before we present the numerical results in Section 5. We compare the
new algorithm with the multiobjective mixed-integer solver MOMIX [9] and with a
scalarization approach, and test it on scalable and random instances.

2 Multiobjective Quadratic Integer Optimization

For our multiobjective optimization problem, we assume the objective functions to
be given by fj : R

n → R,

fj(x) = xTQjx+ cj
T
x+ aj ,

j = 1, . . . , m, m ≥ 2, with symmetric positive definite matrices Q1, . . . , Qm ∈ S
n,

vectors c1, . . . , cm ∈ R
n, and scalars a1, . . . , am ∈ R. The multiobjective quadratic

integer programming problem which we study in this paper is then

min (f1(x), . . . , fm(x))
T

s.t. x ∈ Z
n.

(MOQIP)

Even for small dimensions of n a full enumeration of all integer settings is not
immediately possible, as there are no bounds for the integer variables. We discuss
the possible inclusion of bounds in Section 3.3. Note that problem (MOQIP) is
nonconvex because of the presence of integrality constraints. However, when some
of the integer variables are fixed and the integrality constraint for the remaining is
relaxed, it reduces to a continuous convex quadratic multiobjective problem as the

5



objective functions are convex quadratic. Continuous convex quadratic functions
are symmetric with respect to the minimizers, see the following remark. This helps
us to prove later that the branch-and-bound tree is finite.

Remark 2.1. Let j ∈ {1, . . . , m}. It holds for x̄ = −1

2
Q−1

j cj the minimal solution
of minx∈Rn fj(x) that for any x ∈ R

n

fj(x) = fj(x̄) + (x− x̄)TQj(x− x̄).

While for n ∈ N, m = 1, solving (MOQP) is easy and the optimal solution is
x̄ = −1

2
Q−1

1 c1 with objective value a1 −
1

4
(c1)TQ−1

1 c1, problem (MOQIP) is already
NP-hard.

The image of the feasible set of the problem, here Z
n, under the vector-valued

function f : Rn → R
m represents the feasible set in the criterion space, or the image

set. In general, there does not exist a feasible point x̄ which minimizes all objective
functions at the same time. This means that the objective functions are competing.
We also assume this for our examinations. A point x̄ ∈ Z

n is called an efficient
point of (MOQIP) if there is no x ∈ Z

n with f(x) 6= f(x̄) and f(x) ≤ f(x̄). Here, ≤
is understood componentwise. The image f(x̄) of an efficient point of (MOQIP) is
called nondominated. There also exists the notion of weak efficiency. A point x̄ ∈ Z

n

is called a weakly efficient point of (MOQIP) if there is no x ∈ Z
n with f(x) < f(x̄).

Weakly efficient solutions are in general not of interest from a practical point of view.
We aim at detecting the efficient and/or the nondominated set.

Note that for the relaxed problem

min (f1(x), . . . , fm(x))
T

s.t. x ∈ R
n (MOQP)

there are no two efficient points x, x̄ ∈ R
n, x 6= x̄, mapping on the same nondomi-

nated point z ∈ f(Rn), as the objective functions are strictly convex. This can easily
be seen by considering the point w := (x + x̄)/2 for some x 6= x̄, as we obtain in
case of f(x) = f(x̄) for j = 1, . . . , m that fj (w) <

1

2
fj(x) +

1

2
fj(x̄) = fj(x̄). Thus,

to any nondominated point z ∈ f(Rn) there exists a unique x̄ ∈ R
n with z = f(x̄).

While this holds for (MOQP), it does not hold for (MOQIP) in general:

Example 2.2. For n = 1, m = 2 and the functions f1(x) = (x− 1.5)2 and f2(x) =
(x− 1.5)2+3 we have as set of efficient points {1, 2} for (MOQIP), while the set of
nondominated points is a singleton and equals {(0.25, 3.25)T}. For another example
with concurrent objective functions see the toy example in Section 4.

We aim on finding all efficient solutions for (MOQIP), and based on the above,
the cardinality of the set of efficient solutions can be larger than the cardinality of
the set of nondominated points for (MOQIP).

Some approaches in multiobjective optimization, as for instance some scalar-
izations as the ε-constraint method, only guarantee to find weakly efficient points.

6



Thus it is important to know whether there are weakly efficient points which are not
also efficient. For (MOQP) it is known that no weakly efficient point exists which
is not also efficient for (MOQP). For strictly convex objective functions we have for
any points x, x̄ ∈ R

n, x 6= x̄, with f(x) ≤ f(x̄) and w as above f(w) < f(x̄). Thus,
if a point is not efficient, it is also not weakly efficient. However, this is not true
for (MOQIP). In case of integrality constraints, there can be weakly efficient points
which are not also efficient, as the following simple example shows:

Example 2.3. Let n = 1, m = 2 and consider problem (MOQIP) with f1(x) =
(x−1.5)2 and f2(x) = (x−1)2. Then f(1) = (0.25, 0)T and f(2) = (0.25, 1)T . Here,
x = 1 and x = 2 are weakly efficient but only x = 1 is efficient.

This has to be taken into account in case one aims to solve (MOQIP) with an
approach based on scalarizations. With our algorithm, we determine the set of
efficient points of problem (MOQIP) and no point being weakly efficient only.

Finally, we would like to mention that not all efficient points for problem (MOQIP)
can be found by the weighted-sum method which uses as scalarization for parame-
ters w ∈ R

m
+ , w 6= 0, problems of the form minx∈Zn wTf(x). Not all nondominated

points are located on the convex hull of f(Zn). This can be seen for example in in-
stance (Inst1) on page 26 and Figure 4 on page 26, and the weighted-sum approach
will fail to find those.

In the following, for any x ∈ R, we denote by ⌊x⌋ and by ⌈x⌉ the next integer
above or below x. We adopt the same notation for vectors x ∈ R

n by applying it
componentwise.

3 BB-MOQIP: a Branch-and-Bound method on the

decision space

We propose a branch-and-bound method able to exactly detect the efficient and
the nondominated set of Problem (MOQIP). Thereby we branch in the decision
space where we built a rooted tree which basically allows to perform a systematic
enumeration of all candidate solutions. The set R

n is chosen at the root and then
we explore the branches by recursively assigning values for the integer variables. To
avoid a full enumeration, which would in fact be infinite in the unconstrained case,
and to make the procedure efficient, we include bounding strategies.

This means that before enumerating the further branches, a lower bound for all
remaining possible values in the image space is calculated. As in our multiobjective
setting the values form a subset of Rm, the lower bound has to take this into account
and has to be a lower bound for all values in this set. This lower bound can either
be a vector in R

m or a subset of Rm and is then compared to upper bounds for the
nondominated set which have been generated so far. Upper bounds are generated
from images of feasible points. Thus, each integer assignment gives an upper bound
by evaluating its image under f . In single-objective optimization, there is one best,

7



i.e., smallest, upper bound which is greater than the optimal value. In the mul-
tiobjective setting there can be a list of upper bounds, all being non-comparable,
and there can be nondominated points which are not componentwise smaller than
one of these upper bounds. Still, the upper bounds determine regions in the image
space which can no longer contain nondominated points. Within the node the lower
bound is checked against that list of upper bounds and allows in some cases the
discarding of further nodes.

Our method adopts a depth-first enumeration strategy, based on fixing variables
to integer values, as the one used in [3] for solving single-objective convex quadratic
integer programs. The order in which the variables are fixed is predetermined,
meaning that the branch-and-bound tree is formed by exactly n levels. Assume
w.l.o.g. that we fix the variables from 1 to n. With d = 0 we denote the root node.
At every node of level d ∈ {1, . . . , n} the variables x1, . . . , xd are fixed to certain
integer values, say, r1, . . . , rd. Let r ∈ Z

d be the vector (r1, . . . , rd)
T . From now on

we will use the following notation. For every j = 1, . . . , m, we define f r
j : Rn−d → R

by
f r
j (x) := xTQd

jx+ (c̄j,r)Tx+ āj,r,

where the positive definite symmetric matrix Qd
j is obtained by deleting the corre-

sponding d rows and columns of Qj and c̄j,r and āj,r are set to

c̄j,ri−d := cji + 2
d∑

k=1

qkirk, for i = d+ 1, . . . , n

and

āj,r := aj +
d∑

k=1

ckrk +
d∑

k=1

d∑

i=1

qkirkri.

Simple calculations using the symmetry of Qj yield the following relation:

Lemma 3.1. For f r
j , j ∈ {1, . . . , m}, as defined above it holds

f r
j (x) = fj(r1, . . . , rd, x1, . . . , xn−d).

By x∗j,r ∈ R
n−d, j ∈ {1, . . . , m}, we denote the unconstrained minimizers of f r

j ,
uniquely defined as

x∗j,r = −
1

2
(Qd

j )
−1c̄j,r. (1)

Assume that we are in a node of level d and the variables x1, . . . , xd are fixed to
r = (r1, . . . , rd)

T . The values at which variable xd+1 is fixed in the children nodes
are determined as follows. Let

α(d+ 1) := min
j=1,...,m

x∗

1

j,r, β(d+ 1) := max
j=1,...,m

x∗

1

j,r . (2)

We report in Figure 1 an example with three objective functions and one variable,
where the values of ⌊α⌋ and ⌈β⌉ are highlighted.

8



-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
-50

0

50

100

150

200

250

300

f1

f2

f3

    

Figure 1: Definition of ⌊α⌋ and ⌈β⌉ considering three objective functions.

We start from fixing xd+1 to ⌊α(d + 1)⌋ and then we consecutively fix xd+1 to
increasing integer values ⌊α(d+1)⌋+1, ⌊α(d+1)⌋+2, . . . , until we reach ⌈β(d+1)⌉.
We go on fixing xd+1 to increasing integer values until a specific condition is satisfied.
This condition is based on comparing some upper bounds with lower bounds and
it ensures that no efficient point with some larger fixings exist. We discuss this
condition in Section 3.1. Due to convexity, we can show that at some point this
condition is satisfied and we can stop, see Lemma 3.6. Then we go on fixing xd+1 to
decreasing integer values starting from ⌊α(d+ 1)⌋ − 1, again, until the condition is
satisfied. The rules adopted to fix the variables are detailed in Algorithm 1.

Algorithm 1 Update rd
INPUT: rd, α(d)
OUTPUT: rd

1: if rd ≥ ⌊α(d)⌋ then

2: Set xd = rd + 1;
3: else

4: Set xd = rd − 1;
5: end if

6: Set rd = xd;

We report in Algorithm 3 the scheme of our branch-and-bound BB-MOQIP. In
Section 4 we have included a toy example on which we also illustrate the behaviour
of our algorithm. With LPNS and E we denote lists of points in the criterion space
and in the decision space respectively, which are updated along the iterations of

9



the algorithm. We will show that when the algorithm stops, these are exactly the
nondominated and the efficient set of (MOQIP), respectively. Before entering in the
main loop, we perform a preprocessing phase (see Algorithm 2), where the inverse
matrices of Qd

j , j = 1, . . . , m, d = 0, . . . , n− 1 are computed. Note that with d = 0,
we mean the root node where Qd

j = Qj . The role of r∗ is only to initialize the set
E and can thus be chosen arbitrarily, for instance r∗ = 0. As we have a depth-first
enumeration strategy, this list is updated quickly.

Algorithm 2 Preprocessing

INPUT: m strictly convex quadratic functions fj : R
n → R, j = 1, . . . , m.

OUTPUT: (Qd
j ), (Q

d
j )

−1 for d = 0, . . . , n− 1, for j=1,. . . ,m; E ; LPNS.

1: Determine a variable order x1, . . . xn and resort Q and c accordingly;
2: For d = 0, . . . , n − 1 and j = 1, . . . , m let Qd

j be the submatrix of Qj given by
rows and columns d+ 1, . . . , n;

3: For d = 0, . . . , n− 1 and j = 1, . . . , m compute (Qd
j )

−1;
4: Choose an initial feasible solution r∗ ∈ Z

n;
5: Set E ← {r∗} and LPNS ← {(f1(r

∗), . . . , fm(r
∗))}.

In Algorithm 3, at every iteration of the loop, namely at each node of the
branch-and-bound tree, we first compute x∗j,r and a lower bound. For our problem
(MOQIP) a lower bound is any set LB ⊆ R

m such that LB+R
m
+ contains the image

of integer feasible points through f , namely f(Zn) ⊆ LB + R
m
+ . The lower bound

LB within an iteration of the loop thus has to satisfy

{f(x) ∈ R
m | x ∈ Z

n, (x1, . . . , xd)
T = (r1, . . . , rd)

T} ⊆ LB + R
m
+ .

In Algorithm 3 we consider as lower bound a singleton set which consists of the ideal
point for the problem

min
x∈Rn−d

(f r
1 (x), . . . , f

r
m(x))

T .

As the set is a singleton only, we omit the brackets, and just set

LB := (f r
1 (x

∗1,r), . . . , f r
m(x

∗m,r))T . (3)

Note that the preprocessing phase (Algorithm 2) allows us to compute the minimiz-
ers x∗j,r - and then LB as defined above - along the nodes very efficiently.

In the literature, the ideal point is often used within branch-and-bound algo-
rithms for bounding, for instance in multiobjective nonconvex optimization, see
[9, 13, 21, 24]. It can also be interpreted as defining a lower bound of f r(Rn−d), and
thus of f r(Zn−d), with the help of m hyperplanes, each defined by

{
y ∈ R

m | (ej)Ty = f r
j (x

∗j,r)
}
, (4)

where ej denotes the jth unit vector. In Section 3.2, we will propose other lower
bounds that can be used within our scheme. One of the possibilities will be to add
additional hyperplanes to enrich the lower bound set.

10



Algorithm 3 BB-MOQIP: a branch-and-bound method for MOQIP
INPUT: m strictly convex quadratic functions fj : R

n → R, j = 1, . . . ,m
OUTPUT: E , LPNS

1: Perform Algorithm 2
2: Set d := 0;
3: while d ≥ 0 do
4: if d ≤ n− 1 then
5: Compute x∗j,r ∈ R

n−d and set LB := (f r
1 (x

∗1,r), . . . , f r
m(x∗m,r))T

6: Compute α(d + 1) and β(d+ 1) according to (2)
7: else
8: Set (Cond)=false
9: end if

10: if (Cond) and (rd < ⌊α(d)⌋) then
11: Set d = d− 1;
12: if (d > 0) Update rd with Algorithm 1 else STOP endif
13: else
14: if (Cond) and rd ≥ ⌊α(d)⌋ then
15: if rd ≥ ⌈β(d)⌉ then
16: Set xd = ⌊α(d)⌋ − 1, rd = xd;
17: else
18: Set xd = rd + 1, rd = xd;
19: end if
20: else
21: if d = n then
22: Update E by r and LPNS by (f1(r), . . . , fm(r))
23: if rd ∈ [⌊α(d)⌋, ⌈β(d)⌉ − 1] then
24: Set xd = rd + 1, rd = xd;
25: else
26: Set d = d− 1.
27: if (d > 0) Update rd with Algorithm 1 else STOP endif
28: end if
29: else
30: Set d = d+ 1;
31: Set rd = ⌊α(d)⌋, xd = rd;
32: end if
33: end if
34: end if
35: end while

11



The next step in Algorithm 3 is the computation of α(d+ 1) and β(d+ 1) that
will determine the values at which variable xd+1 will be fixed, see (2).

Condition (Cond) checks whether the lower bound computed at the node is
dominated by any of the upper bounds encountered so far and will be defined in
the next subsection. The condition makes use of the so far best found points in the
criterion space, i.e., of the list LPNS. As in the first iteration the list LPNS was just
initialized with one point, and as the objective functions are competing, we never
have that (Cond) is satisfied for d = 0. Thus, for d = 0, we never have to evaluate
rd < ⌊α(d)⌋ in line 10 or rd ≥ ⌊α(d)⌋ in line 14 and we never reach d = d− 1 in line
11. Instead, for d = 0, we go directly to line 29.

In the further iterations, (Cond) allows us to check whether the current node
might be pruned: thanks to the convexity of the objective functions, in case we are
at a node where variable xd is fixed to values outside the interval [⌊α(d)⌋ , ⌈β(d)⌉],
we can prune the node and all its outer siblings as soon as condition (Cond) is
satisfied. Otherwise, we need to go on enumerating the nodes and explore level d
by fixing xd to further integer values. See Section 3.1 for further details.

Note that our scheme adopts a depth-first enumeration. Along the iterations, we
go on increasing d, or, in other words, we go deep in the branching tree, until we reach
a leaf where d = n and all the variables are fixed to integer values r = (r1, . . . , rn).
We then get an additional upper bound by evaluating the objective functions at this
integer point r ∈ Z

n.
In our algorithm the list of potentially nondominated solutions LPNS is initialized

by f(r∗), with r∗ ∈ Z
n chosen in the preprocessing phase (Algorithm 2). Then, every

time an upper bound z ∈ f(Zn) is computed (this happens when all the variables
are fixed to integer values), we check whether it is dominated by any point in LPNS.
If this is the case, z is not added to LPNS. Otherwise, we update the list by adding
z to LPNS and by removing from LPNS all the upper bounds dominated by z. The
same is done in the pre-image space for the set E .

When our branch-and-bound algorithm stops, E and LPNS are made exactly of
the efficient and the nondominated points of Problem (MOQIP), respectively. We
prove this in Theorem 3.7.

3.1 Pruning of the nodes

In this section, we go into details of our pruning strategy. On the one hand, we
prune nodes, i.e., we discard further branches of the branch-and-bound tree, by
using the general idea of a multiobjective branch-and-bound method: we compare
the current lower bound with the generated upper bounds. On the other hand, by
using convexity arguments, we also give criteria which allow to prune further nodes
on the same level of the branching tree, i.e., some of the siblings of the current
node. This also guarantees that the branching tree is finite despite the problem is
unconstrained.

Assume that we are at a node of level d where xd is fixed to an integer value

12



outside the interval [⌊α(d)⌋ , ⌈β(d)⌉]. We will prove that if the lower bound is
dominated by some upper bound in the LPNS list, we can prune the node (Lemma
3.3) as well as all its outer siblings (Lemma 3.4 and Lemma 3.5).

As a first result, we prove that the last component of an efficient point of
(MOQIP) must lie in the interval [⌊α(n)⌋, ⌈β(n)⌉]. Thus, in any final node the
number of necessary fixings is finite and clearly defined, even while (MOQIP) itself
is unconstrained.

Lemma 3.2. Let x̄ ∈ Z
n be any efficient point of the multiobjective optimization

problem (MOQIP). Then, x̄n ∈ [⌊α(n)⌋, ⌈β(n)⌉] (where the interval is determined
with respect to the fixing r = (x̄1, . . . , x̄n−1)

T ).

Proof. Let x̄ ∈ Z
n be any efficient point of the multiobjective optimization problem

(MOQIP). Let d = n − 1 and r = (x̄1, . . . , x̄n−1)
T . It holds for all j ∈ {1, . . . , m}

that f r
j : R → R is strictly monotonically decreasing on (−∞, x∗j,r) and strictly

monotonically increasing on (x∗j,r,∞). Thus all functions f r
j are strictly monoton-

ically decreasing on (−∞, ⌊α(n)⌋]. Hence, we have that x̄n ≥ ⌊α(n)⌋, as otherwise
f(r, ⌊α(n)⌋) would dominate f(r, x̄n) = f(x̄) in contradiction to x̄ being efficient.
Analogously, all functions f r

j are strictly monotonically increasing on [⌈β(n)⌉,∞)
and thus we have that x̄n ≤ ⌈β(n)⌉ as otherwise f(r, ⌈β(n)⌉) would dominate
f(x̄).

For the example reported in Figure 1 with three objective functions and one
variable, the variable in exam needs to be fixed to {−1, 0, 1, . . . , 8}.

On the level d = n we have to consider exactly all possible fixings of xn to the
integers between ⌊α(n)⌋ and ⌈β(n)⌉. On all the other levels d ≤ n− 1, we first have
to fix xd to values within the interval [⌊α(d)⌋, ⌈β(d)⌉], but we also need to consider
fixings outside this interval, as it will be clarified in the following. We can use a
bounding condition to stop the enumeration outside the interval as well as on the
deeper nodes. This condition should make use of an easy to calculate lower bound
as the one presented in (3) defined by the ideal point. Let LB be this lower bound
computed at a certain node of the branch-and-bound tree. In order to decide if the
node can be pruned, we need to check whether there exists an upper bound that
dominates LB. This is expressed by the following condition

Condition 1.

∃ z ∈ LPNS : z ≤ LB, z 6= LB. (Cond)

As stated in the following lemma, (Cond) is a sufficient condition for pruning.

Lemma 3.3. Let d ∈ {1, . . . , n−1} and let LB ∈ R
m be the lower bound computed at

the node where the variables (x1, . . . , xd) are fixed to (r1, . . . , rd) ∈ Z
d. Let (Cond)

hold. Then there is no efficient point x̄ ∈ Z
n of the multiobjective optimization

problem (MOQIP) with (x̄1, . . . , x̄d) = (r1, . . . , rd).

13



Proof. Let x̄ ∈ Z
n be an arbitrary feasible point of (MOQIP) with (x̄1, . . . , x̄d) =

(r1, . . . , rd). As LB is a lower bound we have that there exists ℓ ∈ LB (here, as LB is
defined in (3), ℓ = LB) with ℓ ≤ f(x̄). From (Cond), we have that z ∈ LPNS, z 6= ℓ
exists such that z ≤ ℓ. Since z ∈ LPNS, a point x̃ ∈ E ⊆ Z

n exists with z = f(x̃)
and hence

f(x̃) = z ≤ ℓ ≤ f(x̄), f(x̃) 6= f(x̄)

so that f(x̄) is dominated by f(x̃) and thus no efficient point of (MOQIP) is such
that (x̄1, . . . , x̄d) = (r1, . . . , rd).

Assume that we are at a node where the first d variables are fixed to integer
values. By convexity, as soon as condition (Cond) is satisfied at a node where xd is
fixed to a value δ strictly greater than ⌈β(d)⌉, the node can be pruned as well as all
its outer siblings. In other words, we can prune all the nodes where xd is fixed to
integer values strictly greater than δ, as no efficient point can be obtained fixing xd

to those values. This is stated in Lemma 3.4
The same applies as soon as condition (Cond) is satisfied at a node where xd is

fixed to a value δ strictly smaller than ⌊α(d)⌋. Namely, we can prune all the nodes
obtained where xd is fixed to integer values strictly smaller than δ, as no efficient
point can be obtained fixing xd to those values, cf. Lemma 3.5.

Lemma 3.4. Let d ∈ {1, . . . , n− 1} and let LB ∈ R
m be the lower bound computed

at the node where (x1, . . . , xd) are fixed to (r1, . . . , rd) ∈ Z
d, where rd = δ > ⌈β(d)⌉.

Let (Cond) hold. Then there is no efficient point x̄ ∈ Z
n of (MOQIP) such that

(x̄1, . . . , x̄d−1) = (r1, . . . , rd−1) and x̄d > δ.

Proof. By (Cond) there exists z ∈ LPNS and thus x̃ ∈ E ⊆ Z
n with z = f(x̃)

and z ≤ LB, z 6= LB. Let x̄ ∈ Z
n be an arbitrary feasible point of (MOQIP)

with (x̄1, . . . , x̄d−1) = (r1, . . . , rd−1) and x̄d > δ. We will show that it holds for
j ∈ {1, . . . , m}

LBj ≤ fj(x̄) (5)

and thus f(x̃) ≤ f(x̄) and f(x̃) 6= f(x̄) and the lemma is proved.
To show (5), let j ∈ {1, . . . , m} and denote by f̄j : R

n−d+1 → R the function

f̄j(z) = fj(r1, . . . , rd−1, z1, . . . , zn−d+1).

The unique individual minimizers u∗j ∈ R
n−d+1 of these functions determine the

interval [⌊α(d)⌋, ⌈β(d)⌉], cf. (2), and we have

u∗j
1 ≤ β(d) ≤ ⌈β(d)⌉. (6)

Let γ ≥ u∗j
1 and let P (γ) be the optimization problem

min
z∈Rn−d+1

{f̄j(z) | z1 ≥ γ}. (P (γ))

14



We show that it holds for any optimal solution z̄ of P (γ) that z̄1 = γ. For γ = u∗j
1 ,

we simply have that z̄ = u∗j is the minimzer with z̄1 = γ. For γ > u∗j
1 the point u∗j

is no longer feasible for P (γ) and thus we have ∇f̄j(z̄) 6= 0. Based on the Karush-
Kuhn-Tucker conditions this implies that the Lagrange multiplier to the constraint
z1 ≥ γ has to be positive and thus, due to complementarity slackness, that z̄1 = γ.

Now, we define a map xj∗ : [u∗j
1 ,∞)→ R

n−d by

(γ, (xj∗(γ)) is the unique minimal solution of (P (γ)).

So, for u∗j
1 ≤ γ1 ≤ γ2 we have that (γ2, x

j∗(γ2)) is feasible for (P (γ1)) and thus

f̄j(γ1, x
j∗(γ1)) ≤ f̄j(γ2, x

j∗(γ2)).

As a consequence, as rd > u∗j
1 , for γ1 = rd = δ < x̄d = γ2 we get

f̄j(rd, x
j∗(rd)) ≤ f̄j(x̄d, x

j∗(x̄d)). (7)

Moreover, (x̄d, x̄d+1, . . . , x̄n) is feasible for problem (P (x̄d)) and thus

f̄j(x̄d, x
j∗(x̄d)) ≤ f̄j(x̄d, . . . , x̄n). (8)

As f̄j(x̄d, . . . , x̄n) = fj(x̄), we get from (7) and (8) f̄j(rd, x
j∗(rd)) ≤ fj(x̄).

Finally, recall that LBj is computed by fixing (x1, . . . , xd) to (r1, . . . , rd) and by
(3), i.e.,

LBj = min{fj(r1, . . . , rd, v1, . . . , vn−d) | v ∈ R
n−d}

= min{f̄j(z1, . . . , zn−d+1) | z1 = rd}

= min{f̄j(z1, . . . , zn−d+1) | z1 ≥ rd}

= f̄j(rd, x
j∗(rd))

≤ fj(x̄),

and (5) is shown.

Analogously, we can prove that as soon as we can prune a node where xd is fixed
to a value δ < ⌊α(d)⌋, we can prune all its outer siblings as no efficient point will
have xd < δ.

Lemma 3.5. Let d ∈ {1, . . . , n− 1} and let LB ∈ R
m be the lower bound computed

at the node where (x1, . . . , xd) are fixed to (r1, . . . , rd) ∈ Z
d, where rd = δ < ⌊α(d)⌋.

Let (Cond) hold. Then there is no efficient point x̄ ∈ Z
n of (MOQIP) such that

(x̄1, . . . , x̄d−1) = (r1, . . . , rd−1) and x̄d < δ.

Using similar arguments as those used in [3, p. 382] we can show that at every
level d ∈ {1, . . . , n − 1}, condition (Cond) is satisfied after enumerating a finite
number of nodes. Note that we already showed in Lemma 3.2 that fixing xn to
values within the interval [⌊α(n)⌋ , ⌈β(n)⌉] suffices to find all efficient points.

15



Lemma 3.6. Let d ∈ {1, . . . , n− 1} and let the variables (x1, . . . , xd−1)
T be fixed to

(r1, . . . , rd−1)
T ∈ Z

d−1. Then there exists γ ∈ Z such that condition (Cond) is satis-
fied when xd is fixed to integer values outside the interval [⌊α(d)⌋ − γ, ⌈β(d)⌉+ γ].

Proof. Let z ∈ LPNS and let j ∈ {1, . . . , m}. Note that LPNS is not empty as it
contains at least the feasible integer point chosen in Algorithm 2. Recall that

α(d) ≤ x∗

1

j,r and β(d) ≥ x∗

1

j,r

where x∗j,r is defined in (1) and is obtained with respect to the fixing of the variables
(x1, . . . , xd−1)

T to (r1, . . . , rd−1)
T . We study now the continuous minima of f r

j , where
(x1, . . . , xd)

T are fixed to (r1, . . . , rd−1, t)
T with t fixed to

⌈x∗

1

j,r⌉ , ⌈x∗

1

j,r⌉ + 1 , . . . .

Recall that the continuous minima of f r
j are the lower bounds which we consider in

Algorithm 3, see also (3). As f r
j is symmetric w.r.t. x∗

1

j,r and convex, see Remark
2.1, the continuous minima with respect to these fixings are non-decreasing. See
also the arguments in [3, p. 382].

In particular, a value uj ∈ Z exists such that fixing t to ⌈x∗

1

j,r⌉ + uj will lead
to a lower bound that exceeds zj . The same holds when fixing t to ⌈β(d)⌉ + uj, as
⌈β(d)⌉+ uj ≥ ⌈x∗

1

j,r⌉+ uj.
Consider now t fixed to ⌊x∗

1

j,r⌋ , ⌊x∗

1

j,r⌋ − 1 , . . . . Using the same arguments as
before, we have that lj ∈ Z exists such that fixing t to ⌊x∗

1

j,r⌋ − lj will lead to
a lower bound that exceeds zj . The same holds when fixing t to ⌊α(d)⌋ − lj , as
⌊x∗

1

j,r⌋ − lj ≥ ⌊α(d)⌋ − lj.
By setting γ := max{maxj=1,...,m lj ,maxj=1,...,m uj}, we obtain that fixing xd

outside the interval [⌊α(d)⌋ − γ , ⌈β(d)⌉+ γ] will lead to a lower bound larger than
zj and thus (Cond) is satisfied.

We are finally able to state the following

Theorem 3.7. Algorithm 3 stops returning with E the efficient set and with LPNS

the set of nondominated points of problem (MOQIP).

Proof. It is sufficient to notice that Algorithm 3 enumerates the integer solutions in
the decision space. Thanks to the pruning strategy and the results stated in Lemma
3.2, Lemma 3.4, Lemma 3.5 and in Lemma 3.6 an infinite enumeration is avoided
and no efficient solution is lost.

3.2 Alternative Lower Bounds

Algorithm 3 reports the scheme of BB-MOQIP where at each node the lower bound
is given by the ideal point as defined in (3). More precisely, assume that we are at

16



a node of level d where variables (x1, . . . , xd)
T are fixed to r = (r1, . . . , rd)

T . The
lower bound considered in Algorithm 3 is defined as

LB := (f r
1 (x

∗1,r), . . . , f r
m(x

∗m,r))T ,

where x∗j,r is the unconstrained minimum of f r
j , j = 1, . . . , m.

As done in [3], this lower bound can be improved considering suitably defined
lattice free ellipsoids. For each f r

j , we can apply Proposition 1 in [3] and obtain a
value ǫj ≥ 0 such that

min{f r
j (x) | x ∈ Z

n−d} ≥ min{f r
j (x) | x ∈ R

n−d}+ ǫj
≥ min{f r

j (x) | x ∈ R
n−d}

= f r
j (x

∗j,r).

A further improvement can be achieved using ellipsoids having the so called strong
rounding property, as detailed in [7].

Another possibility in defining lower bounds for problem (MOQIP) is that of
refining the outer approximations of f(Zn) given by LB+R

m with LB as defined in
(3). This means replacing the ideal point with a set LB ⊆ R

m which is not made of
a singleton only. In this case we have to replace (Cond) by the following condition

Condition 2.

∀ℓ ∈ LB ∃ z ∈ LPNS : z ≤ ℓ, z 6= ℓ. (Cond2)

This condition is equivalent to (Cond) in case the set LB is a singleton. It can
easily be checked that Lemma 3.3 still holds for any lower bound set LB, i.e., also
(Cond2) is a sufficient condition for pruning.

In order to refine the outer approximation of f(Zn), we can look for supporting
hyperplanes of f(Rn). We recall the definition of a supporting hyperplane of a set:

Definition 3.8. Let P ⊆ R
m be a nonempty set, let λ ∈ R

m \ {0} and z ∈ ∂P ,
where ∂P is the boundary of the set P . The hyperplane

Hλ,z := {y ∈ R
m | λTy = λT z}

is called supporting hyperplane (of P ), if λTy ≥ λT z holds for all y ∈ P .

Let W := {y ∈ R
m
+ | ‖y‖1 = 1} and let ϕ : W → R be the following map

w 7→ min
x∈Rn

wTf(x).

The optimization problem in the definition of ϕ is also known as weighted sum
scalarization. By choosing positive weights wi, i = 1, . . . , m, any optimal solution
gives an efficient solution of (MOQP). We use it here for adding cutting planes to
improve the outer approximation of the set f(Rn) + R

m
+ . This idea of improving

the ideal point as lower bound by a lower bound set calculated by using a weighted

17



sum on a relaxed problem was proposed for multiobjective linear integer problems
in [12], see also the survey [22].

We get that {y ∈ R
m | wTy = ϕ(w)} is a supporting hyperplane of the set f(Rn)

for any w ∈ W . Since f(Zn) ⊆ f(Rn) we have that

f(Zn) ⊆ {y ∈ R
m | wTy ≥ ϕ(w)}

for any w ∈ W .
Therefore, at each node of our branch-and-bound algorithm, we can consider

a bunch of w ∈ W , compute the corresponding supporting hyperplanes and use
the resulting outer approximation of f r(Zn−d) derived from these additional cuts as
lower bound. The expensive computations can again be moved to the preprocessing.

To be more precise, let w ∈ W and consider the following: Qw :=
∑m

j=1
wjQj,

cw :=
∑m

j=1
wjc

j , and aw =
∑m

j=1
wjaj = wTa. Since w ∈ R

m
+ , w 6= 0, we have that

Qw is positive definite and from the first order optimality conditions we get

ϕ(w) = min
x∈Rn

wTf(x) = aw −
1

4
(cw)

T (Qw)
−1cw.

Assume that we are at a node of level d where variables (x1, . . . , xd)
T are fixed to

r = (r1, . . . , rd)
T . We can define ϕr : W → R as

w 7→ min
x∈Rn−d

wTf r(x) = arw −
1

4
(crw)

T (Qd
w)

−1crw,

where Qd
w :=

∑m

j=1
wjQ

d
j , c

r
w :=

∑m

j=1
wj c̄

j,r, and arw =
∑m

j=1
wjāj,r.

Therefore, if we fix a bundle of w ∈ W in advance, we can compute the inverse of
the matrices Qd

w in the preprocessing phase of BB-MOQIP, allowing a fast computation

of the desired outer approximation of f r(Zn−d). More precisely, let W̃ be a finite
subset of W . As we want to refine the outer approximation obtained by the ideal
point, we assume ej ∈ W̃ , for all j = 1, . . . , m, see (4) on page 10. Then it holds

f r(Zn−d) ⊆
⋂

w∈W̃

{y ∈ R
m | wTy ≥ ϕr(w)}, (9)

so that we can set the lower bound LB as the boundary of the closed set on the
right hand side in (9):

LB = ∂
( ⋂

w∈W̃

{y ∈ R
m | wTy ≥ ϕr(w)}

)
. (10)

In order to properly generalize the scheme of BB-MOIQP, we need to adapt the cal-
culation of α(d+ 1) and β(d+ 1) as follows:

α(d+1) := min{ min
j=1,...,m

x∗

1

j,r, min
w∈W̃

x∗

1

w,r}, β(d+1) := max{ max
j=1,...,m

x∗

1

j,r, max
w∈W̃

x∗

1

w,r},

(11)

18



where

x∗w,r = −
1

2
(Qd

w)
−1crw ∈ R

n−d. (12)

are the unconstrained minimizers of wTf r(x). Note that the first expressions in the

brackets in (12) could be omitted as ej ∈ W̃ for j = 1, . . . , m.
As soon as LB ⊆ R

m is computed as in (10), we need to use the pruning condition
(Cond2). For m = 2 the evaluation of condition (Cond2) can still be done easily
by using geometrical arguments even if this is numerically more time consuming
than just evaluating (Cond). For m ≥ 3, for an efficient numerical evaluation of
(Cond2) the use of the concept of so called local upper bounds (see [19] for its
original definition and [9] for an application of the concept within multiobjective
mixed integer programming) is necessary. We do not go into details on this, as it is
beyond the scope of the present work.

As already mentioned, Lemma 3.3 still holds when considering condition (Cond2)
and LB ⊆ R

m computed as in (10). As the unit vectors ej, j = 1, . . . , m, are

contained in W̃ , (Cond) with LB as the ideal point is a stronger condition than the
new (Cond2) with LB as in (10). Then also Lemma 3.6 transfers, and together with
the following results we obtain finiteness and exactness as in Theorem 3.7 also for
this alternative lower bound. In the following, we state a generalization of Lemma
3.4 (and then of Lemma 3.5), showing that (Cond2) is sufficient for pruning outer
siblings when LB ⊆ R

m is computed as in (10).

Lemma 3.9. Let W̃ be a finite subset of W . Let d ∈ {1, . . . , n−1} and let LB ⊆ R
m

be the lower bound computed as in (10) at the node where (x1, . . . , xd) are fixed to
(r1, . . . , rd) ∈ Z

d, where rd = δ > ⌈β(d)⌉ and β(d) as in (11). Let (Cond2) hold.
Then there is no efficient point x̄ ∈ Z

n of (MOQIP) such that (x̄1, . . . , x̄d−1) =
(r1, . . . , rd−1) and x̄d > δ.

Proof. We denote with LBrd := LB the lower bound derived from (10) at the node
where (x1, . . . , xd) are fixed to (r1, . . . , rd) ∈ Z

d. By (Cond2) it holds

LBrd ⊆ LPNS + R
m
+ .

Moreover, let LBx̄d denote the lower bound derived from (10) at a node where
(x̄1, . . . , x̄d−1) = (r1, . . . , rd−1) and x̄d > δ. To show the result, we prove that

LBx̄d ⊆ LBrd + R
m
+ . (13)

The inclusion in (13) implies LBx̄d ⊆ LPNS + R
m
+ and as a consequence also that

node can be pruned by using Lemma 3.3.
For proving (13), we show that given any w ∈ W̃ , the value ϕr(w) which appears

in (10) increases with the component rd. In particular, we show that

ϕδ(w) ≤ ϕx̄d(w), (14)

19



where we denote by ϕx̄d(w) the value ϕr(w) with r = (r1, . . . , rd−1, x̄d) ∈ R
d and by

ϕδ(w) the value ϕr(w) with r = (r1, . . . , rd−1, δ) ∈ R
d with δ > ⌈β(d)⌉. Inequality

(14) implies that

⋂

w∈W̃

{y ∈ R
m | wTy ≥ ϕx̄d(w)} ⊆

⋂

w∈W̃

{y ∈ R
m | wTy ≥ ϕδ(w)}

and then (13) holds. We fix w ∈ W̃ . Let γ ∈ R and consider the parameter
optimization problem

min wT (f̄1(z), . . . , f̄m(z))
T

s.t. z1 = γ
z ∈ R

n−d+1

(PW (γ))

where f̄j : R
n−d+1 → R, j ∈ {1, . . . , m} is the function

f̄j(z) = fj(r1, . . . , rd−1, z1, . . . , zn−d+1).

The minimal value of (PW (δ)) equals ϕδ(w) and the minimal value of (PW (x̄d))
equals ϕx̄d(w). Moreover, let u∗ ∈ R

n−d+1 be the unconstrained minimizer of the
objective function of (PW (·)), i.e.,

u∗ = argmin{wT (f̄1(z), . . . , f̄m(z))
T | z ∈ R

n−d+1}.

As wT f̄ is a strictly convex function, the minimizer is unique. As a consequence
of the calculation of β(d) according to (11) we have that u∗

1 ≤ β(d) and thus u∗

1 ≤
⌈β(d)⌉.

Now we look at
min wT (f̄1(z), . . . , f̄m(z))

T

s.t. z1 ≥ γ
z ∈ R

n−d+1

(PW ′(γ))

for γ ≥ u∗

1. With the same arguments as in the proof of Lemma 3.4, for any optimal
solution of (PW ′(γ)) it holds that the inequality constraint is active in the minimal
solution. We define a map z∗ : [u∗

1,∞)→ R
n−d by

(γ, (z∗(γ)) is the unique minimal solution of (PW ′(γ)).

So, for u∗

1 ≤ γ1 ≤ γ2 we have that (γ2, z
∗(γ2)) is feasible for (PW ′(γ1)) and thus

wT f̄(γ1, z
∗(γ1)) ≤ wT f̄(γ2, z

∗(γ2)).

As a consequence, as rd = δ > u∗

1, for γ1 = rd = δ < x̄d = γ2 we get

ϕδ(w) = wT f̄(rd, z
∗(rd)) ≤ wT f̄(x̄d, z

∗(x̄d)) = ϕx̄d(w)

and (14) is shown.

20



With the same arguments one can prove:

Lemma 3.10. Let W̃ be a finite subset of W . Let d ∈ {1, . . . , n − 1} and let
LB ⊆ R

m be the lower bound computed as in (10) at the node where (x1, . . . , xd)
are fixed to (r1, . . . , rd) ∈ Z

d, where rd = δ < ⌊α(d)⌋ and α(d) as in (11). Let
(Cond2) hold. Then there is no efficient point x̄ ∈ Z

n of (MOQIP) such that
(x̄1, . . . , x̄d−1) = (r1, . . . , rd−1) and x̄d < δ.

3.3 Bound constrained problems

In case the formulation of Problem (MOQIP) includes bounds on the variables, Algo-
rithm 3 still works, as soon as the bounds are taken into account in the enumeration
of the nodes and the computation of α(d) and β(d) is properly modified.

Assume that each variable xi, i = 1, . . . , n is constrained to be within the interval
[li, ui]. Assume that we are at a node of level d where the variables (x1, . . . , xd)

T are
fixed to r = (r1, . . . , rd)

T and x∗j,r is obtained as in (1). Then, the values α(d + 1)
and β(d+ 1) should be computed as follows:

α(d+ 1) := min
{
ud+1,max{ld+1,minj=1,...,m x∗

1

j,r}
}
,

β(d+ 1) := max
{
ld+1,min{ud+1,maxj=1,...,m x∗

1

j,r}
}
.

Clearly, we do not have to enumerate those nodes for which xd is fixed to values
outside the interval [ld, ud]. Thus also the pruning condition (Cond) as well as the
updates of E and LPNS should include a feasibility check.

4 Toy example

In this section we show the behavior of the branch-and-bound algorithm BB-MOQIP

on the following simple example

min (f1(x), f2(x))
T

s.t. x ∈ Z
2,

(15)

where

f1(x) = x2
1 + x1x2 + x2

2, so that Q1 =

(
1 0.5
0.5 1

)
, c1 = (0, 0)T , a1 = 0;

f2(x) = x2
1 + x2

2 − 2x1 − 2x2, so that Q2 =

(
1 0
0 1

)
, c2 = (−2,−2)T , a2 = 0.

In Figure 2, we plot the decision and the criterion space of Problem (15), where
we restrict the plot in the decision space to [−1, 2]× [−1, 1]. In the subfigures, the
efficient and nondominated solutions of Problem (15) are circled. The efficient set

21



-1 0 1 2

-1

0

1

x2

x1

0 1 2 3 4 5 6 7

-3

-2

-1

1

2

3

4

5

6

0

f2

f1

Figure 2: The decision (left subfigure) and the criterion space (right subfigure) of
Problem (15).

of Problem (15) is {(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T} corresponding to the nondom-
inated points {(0, 0)T , (1,−1)T , (3,−2)T}.

Our branch-and-bound algorithm starts by choosing an order in which the vari-
ables are fixed. Let us choose the natural order x1, x2. In the preprocessing phase Qd

j

as well as (Qd
j )

−1 are computed, for j = 1, . . . , m and d = 1, . . . , n. In our example
we have Q1

1 = (Q1
1)

−1 = Q1
2 = (Q1

2)
−1 = (1), and the inverse matrices of Q1 and

Q2. As initial feasible solution we take r∗ = (0, 0)T ∈ Z
2, so that E ← {r∗} and

LPNS ← {f(r
∗)} = {z1} with z1 := (0, 0)T . We enter in the while loop with d = 0.

The resulting branch-and-bound tree with all visited nodes is shown in Figure 3 on
page 24.

1st iteration. The unconstrained minimizers of f1 and f2 are x∗1 = (0, 0)T and
x∗2 = (1, 1)T , respectively, so that we set

LB := (f1(x
∗1), f2(x

∗2))T = (0,−2)T , α(1) = 0, β(1) = 1.

Condition (Cond) is not satisfied as LB2 < 0 = z12 . We then set d = 1, r1 =
⌊α(1)⌋ = 0 and fix x1 to r1, namely x1 = 0.

2nd iteration. The unconstrained minimizers of f r
1 and f r

2 , taking into account
r1 = 0 are x∗1,r = 0 and x∗2,r = 1, respectively, so that we set

LB := (f r
1 (x

∗1,r), f r
2 (x

∗2,r))T = (0,−1)T , α(2) = 0, β(2) = 1.

Condition (Cond) is not satisfied as LB2 < 0 = z12 . We then set d = 2, r2 =
⌊α(2)⌋ = 0 and fix x2 to r2, namely x2 = 0.

22



3rd iteration. We have r = (0, 0)T , already contained in E . Since r2 ∈ [⌊α(2)⌋, ⌈β(2)⌉) =
[0, 1), we fix x2 = r2 + 1 = 1 and set r2 = x2 = 1.

4th iteration. We have r = (0, 1)T and f(r) = (1,−1)T =: z2, so that E and
LPNS are updated as

E = {(0, 0)T , (0, 1)T}, LPNS = {z1, z2} = {(0, 0)T , (1,−1)T}.

Since r2 = 1 = ⌈β(2)⌉, we set d = d− 1 = 1 and update r1 according to Algorithm
1, so that we fix x1 = r1 + 1 = 1 and r1 = x1 = 1.

5th iteration. The unconstrained minimizers of f r
1 and f r

2 , taking into account
x1 = r1 = 1 are x∗1,r = −0.5 and x∗2,r = 1, respectively, so that we set

LB := (f r
1 (x

∗1,r), f r
2 (x

∗2,r))T = (0.75,−2)T , α(2) = −0.5, β(2) = 1.

Condition (Cond) is not satisfied as LB2 < −1 = z22 < z12 . We then set d = 2,
r2 = ⌊α(2)⌋ = −1 and fix x2 to r2, namely x2 = −1.

6th iteration. We have r = (1,−1)T , but since f(r) = (1, 2)T is dominated by z1

and z2, the sets E and LPNS are not updated. Since r2 ∈ [⌊α(2)⌋, ⌈β(2)⌉) = [−1, 1),
we fix x2 = r2 + 1 = 0 and set r2 = x2 = 0.

7th iteration. We have r = (1, 0)T and f(r) = (1,−1)T . While f(r) is already
contained in LPNS, we set E = {(0, 0)T , (0, 1)T , (1, 0)T}. As still r2 ∈ [⌊α(2)⌋, ⌈β(2)⌉) =
[−1, 1), we fix x2 = r2 + 1 = 1 and set r2 = x2 = 1.

8th iteration. We have r = (1, 1)T and f(r) = (3,−2)T , so that E and LPNS are
updated using z3 := (3,−2)T as

E = {(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T}, LPNS = {z1, z2, z3}.

Since r2 = 1 = ⌈β(2)⌉, we set d = d− 1 = 1 and update r1 according to Algorithm
1. Since r1 = 1 = ⌈β(1)⌉, we fix x1 = ⌈β(1)⌉+ 1 = 2 and r1 = x1 = 2.

9th iteration. The unconstrained minimizers of f r
1 and f r

2 , taking into account
x1 = 2 are x∗1,r = −1 and x∗2,r = 1, respectively, so that we set

LB := (f r
1 (x

∗1,r), f r
2 (x

∗2,r))T = (3,−1)T , α(2) = −1, β(2) = 1.

Condition (Cond) is satisfied as LB is dominated by z3. Since r1 = 2 > 1 = ⌈β(1)⌉
we can prune this node and all its outer siblings and we fix x1 = ⌊α(1)⌋ − 1 = −1
and r1 = x1 = −1.

23



10th iteration. The unconstrained minimizers of f r
1 and f r

2 , taking into account
x1 = −1 are x∗1,r = 0.5 and x∗2,r = 1, respectively, so that we set

LB := (f r
1 (x

∗1,r), f r
2 (x

∗2,r))T = (0.75, 2)T , α(2) = 0.5, β(2) = 1.

Condition (Cond) is satisfied as LB is dominated by z1. Since r1 = −1 < 0 = ⌊α(1)⌋
we set d = d− 1 = 0 and break the while loop.

Hence, the branch-and-bound algorithm stops with

LPNS = {z1, z2, z3} = {(0, 0)T , (1,−1)T , (3,−2)T}

after having enumerated 10 nodes.

root

x1 = −1x1 = 2x1 = 1

x2 = 1x2 = 0x2 = −1

x1 = 0

x2 = 1x2 = 0

Figure 3: Illustration of the branch-and-bound tree of the toy example.

5 Numerical results

In this section, we present our numerical experience on different instances of (MOQIP).
Next to some results on biobjective instances, we show results on instances with
m = 3 and m = 4. All the algorithms considered have been implemented in MAT-
LAB R2019a. In the preprocessing of BB-MOQIP, see Algorithm 2, we have always
chosen r∗ = 0 for initialization.

All experiments have been performed on an Intel Core i7 processor running at
3.1 GHz under Linux. An implementation of BB-MOQIP, together with the instances
used in this numerical experience, is available at [1].

As done in [3], the running time to process a node at level d, can be decreased
from O(n2) to O(n − d), using some adjustments in the preprocessing and in the
computation of the ideal point. We implemented these adjustments. However, since
additional memory is required and the number of variables in the tests we consider is
relatively small, we did not notice an improvement in terms of computational time.
Therefore, we show the results obtained by BB-MOQIP implemented as reported in
the Algorithm 3, where a quadratic time per node is achieved.

24



5.1 Results on a scalable biobjective instance

In this section, we show results on a biobjective instance of (MOQIP), scalable in
the number of variables. As there are no other algorithms which are specifically
taylored for unconstrained convex quadratic integer multiobjective problems, we
compare BB-MOQIP with MOMIX [9], with a näıve enumeration procedure (Enum) and
with the ε-constraint method (ε-const), as explained in the following. Thereby,
MOMIX and Enum require bounds on the variables in order to be applicable. For
unconstrained test instances we obtain these bounds from the results of BB-MOQIP.
We clarify this procedure below.

Algorithm MOMIX [9] is a decision space algorithm for solving multiobjective con-
vex mixed integer programming problems, based on linear outer approximations
of the image set (see [9] for further details). We choose to compare BB-MOQIP with
MOMIX in order to have a comparison between two deterministic decision space search
algorithms, as also MOMIX gives a guarantee to find all nondominated points.

The enumeration procedure Enum simply evaluates the objective functions over
the integers belonging to a box [l, u] ⊆ R

n and extract the efficient points out
of them. We choose to compare BB-MOQIP with Enum to show the power of our
pruning strategy and to show that our branch-and-bound is clearly superior to a
full enumeration strategy.

The ε-constraint method for biobjective instances of (MOQIP) solves a se-
quence of parameter-dependent single-objective optimization problems of the fol-
lowing form:

min f2(x)
s.t. f1(x) ≤ ε

x ∈ Z
n.

(Pε)

The parameter ε is chosen from the interval [f1(x
∗1), f1(x

∗2)], starting with ε =
f1(x

∗2), where x∗j denotes the minimizer of fj over Z
n, j = 1, 2. Starting from a

step size δ > 0, the choice of the parameters can be adapted along the iterations
by setting εk+1 := f1(x

k) − δ where xk denotes a minimal solution of (Pεk). In
our implementation we considered δ = 0.1. In Table 1 we report both the results
obtained considering Pε (ε-const (f1)) and the results obtained considering Pε,
where the roles of f1 and f2 are exchanged (ε-const (f2)), namely f1 is the objective
function and f2 defines the constraint. We choose to compare BB-MOQIP with the
ε-constraint method to have a comparison with a scalarization method. In our
implementation, we consider GUROBI [15] as solver for the convex quadratic integer
optimization subproblems (Pε). We would like to underline that GUROBI [15] is
a commercial software and is among the best solvers for mixed integer quadratic
optimization. Moreover, the ε-constraint method with the above chosen strategy of
δ-steps of the parameter, only calculates representations of the nondominated set,
with no guarantee to find the complete efficient set as BB-MOQIP. In addition to that,
the found points might be weakly efficient points only.

While BB-MOQIP does not necessarily need bounds on the variables, some of the

25



other methods in comparison need them as inputs. We proceed as follows. Once the
instance is solved by BB-MOQIP, we compute the minimum and the maximum value
of the components of the efficient points found. These values can be used as bounds
for the variables both in MOMIX, in Enum and have also been used in the ε-constraint
method. This is clearly not in favor of BB-MOQIP.

The scalable biobjective instance that we considered is the following.

Test instance 1. Let Q1, Q2 ∈ R
n×n be the symmetric matrices defined as follows:

(Q1)i,j =

{
7.9 if i=j

−0.1 else
and (Q2)i,j =

{
0.3 if i=j

0 else,

with i, j = 1, . . . , n. Then, the instance of (MOQIP) is stated as

min

(
xTQT

1Q1x+ (1, 2, 2, . . . , 2, 2, 1)x

xTQT
2Q2x+ (−1,−2,−2, . . . ,−2,−2, 5)x

)

s.t. x ∈ Z
n.

(Inst1)

Thus c1j = 2, c2j = −2 for j = 2, . . . , n − 1. In our tests, we considered in-
stance (Inst1) with n = 2, . . . , 10. Note that for these choices of n, the matrices Q1

and Q2 are positive definite.
We report in Figure 4 the criterion space of the instance, plotting (f1(x), f2(x))

for all x ∈ [−8, 3] × [−8, 3] ∩ Z
2. We highlight the efficient points in the decision

space (left subfigure) and the corresponding nondominated points in the criterion
space. Note that the nondominated points do not all belong to the convex hull of
the image points.

-8 -6 -4 -2 0 2 4

x1

-8

-6

-4

-2

0

2

4

x
2

0 200 400 600 800 1000

f1(x)

-30

-15

0

15

30

50

f2
(x

)

Figure 4: The decision (left subfigure) and the criterion space (right subfigure) of
instance (Inst1), with n = 2.

The numerical results are shown in Table 1. In the first and the second col-
umn of the table, we report the number of integer variables (n) and the number

26



of nondominated points of the instance, respectively. Note that |LPNS| is by The-
orem 3.7 exactly the number of nondominated points. Then, for each method, we
report (#nod) and the total computational time in seconds (time), where #nod has
a different meaning depending on the method chosen:

BB-MOQIP MOMIX Enum ε-const (f1) ε-const (f2)

n |LPNS| #nod time #nod time #nod time #nod time #nod time

2 23 102 0.06 87 7.18 144 0.03 22 1.95 22 3.23
3 42 796 0.09 267 36.43 1,728 0.08 41 3.35 39 2.58
4 51 5,069 0.29 631 79.27 20,736 0.55 50 2.87 47 4.01
5 56 29,388 1.30 1,371 254.51 248,832 5.75 56 3.09 53 3.76
6 65 157,019 4.70 2,973 509.62 2,985,984 73.63 67 3.29 59 3.27
7 66 786,374 24.23 5,931 1,106.07 35,831,808 936.95 73 3.77 65 2.13
8 74 3,699,585 118.61 - - - - 80 4.36 71 4.88
9 79 16,702,420 582.07 - - - - 88 5.91 77 11.05
10 89 - - - - - - 97 29.69 89 39.56

Table 1: Numerical results for test instances (Inst1).

For BB-MOQIP the number (#nod) represents the number of nodes explored, for
MOMIX the number (#nod) is the number of considered boxes in the branching tree,
for Enum it is the total number of objective function evaluations done, for ε-const
it is the number of subproblems solved. Failures, i.e., instances for which the time
limit of 1800 seconds was exceeded, are marked with “-”.

As expected, the ε-constraint method is much faster compared to the other
approaches. We even only used a basic implementation here (but at least using
the commercial solver GUROBI) such that one can expect that these results can
even be improved. Unlike the other methods, ε-const is a criterion space search
algorithm. However, no covering results as those obtained for BB-MOQIP and MOMIX

are guaranteed and we can notice that the number of solutions found by ε-const
is often less than |LPNS|, i.e., with the procedure as applied here with a chosen
step size in advance, it cannot be guaranteed to find all nondominated points. We
also want to mention that the ε-constraint method performs particularly well on
biobjective instances, while this is not always true when considering more than two
objective functions, as the choice of the parameters ε gets more difficult, and that
the choice of the stepsize δ is also not clear. However, there exist extensions of the
ε-constrained method that try to overcome these issues (see, e.g., [18, 26]).

When looking at the comparison among BB-MOQIP, MOMIX and Enum, we notice the
following. We observe that BB-MOQIP outperforms MOMIX in terms of computational
time for all n ≤ 9 while MOMIX is superior with respect to (#nod). This shows how
fast our approach enumerates the nodes: thanks to the preprocessing phase, the
computation of the lower bounds requires a negligible computational effort.

For n = 2, 3 Enum is faster than BB-MOQIP, but then we notice the opposite
situation, as the number of function evaluations needed by Enum is at least one

27



order of magnitude greater than the number of nodes enumerated by BB-MOQIP.
With the aim of improving the performance of BB-MOQIP, we have implemented

the use of alternative lower bounds by refining the outer approximation of f(Zn),
as explained in Section 3.2. In the following, we denote by BB-MOQIP-3 and by
BB-MOQIP-5 the versions of BB-MOQIP where, at every node, lower bounds are com-
puted according to (10), considering 3 and 5 supporting hyperplanes of f(Rn), re-
spectively. Note that since BB-MOQIP uses the ideal point as lower bound, it considers
the hyperplanes defined using w = (1, 0)T and w = (0, 1)T . In BB-MOQIP-3, we refine
the outer approximation of f(Zn) used in BB-MOQIP by considering the hyperplanes
defined by

w ∈ W̃ =

{(
1
0

)
,

(
0
1

)
,

(
0.5
0.5

)}
.

In BB-MOQIP-5, we refine the outer approximation of f(Zn) used in BB-MOQIP by
considering the hyperplanes defined using

w ∈ W̃ =

{(
1
0

)
,

(
0
1

)
,

(
0.5
0.5

)
,

(
0.25
0.75

)
,

(
0.75
0.25

)}
.

We report in Table 2 the comparison between BB-MOQIP, BB-MOQIP-3 and BB-MOQIP-5
on the test instance (Inst1). Despite the fact that the evaluation of (Cond2) imple-

BB-MOQIP BB-MOQIP-3 BB-MOQIP-5

n |LPNS| #nod time #nod time #nod time

2 23 102 0.06 102 0.10 102 0.12
3 42 796 0.09 742 0.13 656 0.15
4 51 5,069 0.29 4,724 0.23 4,027 0.33
5 56 29,388 1.30 26,996 0.91 21,878 1.15
6 65 157,019 4.70 140,451 4.67 109,616 3.42
7 66 786,374 24.23 681,332 21.62 510,438 15.32
8 74 3,699,585 118.61 3,114,010 100.07 2,235,497 69.92
9 79 16,702,420 582.07 13,392,984 449.76 9,265,958 300.61
10 89 - - - - 37,226,723 1,280.24

Table 2: Use of alternative lower bounds - test instances (Inst1).

mented in BB-MOQIP-3 and BB-MOQIP-5 is numerically more time consuming than
the evaluation of (Cond) as implemented in BB-MOQIP, we can notice for increasing n
an improvement in both the number of nodes and the computational time required.
As expected, improving the quality of the lower bounds leads to an overall improve-
ment of the algorithm. The motivation is that this improvement in the quality of
the lower bounds comes with a small additional computational effort, as the most
expensive operations are again performed in the preprocessing phase, which requires
0.01 seconds at most.

28



5.2 Results on randomly generated multi-objective instances

In this section, we report numerical results on instances of (MOQIP), where the
matrices Qj are randomly generated.

We report in Table 3 the comparison between BB-MOQIP and MOMIX where the
number m of objective functions is 2, 3, 4. We considered instances with a number
n = 2, 5, 10 of integer variables. For each combination of n and m we produced 10
different instances, where the matrices Qj are obtained using the MATLAB operator
rand that generates uniformly distributed pseudorandom numbers. We used rng(k),
k = 1, . . . , 10 as seed for the random number generator.

The four positive definite matrices are obtained as follows. Starting from a
randomly generated matrix Aj , j = 1, . . . , 4, the matrix Qj is set to AjA

T
j in case

the latter is positive definite, otherwise it is set to AjA
T
j + I, where I is the identity

matrix. The matrices Aj are computed as follows:

A1 = rand(n), A2 = 5 ∗ rand(n), A3 = 2 ∗ rand(n), A4 = 8 ∗ rand(n).

For the linear terms ci, i = 1, . . . 4, we considered the following:

c1 = (1, 2, . . . , 2, 1)T , c2 = (−1,−2, . . . ,−2, 5)T ,
c3 = (−1, . . . ,−1, 5)T , c4 = (1, . . . , 1)T .

To clarify, we have c1j = 2, c2j = −2, c
3
j = −1, c

4
j = 1 for j = 2, . . . , n− 1.

The time-limit was set to 1800 seconds for each individual instance. As already
mentioned, MOMIX needs bounds on the variables [li, ui], i = 1, . . . , n as input. There-
fore, we set li = −100 and ui = 100, for all i = 1, . . . , n, for all instances, in order
to have a box large enough to contain the efficient sets.

Table 3 includes the following data for each algorithm: the number of instances
solved within the time limit (#sol), the average number of nodes (#nod) and the
average running time in seconds (time). We also report the minimum and the
maximum number of nondominated points considering the instances solved within
the time limit (min |LPNS| and max |LPNS|, respectively).

We observe that BB-MOQIP and MOMIX solved within the time limit 70 and 43
instances out of 90, respectively. Again we can notice how fast the nodes are enu-
merated by BB-MOQIP: when n = 5, 10 BB-MOQIP strongly outperforms MOMIX in
terms of computational time. With respect to (#nod), we see that MOMIX needs to
consider a much smaller number of boxes in the branching tree in comparison to the
nodes enumerated by BB-MOQIP.

6 Conclusions

We devised a deterministic decision space search algorithm for solving multiobjec-
tive strictly convex quadratic integer programming problems. The main feature
of the method consists in a preprocessing phase that enables a fast computation

29



BB-MOQIP MOMIX

n m min |LPNS| max |LPNS| #sol #nod time #sol #nod time

2 2 3 37 10 85.5 0.01 10 111.8 33.07
5 2 4 318 10 661317.6 17.89 5 1722.6 1083.36
10 2 25 197 7 7846846.9 379.27 0 - -
2 3 9 2048 10 221930.7 48.52 10 109.8 22.04
5 3 23 496 7 841648.3 70.29 4 1334.5 987.99
10 3 46 336 5 9765977.8 697.61 0 - -
2 4 15 3880 10 274016.1 95.41 10 121.0 27.17
5 4 27 563 7 1047007.0 70.99 4 1508.5 1308.19
10 4 49 460 4 9731083.3 885.56 0 - -

Table 3: Numerical results on 90 randomly generated instances.

of lower bounds, obtained as the ideal points of the restricted objective functions.
Also alternative lover bounds using hyperplanes are examined to improve the re-
sults obtained by the ideal points. Theoretical results related to the correctness of
the algorithm are provided: the algorithm guarantees to find all efficient and all
nondominated points. This property is for instance important in case one wants to
optimize another function over the efficient set. It also presents a significant differ-
ence to representations generated by scalarization approaches. Numerical examples
on biobjective instances as well as on instances with three and four objectives are
reported, showing the ability of the algorithm to detect the efficient set of multiob-
jective strictly convex quadratic integer programming problems.

We are convinced that our theoretical achievements can be used for further devel-
opments in the context of multiobjective nonlinear integer optimization. In particu-
lar, if combined with the approaches proposed in [5, 6] for computing lower bounds
of nonconvex quadratic integer minimization problems, as well as with the active set
algorithm developed in [4] for computing lower bounds of convex quadratic integer
minimization problems with linear constraints, they can be used to devise decision
space algorithms for multiobjective quadratic integer optimization problems.

7 Acknowledgments

The first author acknowledges support within the project No RP1181641D22304F
which has received funding from Sapienza, University of Rome. The authors wish
to thank the two anonymous referees for their valuable comments and remarks on
an earlier version of this manuscript.

30



References

[1] https://github.com/mariannadesantis/BBMOQIP.git.

[2] V. Blanco and J. Puerto. Some algebraic methods for solving multiobjective
polynomial integer programs. Journal of Symbolic Computation, 46(5):511–533,
2011.

[3] C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound algo-
rithm for convex quadratic integer programming. Math. progr., 135(1-2):369–
395, 2012.

[4] C. Buchheim, M. De Santis, S. Lucidi, F. Rinaldi, and L. Trieu. A feasible
active set method with reoptimization for convex quadratic mixed-integer pro-
gramming. SIAM J. Optim., 26(3):1695–1714, 2016.

[5] C. Buchheim, M. De Santis, and L. Palagi. A fast branch-and-bound algorithm
for non-convex quadratic integer optimization subject to linear constraints using
ellipsoidal relaxations. Operations Research Letters, 43(4):384–388, 2015.

[6] C. Buchheim, M. De Santis, L. Palagi, and M. Piacentini. An exact algo-
rithm for nonconvex quadratic integer minimization using ellipsoidal relax-
ations. SIAM J. Optim., 23(3):1867–1889, 2013.

[7] C. Buchheim, R. Hübner, and A. Schöbel. Ellipsoid bounds for convex quadratic
integer programming. SIAM J. Optim., 25(2):741–769, 2015.

[8] C. Buchheim and L. Trieu. Active set methods with reoptimization for convex
quadratic integer programming. In International Symposium on Combinatorial
Optimization, pages 125–136. Springer, 2014.

[9] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel. Solving mul-
tiobjective mixed integer convex optimization problems. SIAM J. Optim.,
30(4):3122–3145, 2020.

[10] M. De Santis, G. Grani, and L. Palagi. Branching with hyperplanes in the
criterion space: The frontier partitioner algorithm for biobjective integer pro-
gramming. Eur. J. Oper. Res., 283(1):57–69, 2020.

[11] S. Dogan, O. Karsu, and F. Ulus. An exact algorithm for biobjective integer
programming problems. arXiv 1905.07428, 2019.

[12] M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial op-
timization problems. Computers & Operations Research, 34(9):2674 – 2694,
2007.

31



[13] J. Fernández and B. Tóth. Obtaining the efficient set of nonlinear biobjective
optimization problems via interval branch-and-bound methods. Computational
Optimization and Applications, 42(3):393–419, 2009.

[14] Sune Gadegaard, Lars Nielsen, and Matthias Ehrgott. Bi-objective branch-and-
cut algorithms based on lp relaxation and bound sets. INFORMS Journal on
Computing, 31, 06 2019.

[15] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020.

[16] Tim Holzmann and J Cole Smith. Solving discrete multi-objective optimiza-
tion problems using modified augmented weighted tchebychev scalarizations.
European Journal of Operational Research, 271(2):436–449, 2018.

[17] Parragh, S.N. and F. Tricoire. Branch-and-bound for bi-objective integer pro-
gramming. INFORMS J. Comput., 31(4):805–822, 2019.

[18] Gokhan Kirlik and Serpil Sayın. A new algorithm for generating all nondom-
inated solutions of multiobjective discrete optimization problems. European
Journal of Operational Research, 232(3):479–488, 2014.

[19] N. Klamroth, R. Lacour, and D. Vanderpooten. On the representation of the
search region in multi-objective optimization. Eur. J. Oper. Res., 245(3):767–
778, 2015.

[20] A. Liefooghe, S. Verel, and J-K Hao. A hybrid metaheuristic for multiobjective
unconstrained binary quadratic programming. Applied Soft Computing, 16:10–
19, 2014.

[21] J. Niebling and G. Eichfelder. A branch-and-bound-based algorithm for non-
convex multiobjective optimization. SIAM J. Optim., 29(1):794–821, 2019.

[22] Anthony Przybylski and Xavier Gandibleux. Multi-objective branch and bound.
European Journal of Operational Research, 260, 01 2017.

[23] D. Quadri, E. Soutif, and P. Tolla. Exact solution method to solve large scale in-
teger quadratic multidimensional knapsack problems. J. Comb. Optim., 17:157–
167, 2009.

[24] D. Scholz. Deterministic global optimization. Springer, 2012.

[25] L. Song, R. Zeng, Y. Wang, and M. Shang. Solving bi-objective unconstrained
binary quadratic programming problem with multi-objective path relinking al-
gorithm. In 2016 12th International Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery (ICNC-FSKD), pages 289–293, 2016.

32



[26] Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated
set of multiobjective discrete optimization problems. INFORMS Journal on
Computing, 33(1):72–85, 2021.

[27] L. Trieu. Continuous Optimization Methods for Convex Mixed-Integer Nonlin-
ear Programming. PhD thesis, Technischen Universität Dortmund, 2015.

[28] Ozgu Turgut, Evrim Dalkiran, and Alper E Murat. An exact parallel objective
space decomposition algorithm for solving multi-objective integer programming
problems. Journal of Global Optimization, 75(1):35–62, 2019.

[29] P. Van Emde Boas. Another np-complete problem and the complexity of com-
puting short vectors in a lattice. Technical report, Technical report, University
of Amsterdam, Department of Mathematics, 1981.

[30] Y. Zhou. A decomposition-based multi-objective tabu search algorithm for tri-
objective unconstrained binary quadratic programming problem. In 2017 IEEE
International Conference on Computational Science and Engineering (CSE)
and IEEE International Conference on Embedded and Ubiquitous Computing
(EUC), volume 1, pages 101–107, 2017.

33


